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We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale
thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormaliza-
tion-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated
initial configurations for evolution using a corresponding target lattice action defined at a finer scale.
Focusing on nontopological long-distance observables in pure SUð3Þ gauge theory, we provide quantitative
evidence that the slow modes of the Markov process, which provide the dominant contribution to the
rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated
timescales increasing. Based on these numerical investigations, we conjecture that the prolongation
operation used herein will produce ensembles that are indistinguishable from the target fine-action
distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the
cost of rethermalization.
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I. INTRODUCTION

Multiscale methods have been applied successfully in a
variety of ways to facilitate Markov chain Monte Carlo
(MCMC) simulations in lattice QCD. These applications
range from Dirac operator inversion [1–4] to evaluation of
correlation functions and other observables [5–8] and have
resulted in significant increases in computational efficiency
and reductions in uncertainties of stochastically estimated
observables. Implementation of a multiscale algorithm for
gauge field updating in lattice QCD, however, remains an
open challenge, despite some early progress for simpler
theories [9–14].
Recently, we have introduced a multiscale thermalization

algorithm, based on the multigrid concepts of prolongation
and restriction, and inspired by renormalization-group
flows, which offers the ability to rapidly initialize an
ensemble of configurations for subsequent parallel evolu-
tion [15]. The benefits of using this algorithm in a QCD
context are severalfold. First, it enables the generation of
ensembles with well-distributed topological charge in
parameter regimes where topological freezing is problem-
atic (namely, when the lattice spacing is less than 0.05 fm).
Although the resulting distribution is not correctly sampled
according to the fine path integration measure, formally, the

deviations from the correct distribution are of order the
lattice spacing, provided the topology is correctly sampled
on the coarse lattice. These lattice artifacts can be inves-
tigated using multiple prolongations and in principle
corrected by subsequent reweighting. Second, with reduced
thermalization overhead, evolving fine ensembles with
multiple streams becomes practical and can lead to reduced
communication overhead, thereby further enhancing the
efficiency of gauge field generation. Finally, since the
coarse level evolution is inexpensive, it is practical to
generate fully decorrelated configurations by such an
algorithm, implying greater statistical power of the result-
ing ensemble compared to those generated conventionally
at similar cost. Multiscale thermalization had been success-
fully demonstrated for both quenched [15] and two-flavor
[16] QCD.
The main focus of the present study is to quantitatively

investigate the scaling properties of multiscale thermal-
ization as a function of the lattice spacing, under the
assumption that all coarse and fine lattice pairs have been
properly matched using renormalization-group matching
conditions. In addition, this study examines whether multi-
scale thermalization techniques might be useful for cir-
cumventing the problem of critical slowing down. In
conventional MCMC simulations, the autocorrelation times
associated with long-distance observables typically scale
polynomially as τint ∼ 1=az for a fixed physical volume,
where z is a dynamical exponent and a is the lattice
spacing. For local algorithms, the updating is typically
diffusive, implying a dynamical exponent z ∼ 2, although
for QCD, the scaling can be far worse due to topological
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freezing. For example, between a ∼ 0.1 fm and
a ∼ 0.05 fm, the dynamical exponent is around z ∼ 5 for
pure gauge theory, using both hybrid Monte Carlo (HMC)
[17] and heat bath (HB) [15] algorithms. Similar scaling
behavior has been observed in Ref. [17] for gauge theories
with dynamical fermions, and in both cases, the topological
tunneling rate is expected to become exponentially sup-
pressed farther toward the continuum limit. In addition to
multiscale thermalization, a variety of other approaches
have been proposed and studied for addressing topological
freezing [18–22] and critical slowing down [23,24] in
lattice QCD [25].
Setting aside the issue of topological freezing (e.g., by

