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We study singly Cabibbo-suppressed two-body hadronic decays of the charmed baryon Λþ
c , namely,

Λþ
c → ΛKþ; pπ0; pη; nπþ;Σ0Kþ;ΣþK0. We use the measured rate of Λþ

c → pϕ to fix the effectiveWilson
coefficient a2 for naive color-suppressed modes and the effective number of color Neff

c . We rely on the
current-algebra approach to evaluateW-exchange and nonfactorizable internalW-emission amplitudes, that
is, the commutator terms for the Swave and the pole terms for the Pwave. Our prediction forΛþ

c → pη is in
excellent agreement with the BESIII measurement. The pη (pπ0) mode has a large (small) rate because of a
large constructive (destructive) interference between the factorizable and nonfactorizable amplitudes for
bothS andPwaves. Some of the SU(3) relations such asMðΛþ

c → nπþÞ ¼ ffiffiffi
2

p
MðΛþ

c → pπ0Þ derived under
the assumption of sextet dominance are not valid for decayswith factorizable terms. Our calculation indicates
that the branching fraction of Λþ

c → nπþ is about 3.5 times larger than that of Λþ
c → pπ0.

Decay asymmetries are found to be negative for all singly Cabibbo-suppressed modes and range from
−0.56 to −0.96.

DOI: 10.1103/PhysRevD.97.074028

I. INTRODUCTION

The study of hadronic decays of charmed baryons is an old
subject (for a review, see [1,2]). For a long time, both
experimental and theoretical progress in this arena was very
slow. Almost all the model calculations of two-body non-
leptonic decays of charmed baryons were done before the
millennium and most of the experimental measurements
were older ones. Theoretical interest in hadronicweak decays
of charmed baryons peaked around the early 1990s and then
faded away. To date, we still do not have a good and reliable
phenomenological model, not mentioning the QCD-inspired
approach as in heavy meson decays, to describe the com-
plicated physics of charmed baryon decays.1

From the theoretical point of view, baryons made out
of three quarks, in contrast to two quarks for mesons,

bring along several essential complications. First of all, the
factorization approximation that the hadronic matrix
element is factorized into the product of two matrix
elements of single currents and that the nonfactorizable
term such as the W-exchange contribution is negligible
relative to the factorizable one is known empirically to be
working reasonably well for describing the nonleptonic
weak decays of heavy mesons. However, this approxima-
tion is a priori not directly applicable to the charmed
baryon case as W-exchange there, manifested as pole
diagrams, is no longer subject to helicity and color
suppression. This is different from the naive color sup-
pression of internal W emission. It is known in the heavy
meson case that nonfactorizable contributions render the
color suppression of internal W-emission ineffective.
However, the W exchange in baryon decays is not subject
to color suppression even in the absence of nonfactorizable
terms. The experimental measurements of the decays
Λþ
c → Σ0πþ;Σþπ0 and Λþ

c → Ξ0Kþ, which do not receive
any factorizable contributions,2 indicate that W exchange
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1An exception is the heavy-flavor-conserving hadronic decay
of the heavy baryon, for example, Ξc → Λcπ, which can be
reliably studied within the framework that incorporates both
heavy-quark and chiral symmetries [3].

2At first sight, it appears that the decay modes such as
Λþ
c → Σ0πþ;Σ0Kþ can proceed through the externalW-emission

process. However, the spectator diquark ud of the Λþ
c is anti-

symmetric in flavor, while the same diquark in Σ0

is symmetric in flavor. Hence, the external W emission is
prohibited.
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and nonfactorizable internal W emission indeed play an
essential role in charmed-baryon decays.
Recently, there were two major breakthroughs in

charmed-baryon experiments in regard to hadronic weak
decays. First of all, it is concerned with the absolute
branching fraction of Λþ

c → pK−πþ. Experimentally,
nearly all the branching fractions of the Λþ

c were measured
relative to the pK−πþ mode. On the basis of ARGUS and
CLEO data, Particle Data Group (PDG) had made a model-
dependent determination of the absolute branching frac-
tion, BðΛþ

c → pK−πþÞ ¼ ð5.0� 1.3Þ% [4]. Recently,
Belle reported a value of ð6.84� 0.24þ0.21

