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We study singly Cabibbo-suppressed two-body hadronic decays of the charmed baryon A}, namely,
AF = AK*, pa®, pn, nat, 20K+, 2 K°. We use the measured rate of A7 — p¢ to fix the effective Wilson
coefficient a, for naive color-suppressed modes and the effective number of color N, We rely on the
current-algebra approach to evaluate W-exchange and nonfactorizable internal W-emission amplitudes, that
is, the commutator terms for the S wave and the pole terms for the P wave. Our prediction for Al — pnisin
excellent agreement with the BESIII measurement. The pn (pz°) mode has a large (small) rate because of a
large constructive (destructive) interference between the factorizable and nonfactorizable amplitudes for
both S and P waves. Some of the SU(3) relations such as M(A — nz*) = v/2M(A} — pz°) derived under
the assumption of sextet dominance are not valid for decays with factorizable terms. Our calculation indicates
that the branching fraction of A} — nz™ is about 3.5 times larger than that of A} — pa°.
Decay asymmetries are found to be negative for all singly Cabibbo-suppressed modes and range from

—0.56 to —0.96.
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I. INTRODUCTION

The study of hadronic decays of charmed baryons is an old
subject (for a review, see [1,2]). For a long time, both
experimental and theoretical progress in this arena was very
slow. Almost all the model calculations of two-body non-
leptonic decays of charmed baryons were done before the
millennium and most of the experimental measurements
were older ones. Theoretical interest in hadronic weak decays
of charmed baryons peaked around the early 1990s and then
faded away. To date, we still do not have a good and reliable
phenomenological model, not mentioning the QCD-inspired
approach as in heavy meson decays, to describe the com-
plicated physics of charmed baryon decays."

From the theoretical point of view, baryons made out
of three quarks, in contrast to two quarks for mesons,

*fanrongxu@jnu.edu.cn

'An exception is the heavy-flavor-conserving hadronic decay
of the heavy baryon, for example, Z. — Az, which can be
reliably studied within the framework that incorporates both

heavy-quark and chiral symmetries [3].
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bring along several essential complications. First of all, the
factorization approximation that the hadronic matrix
element is factorized into the product of two matrix
elements of single currents and that the nonfactorizable
term such as the W-exchange contribution is negligible
relative to the factorizable one is known empirically to be
working reasonably well for describing the nonleptonic
weak decays of heavy mesons. However, this approxima-
tion is a priori not directly applicable to the charmed
baryon case as W-exchange there, manifested as pole
diagrams, is no longer subject to helicity and color
suppression. This is different from the naive color sup-
pression of internal W emission. It is known in the heavy
meson case that nonfactorizable contributions render the
color suppression of internal W-emission ineffective.
However, the W exchange in baryon decays is not subject
to color suppression even in the absence of nonfactorizable
terms. The experimental measurements of the decays
Af = X072t 2720 and A} — E°K*, which do not receive
any factorizable contributions,” indicate that W exchange

At first sight, it appears that the decay modes such as
Al — 207, 20K can proceed through the external W-emission
process. However, the spectator diquark ud of the A} is anti-
symmetric in flavor, while the same diquark in X°
is symmetric in flavor. Hence, the external W emission is
prohibited.
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and nonfactorizable internal W emission indeed play an
essential role in charmed-baryon decays.

Recently, there were two major breakthroughs in
charmed-baryon experiments in regard to hadronic weak
decays. First of all, it is concerned with the absolute
branching fraction of AJ — pK~z". Experimentally,
nearly all the branching fractions of the A} were measured
relative to the pK~z" mode. On the basis of ARGUS and
CLEO data, Particle Data Group (PDG) had made a model-
dependent determination of the absolute branching frac-
tion, B(Al — pK z")=(50+13)% [4]. Recently,
Belle reported a value of (6.84 & 0.247021)% [5] from
the reconstruction of D*pr recoiling against the A}
production in eTe™ annihilation. Hence, the uncertainties
are much smaller, and, most importantly, this measurement
is model independent. More recently, BESIII has also
measured this mode directly with the result B(A —
pK 7)) =(5.84 £0.27 £ 0.23)% [6]. Its precision is
comparable to the Belle’s result. A new average of (6.35 +
0.33)% for this benchmark mode is quoted by the PDG [7].

Second, in 2015 BESIII has measured the absolute
branching fractions for more than a dozen decay modes
directly for the first time [6]. Not only are the central values
substantially different from the PDG ones (versions before
2016), but also the uncertainties are significantly improved.
For example, B(Al — Ztw) = (2.7+1.0)% quoted in
2014 PDG [4] now becomes (1.74+0.21)% in 2016
PDG [7] due to the new measurement of BESIIL. In other
words, all the PDG values before the 2016 version for the

TABLE L

branching fractions of charmed-baryon decays become
obsolete.

The decay amplitude of the charmed baryon generally
consists of factorizable and nonfactorizable contributions.
The study of nonfactorizable effects arising from W
exchange and internal W emission conventionally relies
on the pole model. Under the pole approximation, one
usually concentrates on the most important low-lying 1/2%
and 1/27 pole states. Consider the charmed baryon decay
with a pseudoscalar meson in the final state, B, — B + P.
In general, its nonfactorizable S- and P-wave amplitudes
are dominated by 5~ low-lying baryon resonances and %*
ground-state baryon poles, respectively. It is known that the
pole model is reduced to current algebra in the soft
pseudoscalar-meson limit. The great advantage of current
algebra is that the evaluation of the S-wave amplitude does
not require the information of the troublesome negative-
parity baryon resonances which are not well understood in
the quark model. Nevertheless, the use of the pole model is
very general and is not limited to the soft-meson limit and
to the pseudoscalar-meson final state. For example, current
algebra is not applicable to the decays B, — B+ V.
However, the estimation of pole amplitudes is a difficult
and nontrivial task since it involves weak baryon matrix
elements and strong coupling constants of %* and %‘ baryon
states. As a consequence, the evaluation of pole diagrams is
far more uncertain than the factorizable terms.

In Table I we show various model calculations of
branching fractions and up-down decay asymmetries of

Branching fractions (upper entry) and up-down decay asymmetries a (lower entry) of Cabibbo-allowed A} — B+ P

decays in various models. Model results of [8,9,11,13] have been normalized using the current world average of (A;) [7]. Branching
fractions cited from [12] are for ¢,_, = —23° and r = |y (0)|*/[y5(0)]* = 1.4.