considering gauge evolution within a fixed frozen topo-
logical sector, or by applying open boundary conditions
[18], as it is possible in approaching zero-temperature
physics), the computational cost of conventional simula-
tions of gauge theories nonetheless grow rapidly as the
continuum limit is approached due to autocorrelations in
the Markov process. By comparison, in multiscale thermal-
ization, the relevant timescale for attaining decorrelated
configurations is no longer the autocorrelation time asso-
ciated with the Markov process but rather the rethermal-
ization time required to equilibrate a prolongated coarse
ensemble of decorrelated configurations. (Re)thermaliza-
tion and autocorrelation timescales are both tied to the slow
eigenmodes of the Markov transition amplitude that defines
the fine scale evolution. However, in multiscale thermal-
ization, the starting ensemble is drawn from a prolongated
coarse distribution (Pprolongated), which, by design of the
matched coarse action, has very good overlap with the
targeted fine distribution. This implies that the initial
prolongated fine distribution is nearly orthogonal to the
slowest mode(s) of evolution,1 χn (n ¼ 1; 2;…), and there-
fore it is possible that only the highly excited modes of
evolution control the rethermalization time. Under such
conditions, it was numerically observed that the retherm-
alization timescale can be significantly shorter than the
associated autocorrelation timescale for fine evolution [15].
If the lattice spacing dependence of the rethermali-

zation time scales better than that for autocorrelation times
in a conventional approach [e.g., τR ¼ Oð1=azRÞ with a
rethermalization exponent zR < 2, for nontopological
observables] or the overlap of prolongated fine distributions
onto slow modes decreases sufficiently fast with a, then
multiscale thermalization could offer a new strategy for
addressing the problem of critical slowing down. From a
theoretical standpoint, whether or not rethermalization
times scale better than autocorrelation times is a nontrivial

question, since it involves not only understanding the
spectral properties of the transition probability matrix of
the Markov process but also its density of eigenmodes.
Although in general not much can be said theoretically
about the scaling properties of either with lattice spacing
(though our expectation is that the slow modes are gen-
erally diffusive for local updating schemes, and thus have
quadratic scaling with inverse lattice spacing), heuristic and
perturbative arguments suggest that the overlap factors
arising from multiscale thermalization will diminish with
lattice spacing for gauge theories in the continuum limit,
since configurations become locally smooth, and thus the
interpolation of coarse gauge fields performed prior to the
rethermalization step becomes increasingly accurate [15].
In this work, we provide numerical evidence that cor-

roborates the heuristic argument that the coupling to the
slowest mode decreases with lattice spacing for the case of
pure SUð3Þ gauge theory. However, we find that the
coupling does not decrease at the exponential rate needed
to realize an improved rethermalization exponent for lattice
spacings in the regime a ∈ ½0.02; 0.06� fm that we study.
Rather, the coupling diminishes approximately quadrati-
callywith lattice spacing.Despite this finding, the numerical
results suggest that there exists a lattice spacing beyond
which the unthermalized bias associated with excitedmodes
of the Markov process becomes negligible for a given
desired level of statistics.

II. METHODS AND RESULTS

We study the scaling behavior of the rethermalization
timescale, as probed by the average Yang-Mills action
density EðtÞ evaluated at a Wilson flow time t ¼ w2

0.4=4, for
four prolongated ultrafine ensembles; following Ref. [26],
the scale w0.4 is defined by

t
d
dt
t2EðtÞ

���
t¼w2

0.4

¼ 0.4: ð1Þ

The targeted fine ensembles correspond to a single fixed
physical volume of 1.92 fm and the lattice spacings 0.06,
0.04, 0.03, and 0.02 fm. These ensembles are initially
prepared by interpolating fully decorrelated coarse ensem-
bles that have been generated using nonperturbatively
matched coarse actions. All coarse and fine ensembles
were generated using the Wilson gauge action; ensemble
parameters used for this study are summarized in Table I.
The ensembles were generated using a combination of

MCMC algorithms as follows. 163, 243, and 323 ensembles
were initially generated using the Cabibbo-Marinari HB
algorithm [28] with ten over-relaxation sweeps [29] per HB
update (one update attempt per link per sweep). These
configurations were subsequently prolongated and rether-
malized to produce decorrelated fine 322, 483, and 643

ensembles. The 483 ensemble was once again prolongated
and rethermalized to produced a decorrelated fine 963

