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The issue of deriving ZHη vertex in the simplest little Higgs (SLH) model is revisited. Special attention
is paid to the treatment of noncanonically-normalized scalar kinetic matrix and vector-scalar two-point
transitions. We elucidate a general procedure to diagonalize a general vector-scalar system in gauge
theories and apply it to the case of SLH. The resultant ZHη vertex is found to be different from those which
have already existed in the literature for a long time. We also present an understanding of this issue from an
effective field theory viewpoint.
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I. INTRODUCTION

The discovery of the 125 GeV Higgs-like boson [1,2]
marks a prominent triumph of the standard model (SM).
Nevertheless, it is widely believed that this is not the end of
the story. The SM in its current form leaves too many
unanswered questions, from theoretical ones like the issue
of Higgs mass naturalness [3,4], to observational ones like
the nature of the dark matter present in the universe [5,6].
Almost all models going beyond the SM (BSM) entail an
enlargement of the scalar sector, and consequently forms of
interaction which are absent in the SM could be possible.
Searching for such kind of new interactions therefore may
lead to decisive evidence of the existence of BSM and
provide a clue to the nature of the BSM physics.
For example, Lorentz symmetry does not forbid the

interaction of one gauge boson (denoted as Z) with two
scalar bosons (denoted as H and η) at the dimension-4
level, in the form like

ZμðH∂μη − η∂μHÞ ð1Þ

The SM has only one Higgs particle and thus cannot
accommodate such kind of vector-scalar-scalar (VSS)
interactions.1Going beyond the SM, the appearance of
interactions like Eq. (1) is quite common in models like
the two-Higgs-doublet model (2HDM) and supersymmet-
ric models, which may lead to the associated production of
two scalar bosons [7,8] or Higgs-to-Higgs cascade decays
[9,10] as important collider signatures.
Besides the usual 2HDM and supersymmetric models

which contain a linearly-realized scalar sector, VSS inter-
actions have also been studied in the context of nonlinearly-
realized scalar sectors. Nonlinearly realized scalar sectors
are frequently adopted when building a model in which the
Higgs is realized as a pseudo-Goldstone boson of some
global symmetry breaking [11], which could be helpful in
addressing the hierarchy problem. In principle the deriva-
tion of VSS vertices in such models is similar to the linearly
realized case: start from the gauge covariant kinetic terms
of the scalar fields and then expand the interaction fields
into vacuum expectation values and mass eigenstate fields
after which the three-point VSS vertices could be extracted.
Nevertheless there can be important technical differences in
intermediate steps. When the scalar sector is nonlinearly
realized, scalar kinetic terms are in general not automati-
cally canonically normalized, and there can be “unex-
pected” vector-scalar two-point transitions which need to
be taken care of. Wewill show in the following sections that
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1Here we mean physical fields. Unphysical fields like Gold-
stone or ghost can certainly participate in VSS interactions in
the SM.
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these situations indeed occur for the case of the simplest
little Higgs (SLH) model [12], which is proposed as a
simple solution to the Higgs mass naturalness problem.
From a more general perspective, the problem we

encounter is how to diagonalize a vector-scalar system
in gauge field theories. Specifically, the Lagrangian we start
with might not be canonically normalized in its kinetic part,
and may have some general vector-scalar two-point tran-
sitions. To do perturbation theory in the usual manner, we
need to first render its kinetic part canonically normalized,
which could be done via the usual complete-the-square
method. To remove the vector-scalar two-point transitions,
strictly speaking we need to choose appropriate gauge-
fixing terms. Finally we still need to diagonalize the scalar
mass matrix with contribution from both the original scalar
mass terms and the gauge-fixing terms. These steps set the
stage for the derivation of VSS interactions.
In Sec. II the systematic procedure of diagonalize a

general vector-scalar system in gauge field theories will be
elucidated. Then in Sec. III we apply this procedure to the
SLH model and derive the mass eigenstate ZHη vertex2 to
OððvfÞ3Þ. The ZHη vertex derived here is found to be
different from those which have already existed in the
literature [13,14] for a long time. In Sec. IV we present our
discussion and conclusion.

II. GENERAL DIAGONALIZATION PROCEDURE

Consider a gauge field theory in which there are nS real
scalar fields Gi, i ¼ 1; 2;…; nS and nM real massive gauge
boson fields Zμ

p, p ¼ 1; 2;…; nM. If complex fields exist,
we can always decompose them into their real components
and proceed in a similar manner. The Gi’s which we start
with neither need to be canonically normalized nor need to
have diagonalized mass terms. For simplicity (but without
loss of generality) the Zp’s are assumed to have canonically
normalized kinetic terms but do not have to be diagonalized
in their mass terms. When we say the Zp’s are massive, it
means that the eigenvalues of the mass matrix of Zp ’s are
all positive. Especially, massless gauge bosons like photon
are temporarily excluded from discussion. However, gen-
eralizing the procedure to theories containing massless
gauge bosons is straightforward.
Now suppose the classical Lagrangian of this gauge

theory contains the following quadratic parts3 (summation
over repeated indices is implicitly assumed):

Lquad ⊃
1

2
Vijð∂μGiÞð∂μGjÞ þ FpiZ

μ
pð∂μGiÞ

−
1

2
ðM2

GÞijGiGj þ
1

2
ðM2

VÞpqZpμZ
μ
q ð2Þ

Here V is a real invertible nS × nS symmetric matrix, F is a
real nM × nS matrix,M2

G is a nS × nS symmetric matrix the
rank of which does not exceed nE ≡ nS − nM,

4and M2
V is a

real nM × nM symmetric matrix which has nM positive
eigenvalues. The elements of the four matrices V, F, M2

G,
M2

V depend only on the model parameters, not on field
variables. For convenience let us define