Cheng,

Korner, Xu, M Ivanov Zenczykowski Sharma,
Decay Kriamer [13] Kamal [8] CA Pole et al. [14] [11] Verma [12] Experiment [7]
Af - Ax*t Input 1.62 1.46 0.88 0.79 0.52 1.12 1.30 £ 0.07
A} = pK° Input 1.20 3.64 1.26 2.06 1.71 1.64 3.16 +0.16
A} = 207t 0.32 0.34 1.76 0.72 0.88 0.39 1.34 1.29 + 0.07
A = Zta0 0.32 0.34 1.76 0.72 0.88 0.39 1.34 1.24 £0.10
Af =Xy 0.16 0.11 0.90 0.57 0.70 £ 0.23
AT - Zty 1.28 0.12 0.11 0.10
Af - BOK* 0.26 0.10 0.31 0.34 0.13 0.50 £0.12
Af = Azt —0.70 —0.67 -0.99 -0.95 —0.95 -0.99 -0.99 —-0.91 £0.15
A} = pK® -1.0 0.51 -0.90 -0.49 -0.97 —0.66 -0.99
A} = X0z* 0.70 0.92 —0.49 0.78 0.43 0.39 -0.31
A = Zta0 0.70 0.92 —0.49 0.78 0.43 0.39 -0.31 —0.45+0.32
AF - Xy 0.33 0.55 0 -0.91
A = Xy —0.45 —0.05 -0.91 0.78
AF - 20K 0 0 0 0 0
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Cabibbo-allowed Al — B + P decays. Two explicit pole-
model calculations were carried out in [8] and [9,10] and a
variant of the pole model was considered in [11]. In [12],
the S-wave amplitude was calculated using current algebra.
Similar calculations based on current algebra also can be
found in [9] (denoted by CA in Table I). The authors of [13]
chose to use the covariant quark model to tackle the three-
body transition amplitudes (rather than two-body transi-
tions) directly. This work was further developed in [14]. We
see from Table I that the predicted rates by most of the
models except current algebra are generally below experi-
ment. Moreover, the pole model, the covariant quark model
and its variant all predict a positive decay asymmetry a for
both A} = =*t7° and X°z*, while it is measured to be
—0.45 £0.31 £ 0.06 for =*z° by CLEO [15]. In contrast,
current algebra always leads to a negative decay asymmetry
for the aforementioned two modes: —0.49 in [9], —0.31 in
[12], =0.76 in [16], and —0.47 in [17]. BESIII will measure
decay asymmetry parameters for A7 — Azt X0z%, 270
and pK® and the sensitivity for measuring as:,o is
estimated to be (10 ~ 77)% [18]. It will be of great interest
to see if the negative sign of ay,0 measured by CLEO is
confirmed.
Writing the nonfactorizable S-wave amplitude as
A=A (A

— ACA), (1.1)

the term (A —A®*) can be regarded as an on-shell
correction to the current-algebra result. It turns out that
in the existing pole-model calculations [8—10], the on-shell
correction (A — A®) always has a sign opposite to that of
A®A. Moreover, its magnitude is sometimes even bigger
than |A“A| for some of the decays such as A} —
207+, £+ 20, That is, the on-shell correction is large enough
to flip the sign of the parity-violating (PV) amplitudes. This
explains the smaller calculated rate in the pole model and
the sign difference of ay+ 0 y0,+ between the pole model
and current algebra. If the negative sign of ay 0
is confirmed, this means that the on-shell correction
(A — A®7) has been overestimated in previous pole-model
calculations probably owing to our poor knowledge of the
negative-parity baryon resonances. The empiric fact that
current algebra seems to work reasonably well for A7 —
B+ P is a bit surprising and annoying since the pseudo-
scalar meson produced in A] decays is generally far from
being soft. We plan to examine this important issue and the
pole model in a separate work.

In this work we focus on singly Cabibbo-suppressed
hadronic decays of the A}, specifically, Al — AK™,
pa°, pn,nat 20K, Y K°. Among them, evidence of
A} — pn was found by BESIII recently [19], while a
stringent upper limit on A — pz° was also set. Besides
dynamical model calculations, two-body nonleptonic
decays of charmed baryons have been analyzed in terms

of SU(3)-irreducible-representation amplitudes [20,21].
However, the quark-diagram scheme (i.e., analyzing the
decays in terms of topological quark-diagram amplitudes)
has the advantage that it is more intuitive and easier for
implementing model calculations. A general formulation
of the quark-diagram scheme for charmed baryons is given
in [22] (see also [23]). Analysis of Cabibbo-suppressed
decays using SU(3) flavor symmetry was first carried out in
[24]. This approach became popular recently [25-28].
Nevertheless, we perform dynamical model calculations
based on current algebra.

This work is organized as follows. In Sec. II we set up
the formalism for analyzing factorizable and nonfactoriz-
able contributions to singly Cabibbo-suppressed decays of
the charmed baryon A}. Numerical model calculations and
discussions are presented in Sec. III. Section IV gives our
conclusion. Appendix A is devoted to the study of the
decay A} — p¢ to fix the relevant Wilson coefficient. The
MIT bag model evaluation of baryon matrix elements is
sketched in Appendix B. Axial-vector form factors and
baryon wave functions relevant to the present work are
summarized in Appendixes C and D, respectively.

II. FORMALISM

The effective weak Hamiltonian for singly Cabibbo-
suppressed decays at the scale y = m, reads [29]

V(€101 +¢,0%) + He.,  (2.1)

eff*\/—zv

q=d,s

with ¢ = d, s and the four-quark operators are given by

= (qc)(aq). 03 =(qq)(uc),
with (g192) = §,7,(1 = v5)q,. For the Wilson coefficients,
we use the lowest order values c¢; = 1.346 and ¢, =
—0.636 obtained at the scale y = 1.25 GeV with A% =
325 MeV (see Tables VI and VII of [29]). Because in this
work we do not consider effects of CP violation, we

assume real CKM matrix elements for simplicity thereafter.
The general amplitude for B; — By + P is given by

(2.2)

M(B; = By + P) = iiiy(A — Bys)u;, (2.3)
where A and B are the S- and P-wave amplitudes,
respectively. Note that if we write M(B; - By + P) =
iiiy(A+ Bys)u;, the P-wave amplitudes given in
Egs. (2.10) and (2.13) below and the decay asymmetry
a in Eq. (3.2) are flipped in sign. The decay amplitude
generally consists of factorizable and nonfactorizable ones

M(B; = By + P) = M(B; > B, + P)™

+M(B, - B+ Pyt (2.4)
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While the factorizable amplitude vanishes in the soft-meson
limit, the nonfactorizable one is not.