1A given Markov process that satisfies detailed balance has
right and left eigenvalues given by jχni and h χ̃nj, which satisfy
the orthogonality relation h χ̃njχmi¼δnm. The corresponding
eigenvalues λn satisfy jλnj¼e−1=τn, with λ0¼1 and jλnþ1j≤ jλnj.
The mode with the largest eigenvalue, jχ0i, corresponds to the
target distribution to be sampled.
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ensemble. In all cases, prolongation of the coarse configu-
rations was performed by gauge field interpolation [30–32],
following the staged approach described in Ref. [15].
Rethermalization of all prolongated ensembles was per-
formed using the HB algorithm (ten update attempts per
link per sweep) without over-relaxation.
The coarse and fine actions were consistently matched

using the scale parameter w0.4, determined in part by using
the parametrization with respect to the gauge coupling β
provided in Ref. [27]. Note that study quotes 0.5% uncer-
tainties in the parametrization over the interval β ∈ ½6.3; 7.5�,
and the coarsest two ensembles lie outside this window (for
the coarsest ensemble, we performed the nonperturbative
tuning independently). We have validated the scale settings
for all but the finest ensemble; results are provided in Table II
and compared with results provided in Ref. [27]. For the
ensembles withL=a ¼ 32, 48, 64, we find agreement within
approximately 2% of the values predicted by the para-
metrization of Ref. [27] and therefore assume comparable
uncertainties in the scale for our finest ensemble, corre-
sponding to L=a ¼ 96. In order to make fair comparisons of
the rethermalization behavior at different lattice spacings,
and ultimately extract reliable scaling properties, it is
important to maintain accurate matching between coarse
and fine lattices (i.e., betweenL=a¼16∼32,L=a¼ 24∼48,
L=a ¼ 32 ∼ 64, and L=a ¼ 48 ∼ 96); here, we find

agreement in the scale setting parameter towithin the quoted
statistical uncertainties of Table II.
The prolongated configurations were evolved toward

equilibrium using a total of τmax MCMC updates (we
validate the choice of τmax in a subsequent analysis by
demanding that τmax be greater than the observed retherm-
alization time by a factor of approximately 5–10), with
intermediate measurements of the Wilson flowed plaquette
action density. Uncorrelated measurements were performed
at rethermalization times bτ̂n þ 1=2c, where

τ̂n ¼ −
1

m̂
log

�
1 −

n
Nmeas þ 1

�
; ð2Þ

m̂ ¼ −
1

τmax
log

�
1

Nmeas þ 1

�
; ð3Þ

and n ¼ 1;…; Nmeas. Each measurement was performed
using disjoint subsets of configurations, each of size Mcfg

drawn from the given ensemble. The values of τmax, Nmeas,
and Mcfg are provided in Table III for each ensemble
considered; note that in each case the total number of
decorrelated configurations generated by the end of the
rethermalization is Ncfg ¼ NmeasMcfg. Between Nmeas ¼
20–70 uncorrelated measurements were made in total, with
each measurement performed on ensembles of size Mcfg ¼
10 (9 for the L=a ¼ 96 ensemble).
In order to understand the rethermalization time depend-

ence of our prolongated ensembles, we modeled the
long-distance observable hOi≡ ðw2

0.4=4Þ2Eðw2
0.4=4Þ by a

single-exponential fit function of the form

hOi ¼ c0 − cRe−τ=τR ; ð4Þ
where c0, cR, and τR are fit parameters and τ represents the
number of MCMC updates. Least-squares fits were per-
formed using ensemble estimates of hOi taken over the entire
MCMC time range (i.e., bτ̂n þ 1=2c for n ¼ 1;…; Nmeas);
fit results are provided in Table IV and shown in Fig. 1,

TABLE I. Ensemble parameters considered in this work. Note
that the lattice spacings provided below are approximate and
based on numerical estimates for w0.4=a, the physical value of the
Sommer scale (taken to be r0 ¼ 0.5 fm), and the continuum
conversion factor between r0 and reference scale w0.4 determined
in Ref. [27].

ðL=aÞ3 × ðT=aÞ β a (fm)

163 × 32 5.87793 0.120
243 × 48 6.10050 0.081
323 × 64 6.30168 0.060
483 × 96 6.59773 0.041
643 × 128 6.81596 0.030
963 × 192 7.13388 0.020

TABLE II. Scale setting results. Nominal values for the
reference scale determined by Ref. [27] are indicated by an
asterisk. The configurations used to estimate the scale represent a
subset of the total number of configurations generated.

