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In this paper we use numerical field theoretical simulations to calculate particle yields. We demonstrate
that in the model of local particle creation the deviation from the pure exponential distribution is natural
even in equilibrium, and an approximate Tsallis-Pareto-like distribution function can be well fitted to the
calculated yields, in accordance with the experimental observations. We present numerical simulations in
the classical Φ4 model as well as in the SU(3) quantum Yang-Mills theory to clarify this issue.
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I. INTRODUCTION

In collider experiments the observed hadron yields are
surprisingly far from the Boltzmann distribution expected
from blackbody radiation of the hot plasma. It is true for all
yields coming from hadron collisions, starting from p-p
collisions in ALICE, CMS, STAR and PHENIX collabo-
rations, respectively [1–4]. Part of these particle spectra can
be explained by perturbative QCD calculations [5], but for
a complete description of all of the fits a Tsallis-Pareto-like
[6] Ansatz is necessary. These fits have just one additional
parameter compared to a Boltzmannian, yet they work very
nicely in experimental fits [2,7–9] although in certain cases
the soft and hard physics has to be treated separately [10].
There are several interpretations of these results. AQCD-

based generalized Ansatz [11–13] results in distribution
functions that are similar to Tsallis distribution. A more
natural explanation is to assume some collective behavior
that leads to these types of distributions. The reason for the
deviation from the Boltzmann distribution can be the finite
volume [14], fluctuating temperature [15,16]. In fact the
leading deviation from Boltzmann distribution is of Tsallis
form [17]. It is also possible that the event-by-event
distributions are Boltzmannian, but the hadron multiplic-
ities fluctuate according to negative binomial distribution,
and only in the cumulative yields do we see Tsallis
distribution [10].
Our main motivation in this paper is to support the

experimental evidences found by [1–4] by numerical
simulations, and to provide an alternative mechanism to

produce Tsallis distribution. Usually it is believed that if the
microscopic distribution is Boltzmannian (i.e. we have a
canonical ensemble), then also the particle yields are
Boltzmann distributed. This is, however, not true—the
distribution of the particle yields depends on the particle
creation mechanism.
To understand this statement we recall that in weakly

interacting gases, like the photon gas that interacts only
with the wall of the cavity, the particle states are (almost)
the same as the energy eigenstates: they have definite
momentum and energy, and they extend to the whole
cavity. If a photon escapes from the system it carries
information about the distribution of the energy eigenstates,
and so, correspondingly, we obtain a photon yield that is
distributed according to the Bose-Einstein distribution.
In strongly interacting plasmas, however, the situation

changes. Particle states are no longer energy eigenstates, in
fact they consist of a lot of energy eigenstates with a
Lorentzian envelope: they are quasiparticles. Moreover,
they are basically local objects, they do not extend to the
whole plasma. The phenomenon of jet quenching [18]
clearly indicates that high energy particles are created
locally, in a volume of at most of order 1 fm. As a
consequence, if they escape the plasma, they do not carry
information about the occupation of the global energy
levels, but about the local energy density. The fluctuation of
the energy in a small volume, however, is different than in a
large subsystem, it need not (and actually does not) follow
Boltzmann distribution.
According to this picture to assess the particle yields

coming from a strongly interacting plasma we have to
measure the distribution of the local energy density. This
is a measurable quantity even in numerical simulations,
making possible to give predictions on the observable yields
which are otherwise very hardly accessible quantities.
In this paper we have considered two models basically to

demonstrate themethod: a classicalΦ4 model and a quantum
SU(3) Yang-Mills gauge theory. As it turns out, in both cases
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the distribution of the local energy density stabilizes rela-
tively fast, well before the actual thermal equilibration, and
a Tsallis distribution is an excellent fit to them. In the process
of approaching equilibrium, the parameters of the Tsallis
distribution change. In the classical scalar model case it is
possible to follow real time evolution, and so the variation
of the temperature and Tsallis parameter in real time. In the
following we discuss the histogrammethod to determine the
local energy distribution function, consider the classical
quartic model and the quantum Yang-Mills model, and
finally we close the paper with a Conclusion section.