A. Factorizable contributions

We first consider the factorizable amplitudes for some of
the singly Cabibbo-suppressed modes,

M(AE — AKT)e _%Vcsvusal (K*|(s) [0)(Al(5¢) A ),

G - _
M(A; — pal) :\/_%Vcdvuda2<7z0|(dd)|0> (pl(@c)|AL),

(2.5)

where a; = ¢ —i—% for the external (color-allowed)

W-emission amplitude and a, = ¢, +§- for internal
(color-suppressed) W emission in naive factorization. In
terms of the decay constants and form factors defined by’

(K™ (q)|(us)|0) = *(q)I(dd)|0) =éfﬂqﬂ,

(2.6)

_iquln <”

and

(AlpA)I(5E)IAL (pa,))

_ A A AA . q° A A q
= Up |:f1 (qZ)yﬂ - f2 (C]z)ldﬂy + f3 (qZ) £
m ma

c ¢

v

- (= 2 i

mA(

) s )

A,

with ¢ = py_— p,, we obtain

Gr
—i—=V.V.a

\/z lfK
x [(my, —mp)fr" (mk)

A,
+ (my, +my)g, "A(m%)YS]’

G
= lTF VcdvudaZflr
A,
x [(ma, = mp,)fy" (m3)
+ (my, + mp)gi\fp(mlzl)ys]’

where we have neglected contributions from the form
factors f3 and g3. We have learned from charmed meson
decays that naive factorization does not work for color-
suppressed decay modes. Empirically, it was realized in the

M (A} — AK*) =

Mfec (A;r - pn.O)

(2.8)

There is a sign ambiguity for the one-body matrix element.
We define Eq. (2.6) in such a way that a correct relative sign
between the factorizable and nonfactorizable amplitudes, e.g.
between Egs. (2.8) and (2.13), is ensured.

1980s that if the Fierz-transformed terms characterized
by 1/N. are dropped, the discrepancy between theory
and experiment is greatly improved [30]. This leads to the
so-called large-N,. approach for describing hadronic D
decays [31]. As the discrepancy between theory and
experiment for charmed meson decays gets much improved
in the 1/N, expansion method, it is natural to ask whether
this scenario also works in the baryon sector. This issue
can be settled by the experimental measurement of the
Cabibbo-suppressed mode A — p¢, which receives con-
tributions only from the factorizable diagrams [10]. Using
the recent BESIII measurement of Al — p¢ [32], we
obtain |a,| = 0.45 4 0.03, corresponding to N°f ~ 7 (see
Appendix A below). Recall that a, = —0.19 for N. = 3.
Hence, color suppression in the factorizable amplitude is
not operative.

For A} — pn) decays, we need to consider the n — 7/
mixing parametrized by

[n) = cos@ln,) —sin|n,),

') = singlny) + cos glny), (2.9)

where the flavor states ¢ = (uii + dd)/+/2 and s5 are
labeled as 7, and 7, respectively. The mixing angle ¢ is
determined to be 39.3° + 1.0° in the Feldmann-Kroll-Stech
mixing scheme [33], which is consistent with the recent
result ¢p = 42° 4+ 2.8° extracted from the CLEO data [34].
The factorizable amplitudes then read

ac GF s 1
Al (Af - pp) = —\/—Eaz (Ves Vusf;7</) \/5 cdvudfnu >

X (my,—my) [y (m3),
fac (A + (1) Gr s 1
B (Ac - pn ):7§a2 VLsVusf \/i cdvudfq(/
X (my, +m,)gr<" (m2), (2.10)

where the decay constants are defined by

_ 1 _ .
" arrsal0) =i 5 Floq " S0rssi0) = if 4,
(2.11)
We follow [33] to use
fi=107MeV, fn=-112MeV,
= 89MeV, f;/ = 137 MeV (2.12)
for ¢ = 39.3°

B. Nonfactorizable contributions

Besides factorizable terms, there exist nonfactorizable
contributions arising from W exchange (see e.g. diagrams
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c d c d d
w o )
U u
w u P U [N d )
d d O d u TR
Cy Cy
c d d U U
F; O —a/ng a /7y
d u c
d u P ¢ d P
u u_\ u ul d
By E, By
FIG. 1. Quark diagrams contributing to A} — pn and pz°.

E,,; in Fig. 1 below) or nonfactorizable internal W
emission (e.g. diagram C, in Fig. 1). How do we tackle
the nonfactorizable contributions? One popular approach is
to consider the contributions from all possible intermediate
states. Among all possible pole contributions, including
resonances and continuum states, one usually focuses on the
most important poles such as the low-lying 1/2% and 1/2~
states, known as pole approximation. More specifically, the
S-wave amplitude is dominated by the low-lying 1/2~
resonances and the P-wave one governed by the ground-
state poles. The nonfactorizable S- and P-wave amplitudes
for the process B; — By + M are then given by [10]

APole — _ {ngBn*Mb"*i + bfn*an*B,-M:| + ’
B2y L M T e My =My
9B,8,M%i Ay,
Brole — _Z[ ki f’gB"BfM} b (213)
g Lmi—nmy my—m

respectively. Ellipses in the above equation denote other
pole contributions which are negligible for our purpos.es,4
and the baryon-baryon matrix elements are defined by [10]

(Bi|He| Bj) = ui(ay;
(B (1/27)|HE|1B;) =

_bij75)”]

ibyji;u; (2.14)

J*

When M = P, one can apply the Goldberger-Treiman
relation for the strong coupling gz zp and its generalization

for g5 5p.