ðL=aÞ3 × ðT=aÞ No. of configurations w0.4=a w�
0.4=a

163 × 32 700 1.605(2) 1.733(9)
243 × 48 600 2.375(2) 2.416(12)
323 × 64 400 3.218(4) 3.221(16)
483 × 96 100 4.739(11) 4.832(24)
643 × 128 10 6.48(5) 6.442(32)
963 × 192 � � � � � � 9.664(48)

TABLE III. Rethermalization measurement parameters.

ðL=aÞ3 × ðT=aÞ τmax Nmeas Mcfg

323 × 64 275 70 10
483 × 96 500 40 10
643 × 128 750 20 10
963 × 192 1000 20 9

TABLE IV. Rethermalization fit results.

ðL=aÞ3 × ðT=aÞ c0 log10 cR log10 τR χ2=d:o:f:

323 × 64 0.1259(1) −1.71ð1Þ 1.21(2) 2.1
483 × 96 0.1284(2) −2.08ð2Þ 1.58(5) 1.6
643 × 128 0.1275(2) −2.18ð5Þ 1.72(11) 1.1
963 × 192 0.1289(6) −2.61ð9Þ 2.23(29) 0.6
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along with estimates of the action density measured at
each rethermalization time. Note that the fit values
obtained for c0 correspond to a τ → ∞ extrapolation of
the estimator for O and are expected to exhibit small
variations due to lattice spacing and Wilson flow step size
artifacts. The goodness of these fits, as characterized by
the chi-squared per degree of freedom (χ2=d:o:f.), range
from 0.6 to 2.1 and indicate that the model provides an
acceptable description of the data. In particular, except
for perhaps the coarsest ensemble, there is little sta-
tistically meaningful evidence for exponential contami-
nation beyond the leading “excited state.”
Given the numerical validity of the single-exponential

fits, the fit coefficients may be identified with the timescale
τR ¼ τn and product of overlap factors

cR ¼ cn ≡ hOjχnihχ̃njPprolongatedi; ð5Þ

associated with the Markov process for some mode n > 0
(or some combination of modes with timescales too close to
resolve), where the latter provides indirect insight into the
strength of the coupling between the prolongated configu-
ration distribution and excited modes of evolution. Figure 2
shows a plot of the lattice spacing dependence of the
extracted rethermalization times, τR, and overlap factors,
cR. A fit to these data yields

log10τR ¼ 0.19ð11Þ þ 1.99ð19Þlog10
w0.4

a
ð6Þ

and

log10cR ¼ −0.749ð53Þ − 1.89ð9Þlog10
w0.4

a
; ð7Þ

respectively. From the observed lattice spacing dependence
of τR, the rethermalization scaling exponent appears con-
sistent with zR ¼ 2, which is typical for diffusive processes.
Although the coupling strength, cR, appears to diminish
quadratically with the lattice spacing, disambiguating the
lattice spacing dependence of the individual overlap factors
appearing in Eq. (5) is not possible given the present data.
However, under the reasonable assumption that the overlap
factor hOjχni has a nonzero continuum limit2 and the
same mode is dominant at each lattice spacing, we find
clear evidence of decoupling of the prolongated distribution

FIG. 1. Rethermalization time dependence of the Yang-Mills action density at flow time w2
0.4=4 for a ¼ 0.06 fm, a ¼ 0.04 fm,

a ¼ 0.03 fm, and a ¼ 0.02 fm. Note that each data point is statistically independent and the error bands are for uncorrelated exponential
fits to the data (χ2=d:o:f: range: 0.6–2.1).

2If for n > 0 one assumes hOjχni diminishes with lattice
spacing for suitably finite renormalized operators, O, then in the
continuum limit, reliable estimates of O would be possible for an
ensemble drawn from an arbitrary distribution, since under this
assumption cn → 0 independently of the initial probability
distribution. This cannot be the case for, for example, an initial
free-field probability distribution, and therefore one arrives at a
contradiction.
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from the dominant (nontopological) mode in the con-
tinuum limit.