II. LOCAL ENERGY DENSITY DISTRIBUTION

As stated in the Introduction, our aim is to determine the
local energy density distribution. In this section, we recall
some basic definitions of probability theory.
First of all, let X be a stochastic variable. The indi-

cator of X being in the ½x; xþ Δx� interval is
I½x;xþΔx�ðXÞ ¼ ΘðX − xÞΘðxþ Δx − XÞ, where Θ is the
Heaviside function. The expectation value of this indicator
equals the probability of X being in the interval:

hI½x;xþΔx�ðXÞi ¼ PðX ∈ ½x; xþ Δx�Þ: ð1Þ

In the statistical approach we take the expectation value
above some configuration space, then we assume that X is a
function(al) of the configurations XðAÞ. If the distribution
of the configurations A is given, let us denote it by fðAÞ,
then the expectation value of a general quantity RðAÞ can be
computed as

hRi ¼
Z

DARðAÞfðAÞ: ð2Þ

In canonical ensemble fðAÞ ¼ expð−βHðAÞÞ=Z. In prac-
tice, however, we generate a lot of configurations according
to the distribution function fðAÞ, either by solving the
equation of motion (classical theory), by following a
Markov-process (Monte Carlo simulations) or considering
small subsystems of a configuration in a large volume. In
any case we have A1; A2;…; An configurations and we take
the expectation value by summing above them:

hRi ¼ 1

n

Xn
i¼1

RðAiÞ: ð3Þ

Therefore the expectation value of the indicator is propor-
tional to the number of configurations ni where the XðAiÞ
quantity has values between x and xþ Δx. Therefore

PðX ∈ ½x; xþ Δx�Þ ¼ ni
n
: ð4Þ

To determine the complete distribution function, therefore,
we divide the possible outputs of X to bins, each of them is

Δx wide. Then we scan over all available configurations,
and each configuration contributes to the bin that contains
XðAiÞ. This provides a histogram that is exactly the desired
PðX ∈ ½x; xþ Δx�Þ distribution function.
The limit Δx → 0 provides the probability density of the

variable X:

pðxÞ ¼ lim
Δx→0þ

PðX ∈ ½x; xþ Δx�Þ
Δx

: ð5Þ

If we write (1) into the definition (5) of fðxÞ, then we get a
Dirac-δ approximation and we can write rather formally:

pðxÞ ¼ hδðX − xÞi: ð6Þ

In this work, the quantity in question—in other words the
stochastic variable—is the local energy density ϵx where x
is an arbitrary space-time coordinate. With this (6) becomes

pðϵÞ ¼ hδðϵx − ϵÞi: ð7Þ

It is important to note that the energydistribution of a small
subsystem of a thermal system need not follow Boltzmann
distribution. The reason is that the total energy of the system
can be written as E ¼ Esubsystem þ Eenvironment þ δE, where
δE “surface energy” depends both on the state of the
subsystem and the environment. If the volume of the
subsystem is not large enough, then δE cannot be neglected,
this leads to non-Boltzmannian energy distribution. Only in
largish volumes which are small compared to the complete
system, but large enough to neglect the surface energy terms,
can we deduce that the probability density of measuring a
given energy value is Boltzmann distributed.

A. Local energy distribution in free systems

It is worth thinking about the form of the local energy
distribution when it is Boltzmann-like. So let us assume
that pðϵÞ ¼ N e−cϵ with some constants. We have two
constraints:

1 ¼
Z

∞

0

dϵpðϵÞ; hϵxi ¼
Z

∞

0

dϵϵpðϵÞ; ð8Þ

these fix the constants to be

pðϵÞ ¼ 1

hϵxi
e−ϵ=hϵxi: ð9Þ

Therefore we do not expect e−βϵ form, only if hϵxi ¼ T.
In simple systems we in fact obtain such a form. Most

simply, in a system built up from local independent systems
we have for all configurations σ:

EðσÞ ¼
X
i

ϵiðσiÞ: ð10Þ
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In this case, using Zi ¼
P

σi
e−βϵi we find

pðϵÞ¼ 1

Z

X
σ

e−βEδðϵ− ϵiÞ¼
1

Zi

X
σi

e−βϵiδðϵ−ϵiÞ¼
1

Z
e−βϵ;

ð11Þ
because at sites j ≠ i the corresponding Zj factors drop out.
We also have the same results in case of free systems,

even when the energy is the sum of the momentum states,
while the local energy density is localized in real space. To
prove this statement we first rewrite the energy density
distribution as

pðϵÞ ¼ ΘðϵÞ
Z

∞

−∞
dλheiλðϵ−ϵxÞi ¼ ΘðϵÞ

Z
∞

−∞
dλeiλϵhe−iλϵxi;