2
- (mlgf + mB)g’g/B,

9B Bps =
" fe
V2
gB*BP" = f‘_ (mB* —_ mB)g?S*B’ (215)
Pll

to express Eq. (2.13) as

*For example, contributions to the S-wave amplitude from the
parity-violating matrix elements b;; defined in Eq. (2.14) are
much smaller than the parity- conservmg ones a;;, which have
been shown explicitly in [35,36].

l]?

Apole E 7 zf— " b .

fP BT ByB,* ﬂ m,- n*i

ﬂ n,,x
—_p, T ,
fn* ?f m,- glAS”* B;

\/§ me+m, m; +m,
Bprole — _ . ,

fP" EB": |:9ng,, m; —m, ani + Afn mp—m, g%nBi

(2.16)

with the decay constant normalized to fp = f, =
132 MeV. In the soft pseudoscalar-meson limit, p; = p;
and hence the S-wave amplitude can be recast to the form

V2 “\ (B
Aom = — Y2 N (1B,]04|B;) (B HEY|By)
P B;(1/27)
<Bf|Heff|B*><B*|Q5|B>]
V2
= -2 103 HYIIB). (2.17)
with

_A _ A
0 :/d%qyozq, 05 =/d3xq7/oy5 54 (2.18)

The above expression for A®™ is precisely the well-
known soft-pion theorem in the current-algebra approach.
Using the relation [Q¢, HYY] = [0“, HES], we see that in the
soft-meson limit, the parity-violating amplitude is reduced
to a simple commutator term expressed in terms of parity-
conserving matrix elements. Therefore, the great advantage
of current algebra is that the evaluation of the parity-
violating S-wave amplitude does not require the information
of the negative-parity 1/2~ poles.
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To apply the soft-meson theorem, we notice that

V2

com 1
A" (Bi - Bf”i) = _f_<Bf|[I:F’H§f(f:]|Bi>v

A (B, - Bya®) = (By|[13, Heg)|B;),

1
Acom(Bi - BfKi) = _f_K<Bf|[V:F’H£f(f:“Bi>’

=)

1
Am(B, - BK0) =

_JT<Bf|[U3F’HePf(f:]|Bi>7
31
a5, Byy) = - 1L
! zfﬂs

where /., Uy, and V. are isospin, U-spin, and V-spin
ladder operators, respectively, with

(BllY. Hgg]1By).  (2.19)

Lild) = |u),  I_|u) = |d),
Uils) =1d),  U_|d) =s),
Vils) =), V_|u) = Is). (2.20)

The use of the hypercharge ¥ = % 0% has been made in the

last line of Eq. (2.19). In the SU(3) case, the hypercharge is
given by the well-known relation Y = B + S. However, its
generalization to the SU(4) case depends on the generalized

|

definition of the hypercharge. For example, Y = B+ S - C
is derived in the textbook of [37], while the relation ¥ =
B+ S+ C also can be found in the literature. For our
purpose, we adopt the first one, so that Y(p) =1 and
Y(AY) = 0. We come back to this point in Sec. III.
Applying Eq. (2.20) to the commutator terms for singly
Cabibbo-suppressed modes, A} — AK*, pa°, pn, nat,
0K+ $tKO we obtain
ACM(AT 5 AK) = fl (\/3/2apA( + aAE?_),
K

1
Acom(A;’_ - p]z'o) = —\/_TfapAE,

1
= <aP/\c + \/Ea):“Eg)’

V2fk

1
AMNAS = nat) = ——a, .

T

1
Acom(Aj N 2+K0) — f—K (apA‘_ — a2+5f)’

Acom (AC+ N 20K+)

31

ACMAL = png) = - Ef—ap/\(.,
g

(2.21)

for S-wave amplitudes with aps = (B|HYG|B,). For
P-wave amplitudes, we have

cal nt o V2 [ a0y my, +m, My, + Mz A(z0) MA, + M 5(x0)
BYAf » pr’)y=—-— g ——a,\ ta,y> ———go a,, ——— ,
¢ pp PA. P SIA, PA. A,
fa My, —mp m, — s, My = My,
1 m, +m my +m
ca + +\ n V4 A, 2.
B (Ac —> nmw )—_? gﬁpmi—m ap/\c—i_anz(c);mc_m (gg(c)AE s
n A, )4 n Z.
\/f Al My +m my +m my +m
’ P P A Z. A A A, A
BCd<A3' N Pﬂs) — _ gpghz) apn +a - ¢ i‘?s) +a A c c A<’3€> ,
f Me — PA. PE L TEA, PAc L
3 A, P P Z P A,
1 mpy+m my -+ ms my + mz
P A, B, A, B,
BCa(A;‘F g AK+) = —-— g[A\p apA aAEg - gé.“A + aAELS) — gé.’OA 5
Tk my, = m, —mg, "~ my = g, "=l
1 my +m my + ms my + mg
p = =
BCa(Ai = ZOK+) = —-— ggo apAc -+ Ax0=0 < < gé-OA + aEOEZQ —_— gé’“A s
fx Pmy, —m, y —mg T my — mg, “Sche
1 my +m my + msg my .+ ms
BUAS = BPK0) = = (b, Py, by ST apa ST ) (222)
fx My, —m my —mg =7 My — Mg = ¢

where the superscript 7° of g?‘,(p”o) implies that the form

factor g‘g » 1s evaluated using the axial-vector current
corresponding to P? = 7%, and likewise for the superscript
ng of gﬁg,”*). In Egs. (2.19) and (2.22), g is the octet
component of the # and #/,

n = cos Ong — sin O, ' = sinfng + cos Oy, (2.23)
with 6 = —15.4° [33]. For the singlet component 7, the
soft pseudoscalar-meson theorem is not applicable. Hence,
we do not consider the S-wave amplitude of A — pn

[

within the current-algebra framework. As shown in
Appendix C, the axial-vector form factor vanishes for
antitriplet-antitriplet heavy baryon transitions, i.e.,
g‘gi B = 0. Hence, in the P-wave amplitudes we can drop
those terms with g} , or g2 , .