G̃p ¼ FpiGi; p ¼ 1; 2;…; nM ð3Þ

Then the vector-scalar two-point transition term [the second
term on the right-hand side of Eq. (2)] is simply Zμ

p∂μG̃p.
To carry out perturbation theory, it is preferable to

eliminate the vector-scalar two-point transitions, make
the scalar kinetic terms canonically normalized and at
the same time diagonalize the scalar and vector mass terms.
We will see that the procedure involved actually goes hand
in hand with the quantization of the theory. Also, the tight
structure of the gauge theory greatly facilitates the diag-
onalization process.
In gauge field theories, the vector-scalar two-point

transitions are usually eliminated by adding appropriate
gauge-fixing terms. If we require the Rξ gauge-fixing
procedure remove all the vector-scalar two-point transi-
tions, then it is natural to consider adding the following
gauge-fixing Lagrangian:

Lgf ¼ −
XnM
p¼1

1

2ξp
ð∂μZ

μ
p − ξpG̃pÞ2 ð4Þ

Here ξp, p ¼ 1; 2;…; nM are gauge parameters. There is
freedom in the choice of the gauge-fixing function and the
requirement to remove vector-scalar two-point transitions is
not sufficient to uniquely determine it. However we will see
below there is a theoretically well-motivated choice which
facilitates the diagonalization process. After adding the
gauge-fixing terms, we have

LquadþLgf ⊃
1

2
Vijð∂μGiÞð∂μGjÞ−

1

2
ξpG̃2

p −
1

2
ðM2

GÞijGiGj

−
1

2ξp
ð∂μZ

μ
pÞ2þ 1

2
ðM2

VÞpqZpμZ
μ
q: ð5Þ

2By “mass eigenstate” ZHη vertex we mean the ZHη vertex
obtained after rotating Z, H, η fields into their corresponding
mass eigenstates. For previous studies related to the η particle in
the SLH, we refer the reader to [13–25].

3Here we suppress the gauge boson kinetic terms which are
assumed to be already canonically normalized.

4Here we assume all the Zp’s acquire their masses by eating
appropriate Goldstones. In compliance with the fact that nM
massless Goldstones should exist before gauge-fixing, the rank of
M2

G should not exceed nS − nM.
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The matrix V denotes the scalar kinetic matrix. If it is not
the identity matrix, we may simply use the complete-the-
square method to diagonalize it and then make the resulting
terms canonically normalized. This is in complete analogy
to the diagonalization of quadratic forms in linear algebra.
Note that the overall transformation employed to render the
scalar kinetic terms canonically normalized need not be
orthogonal.
Now suppose we have found a transformation of the

scalar fields

Si ¼ UijGj ð6Þ

which renders the scalar kinetic terms diagonalized and
canonically normalized:

1

2
Vijð∂μGiÞð∂μGjÞ ¼

1

2
ð∂μSiÞð∂μSiÞ: ð7Þ

Here U is a real invertible nS × nS matrix which only needs
to satisfy

V ¼ UTU: ð8Þ

It is evident that U is not uniquely determined. It is only
determined up to an orthogonal transformation. We may
take advantage of this freedom to do additional orthogonal
transformation to further diagonalize the scalar mass matrix
while still keeping scalar kinetic terms in their canonically
normalized form.
After the transformation Eq. (6) we obtain

Lquad þ Lgf ⊃
1

2
ð∂μSiÞð∂μSiÞ −

1

2
ξpG̃2

p

−
1

2
ððU−1ÞTM2

GU
−1ÞijSiSj

−
1

2ξp
ð∂μZ

μ
pÞ2 þ 1

2
ðM2

VÞpqZpμZ
μ
q: ð9Þ

In the above equation G̃p’s can be viewed as linear
combinations of Si ’s. It should be noted from a physical
perspective that the nS scalar degrees of freedom with
which we started could be divided into two categories (after
appropriate linear combinations if needed): unphysical
scalars and physical scalars. Specifically, nM unphysical
scalars should exist and serve as unphysical Goldstones to
be eaten by nM gauge bosons to make them massive. The
remaining nE ¼ nS − nM scalar degrees of freedom then
must be physical scalars. By virtue of this observation,
there must exist an orthogonal transformation

S̄i ¼ PijSj ð10Þ

which diagonalizes the − 1
2
ððU−1ÞTM2

GU
−1ÞijSiSj term.

Then Eq. (9) becomes

Lquad þ Lgf ⊃
1

2
ð∂μS̄iÞð∂μS̄iÞ −

1

2
ξpG̃2

p −
1

2
ν2r S̄2r

−
1

2ξp
ð∂μZ

μ
pÞ2 þ 1

2
ðM2

VÞpqZpμZ
μ
q: ð11Þ

The index r ranges from nM þ 1 to nS (this will be assumed
whenever we use the index r), and νr’s depend only on
model parameters, not on field variables. With this labeling
convention the latter nE fields in S̄i’s correspond to physical
scalars while the remaining ones are unphysical Goldstone
bosons. The matrix P and the νr’s can be made independent
of the ξp’s, because in the course of diagonalizing the
− 1

2
ððU−1ÞTM2

GU
−1ÞijSiSj term, the − 1

2
ξpG̃2

p term is left
untouched.
It is helpful to recall that in Eq. (11) the G̃p’s can be

viewed as linear combinations of S̄i ’s. In fact, because nE
physical scalars must exist, the matrix P can be chosen so
that the G̃p’s do not contain the S̄r’s. That is to say, the
G̃p’s can be expressed as linear combinations of S̄i,
i ¼ 1; 2;…; nM. Therefore, by examining Eq. (11) it is
obvious that in Lquad þ Lgf the nE physical scalars are
clearly separated from the unphysical ones after the
orthogonal transformation Eq. (10).
At this stage we need to take a closer look at the

unphysical scalar mass term in Eq. (11), which is

L0 ≡ −
1

2
ξpG̃2

p: ð12Þ

Recalling that the G̃p’s are linear combinations of S̄i,
i ¼ 1; 2;…; nM, the next thing we need to do is to find an
orthogonal transformation

S̃i ¼ KijS̄j ð13Þ

which diagonalizes L0. In Eq. (13) i, j range from 1 to nS,
and K is a nS × nS orthogonal matrix. Nevertheless, to
avoid spoiling the already diagonalized physical scalar
mass term, it is advisable to consider the following block-
diagonal form of K:

K ¼
�

KM 0nM×nE
0nE×nM InE×nE

�
: ð14Þ

Here InE×nE is the nE × nE identity matrix, and KM is a
nM × nM orthogonal matrix. With this form of matrixK it is
made clear that the S̄r’s actually do not get transformed in
this step, however the − 1

2
ξpG̃2

p term is diagonalized byKM.
It remains to find the nM × nM orthogonal matrix KM.