ð12Þ

where we assumed ϵx > 0 for all configurations. Then we
expand the exponential

he−iλϵxi ¼
X∞
l¼0

ð−iλÞl
l!

hϵlxi: ð13Þ

To avoid UV divergences we renormalize the above
expression taking the normal ordered product, so we
calculate

h∶ϵlx∶i: ð14Þ

The local energy density can be defined in a number of
ways, each definition differs from each other in total
divergences. We will choose a simple representation,
where the local energy density can be written as a function
of the creation-annihilation operators ap and a†p in d
dimensions as

∶ϵx∶ ¼
Z

ddp
ð2πÞd

ddq
ð2πÞd

ffiffiffiffiffiffiffiffiffiffiffi
ωpωq

p
eiðp−qÞxa†qap: ð15Þ

It is simple to see that

∶H∶ ¼
Z

ddx∶ϵx∶ ¼
Z

ddp
ð2πÞd ωpa

†
pap: ð16Þ

Now we can compute the expectation value in question at
x ¼ 0:

h∶ϵlx¼0∶i ¼
1

Z

X
fng

e−βEn

Z Yl
i¼1

ddpi

ð2πÞd
ddqi
ð2πÞd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpi

ωqi
p

× hnja†q1 � � � a†qlap1
� � � apl

jni; ð17Þ

where En ¼ hnj∶H∶jni. Since the same state stands in the
left- and right-hand side of the expectation value, we must

have the same number of creation and annihilation
operators for each momenta. We will omit the possibility
that more than two operators have the same momenta,
since these contributions are suppressed by factors of Vd
the volume of the d dimensional space. This means that
we have to make pairs (Wick theorem). It is easy to see
that all pairings give the same contribution, so finally
we have

hnja†q1 � � � a†qlap1
� � � apl

jni ¼ l!
Yl
i¼1

npi
ð2πÞdδðpi − qiÞ:

ð18Þ
Substituting back this result we see that the expectation
value of the l-times local energy density is proportional to
the expectation value of the local energy density to the lth
power:

h∶ϵlx¼0∶i ¼ l!h∶ϵx¼0∶il: ð19Þ
Therefore

he−iλϵxi ¼
X∞
l¼0

ð−iλÞlhϵxil ¼ 1

1þ iλhϵxi
; ð20Þ

and so the inverse Fourier transform yields

pðϵÞ ¼ 1

hϵxi
e−ϵ=hϵxi; ð21Þ

which means that in the free systems the local energy
density is indeed Boltzmann distributed.
We see from this calculation that the validity of the

Boltzmann distribution depends on very sensitive details, for
example that the expectation value of powers of the local
energy density is proportional to powers of the expectation
value of the local energy density [cf. Eq. (19)]. In a general
theory it will not be true anymore, resulting that he−iλϵxi is
not a simple pole and then pðϵÞ is no longer exponential.
We cannot determine the actual form, but based on very
general arguments [17] we expect that if the deviation is
small, then it must be a Tsallis-Pareto distribution.
In the following sections, we consider the real time

simulation of the classical Φ4 theory in three dimensions
and perform a standard Monte Carlo simulation with heat-
bath algorithm for the Euclidean SU(3) gauge theory.

III. A TOY MODEL: CLASSICAL Φ4 THEORY

Our first toy model is the well-known classical Φ4

theory. One of the advantages of classical theories is that
we can perform real-time simulations by successively
solving the canonical equations and we can calculate
physical quantities that are hardly accessible in other
methods. Classical theories are used to approach the full
theory in a lot of contexts [19–28].
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The discretized version has the Hamiltonian [28]

H ¼
X
x∈U

ϵx; ð22Þ

where U denotes the discretization mesh (in our case a
cubic lattice with N sites in all directions, N ¼ 40, 50), and
ϵx is the local energy density

ϵx ¼ 1

2
Π2

x þ
1

2
ð∇ΦÞ2x þ

m2

2
Φ2

x þ
λ

24
Φ4

x: ð23Þ

In this expression we have to use the discretized gradient
∇iΦðxÞ ¼ a−1½Φðxþ aeiÞ −ΦðxÞ�, where a is the discre-
tization spacing, and ei is the unit vector pointing to the ith
direction. The corresponding equations of motion read

_Φ ¼ Π; _Π ¼ △Φ −m2Φ −
λ

6
Φ3; ð24Þ

where △Φ¼a−2
P

3
i¼1½ΦðxþaeiÞþΦðx−aeiÞ−2ΦðxÞ� is

the discretized Laplacian. The continuous equation of
motion preserves energy, but in the time discretized
version the energy conservation depends on the algorithm.
We used leapfrog and Runge-Kutta methods; for further
discussion cf. [28].
We note that the system can be rescaled as t → t=a,