C. Baryon matrix elements

To evaluate the nonfactorizable amplitudes we need to
know the baryon matrix elements and the axial-vector form
factor at ¢g> = 0, g’g,B. For the matrix elements, we write
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app, = <B|Hetf|B >

f N VeV (Ble, 0% + c_01|B.),
q=d.s

with 0% = 01 £ 04 = (gc)(aq) + (ggq)(ac) and c. =
¢ £ c,. Since the four-quark operator O, is symmetric
in color indices while O_ is antisymmetric, the former does
not contribute to the baryon transition matrix element since
the baryon wave function is totally antisymmetric in color.
Hence,

B, Z Veg qu

qu

(2.24)

&) (B|O%|B,).  (2.25)

We evaluate the matrix elements using the MIT bag model
(see Appendix B). The relevant PC matrix elements are

(pl02152) = 222 (i + 0x9) ().
(ZH|od|zt) = 2‘f( X4 +9X9)(4n),
(plO%IAF) = }6 (X¢ + 3%¢) (47),
(n]O4[0) = 5(X¢ + X9)(4n).
(AJO4|Y) = —4x4(4n),
(A0S |EY) = 2(~X] + X3)(4n).
(A|O4|20) = —4\/3X4 (4x),
(A]02ED0) = 7§<X1 +3X3) (42),
(£°104|29) = —%x7(4zz),
(29]0% |50) = %(X; +3X3) (42),
(£°)04|20) =~ X4(4x),

(z°]02|EY)

2
=3 (X} = 9x3)(47),
(ZH|02|EF) = 2V6X3(4n),

4
WZ (X} —9X3)(4x),

where X{ and X4 with ¢ = d, s are the bag integrals defined
in Eq. (B8). The numerical values of the bag integrals can
be found in Eq. (B10). It should be stressed that the relative
signs of matrix elements are fixed by the baryon wave
functions given in Appendix D.

For the ¢* dependence of the form factors defined in
Eq. (2.7), we follow the conventional practice to assume a
pole dominance

(Z+| 0% =) (2.26)

Qi(O)
(= /miy
(2.27)

fi(0)

=m0

fi(‘]2) =

with n =2 or 1, where my(m,) is the pole mass of the
vector (axial-vector) meson with the same quantum number
under consideration, for example, my = my: and my =
mp,, (2536) for A, — A transition. Form factors f; and g; for
A, - A and A, — p transitions at zero recoil and at
maximal recoil g = 0 have been calculated in the literature
[10,38—41]. Presumably, the SU(3) relation

3 3
—\éf?"A(qz), G’ (q?) = \/;,AA(QZ),

(2.28)
should be respected at zero recoil g*> = (m; — m f)2. For our
purpose, we follow [38] to use

£17(0) 91" (0)

for A, — p transition. Form factors for A, — A transition are
discussed in Sec. III below.

As for the axial-vector form factors gAB, B> they are
discussed in Appendix C.

= —0.470, = -0414  (2.29)

III. RESULTS AND DISCUSSIONS

In terms of the decay amplitude of B; — B, + P given in
Eq. (2.3), its decay rate reads

A (m; +mp)? —m? m; —mg)* —m>
n m

2
mj i

2 _ 4 2
pc{(m +mf) |A|2+ Pe - B|2}
87 (m;+mys)* —m3
(3.1)

with p. being the c.m. three-momentum in the rest frame of
B;, and the up-down asymmetry « is given by
2kRe(A*B)
a= AP+ 2[BP (3.2)
parent baryon B; is unpolarized, the produced baryon B is
longitudinally polarized by an amount of a. The predicted
S- and P-wave amplitudes of singly Cabibbo-suppressed
decays Al — AK*, pa°, pn,nat, 20K+, Z+K° and their
branching fractions and decay asymmetries are shown in
Table II.
We first discuss the two modes A} — pz® and p#. In the
topological quark-diagram approach for charmed-baryon
decays [22], the relevant quark diagrams for A7 — pn, pa°
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TABLE II.  The predicted S- and P-wave amplitudes of singly Cabibbo-suppressed decays A} — B+ P in units of Gp1072 GeV?2.
Branching fractions and the asymmetry parameter « are shown in the last three columns. Experimental results are taken from [7,19].
Channel Afee Acom At Bl B* Bineo Bexpi Qtheo
AF = pa® —0.41 0.81 0.40 0.87 —1.57 -0.70 0.75 x 107* <27 x 1074 -0.95
Af = pn 0.96 1.11 2.08 -1.93 —-1.24 -3.17 1.28 x 1073 (1.24 4+0.29)1073 —0.56
Af - nat —1.64 1.15 -0.50 3.45 —1.57 1.88 2.66 x 107* -0.90
Al - AKT —1.66 0.09 —-1.57 4.43 —0.54 3.70 1.06 x 1073 (6.1 +1.2)10™ —0.96
AF = Z0KT 0 —1.48 —1.48 0 2.30 2.30 7.18 x 107* (5.2+0.8)10™ -0.73
Af — ZTKO 0 -2.10 -2.10 0 3.25 3.25 1.44 x 1073 -0.74

are depicted in Fig. 1. There are two internal W-emission
diagrams C;| and C, and three W-exchange ones E;, E,,
and E3. Symmetry properties of the baryon wave function
are taken into account in the analysis of [22]. Among these
diagrams, only C is factorizable. Since the CKM matrix
elements V.V, and V_,V,, are similar in magnitude but
opposite in sign and since the decay constants f3 and fi
also have opposite signs [see Eq. (2.12)], it is obvious that
the factorizable amplitude of p# is significantly larger than
pa° in magnitude owing to the constructive interference in
the former (see Table II). Considering the factorizable
contributions alone, we already have B(Af — pn)f =
4.0 x 1074, while B(AF — pa°) =0.93 x 107*. We rely
on the current-algebra approach to evaluate nonfactorizable
W-exchange amplitudes, namely, the commutator terms for
the S-wave and the current-algebra pole terms for the
P wave.

To compute the A — pn rate, we have followed [33]
to use the decay constant fg=1.26f, to get f, =
fgcos(—=15.4°). Our prediction B(AS — pn)=1.28x1073
is in excellent agreement with the BESIII measurement of
(1.24 £0.29) x 1073 [19].> We see from Table II that the
pn (pa®) mode has a large (small) rate because of a large
constructive (destructive) interference between the factor-
izable and nonfactorizable amplitudes for both § and
P waves.