−0.27Þ% [5] from
the reconstruction of D�pπ recoiling against the Λþ

c
production in eþe− annihilation. Hence, the uncertainties
are much smaller, and, most importantly, this measurement
is model independent. More recently, BESIII has also
measured this mode directly with the result BðΛþ

c →
pK−πþÞ ¼ ð5.84� 0.27� 0.23Þ% [6]. Its precision is
comparable to the Belle’s result. A new average of ð6.35�
0.33Þ% for this benchmark mode is quoted by the PDG [7].
Second, in 2015 BESIII has measured the absolute

branching fractions for more than a dozen decay modes
directly for the first time [6]. Not only are the central values
substantially different from the PDG ones (versions before
2016), but also the uncertainties are significantly improved.
For example, BðΛþ

c → ΣþωÞ ¼ ð2.7� 1.0Þ% quoted in
2014 PDG [4] now becomes ð1.74� 0.21Þ% in 2016
PDG [7] due to the new measurement of BESIII. In other
words, all the PDG values before the 2016 version for the

branching fractions of charmed-baryon decays become
obsolete.
The decay amplitude of the charmed baryon generally

consists of factorizable and nonfactorizable contributions.
The study of nonfactorizable effects arising from W
exchange and internal W emission conventionally relies
on the pole model. Under the pole approximation, one
usually concentrates on the most important low-lying 1=2þ
and 1=2− pole states. Consider the charmed baryon decay
with a pseudoscalar meson in the final state, Bc → B þ P.
In general, its nonfactorizable S- and P-wave amplitudes
are dominated by 1

2
− low-lying baryon resonances and 1

2
þ

ground-state baryon poles, respectively. It is known that the
pole model is reduced to current algebra in the soft
pseudoscalar-meson limit. The great advantage of current
algebra is that the evaluation of the S-wave amplitude does
not require the information of the troublesome negative-
parity baryon resonances which are not well understood in
the quark model. Nevertheless, the use of the pole model is
very general and is not limited to the soft-meson limit and
to the pseudoscalar-meson final state. For example, current
algebra is not applicable to the decays Bc → B þ V.
However, the estimation of pole amplitudes is a difficult
and nontrivial task since it involves weak baryon matrix
elements and strong coupling constants of 1

2
þ and 1

2
− baryon

states. As a consequence, the evaluation of pole diagrams is
far more uncertain than the factorizable terms.
In Table I we show various model calculations of

branching fractions and up-down decay asymmetries of

TABLE I. Branching fractions (upper entry) and up-down decay asymmetries α (lower entry) of Cabibbo-allowed Λþ
c → B þ P

decays in various models. Model results of [8,9,11,13] have been normalized using the current world average of τðΛþ
c Þ [7]. Branching

fractions cited from [12] are for ϕη−η0 ¼ −23° and r≡ jψBcð0Þj2=jψBð0Þj2 ¼ 1.4.

Decay
Körner,

Krämer [13]
Xu,

Kamal [8]

Cheng,
Tseng [9] Ivanov

et al. [14]
Żenczykowski

[11]
Sharma,

Verma [12] Experiment [7]CA Pole

Λþ
c → Λπþ Input 1.62 1.46 0.88 0.79 0.52 1.12 1.30� 0.07

Λþ
c → pK̄0 Input 1.20 3.64 1.26 2.06 1.71 1.64 3.16� 0.16

Λþ
c → Σ0πþ 0.32 0.34 1.76 0.72 0.88 0.39 1.34 1.29� 0.07

Λþ
c → Σþπ0 0.32 0.34 1.76 0.72 0.88 0.39 1.34 1.24� 0.10

Λþ
c → Σþη 0.16 0.11 0.90 0.57 0.70� 0.23

Λþ
c → Σþη0 1.28 0.12 0.11 0.10

Λþ
c → Ξ0Kþ 0.26 0.10 0.31 0.34 0.13 0.50� 0.12

Λþ
c → Λπþ −0.70 −0.67 −0.99 −0.95 −0.95 −0.99 −0.99 −0.91� 0.15

Λþ
c → pK̄0 −1.0 0.51 −0.90 −0.49 −0.97 −0.66 −0.99

Λþ
c → Σ0πþ 0.70 0.92 −0.49 0.78 0.43 0.39 −0.31

Λþ
c → Σþπ0 0.70 0.92 −0.49 0.78 0.43 0.39 −0.31 −0.45� 0.32

Λþ
c → Σþη 0.33 0.55 0 −0.91

Λþ
c → Σþη0 −0.45 −0.05 −0.91 0.78

Λþ
c → Ξ0Kþ 0 0 0 0 0
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Cabibbo-allowed Λþ
c → B þ P decays. Two explicit pole-