We note that L0 written in the form of Eq. (12) is highly
suggestive, because it has already completed the square.
Therefore it seems natural to guess that the transformation
we need is simply
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S̃p ¼ αpG̃p; p ¼ 1; 2;…; nM ðno summation over pÞ
ð15Þ

Here the αp’s are constants chosen to make the transformed
fields canonically normalized. Because the G̃p’s can be
expressed as linear combinations of S̄i, i ¼ 1; 2;…; nM,
Eq. (15) effectively leads to a transformation from S̄i,
i ¼ 1; 2;…; nM to S̃i, i ¼ 1; 2;…; nM, from which the
matrix KM can be inferred.
There is one remaining potential loophole that we need

to deal with. It is necessary to ensure that the matrix KM
inferred from Eq. (15) is indeed an orthogonal matrix,
otherwise we will not be able to keep the scalar kinetic
terms in their diagonalized and canonically normalized
form.
To help determine whether the matrix KM inferred from

Eq. (15) is orthogonal we denote the real vector space
spanned by Gi, i ¼ 1; 2;…; nS as L and introduce an inner
product in L, defined by

hSijSji≡ δij; i; j ¼ 1; 2;…; nS: ð16Þ

This means the Si’s constitute an orthonormal basis in L.
The inner product of any two elements in L can then be
calculated by virtue of the linearity property of the inner
product. It is obvious that the S̄i’s also form an orthonormal
basis in L. Based on simple algebraic knowledge the
problem of judging whether KM is orthogonal reduces to
judging whether S̃p, p ¼ 1; 2;…; nM form an orthonormal
basis in the subspace spanned by themselves.
As long as all the G̃p’s have positive norm, we may

always adjust the αp’s so that

hS̃pjS̃pi ¼ 1; ∀ p ¼ 1; 2;…; nM: ð17Þ

Therefore the question becomes whether hS̃pjS̃qi ¼ 0 holds
when p; q ¼ 1; 2;…; nM and p ≠ q. According to Eq. (15)
we only need to check whether hG̃pjG̃qi ¼ 0 holds when
p; q ¼ 1; 2;…; nM and p ≠ q.
Fortunately, when the scalar fields are canonically

normalized in their kinetic part, the vector-scalar two-point
transitions in a gauge theory has the form [26]

i
X
nmα

∂μϕ
0
ntαnmA

μ
αvm: ð18Þ

Here ϕ0n is the shifted scalar field with zero vacuum
expectation value, vm is the vacuum expectation value of
the original scalar fields. tα denotes the generator matrix
with α being the adjoint index and Aμ

α is the corresponding
gauge field. On the other hand, the elements of the gauge
boson mass matrix are [26]

μ2αβ ¼ −
X
nml

tαnmt
β
nlvmvl ð19Þ

Compare Eq. (18) and Eq. (19) it is easy to find for our case
the useful property

hG̃pjG̃qi ¼ ðM2
VÞpq; ∀ p; q ¼ 1; 2;…; nM ð20Þ

A nonlinearly-realized scalar sector does not introduce
additional difficulty in arriving at Eq. (20), because com-
pared to the linearly realized case, the relevant differences
begin from quadratic terms in the field expansion and do not
affect Eq. (18) and Eq. (19).
Equation (20) suggests that if the gauge bosons are

already in their mass eigenstates, then the related Goldstone
boson vectors must be orthogonal to each other, which is
exactly what we desire. Physically this implies that massive
gauge bosons eat their corresponding Goldstone bosons
along the directions dictated by their mass eigenstates.
Therefore it would be desirable we rotate the gauge boson
fields to their mass eigenstates before adding the gauge-
fixing terms Eq. (4). This offers great convenience for the
diagonalization of scalar mass matrix afterwards.
On the other hand, if the gauge-fixing terms in Eq. (4) are

added when Zμ
p’s are not mass eigenstate fields, although

this way of gauge-fixing is also legitimate, it would cause
further inconveniences. First, after rotation to gauge boson
mass eigenstates, the term − 1

2ξp ð∂μZ
μ
pÞ2 will induce kinetic

mixing between gauge bosons in a general Rξ gauge,
spoiling the diagonalization of gauge boson kinetic terms.
Second, from Eq. (20) it is obvious that now the G̃p’s are
not orthogonal to each other. Therefore the diagonalization
of scalar mass terms would not be straightforward. Due to
the above considerations in the following we adopt the
procedure in which gauge-fixing terms Eq. (4) are added
after rotating gauge boson fields to their mass eigenstates.
Suppose the gauge boson mass matrix M2

V can be
diagonalized as follows

RM2
VR

−1 ¼ M2
DV ≡ diagfμ21; μ22;…; μ2nMg ð21Þ

Here R is a nM × nM orthogonal matrix, and μ21; μ
2
2;…; μ2nM

are positive. Let us define

Gm
p ≡ Rpq

μp
G̃q ¼

ðRFÞpi
μp

Gi;

p ¼ 1; 2;…; nM ðno summation over pÞ ð22Þ

(superscript m denotes canonically-normalized mass eigen-
states). Now we can check with the help of Eq. (20)(no
summation over p, q)
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hGm
p jGm

q i¼
1

μpμq
ðRM2

VR
TÞpq¼ δpq; ∀p;q¼1;2;…;nM

ð23Þ

We could further extend the definition ofGm
p to the states

S̄r, r ¼ nM þ 1;…; nS which we have already obtained.
According to our diagonalization of physical scalar mass
term, S̄r can be expressed as

S̄r ¼ ðPUÞriGi; r ¼ nM þ 1;…; nS ð24Þ

where the matrix U and P are introduced in Eq. (6) and
Eq. (10), respectively. Finally we can expressGm

i as follows

Gm
i ¼ QijGj; i ¼ 1; 2;…; nS ð25Þ

where the nS × nS matrix Q is defined by (no summation
over i)

Qij ¼
( ðRFÞij

μi
; i ¼ 1; 2;…; nM;

ðPUÞij; i ¼ nM þ 1;…; nS:
ð26Þ

With the transformation matrix R and Q at our hand it will
then be straightforward to derive any three-point or four-
point interaction that we are interested in.