Various other model predictions for the singly Cabibbo-
suppressed decays Al — B+ P are summarized in
Table III. Except for the dynamic calculation in [42] and
the consideration of factorizable contributions in [43], all
other predictions are based on the SU(3) symmetry argu-
ment. A global fit of the SU(3) amplitudes of A] — B+ P
to the data of branching fractions of Cabibbo-allowed
decays A — pK°, Azxt,Zta°, 202+, 21y, E°K*, and
singly-Cabibbo-suppressed decays A7 — AK+, K™, py
in [28] yields B(Af — pa®) = (574 1.5) x 1074,

’If the hypercharge convention ¥ = B + S + C is used, we
have Y(A}) = 2. In this case, A™ flips it sign and gets a large
destructive interference with the A°°™ term. The predicted rate
becomes very small, B(A7 — pn) = 1.18 x 107,

which is too large compared to the experimental limit of

2.7 x 107*[19]. Assuming the sextet 6 dominance over 15
(i.e., c_O_> c,.0,), the authors of [25] obtained the
relation®

M(AY = nat) = V2M(A} - pa®),  (3.3)

and the sum rule
B(Af — nat) = sin?0:[3B(A — Ax™)
+ B(AF = 227%) — B(AY — pK?)],
(3.4)

derived from the relations [26]

VOM(A} — Art) + V2M(A} - 0x)

=2M(Al = pK°),
VOM(AF — Ant) —V2M(A}f — Z0xt)
2

= M(AS ).
sin O (AS =)

(3.5)

The current PDG values for branching fractions [7] lead to
B(Af = nxt) ~0.97 x 1073 and hence B(Af — pa®)~
0.48 x 1073, The predictions of both are consistent with the
SU(@3) global fit of [28]. The discrepancy between the
SU(3) approach and experiment for A7 — pz° is ascribed
to the SU(3) relations given by Egs. (3.3) and (3.4). First of
all, the relation (3.3) does not hold in the general quark-
diagram approach owing to the presence of factorizable
contributions [22]. Since the factorizable amplitude of
AF = nat (Af — pa°) is governed by the external (inter-
nal) W emission, we have (see also Table II)

M(AL — nat)fe _ﬂ(ﬂ) ~2.8V2.  (3.6)

M(Af — pr°)fe a,

Hence, the factorizable amplitudes alone strongly violate
the SU(3) relation (3.3). If we just consider the operator
c_0? alone, it is easily seen that naive factorization leads to

®It was also noticed in [24].
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TABLE III
decays of AJ.

Comparison of various theoretical predictions for the branching fractions (in units of 10~3) of singly Cabibbo-suppressed

Sharma et al. [24] Uppal et al. [42] Chen et al. [43] Lu et al. [25] Geng et al. [28] This work Experiment [7,19]

A > pa® 0.2 0.1-0.2 0.11-0.36
A = pn 0.2*1.7)° 0.3

AF > pnf 0.4-0.6 0.04-0.2

AF > nrt 0.4 0.8-0.9 0.10-0.21
AF > AK* 1.4 12 0.18-0.39
Af > 0K+ 0.4-0.6 0.2-0.8

Af - ZTKO 0.9-1.2 0.4-0.8

0.48 0.57 £0.15 0.08 <0.27
1.24 £0.41 1.28 1.24 £0.29
1224557
0.97 1.13£0.29 0.27
0.46 +0.09 1.06 0.61 £0.12
0.40 +0.08 0.72 0.52£0.08
0.80 £0.16 1.44

“The P-wave amplitude of A7 — Z°K* is assumed to be positive.
The P-wave amplitude of A] — Z°K* is assumed to be negative.

a; =3c_ and a, = —3c_, and hence M(A} — na™)™ =
V2M (A} — pa°)?. However, in reality a; ~1.26>
|ay| ~0.45. Since the matrix element azy is governed by
the operator O_, it is clear that the relation (3.3) should
be respected by A™ and B terms, but not by At and
Bfact (see Table II). By the same token, the first line of
Eq. (3.5) does not hold as the factorizable amplitudes
of Af = Azt and A} — pK? are of different types, gov-
erned by a; and a,, respectively. Hence, we conclude that the
rates of nz™ and pz® cannot be extracted from experiment
through the invalid SU(3) relations (3.4) and (3.3). In our
work, both nzt and pza° are suppressed owing to the
destructive interference between factorizable and nonfactor-
izable terms. Experimentally, the Cabibbo-allowed decay
A}l - nKgr involving a neutron was observed by BESIII
recently [44]. It is conceivable that the Cabibbo-suppressed
mode A} — nx™ can be reached in the near future.

Only factorizable contributions to Al — nz* and pa®
were considered in [43]. In the naive factorization with
Nt = 3, the branching ratio of A} — pz° of order 107% is
smaller than that of A} — nz™ by a factor of order 50. It
was argued in [43] that final-state rescattering effects
through Al — {nz*,np*, AK*, AK**} - pz° will en-
hance the former so that B(Af — pz°) = B(Af — nzt)
(see Tables 2 and 3 of [43]). We make two remarks: (i) In
order to enhance the rate of pz° to the order of 107#, a
common wisdom is that the branching fraction of
the intermediate states, e.g. Al — np™, AKT, should
be at least 2 orders of magnitude larger than 10~* [45].
(ii) We find that even in the absence of final-state
rescattering, the nonfactorizable contributions denoted by
A®™ and B in Table II, which were neglected in [43],
yield B(AF — pa°)" = 3.3 x 1074, Therefore, it is man-
datory to take into account the nonfactorizable contribu-
tions from internal W emission (denoted by C, in Fig. 1)
and W exchange (E;, E,, E3) in the study.

As for Af — XK decays, we see from Egs. (2.25) and
(2.26) that ags5+ = _\/Eaagzﬂ due to the smallness of the

bag integrals X‘li’s compared to X5 [see Eq. (B10)]. It
follows from Eq. (2.21) that A(A} - T K%)xv24(Af -
¥0K*). Moreover, the relations g’§+P = —\/Eggop and
gan, = —ga., (cf., Appendix C) and the identity asozo =

e

ay+z+ for matrix elements also lead to B(A} — ZTK?) =
V2B(A} — X0KT); see Eq. (2.22). It is thus expected
that

[(Af - ZTKY) 2 2T(Af - Z°K), (3.7)
and identical decay asymmetries in both channels.