model calculations were carried out in [8] and [9,10] and a
variant of the pole model was considered in [11]. In [12],
the S-wave amplitude was calculated using current algebra.
Similar calculations based on current algebra also can be
found in [9] (denoted by CA in Table I). The authors of [13]
chose to use the covariant quark model to tackle the three-
body transition amplitudes (rather than two-body transi-
tions) directly. This work was further developed in [14]. We
see from Table I that the predicted rates by most of the
models except current algebra are generally below experi-
ment. Moreover, the pole model, the covariant quark model
and its variant all predict a positive decay asymmetry α for
both Λþ

c → Σþπ0 and Σ0πþ, while it is measured to be
−0.45� 0.31� 0.06 for Σþπ0 by CLEO [15]. In contrast,
current algebra always leads to a negative decay asymmetry
for the aforementioned two modes: −0.49 in [9], −0.31 in
[12], −0.76 in [16], and −0.47 in [17]. BESIII will measure
decay asymmetry parameters for Λþ

c → Λπþ;Σ0πþ;Σþπ0,
and pK̄0 and the sensitivity for measuring αΣþπ0 is
estimated to be ð10 ∼ 77Þ% [18]. It will be of great interest
to see if the negative sign of αΣþπ0 measured by CLEO is
confirmed.
Writing the nonfactorizable S-wave amplitude as

A ¼ ACA þ ðA − ACAÞ; ð1:1Þ

the term ðA − ACAÞ can be regarded as an on-shell
correction to the current-algebra result. It turns out that
in the existing pole-model calculations [8–10], the on-shell
correction ðA − ACAÞ always has a sign opposite to that of
ACA. Moreover, its magnitude is sometimes even bigger
than jACAj for some of the decays such as Λþ

c →
Σ0πþ;Σþπ0. That is, the on-shell correction is large enough
to flip the sign of the parity-violating (PV) amplitudes. This
explains the smaller calculated rate in the pole model and
the sign difference of αΣþπ0;Σ0πþ between the pole model
and current algebra. If the negative sign of αΣþπ0

is confirmed, this means that the on-shell correction
ðA − ACAÞ has been overestimated in previous pole-model
calculations probably owing to our poor knowledge of the
negative-parity baryon resonances. The empiric fact that
current algebra seems to work reasonably well for Λþ

c →
B þ P is a bit surprising and annoying since the pseudo-
scalar meson produced in Λþ

c decays is generally far from
being soft. We plan to examine this important issue and the
pole model in a separate work.
In this work we focus on singly Cabibbo-suppressed

hadronic decays of the Λþ
c , specifically, Λþ

c → ΛKþ;
pπ0; pη; nπþ;Σ0Kþ;ΣþK0. Among them, evidence of
Λþ
c → pη was found by BESIII recently [19], while a

stringent upper limit on Λþ
c → pπ0 was also set. Besides

dynamical model calculations, two-body nonleptonic
decays of charmed baryons have been analyzed in terms

of SU(3)-irreducible-representation amplitudes [20,21].
However, the quark-diagram scheme (i.e., analyzing the
decays in terms of topological quark-diagram amplitudes)
has the advantage that it is more intuitive and easier for
implementing model calculations. A general formulation
of the quark-diagram scheme for charmed baryons is given
in [22] (see also [23]). Analysis of Cabibbo-suppressed
decays using SU(3) flavor symmetry was first carried out in
[24]. This approach became popular recently [25–28].
Nevertheless, we perform dynamical model calculations
based on current algebra.
This work is organized as follows. In Sec. II we set up

the formalism for analyzing factorizable and nonfactoriz-
able contributions to singly Cabibbo-suppressed decays of
the charmed baryon Λþ

c . Numerical model calculations and
discussions are presented in Sec. III. Section IV gives our
conclusion. Appendix A is devoted to the study of the
decay Λþ

c → pϕ to fix the relevant Wilson coefficient. The
MIT bag model evaluation of baryon matrix elements is
sketched in Appendix B. Axial-vector form factors and
baryon wave functions relevant to the present work are
summarized in Appendixes C and D, respectively.