III. THE CASE OF SLH

A. Preparation for the calculation

The SLH model was proposed as a simple solution to the
Higgs mass naturalness problem, making use of the
collective symmetry breaking mechanism [27]. Its electro-
weak gauge group is enlarged to SUð3ÞL ×Uð1ÞX, and two
scalar triplets are introduced to realize the global symmetry
breaking pattern

½SUð3Þ1 ×Uð1Þ1� × ½SUð3Þ2 ×Uð1Þ2�
→ ½SUð2Þ1 ×Uð1Þ1� × ½SUð2Þ2 ×Uð1Þ2� ð27Þ

The scalar sector of the SLH model is usually written in a
nonlinearly realized form. In this paper we follow the
convention of [28] and parametrize the two scalar triplets as
follows

Φ1 ¼ exp

�
iΘ0

f

�
exp

�
itβΘ
f

�0B@
0

0

fcβ

1
CA ð28Þ

Φ2 ¼ exp
�
iΘ0

f

�
exp

�
−
iΘ
ftβ

�0B@
0

0

fsβ

1
CA: ð29Þ

Here we introduced the shorthand notation sβ ≡ sin β,
cβ ≡ cos β, tβ ≡ tan β. f is the Goldstone decay constant
which is supposed to be at least a few TeV. Θ and Θ0 are
3 × 3 matrix fields, defined by

Θ¼ ηffiffiffi
2
p þ

�
02×2 h

h† 0

�
; Θ0 ¼ ζffiffiffi

2
p þ

�
02×2 k

k† 0

�
ð30Þ

where h and k are parametrized as (v ≈ 246 GeV denotes
the vacuum expectation value of the Higgs doublet)

h ¼
�
h0

h−

�
; h0 ¼ 1ffiffiffi

2
p ðvþH − iχÞ ð31Þ

k ¼
�
k0

k−

�
; k0 ¼ 1ffiffiffi

2
p ðσ − iωÞ ð32Þ

The covariant derivative in the electroweak sector can be
written as

Dμ¼ ∂μ− igAa
μTaþ igxQxBx

μ; gx¼
gtWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− t2W=3

p : ð33Þ

Here tW ≡ tan θW . Aa
μ and Bx

μ denote the SUð3ÞL andUð1ÞX
gauge fields, respectively. The SUð3ÞC × SUð3ÞL ×Uð1ÞX
gauge quantum number of Φ1, Φ2 is ð1; 3Þ−1

3
, therefore for

Φ1, Φ2, Qx ¼ − 1
3
, and Aa

μTa can be written as

Aa
μTa ¼ A3

μ

2

0
B@ 1 0 0

0 −1 0

0 0 0

1
CAþ A8

μ

2
ffiffiffi
3
p

0
B@ 1 0 0

0 1 0

0 0 −2

1
CA

þ 1ffiffiffi
2
p

0
B@

0 Wþμ Y0
μ

W−
μ 0 X−

μ

Y0†
μ Xþμ 0

1
CA: ð34Þ

The gauge kinetic terms for Φ1, Φ2 are

Lgk ¼ ðDμΦ1Þ†ðDμΦ1Þ þ ðDμΦ2Þ†ðDμΦ2Þ: ð35Þ

The first order (in v
f) gauge boson mixing for A3, A8, Bx

takes the form

0
B@A3

A8

Bx

1
CA¼

0
BBB@

0 cW −sWffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
sWtWffiffi

3
p sWffiffi

3
p

− tWffiffi
3
p sW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
cW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
1
CCCA
0
B@Z0

Z

A

1
CA:

ð36Þ

We note that Z0, Z are not the ultimate mass eigenstate
fields. For future convenience we split the Y0 field into real
and imaginary parts
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Y0
μ ≡ 1ffiffiffi

2
p ðYRμ þ iYIμÞ; Y0†

μ ≡ 1ffiffiffi
2
p ðYRμ − iYIμÞ ð37Þ

In this paper we intend to focus on the neutral sector, in
which there are six scalar degrees of freedom: η, ζ, H, χ, σ,
ω. Four degrees of freedom will be eaten to give mass to
massive neutral gauge bosons and are unphysical. The
remaining two are physical and need to play the role of the
observed Higgs-like boson and the pseudoaxion which has
been discussed a lot in the literature. The pseudoaxion
actually corresponds to the Goldstone boson of a sponta-
neously broken global Uð1Þ symmetry in the SLH. To give
it a mass, the so-called “μ term” needs to be introduced

Lμ ¼ μ2ðΦ†
1Φ2 þ H:c:Þ ð38Þ

The observed Higgs-like boson will acquire its mass from
the Coleman-Weinberg potential (however the μ term will
also contribute to its potential). Because Lgk, Lμ and the
Coleman-Weinberg potential conserve CP, it will be
convenient to group the neutral bosons into the CP-even
andCP-odd sectors:H, σ, YR belong to theCP-even sector,
while η, ζ, χ, ω, Z0, Z, YI, A belong to the CP-odd sector.
There are no two-point transitions between these two
sectors.
Some comments concerning the parametrization of Φ1,