We did not consider the decay mode A — py’ as the
evaluation of its nonfactorizable amplitude is beyond the
current-algebra framework. Nevertheless, We find from
Eq. (2.10) that B(A — pn/)* = 0.9 x 107 due to the
factorizable effect alone. Notice that it has been claimed in
[26] that its branching fraction is as large as A} — pn,
namely, B(Af — pr') = (1.227557) x 1073.

For the decay A — AK™, if we follow [38] to use
the form factors f7*(0) = 0.511 and ¢}*"(0) = 0.466,
we obtain B(Af — AKT)~1.9 x 1073, which is too
large by a factor of 3 compared to experiment. The same
is also true for the Cabibbo-allowed decay Al — Axn™.
Using the same set of A. — A transition form factors, we
find B(Al - Ax") = 2.4%, while it is (1.30 £0.07)%
experimentally [7]. Nevertheless, the predicted ratio
R=T(AK")/T(Az") =0.078, which is close to
(sin? O¢f)?, is smaller than the BABAR measurement of
R = 0.044 £ 0.005 [46], but consistent with Belle’s value
0f 0.074 £ 0.016 [47]. An average of R = 0.047 £ 0.009 is
quoted by PDG [7]. In Table IT we use the form factors
F14(0) = 0.406 and g4 (0) = 0.370 fitted to A} — Az*
to predict Af — AK™.

Finally, other model calculations for the up-down
decay asymmetry are collected in Table IV for comparison.
The predicted decay asymmetries under current algebra for
the singly Cabibbo-suppressed modes are always negative
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TABLE IV. The same as Table III except for decay asymme-
tries. The P-wave amplitude of A} — E°K* is assumed to be
positive (negative) in case a (b) [24], while |y (0)|? scale violation
is (not) taken into account in case ¢ (d) [42].

Sharma et al. [24] Uppal et al. [42] This work

APPENDIX A: THE DECAY A} — p¢

The decay AF — p¢ proceeds only through the internal
W emission governed by

MA > pi) = CEV . Visar(](55)10) (| (ic) AT).

V2
A - pa® 0.05%(0.05)° 0.82°(0.85)" -0.95 (A1)
A - pn —0.74(—0.69) -1.00(-0.79)  —0.56 . _
AF = prf 0.97(~0.99) 0.87087) Given the general amplitude
Af = nzt 0.05(0.05) ~0.13(0.67) —090  Hp(pp)e™Avyurs + Aoppurs + Biyy + Bapplui(pi),
A — AKT  —0.54(0.97) -0.99(-0.99)  —0.96 (A2)
Af - 20Kt 0.68(—0.98) -0.80(—-0.80)  —0.73 for the decay B;(1/2%) — B,(1/2%) + V, we find
Af - ZTKY  0.68(—0.98) -0.80(—0.80)  —0.74

and range from —0.56 to —0.96. The SU(3) approach
usually cannot give definite predictions without further
assumptions.

IV. CONCLUSIONS

We have studied singly Cabibbo-suppressed two-body
hadronic decays of the charmed baryon A}. We use the
measured rate of A — p¢ to fix the effective Wilson
coefficient a, for naive color-suppressed modes and the
effective number of color N°f. We rely on the current-
algebra method to evaluate W-exchange and nonfactoriz-
able internal W-emission amplitudes, that is, the commu-
tator terms for the S-wave and the pole terms for the P
wave. Our prediction for Al — pp is in excellent agree-
ment with the BESIII measurement. The pn (pa°) mode
has a large (small) rate because of a large constructive
(destructive) interference between the factorizable and
nonfactorizable amplitudes for both § and P waves.
Some of the SU(3) relations such as M(A}l — nz™) =
V2M(A} — pa) and Eq. (3.4) derived under the
assumption of sextet dominance are not valid for decays
with factorizable contributions. Sextet dominance is justi-
fied for nonfactorizable terms as the baryon matrix ele-
ments ag g are governed by the four-quark operator O_, but
not for factorizable amplitudes as both O_ and O,
operators contribute. Our calculation indicates that the
branching fraction of Aj — nz't is about 3.5 times larger
than that of A7 — pz°. Decay asymmetries are found to be
negative for all singly Cabibbo-suppressed modes and
range from —0.56 to —0.96.
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Ae Ae
A = _a2hf¢m¢[gl p(’”é) - 0"(

mé)(m/\g - mp)/mAc]’
Ay = 2a3hf ymygs” () m,

B, = azhf(/)m(,,[f’l\"’(mé) + fé\”(mé)(m,\ +mp,)/my ],
B, = 2a2hf¢m¢f9”p(m5))/m/\(, (A3)

with h = GzV,V,s/V/2, where use of the decay constant
f, defined by (¢|(55)|0) = fymye; and form factors
defined in analog to Eq. (2.7) has been made. The partial
decay rate and decay asymmetry then read’

p.E,+m
(8¢ = p) =522 (1524 PP

E;
+—5(IS+D|*+|P,*)].
my
4m3Re(S*P;) +2EjRe(S+D)" P,

a(Af = po)= ,
‘ 2mg (ISP +|P2|*) + E5(|S+D|* +|Py[?)
(Ad)
with the S, P, and D waves given by [48,50]
S - —Al,
myx +m
Pl = —& (MBl +mA Bz),
E¢ Ep —I—mp ¢
Pe
P2 1
E, +m,
2
D=——— (A —my Ay). (AS)
E¢(Ep +mp) ¢

"The formula for I'(1/2* — 1/2% + V) given in Eq. (A4) in
terms of partial-wave amplitudes was originally derived in [48]
and has been widely used in the literature. However, the original
expression for I"is too small by a factor of 2. We thank Hong-Wei
Ke for pointing this out to us. Later, we learned that the correct
expression of I was also obtained by Wang et al. in the spring of
2017 [see Eq. (57) of [49]]. It should be stressed that both I" and
can be expressed in terms of the helicity amplitudes defined by
iy iya, = (Br(Ap)V(Ay)[Hw|Bi(4:)) with 4; = 2; — Ay [13],
which yield the same results as Eq. (A4). Hence, the partial-
wave method and the helicity-amplitude method are equivalent.
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Using the data B(A} — p¢) = (1.04 £0.21) x 1073 [19],
we obtain |a,| = 0.45 £ 0.03 and hence N¢T ~ 7 for ¢; =
1.346 and ¢, = —0.636 and f, =215 MeV. This leads
t0 a; = 1.26 + 0.01.