Φ →
ffiffiffi
λ

p
aΦ, Π →

ffiffiffi
λ

p
a2Π, then we have the same equa-

tions of motion with a ¼ 1, m → am and λ ¼ 1. This
means that the value of λ does not modify the classical
dynamics, it can be compensated by the normalization of
the fields. The energy density rescales as ϵ → λa4ϵ. In the
simulations we have used the a ¼ 1 unit, but we have kept
the value of λ to test the numerical effects.
After thermalization we can use the thermodynamical

notions. The temperature (T) of the system is defined as [28]

T ¼ 1

2N3
hjΠkj2i; ð25Þ

whereN3 is the number of lattice sites and Πk is the Fourier-
transformed momentum field. We use this formula to check
whether the system reached thermal equilibrium by verifying
that hjΠkj2i is independent of k (equipartition). It turned out
that we can distinguish two timescales, as higher modes
thermalize much faster than low ones. After 10 000 time
steps, the system can be considered fully thermalized.

A. Numerical results for the classical Φ4 theory

We have solved the classical EoM on 403 and 503

lattices. These are the largest volumes we had, the thermo-
dynamic limit is already reached at these volumes (cf. [28]).
As initial conditions we have chosen Φx ¼ 0 for every
point, and we have assumed pointwise independent dis-
tributions for the canonical momenta. In one case the

momentum distribution was a uniform distribution in
the [0, 1] range, in the other case we had a 1=coshðxÞ
distribution. In the simulation we have chosen dt ¼ 0.1
time step in lattice spacing units. We checked that the
results are not sensitive to other choices of the time step
as well as choices of the simulation algorithm. We have
chosen m2 ¼ −0.5 for the mass parameter, but due to the
renormalization properties of the classical Φ4 theory differ-
ent choices for the “bare” mass correspond to the same
system at different temperatures [28].
After starting the simulation, the distribution of the local

energy density very quickly stabilizes. Already after the
17th time step the histograms reach the characteristic form
which remained true in all later times. We can see these
distributions in Figs. 1 and 2. Each data point in the
histogram is the average of 50 runs with the same initial

FIG. 1. Local energy-density histogram with Boltzmann (blue
line), Tsallis (black line) and Gaussian (yellow) fits on semi-
log-scale after 17 time steps. The simulation was started with a
random initial condition for Πx. Data points are averaged from 50
simulations and shown with their standard error.

FIG. 2. Local energy-density histogram with simple power
function (green line), Boltzmann (blue line), Lorentzian (green)
and Tsallis (black line) fits on a semi-log-scale after 17 time steps.
The simulation was started with a secant hyperbolic initial
condition for Πx. Data points are averaged from 50 simulations
and shown with their standard error.
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condition and the error bars represent the standard error of
the mean (SEM). We tried several fit functions to describe
the functional form of the distribution (exponential i.e.
Boltzmannian, pure power law, Gaussian, Lorentzian) which
for certain energy ranges and for certain cases in fact can
reproduce the data. But by our experience as an overall few-
parameter fit the Tsallis-Pareto distribution is singled out:

PðεÞ ¼ a½1þ ðq − 1Þβε� 1
1−q: ð26Þ

Note that for q → 1 it gives back the Boltzmann distribution.
The actual values, q ¼ 0.974 and q ¼ 1.094 respectively,
are very close to the Boltzmannian case, and so it can be
revealed only by a thorough analysis with at least 106

independent data points.
In the 17th time step the system is very far from

equilibrium, but the Tsallis-Pareto distribution of the energy
density remained true, with time dependent Tsallis parameter
qðtÞ. This function is plotted in Figs. 3 and 4 for two
different time intervals, starting with different total energy

(corresponding to different temperatures after thermalization
and different lattice sizes). In the plots we only presented
those points for which the Tsallis fit had χ2=dof < 1.5. We
can observe that even in those cases when q started from a
value smaller than 1, finally in all runs it reached a value that
is consistently larger than 1. It is interesting that this value
seems to be independent on the temperature as well as on the
lattice sizes we studied. The Tsallis parameter takes its
equilibrium value already in the prethermalized state (i.e.
when only higher modes are thermalized) within error. The
actual value of the equilibrium Tsallis parameter is obtained
by averaging the q values after time step 1000, assuming
there is a single parameter for all runs. We obtain q ¼
1.026� 0.0012 which is in the order of the experimental
values.
At this stage it is not clear, whether the deviation from the