Φ2 in Eq. (28) and Eq. (29) are in order. First, we have
chosen to retain the heavy sector fields in Θ0, rather than
omitting them from the beginning. Apparently the omission
of Θ0 can be justified by doing a SUð3ÞL gauge trans-
formation. This justification is valid, and in the more
precise language of Faddeev-Popov gauge-fixing, the
omission of Θ0 actually corresponds to a certain choice
of the gauge-fixing function. However, this omission could
lead to future inconvenience, since as we will show, Lgk

contains two-point transitions between heavy sector gauge
bosons and the pseudo-axion. Θ0 can be rotated away by a
gauge transformation but heavy sector gauge bosons
cannot. This means that when doing perturbation theory
we need to always carry those two-point vector-scalar
transitions, which are quite inconvenient. Nevertheless, the
omission of Θ0 and heavy sector gauge bosons can indeed
be convenient if we only need to obtain theOðvfÞ coefficient
of the mass eigenstate ZHη vertex, since the effect of those
omitted two-point vector-scalar transitions will be sup-
pressed due to the heavy gauge boson masses. Second, we
have chosen to parametrize Φ1, Φ2 with two exponentials
for each, rather than use a single exponential like

Φ1;SE ¼ exp

�
i
f
ðΘ0 þ tβΘÞ

�0B@
0

0

fcβ

1
CA ð39Þ

Also, in Eq. (28) and Eq. (29) the exponential of Θ0 has
been put to the left of the exponential of Θ. For non-
commutative matrices the single exponential parametriza-
tion is not mathematically equivalent to the double
exponential parametrization. Moreover, the double expo-
nential parametrization will depend on the order of the two
exponentials. However, these parametrizations are related
to each other by field redefinition and should thus be
physically equivalent. Which one to use is a matter of
convenience. We choose the double exponential parametri-
zation in Eq. (28) and Eq. (29) because it does not introduce
massmixingbetween heavy and light sector scalars inLμ and
will thus facilitate the mass diagonalization.
The aim of this section is to derive the mass eigenstate

ZHη vertex in the SLH. With the current double expo-
nential parametrization it is possible to demonstrate that H
does not mix with σ, and the scalar kinetic terms are already
canonically-normalized in the CP-even sector. Also, the μ
term gives η a mass but does not introduce mass mixing
between η and other fields. According to our argument in
the previous section this means that after all the diagonal-
ization procedure is completed, the whole effect on η is
supposed to be a simple rescaling. This offers great
convenience for the derivation of the mass eigenstate
ZHη vertex. The needed rescaling factor can be easily
computed. Going back to the notation of Sec. II, the inner
product between two Goldstone bosons Gi and Gj in
Eq. (2) satisfies

hGijGji ¼ ðU−1ÞikðU−1ÞjlhSkjSli
¼ ðU−1ÞikðU−1Þjlδkl ¼ ðU−1ÞikðU−1Þjk
¼ ðV−1Þij: ð40Þ

We employ the convention that η, ζ, χ, ω correspond to
indices 1,2,3,4 respectively, therefore

hηjηi ¼ ðV−1Þ11: ð41Þ

Consequently, the ultimate mass eigenstate field ηm is
related to η through

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV−1Þ11

q
ηm: ð42Þ

To obtain the mass eigenstate ZHη vertex, we also need
to know the component of ηm in ζ, χ, ω. For the case of the
SLH, let us denote the CP-odd sector elements of the
matrix F introduced in Eq. (2) as

F ¼

0
BB@

FZη FZζ FZχ FZω

FZ0η FZ0ζ FZ0χ FZ0ω

FYη FYζ FYχ FYω

1
CCA: ð43Þ
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(We assume for the CP-odd sector gauge boson mass
matrix, the first, second, and third row/column correspond
to Z, Z0, YI , respectively.) In the third row, FYη denotes the
coefficient of the two-point transition Yμ

I∂μη (similar for
FYζ, FYχ , FYω). Due to CP-conservation there is no two-
point transition between Yμ

R and the CP-odd scalars,
therefore no confusion would arise. The photon field Aμ

does not have two-point transition with scalars. We would
like to denote the submatrix formed by the second, third,
and fourth column of F as F̃

F̃≡
0
B@

FZζ FZχ FZω

FZ0ζ FZ0χ FZ0ω

FYζ FYχ FYω

1
CA: ð44Þ

Now the application of Eq. (25) and Eq. (26) to the CP-odd
scalar sector of the SLH leads to

0
B@ ζm

χm

ωm

1
CA ¼ M−1

DVR

2
64
0
B@

FZη

FZ0η

FYη

1
CAηþ F̃

0
B@ ζ

χ

ω

1
CA
3
75: ð45Þ

As before the superscriptm denotes canonically normalized
mass eigenstate fields. Inverting Eq. (45) and using Eq. (42)
will lead to

0
B@ ζ

χ

ω

1
CA¼ F̃−1RTMDV

0
B@ ζm

χm

ωm

1
CA−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV−1Þ11

q
F̃−1

0
B@

FZη

FZ0η

FYη

1
CAηm:

ð46Þ

We define the four-component column vector

ϒ≡

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV−1Þ11

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV−1Þ11

p
F̃−1

0
B@

FZη

FZ0η

FYη

1
CA

1
CCCCCA ð47Þ

and denote the first row of R as R1

R1 ¼ ðR11 R12 R13 Þ ð48Þ

where Rij represents the ði; jÞ element of R. We will also
need the coefficient matrices