APPENDIX B: BARYON MATRIX ELEMENTS
IN THE BAG MODEL

For the evaluation of the baryon matrix element of O in
the MIT bag model [51], see [10]. Consider the four-quark
operator O = (g,43)(g»q4)- This operator can be written as
O = 6(4,93)1(G294),, where the superscript i indicates
that the quark operator acts only on the ith quark in the
baryon wave function. In the bag model the parity-
conserving matrix elements have the expression [10]

/r2dr<¢11‘12|(511613)1(512614)2|613614>
1
= (=X, +X,) —§<X1 +3X,)6, - 65,

/rzdr<611%|(511614)1(512613)2|613614>

1
:(X1+X2)_§(—X1 +3X5)61-05. (B
with
R
X, = / rdr(uy vy — vyup) (U304 — v31y),
0
R
X, = / rzdr(uluz + v102) (Uzy + v304), (B2)
0

where R is the radius of the bag and u(r), v(r) are the large
and small components of the quark wave function, respec-
tively, defined by

Ve (v(l:t)(;))i‘;()

As an example for illustration, we consider the matrix
element a,, given by

(B3)

apn, = (PUHEFIND) = 75 V.aViae (plOYIAL). (B4
Applying the relation
6, 0,= 5(51+02— +01.0y,) + 0100, (BS)
and the wave functions (see Appendix D)
Af = —L[ Tate! —utdte? —dlutet +diu'c!
V12
+(13) + (23)],
p= Jil_g[zumdi —utubdt — utuldt + (13) + (23))

(B6)

with obvious notation for permutation of quarks, it is
straightforward to show that

(pl(de)(@d)|AL) = 6(4m)(p|b]b1cbb,ba
« [—Xf X104 3K D)o, 52}
X |AF)
2
= 2ot 3 ).
(pl(@d) (@) A7) = 6(4x) (p|b] brublbac

1
X [Xf{ +X§ - 3 (=X¢ +3X9)o, - 0'2:|

X |AS)
2 v d
=— §<X' + 3X9)(4n), (B7)
with
R
X! = A rdr(ugv, — vou,)(uyv, — vu,),
R
X1 = A rrdr(ugu, + v,v,) (ugu. + v,0,) (B8)
for g = d, s. Hence,
4
(PlOZIAG) = Zo (K] +3x0)(4m). (B9)
Numerically, we obtain
X4=0,  X§=160x10"*,
X3 =2.60 x 1078, X5 =196 x 1074, (B10)

where we have employed the following bag parameters:

m, =my =0,

m, = 1.551 GeV,

m, = 0.279 GeV,

R=5GeV". (B11)

APPENDIX C: AXIAL-VECTOR FORM
FACTOR g%,

To evaluate the S- and P-wave amplitudes in the pole
model, one needs to know the strong couplings gz5p and
grp in Eq. (2.13). In the approach of current algebra, the
B'BP coupling is related to ¢, the axial-vector form
factor at g> = 0 through the Goldberger-Treiman relation
given in Eq. (2.15). In the bag model the axial form factor
in the static limit has the expression [9]

1
92’8 = <B/T|b21bq262|61\> /d3r<uqluq2 _3vqlvq2>-
(C1)
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Here we show those results relevant to the present work,

g, = V2 = 5v/2g00) —3(47zz)
V6 1
Iy = _7(4”22)7 9‘§+p = \/zg‘;op = §(47z22),
(2)
for octet baryons,
A0y 1 B
Isin, = ﬁggg/\ 7(4”21)
1
g‘g:(:ﬁc) = O, gé/coAC = —gg?/\c = 7§(4ﬂ'22), (C3)
and
92383 =0 (C4)
for charmed baryons, where
1
Z —/r2dr(uﬁ—§v%>,
1
Z2:/r2dr(uuus_§1}uvs>7 (C5)
|
L uudys + (13) + (23)
= ——=|Uuu , n—=
p \/g XS
1
St = ——[uusys + (13) + (23)], =0 =
\@[ s+ (13) + (23)]
1
B0 = —[ssuys + (13) + (23)], 5=
\/g[ s+ (13) +(23)]
1
A =——[(uds — dus)y, + (13) + (23)],
Zl Ja+ (13) + (23)
1
> = —[(udc + duc 13) + (23)],
\/6[( s + (13) + (23)]
1
B = —[(usc — suc)y, + (13) + (23)],
\/6[( a +(13) + (23)]
1
=t = —T(usc + suc)ys + (13) + (23)],
\/6[( Jxs + (13) 4 (23)]

where abcys =

\%
[ssdys + (13) +

§H

X =

[1]
I

-5l 8-

E/O

(2a'btct —atbtet —atblet)/v/6 and abey,

and Bj is an antitriplet heavy baryon, A}, Z%, and Ef. To

compute the form factors gﬁ;”“> and g;‘(fi)),

0 is L(ay,ysu—dy,rsd),

and likewise for the form factors g,,< ") and gz< s) . Although

the quark model leads to g’gj B = 0, it 1s 1ndeed a model-

independent result in the heavy-quark limit. In the limit of
mg — oo, the diquark of the antitriplet baryon Bs is a scalar
diquark with J¥ = 0*. Therefore, the diquark transition is
0" — 07 + 0~ for B3 — B; + P and it does not conserve
parity.

Numerically, we obtain 4zZ; = 0.65 and 4zZ, = 0.71.
Using the Goldberger-Treiman relation and the results of
(C2), we find that the strong couplings for octet baryons are
consistent with those in [52].

we notice the

axial-vector current for P3 = 7

APPENDIX D: BARYON WAVE FUNCTIONS

In the present work, we use the following wave functions
for octet and charmed baryons with S, = 1/2:

+(23)],
[(uds + dus)ys + (13) + (23)],

(23)],

AF = = l(ude = ducyy, + (13) + (23)],

V6

[ddc)(s +(13) + (23)],

[(dsc —sdc)ya + (13) + (23)],

[(dsc + sdc)ys + (13) + (23)],

G
= (a'btet —a'bleh)/V2.
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