Boltzmann distribution is a property of the energy density
only, or the microscopic distribution function fðAÞ over the
configurations [cf. (2)] is also non-Boltzmannian. To this end
we have carefully studied the distribution of Π2

x for different
energy values and different lattice sizes with large statistics.
If the thermal ensemble has a distribution function e−βH,
then the x ¼ Π2

x=2 values for a given x must follow e−βx

exponential distribution, i.e. we must have q ¼ 1 in the
Tsallis fit. The result for the averaged data is qmomentum ¼
0.999� 0.001 for all the cases we studied. This means that
the distribution over the configurations is in fact the standard
Boltzmann distribution, and only the energy density has a
Tsallis-like distribution. Learning this fact we could proceed
to the quantum field theory case, where only the equilibrium
can be studied with Monte Carlo methods, but the distri-
bution of the energy density is expected to be Tsallis-like
even in this case.

IV. EUCLIDEAN SU(3) PURE GAUGE THEORY

Our second model is the quantum SU(3) Yang-Mills
theory. The action of the model in Euclidean formalism is
the following:

SYM ¼ 1

4

Z
d4xFa

μνFa
μν; ð27Þ

where FμνðxÞ ¼ −igFa
μνðxÞTa is the gluon field strength

tensor, Ta are the generators of the Lie algebra and g is the
coupling constant.
We use the Wilson action for the lattice formulation of

the theory:

S½U� ¼
X
p

β

�
1 −

1

N
ReTrUp

�
; ð28Þ

where Uðxþ μ; xÞ is the parallel transporter from lattice
coordinate x to xþ μ and the plaquette variable corre-
sponding to x is the product of four parallel transporters
along the closed path x→ xþ μ→ xþ μþ ν→ xþ ν→ x.

FIG. 3. Time dependence of the Tsallis parameter at four
different total energies with various initial conditions. The first
500 time steps.

FIG. 4. Time dependence of the Tsallis parameter at four
different total energies with various initial conditions. The last
points indicate the average values for each energy from 1000 to
45 000 time steps.
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It is well known that theWilson action corresponds to the
continuum theory if one chooses β ¼ 2N=g2 (in our case
N ¼ 3) and the connection between the parallel transport-
ers and the gauge fields is Uðx; μÞ ¼ e−aAμðxÞ. The con-
tinuum limit is reached as β → ∞.
The local energy density is now given by the plaquette

energy:

ϵ ¼
�
1 −

1

TrI
TrUp

�
: ð29Þ

We determine the histogram of the local energy density in
the same way as we have done in the classical theory,
picking out independent configurations from the thermal
ensemble.
An advantage of the histogram method is that renormal-

ization can be explicitly traced in the distributions. In the
case of the local energy density, being a composite operator,
we expect a multiplicative renormalization as well as an
eventual mixing with the unit operator (additive renormal-
ization). In the histograms the two types of renormalization
show up as a dilatation and a position shift. Neither of these
effects modify the power of the high-energy tail: therefore
the Tsallis parameter is not renormalized.
We use Monte Carlo simulation with the well-known

heat-bath algorithm to determine the distribution of ϵ with
zero energy initial condition (i.e. ϵp ¼ 0 for all plaquettes)
at lattices Nt × N3

s .
For the fits of the resulting distributions we have taken

into account the reduction of the phase space at low energy
densities. As a result, we modify our previous fit function
(26) by a factor of xn where n ≈ 3:

fðxÞ ¼ axnð1þ ðq − 1ÞlxÞ 1
1−q: ð30Þ

The error of the histogram is assumed to be a Gaussian
(meaning

ffiffiffiffi
N

p
standard deviation for a bin which contains

N points). However, in more realistic models it would be
advised to perform a maximum likelihood parameter
estimation (in the context of Tsallis distributions cf. [29]).

A. Plaquette energy histogram

A typical plaquette energy histogram is presented in
Fig. 5. In the figure the best Tsallis (30) and Boltzmannian
gðxÞ ¼ AxNe−Bx fits can also be seen. It is evident that the
Tsallis fit is better than the Boltzmannian one, similarly as
in the case of classical Φ4 theory.