III. DISCUSSION

In previous studies of both short- and long-distance
observables in pure SUð3Þ gauge theory [15] and SUð2Þ
gauge theory with heavy dynamical fermions [16], it was
established that a properly matched and prolongated coarse
ensemble can yield vanishing overlap onto the slowest
nontopological modes of the Markov process for both HB
and HMC algorithms. In this study, based on the quality of
our single-exponential fits to the long-distance observable
hOi with respect to the rethermalization time, we find little
evidence for any but a single, approximately diffusive, mode
of evolution (hereafter referred to as a “rethermalization
mode”) contributing to the rethermalization of prolongated
ensembles. The degrees of freedom of the prolongated
configurations that incorrectly describe the target fine prob-
ability distribution dominantly couple to the rethermalization
mode, but with a strength that diminishes quadratically with
the lattice spacing. For a given level of statistical precision,
the findings suggest that at a sufficiently fine lattice spacing
rethermalization may become unnecessary.
Specifically, even in the regime τ ≪ τR, and for a given

fixed level of statistical precision, the bias associated with
the rethermalization mode contamination is negligible
provided cR ≲ σ=

ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
, where σ is the standard deviation

of the measured observable distribution and Nconf is the
number of statistically independent configurations used in
the measurement. In the case of the action density at flow
time w2

0.4=4, the fitted form in Eq. (7) predicts this to occur
at a lattice spacing a ∼ 0.01 fm (20GeV) at the present level
of statistics. Since cR ∼ a2, maintaining this condition at a
higher level of statistics demands that the lattice spacing be
reduced, scaling like a ∼ N−1=4

conf for a fixed physical volume.
This observation and the corresponding scale at which

rethermalization becomes unnecessary may be specific to
the operator being studied.However, our previous study [15]
has shown rethermalization times are relatively insensitive
over a large class of long-distance operators.
Further suppression of the bias associated with retherm-

alization mode contamination may be possible by improv-
ing the scaling properties of rethermalizationmode coupling
to the prolongated distribution. It is not clear, however,
whether the quadratic dependence of cR observed in Eq. (7)
arises out of geometrical considerations (noting that the
current interpolation scheme involves mapping coarse
configurations to a fine grid and then locally minimizing
theWilson action with respect to the remaining gauge links,
the interpolation from coarse to fine is expected to only be
valid up to quadratic corrections in the lattice spacing) or
some other source of lattice spacing dependence (e.g., the
quality and consistency of the matching at different scales).
If the origin for this scaling is indeed geometrical, then a
higher order prolongation scheme could yield a higher order
dependence of cR on the lattice spacing.
Focusing on interpolation-based prolongation opera-

tions, and assuming the renormalization-group matching
produces coarse links that are properly sampled from the
standpoint of the fine action, then the most probable values
for the remaining fine links are the ones that minimized the
classical continuum equations of motion—up to a statistical
variance that must diminish with lattice spacing. This
suggests that a higher order interpolation scheme might
involve minimizing a classically improved lattice gauge
action, subject to the constraint that coarse links be held
fixed. A practical realization for such a scheme might
involve two passes: in the first pass, an interpolation is
performed locally using the lower order scheme as in this
study, and in the subsequent pass, a global minimization of
the improved gauge action is performed subject to the
coarse link constraints. Use of the lower order interpolated
gauge links as a starting point (e.g., in an iterative

FIG. 2. Lattice spacing dependence of the rethermalization timescale (τR) and coupling (cR), determined from single-exponential fits
to the rethermalization time dependence of the action density at flow time w2

0.4=4. The solid line and error band indicate a linear fit to all
available data points.
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optimization scheme) would help to ensure that the desired
global minimum is reached.
Whether or not such an improved interpolation scheme

yields an improved prolongation operation and whether or
not an improved prolongation operation yields improved
scaling of the overlap of the resulting configuration dis-
tribution onto the observed rethermalization mode remain
interesting and open questions. Regardless of the outcome,
and given the observed decrease in contamination from
unwanted rethermalization modes, use of prolongated
coarse, matched ensembles to rapidly thermalize fine
ensemble streams with well-sampled topology appears
to be increasingly feasible as the continuum limit is
approached.
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