CdH ¼

0
BBB@

CdH
Zη CdH

Zζ CdH
Zχ CdH

Zω

CdH
Z0η CdH

Z0ζ CdH
Z0χ CdH

Z0ω

CdH
Yη CdH

Yζ CdH
Yχ CdH

Yω

1
CCCA;

CHd ¼

0
BBB@

CHd
Zη CHd

Zζ CHd
Zχ CHd

Zω

CHd
Z0η CHd

Z0ζ CHd
Z0χ CHd

Z0ω

CHd
Yη CHd

Yζ CHd
Yχ CHd

Yω

1
CCCA: ð49Þ

Here CdH
Zη denotes the coefficient of Zμη∂μH, while CHd

Zη

denotes the coefficient of ZμH∂μη, and so on. If we have
calculated the matrices CdH, CHd and the vectorsϒ andR1,
then the coefficient of mass eigenstate antisymmetric ZHη
vertex (Zμðη∂μH −H∂μηÞ with all fields understood to be
mass eigenstate fields) can be obtained as

casZHη ¼
R1CdHϒ −R1CHdϒ

2
ð50Þ

while the coefficient of mass eigenstate symmetric ZHη
vertex (Zμðη∂μH þH∂μηÞ with all fields understood to be
mass eigenstate fields) can be obtained as

csZHη ¼
R1CdHϒþ R1CHdϒ

2
: ð51Þ

Here we remark that we divide a general VSS vertex into its
antisymmetric and symmetric parts because they exhibit
distinct features in physical processes. For example, the
symmetricVSS vertex does not contributewhen the involved
vector boson is on shell. Therefore, only the antisymmetric
ZHη vertex is expected to contribute at tree level to decay
processes H → Zη (or η → ZH if η is heavy) where Z is
supposed to be on shell.

B. Results

In principle the derivation of mass eigenstate ZHη vertex
with no expansion on the v

f can be carried out manually.5

However, after obtaining V, F andM2
V , the calculation of R

and the inverse matrices can become extremely cumber-
some. Therefore we choose to compute the mass eigenstate
ZHη vertex to OððvfÞ3Þ, which makes the results easier to
obtain and display. For brevity we define ξ≡ v

f in the
following.
Let us first find the scalar kinetic matrix V and vector-

scalar transition matrix F for the SLH. They are computed
to be

5In practice, they can be more readily obtained with the help of
Mathematica.
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V ¼

0
BBBBBBBBBB@

1 0
ffiffi
2
p
t2β

ξ − 7c2βþc6β
6
ffiffi
2
p

s3
2β

ξ3 −
ffiffiffi
2
p

ξþ 5þ3c4β
3
ffiffi
2
p

s2
2β

ξ3

0 1 − 1ffiffi
2
p ξþ 5þ3c4β

12
ffiffi
2
p

s2
2β

ξ3 − 2
ffiffi
2
p
3t2β

ξ3ffiffi
2
p
t2β

ξ − 7c2βþc6β
6
ffiffi
2
p

s3
2β

ξ3 − 1ffiffi
2
p ξþ 5þ3c4β

12
ffiffi
2
p

s2
2β

ξ3 1 − 5þ3c4β
12s2

2β
ξ2 2

3t2β
ξ2

−
ffiffiffi
2
p

ξþ 5þ3c4β
3
ffiffi
2
p

s2
2β

ξ3 − 2
ffiffi
2
p
3t2β

ξ3 2
3t2β

ξ2 1

1
CCCCCCCCCCA
þOðξ4Þ ð52Þ

F ¼ gf

0
BBBBBB@

1ffiffi
2
p

cWt2β
ξ2 − 1

2
ffiffi
2
p

cW
ξ2 1

2cW
ξ − 5þ3c4β

24cWs22β
ξ3 1

3cWt2β
ξ3

ρ
t2β
ξ2

ffiffi
2
pffiffiffiffiffiffiffiffi
3−t2W
p − 1þ2c2W

2
ffiffi
2
p

c2W
ffiffiffiffiffiffiffiffi
3−t2W
p ξ2 κξ − κð5þ3c4βÞ

12s2
2β

ξ3 − 1

3c2W
ffiffiffiffiffiffiffiffi
3−t2W
p

t2β
ξ3

−ξþ 5þ3c4β
6s2

2β
ξ3 − 2

3t2β
ξ3

ffiffi
2
p
3t2β

ξ2 1ffiffi
2
p

1
CCCCCCAþOðξ4Þ ð53Þ

where we defined

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c2W
1þ c2W

s
; κ ≡ c2W

2c2W
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p : ð54Þ

It is obvious from Eq. (52) that the scalar kinetic terms in
the original η, ζ, χ, ω are not canonically normalized, and
also obvious from Eq. (53) that there are general vector-
scalar two-point transitions. Especially, the two-point Zη
transition appears at Oðξ2Þ, only one order of ξ relatively
suppressed when compared to Zχ transition.6 The appear-
ance of these non-canonically normalized kinetic terms and
unexpected7; vector-scalar transitions is the exact reason for
introducing the systematic procedure in Sec. II.
The ϒ vector is computed to be

ϒ ¼

0
BBBBBBBB@

1þ 1
s2
2β
ξ2 þOðξ4Þ

− 1
t2β
ξ2 þOðξ4Þ

−
ffiffi
2
p
t2β

ξ − 3−c4βffiffi
2
p

s2
2βt2β

ξ3 þOðξ5Þffiffiffi
2
p

ξþ 3−c4β
3
ffiffi
2
p

s2
2β

ξ3 þOðξ5Þ

1
CCCCCCCCA
: ð55Þ

A compact expression for ϒ valid to all orders in ξ can also
be obtained. It is

ϒ ¼

0
BBBBBB@

c−1γþδ
−c−1γþδðs2δtβ − s2γ t−1β Þ
vffiffi
2
p

f
c−1γþδðc2δtβ − c2γt−1β Þ

1
2
c−1γþδðs2δtβ þ s2γt−1β Þ

1
CCCCCCA ð56Þ

where

γ ≡ vtβffiffiffi
2
p

f
; δ≡ vffiffiffi

2
p

ftβ
: ð57Þ

Expanding the above expression to Oðξ3Þ, Eq. (55) can be
recovered. The above expression for the ϒ vector is
very useful in derivation of exact results of tree level
vertices involving the η particle. The CdH matrix is
computed to be

CdH ¼

0
BBBBB@

0 0 − g
2cW
þ gð5þ3c4βÞ

24cWs22β
ξ2 þOðξ4Þ 0

0 0 − gð1−t2WÞ
2

ffiffiffiffiffiffiffiffi
3−t2W
p þ gκð5þ3c4βÞ

12s2
2β

ξ2 þOðξ4Þ 0

0 0 −
ffiffi
2
p

g
3t2β

ξþ gð7c2βþc6βÞ
30

ffiffi
2
p

s3
2β

ξ3 þOðξ5Þ 0

1
CCCCCA:

ð58Þ

The CHd matrix is computed to be

6Although the two-point Zη transition appears at Oðξ2Þ, the
elimination of this part require an OðξÞ field redefinition, due to
the fact that the relative suppression of Zη transition to Zχ
transition is OðξÞ. The ZHχ coupling is Oð1Þ. Therefore, the
removal of Zη transition could lead to an OðξÞ change in the
derived ZHη vertex.