B. Tsallis q for various β

The evolution of the Tsallis parameter (with its fit error)
is presented in Fig. 6 as a function of the Monte Carlo time.
We covered a wide range of β, starting from β ¼ 6 to values
as high as β ¼ 20. Note that the plaquette energy has an
upper bound [due to the properties of the trace of SU(3)

matrices], and this severely distorts the histogram below
β ¼ 6.
It is interesting that the shape of the distribution shows

up very early, well before thermalization: already after the

FIG. 5. Plaquette energy histogram on semi-log-scale after 15
heat-bath sweeps at β ¼ 8, Nt ¼ 8, Ns ¼ 60. The blue line is the
Boltzmann and the green line is the Tsallis fit.

FIG. 6. Tsallis q parameter during MC sweeps for various β,
with Nt ¼ 2 and Ns ¼ 50. The last, slightly separated points
show the average from τ ¼ 100 with their statistical error. The
average values are present in the legend.

FIG. 7. Temperature dependence of q for various Nt and Ns.
Dashed lines are to guide the eye.
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first MC sweep we find a roughly Tsallis-like distribution,
although the Tsallis fit converges well after about τ ¼ 10
(first vertical line in Fig. 6). Thermalization time is τ ≈ 30
(second vertical line in Fig. 6). We have calculated the
equilibrium Tsallis parameter from configurations after
τ ¼ 100 (third vertical line) for each simulation.
We see that the Tsallis parameter q → 1 as β → ∞.

But this also means that the lattice spacing a → 0, and so
also the physical volume goes to zero. That means that we
cannot reach the thermodynamic limit with the available
lattice volumes.

C. Continuum limit

To connect the numerical observations to physical units,
we have to fix the scale. We have chosen the Sommer scale
[30] and interpolated the β and lattice constant a relation
based on the data from [31–33]. The dimensionless temper-
ature is as follows: r0T ¼ 1

Nt

r0
a , where r0 ≈ 0.5 fm is the

Sommer-scale parameter.
The temperature dependence of the q parameter is shown

in Fig. 7. Five different Nt values are considered. To check
the thermodynamic limit, we repeated the simulation for
Ns ¼ 60, Ns ¼ 50 and Ns ¼ 40.
In this figure also the continuum limit is shown. We

approached the continuum limit in a way that at fixed
temperature and at fixed Ns we plotted the q results for
different lattice spacings. Then we used a second order
polynomial to fit the numeric data and determined the

a → 0 limit. For a demonstrative example we present the
result for r0T ¼ 10 in Fig. 8. Interestingly enough, we got
q < 1 as opposed to the case of the classical Φ4 theory,
though the absolute difference from 1 is approximately
the same.

V. CONCLUSIONS AND OUTLOOK

The particles emerging from a strongly interacting
plasma are created locally and so they carry information
about the local energy density. The distribution of this
quantity is in general different from the canonical energy
level distribution, except for the free (or very weakly
interacting) theories. Therefore in the particle yields com-
ing from a strongly interacting plasma we should not expect
Boltzmann distribution. For the actual expectation we have
to measure the distribution of the local energy density.
In this work we have determined the local energy density

distribution with the histogram method in the classical Φ4

and in the quantum SU(3) Yang-Mills theory. In both cases
the energy level distribution is Boltzmannian, but we have
found that the Boltzmann distribution does not fit well to
the local energy distribution in either case. However, the
Tsallis distribution is a good fit, similarly to experimental
data. The corresponding Tsallis parameter differs signifi-
cantly from 1. Thermodynamic limit analysis is performed
in both cases and we carried out the continuum limit
analysis as well for SU(3) gauge theory. We remark that the
renormalization of the local energy density does not affect
the power of the power law tail, i.e. the Tsallis parameter q
receives no renormalization correction.
We have found that in the case of the classicalΦ4 theory,

the Tsallis parameter q ¼ 1.024� 0.001—this is in the
order of the experimental values obtained from heavy ion
collisions. Regarding the SU(3) gauge theory, q¼0.9835�
0.0005. Interestingly it is smaller than 1, although j1 − qj is
in the same order of magnitude in both models.
These results encourage us to proceed to our main goal,

namely to perform similar analysis for QCD and to
compare the results with experimental data.
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FIG. 8. Tsallis q parameter vs lattice spacing at r0T ¼ 10 fixed
temperature. A second order polynomial fit is performed to the
numeric data. Three different lattice sizes are taken into consid-
eration. Red: Ns ¼ 60; green: Ns ¼ 50; and blue: Ns ¼ 40.
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