II. FORMALISM

The effective weak Hamiltonian for singly Cabibbo-
suppressed decays at the scale μ ¼ mc reads [29]

Heff ¼
GFffiffiffi
2

p
X
q¼d;s

V�
uqVcqðc1Oq

1 þ c2O
q
2Þ þ H:c:; ð2:1Þ

with q ¼ d, s and the four-quark operators are given by

Oq
1 ¼ ðq̄cÞðūqÞ; Oq

2 ¼ ðq̄qÞðūcÞ; ð2:2Þ
with ðq̄1q2Þ≡ q̄1γμð1 − γ5Þq2. For the Wilson coefficients,
we use the lowest order values c1 ¼ 1.346 and c2 ¼
−0.636 obtained at the scale μ ¼ 1.25 GeV with Λð4Þ

MS
¼

325 MeV (see Tables VI and VII of [29]). Because in this
work we do not consider effects of CP violation, we
assume real CKMmatrix elements for simplicity thereafter.
The general amplitude for Bi → Bf þ P is given by

MðBi → Bf þ PÞ ¼ iūfðA − Bγ5Þui; ð2:3Þ

where A and B are the S- and P-wave amplitudes,
respectively. Note that if we write MðBi → Bf þ PÞ ¼
iūfðAþ Bγ5Þui, the P-wave amplitudes given in
Eqs. (2.10) and (2.13) below and the decay asymmetry
α in Eq. (3.2) are flipped in sign. The decay amplitude
generally consists of factorizable and nonfactorizable ones

MðBi → Bf þ PÞ ¼ MðBi → Bf þ PÞfac
þMðBi → Bf þ PÞnf : ð2:4Þ
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While the factorizable amplitude vanishes in the soft-meson
limit, the nonfactorizable one is not.

A. Factorizable contributions

We first consider the factorizable amplitudes for some of
the singly Cabibbo-suppressed modes,

MðΛþ
c →ΛKþÞfac¼GFffiffiffi

2
p VcsVusa1hKþjðūsÞj0ihΛjðs̄cÞjΛþ

c i;

MðΛþ
c →pπ0Þfac¼GFffiffiffi

2
p VcdVuda2hπ0jðd̄dÞj0ihpjðūcÞjΛþ

c i;

ð2:5Þ
where a1 ¼ c1 þ c2

Nc
for the external (color-allowed)

W-emission amplitude and a2 ¼ c2 þ c1
Nc

for internal
(color-suppressed) W emission in naive factorization. In
terms of the decay constants and form factors defined by3

hKþðqÞjðūsÞj0i ¼ −ifKqμ; hπ0ðqÞjðd̄dÞj0i ¼ iffiffiffi
2

p fπqμ;

ð2:6Þ
and

hΛðpΛÞjðs̄cÞjΛþ
c ðpΛc

Þi

¼ ūΛ

�
fΛcΛ
1 ðq2Þγμ − fΛcΛ

2 ðq2Þiσμν
qν

mΛc

þ fΛcΛ
3 ðq2Þ qμ

mΛc

−
�
gΛcΛ
1 ðq2Þγμ − gΛcΛ

2 ðq2Þiσμν
qν

mΛc

þ gΛcΛ
3 ðq2Þ qμ

mΛc

�
γ5

�
uΛc

; ð2:7Þ

with q ¼ pΛc
− pΛ, we obtain

MfacðΛþ
c → ΛKþÞ ¼ −i

GFffiffiffi
2

p VcsVusa1fK

× ½ðmΛc
−mΛÞfΛcΛ

1 ðm2
KÞ

þ ðmΛc
þmΛÞgΛcΛ

1 ðm2
KÞγ5�;

MfacðΛþ
c → pπ0Þ ¼ i

GF

2
VcdVuda2fπ

× ½ðmΛc
−mpÞfΛcp

1 ðm2
πÞ

þ ðmΛc
þmpÞgΛcp

1 ðm2
πÞγ5�; ð2:8Þ

where we have neglected contributions from the form
factors f3 and g3. We have learned from charmed meson
decays that naive factorization does not work for color-
suppressed decay modes. Empirically, it was realized in the