7By unexpected we refer to the fact that η is considered
physical, yet there exist two-point transitions such as Zμ∂μη
in Lgk.
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CHd ¼

0
BBBBBB@

ffiffi
2
p

g
cWt2β

ξ − gð7c2βþc6βÞ
3
ffiffi
2
p

cWs32β
ξ3 − gffiffi

2
p

cW
ξþ gð5þ3c4βÞ

6
ffiffi
2
p

cWs22β
ξ3 g

2cW
− gð5þ3c4βÞ

8cWs22β
ξ2 g

cWt2β
ξ2

2gρ
t2β

ξ − gρð7c2βþc6βÞ
3s3

2β
ξ3 −gρξþ gρð5þ3c4βÞ

6s2
2β

ξ3 gκ − gκð5þ3c4βÞ
4s2

2β
ξ2 − g

c2W
ffiffiffiffiffiffiffiffi
3−t2W
p

t2β
ξ2

−gþ gð5þ3c4βÞ
2s2

2β
ξ2 − 2g

t2β
ξ2 2

ffiffi
2
p

g
3t2β

ξ −
ffiffi
2
p

gð7c2βþc6βÞ
15s3

2β
ξ3 0

1
CCCCCCAþOðξ4Þ: ð59Þ

The matrix R can be computed as

R ¼

0
BBBBBB@

1þOðξ4Þ − c2Wð1þ2c2WÞ
8c5W

ffiffiffiffiffiffiffiffi
3−t2W
p ξ2 þOðξ4Þ −

ffiffi
2
p

3cWt2β
ξ3 þOðξ5Þ

c2Wð1þ2c2WÞ
8c5W

ffiffiffiffiffiffiffiffi
3−t2W
p ξ2 þOðξ4Þ 1þOðξ4Þ −

ffiffi
2
p ð1þ2c2WÞ
3c2W

ffiffiffiffiffiffiffiffi
3−t2W
p

t2β
ξ3 þOðξ5Þffiffi

2
p

3cWt2β
ξ3 þOðξ5Þ

ffiffi
2
p ð1þ2c2WÞ
3c2W

ffiffiffiffiffiffiffiffi
3−t2W
p

t2β
ξ3 þOðξ5Þ 1þOðξ6Þ

1
CCCCCCA: ð60Þ

With this precision it is feasible to obtain casZHη and csZHη via Eq. (50) and Eq. (51) to Oðξ3Þ, the results of which are

casZHη ¼ −
g

4
ffiffiffi
2
p

c3Wt2β
ξ3 þOðξ5Þ ð61Þ

csZHη ¼
gffiffiffi

2
p

cWt2β
ξþ g

24
ffiffiffi
2
p

cWs2β

�
8

s2βt2β
þ 3c2β

�
8þ 6

c2W
−

1

c4W

��
ξ3 þOðξ5Þ: ð62Þ

Therefore we arrive at the conclusion that the symmetric
ZHη vertex appear at OðξÞ, while the antisymmetric ZHη
vertex does not appear until Oðξ3Þ. The coefficients of
these two vertices are presented in Eq. (62) and Eq. (61),
respectively. We note that this conclusion differs from what
has been derived and used in the literature [13,14] for a long
time. In the intermediate steps, one important discrepancy
between our results and Ref. [13] is that in a footnote
Ref. [13] claims that choosing the η generator to be the
identity matrix would remove the kinetic mixing between η
and unphysical Goldstone bosons, while in our derivation
Eq. (52) shows there still existsOðξÞ kinetic mixing of such
kind, which we have checked by various means. It is then
not clear whether Refs. [13,14] have made appropriate field
redefinitions to diagonalize the SLH vector-scalar system.

C. Effective field theory analysis

The fact that the mass eigenstate antisymmetric ZHη
vertex does not appear until Oðξ3Þ can be understood from
an effective field theory (EFT) point of view. Let us focus
on the bosonic sector of the SLH, and integrate out heavy
sector fields X, Y, Z0 and their Goldstones. We are then
interested in the EFT formed with the remaining fields,
namely the SM and η, which are classified according to
gauge transformation properties. Especially, η is a singlet
under the SM gauge symmetries. Let us suppose at this
moment we have not added the gauge-fixing terms yet. It is
obvious that at dimension-four level no gauge-invariant

operator can deliver a ZHη vertex. We are then forced to
consider higher-dimensional operators. At dimension-five
level, let us consider

O1 ¼ ð∂μηÞ½ih†ðDμ − Dμ
 �Þh� ð63Þ

where h† Dμ
 �

h≡ ðDμhÞ†h and Dμ denotes the SM covar-
iant derivative for the Higgs doublet. We may denote its
coefficient as c1

f , in which c1 is a dimensionless constant.
Then we could find in the Lagrangian the following terms

L ⊃ ðDμhÞ†ðDμhÞ þ 1

2
ð∂μηÞ2 þ

c1
f
O1

⊃
1

2
ð∂μHÞ2 þ

1

2
ð∂μχÞ2 þ

1

2
ð∂μηÞ2 þ

v
f
c1ð∂μηÞð∂μχÞ

−mZZμ∂μ

�
χ þ v

f
c1η

�
þmZ

v
Zμðχ∂μH −H∂μχÞ

−
2mZ

f
c1HZμ∂μη: ð64Þ

The appearance of scalar kinetic mixing ð∂μηÞð∂μχÞ and
vector-scalar two-point transition Zμ∂μη signal the need for
a further field redefinition in the scalar sector. Up to OðξÞ,
the transformation is easily found:

χ̃ ¼ χ þ v
f
c1η; ð65Þ
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η̃ ¼ η: ð66Þ

The Lagrangian can be written with the transformed fields

L ⊃
1

2
ð∂μHÞ2 þ

1

2
ð∂μχ̃Þ2 þ

1

2
ð∂μη̃Þ2 −mZZμ∂μχ̃

þmZ

v
Zμðχ̃∂μH −H∂μχ̃Þ − c1

mZ

f
Zμðη̃∂μH þH∂μη̃Þ:

ð67Þ
The two-point vector-scalar transition −mZZμ∂μχ̃ can be
eliminated by an appropriate Rξ gauge-fixing term. From
the above expression we see that at OðξÞ, only symmetric
mass eigenstate ZHη vertex could survive while the
antisymmetric counterpart is removed after the transition
to mass eigenstate. This is similar to the situation consid-
ered in Ref. [29] which also concluded for the case of the
SM plus a singlet scalar S that the dimension-five operator
cannot give rise to tree-level S → ZH decay.
At dimension-six level, let us consider the operator

O2 ¼ ðh†DμhÞðh†DμhÞ: ð68Þ

This operator should have a coefficient ofOð 1f2Þ. Apparently
it does not contain η. However, if O1 is also present, then a
field redefinition like Eq. (66) needs to be performed, after
whichO2 could lead to amass eigenstate antisymmetricZHη
vertex. Since the field redefinition implies an OðξÞ η
component in χ, the resultant mass eigenstate antisymmetric
ZHη vertex should appear at Oðξ3Þ.
We may also consider operators with even higher

dimension, but of course they cannot lead to OðξÞ or
Oðξ2Þ mass eigenstate antisymmetric ZHη vertex.
Other bosonic operators (containing Z) at dimension-five

or six level can be considered, for example

O3 ¼ ηðDμhÞ†ðDμhÞ ð69Þ

O4 ¼ ∂μðh†hÞ½ih†ðDμ − Dμ
 �Þh� ð70Þ

However, these operators do not have the correct CP
property. Furthermore, in our parametrization η has a shift
symmetry η → ηþ c where c is a constant, which also
forbids the appearance of O3.
Therefore from an EFT analysis, we also arrive at the

conclusion that in the SLH, mass eigenstate antisymmetric
ZHη vertex cannot appear until Oðξ3Þ while symmetric
ZHη vertex can appear atOðξÞ,8consistent with our explicit
calculation in the previous subsection. It is important to

note that all of the EFT derivation is based on the field
content SMþ η (η is a CP-odd singlet9), with no additional
particles leading to further mass mixings, which could alter
the conclusion.

IV. DISCUSSION AND CONCLUSION

In this paper we revisited the issue of deriving the mass
eigenstate ZHη vertex in the SLH. We found that the
scalar kinetic terms are not canonically normalized in the
usual parametrization and there are unexpected vector-
scalar two-point transitions that need to be taken care of.
We formulated the problem in a generic setting as the
diagonalization of a vector-scalar system in gauge field
theories. Especially we proved that the scalar mass terms
coming from the Rξ gauge-fixing procedure will be
automatically orthogonal to each other if the correspond-
ing gauge fields are rotated to their mass eigenstate prior
to gauge-fixing.10 This fact greatly simplifies the diago-
nalization procedure.
For the SLH model, we found that the double exponen-

tial parametrization of scalar triplets, as shown in Eq. (28)
and Eq. (29) is convenient for the derivation of ZHη vertex,
since in this parametrization the η field is only subject to a
simple rescaling in the diagonalization procedure, with
which we could display in a simple form the ηm component
contained in the original η, ζ, χ, ω fields we started with, as
shown in Eq. (55).
In principle the derivation of mass eigenstate ZHη vertex

could be worked out to all order in ξ≡ v
f, however the

intermediate results are too lengthy and we find it con-
venient to display the derivation and results to Oðξ3Þ. The
final results of antisymmetric and symmetric ZHη vertices
are shown in Eq. (61) and Eq. (62). Contrary to what has
existed in the literature [13,14] (which claims an OðξÞ
antisymmetric ZHη vertex) for a long time, we found that
the coefficient of the antisymmetric ZHη vertex casZHη does
not show up untilOðξ3Þ. This result is also understood from
an EFT point of view. Based on these results we expect that
the exotic Higgs decay H → Zη (or η → ZH if η is heavy)
and the associated production of h and η at hadron or lepton
colliders will be much more difficult to observe due to the
Oðξ3Þ suppression in the antisymmetric ZHη vertex. On the
other hand, the symmetric ZHη vertex already appears at
OðξÞ, however the investigation of its effect involves some
subtleties, which will be treated in a follow-up paper.
The procedure elucidated in this paper can be applied to

other models containing a gauged nonlinearly-realized
scalar sector as well. From the experience with the SLH
we find it important to examine the quadratic part of

8According to Ref. [30], a similar situation occurs for the
ZHϕ0 vertex in the left-right twin Higgs model, where ϕ0 denotes
a neutral pseudoscalar. This is consistent with our EFT analysis
here, since ϕ0 does not mix with other physical fields due to an
imposed discrete symmetry.

9Reference [31] studied the composite two-Higgs-doublet
model which contains Oð1Þ antisymmetric ZHA vertex
since the pseudoscalar A is not a singlet.

10We refer the reader to Ref. [32] for another example in the
littlest Higgs with T-parity.
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the Lagrangian in these models, which could contain
non-canonically normalized scalar kinetic terms and unex-
pected vector-scalar two-point transitions. Moreover, find-
ing a convenient parametrization for the exponentials in
these models could be very helpful in the diagonalization
procedure. We expect to investigate these issues and their
phenomenological implications in the future.
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