1980s that if the Fierz-transformed terms characterized
by 1=Nc are dropped, the discrepancy between theory
and experiment is greatly improved [30]. This leads to the
so-called large-Nc approach for describing hadronic D
decays [31]. As the discrepancy between theory and
experiment for charmed meson decays gets much improved
in the 1=Nc expansion method, it is natural to ask whether
this scenario also works in the baryon sector. This issue
can be settled by the experimental measurement of the
Cabibbo-suppressed mode Λþ

c → pϕ, which receives con-
tributions only from the factorizable diagrams [10]. Using
the recent BESIII measurement of Λþ

c → pϕ [32], we
obtain ja2j ¼ 0.45� 0.03, corresponding to Neff

c ≈ 7 (see
Appendix A below). Recall that a2 ¼ −0.19 for Nc ¼ 3.
Hence, color suppression in the factorizable amplitude is
not operative.
For Λþ

c → pηð0Þ decays, we need to consider the η − η0
mixing parametrized by

jηi ¼ cosϕjηqi − sinϕjηsi;
jη0i ¼ sinϕjηqi þ cosϕjηsi; ð2:9Þ

where the flavor states qq̄ ¼ ðuūþ dd̄Þ= ffiffiffi
2

p
and ss̄ are

labeled as ηq and ηs, respectively. The mixing angle ϕ is
determined to be 39.3°� 1.0° in the Feldmann-Kroll-Stech
mixing scheme [33], which is consistent with the recent
result ϕ ¼ 42°� 2.8° extracted from the CLEO data [34].
The factorizable amplitudes then read

AfacðΛþ
c →pηð0ÞÞ¼−

GFffiffiffi
2

p a2

�
VcsVusfsηð0Þ þ

1ffiffiffi
2

p VcdVudf
q
ηð0Þ

�

×ðmΛc
−mpÞfΛcp

1 ðm2
ηÞ;

BfacðΛþ
c →pηð0ÞÞ¼GFffiffiffi

2
p a2

�
VcsVusfsηð0Þ þ

1ffiffiffi
2

p VcdVudf
q
ηð0Þ

�

×ðmΛc
þmpÞgΛcp

1 ðm2
ηÞ; ð2:10Þ

where the decay constants are defined by

hηð0Þjq̄γμγ5qj0i ¼ i
1ffiffiffi
2

p fq
ηð0Þqμ; hηð0Þjs̄γμγ5sj0i ¼ ifs

ηð0Þqμ:

ð2:11Þ

We follow [33] to use

fqη ¼ 107MeV; fsη ¼ −112MeV;

fqη0 ¼ 89MeV; fsη0 ¼ 137MeV ð2:12Þ

for ϕ ¼ 39.3°.

B. Nonfactorizable contributions

Besides factorizable terms, there exist nonfactorizable
contributions arising from W exchange (see e.g. diagrams

3There is a sign ambiguity for the one-body matrix element.
We define Eq. (2.6) in such a way that a correct relative sign
between the factorizable and nonfactorizable amplitudes, e.g.
between Eqs. (2.8) and (2.13), is ensured.
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E1;2;3 in Fig. 1 below) or nonfactorizable internal W
emission (e.g. diagram C2 in Fig. 1). How do we tackle
the nonfactorizable contributions? One popular approach is
to consider the contributions from all possible intermediate
states. Among all possible pole contributions, including
resonances and continuum states, one usually focuses on the
most important poles such as the low-lying 1=2þ and 1=2−

states, known as pole approximation. More specifically, the
S-wave amplitude is dominated by the low-lying 1=2−

resonances and the P-wave one governed by the ground-
state poles. The nonfactorizable S- and P-wave amplitudes
for the process Bi → Bf þM are then given by [10]

Apole ¼ −
X

B�
nð1=2−Þ

�
gBfBn�Mbn�i
mi −mn�

þ bfn�gBn�BiM

mf −mn�

�
þ � � � ;

Bpole ¼ −
X
Bn

�
gBfBnMani
mi −mn

þ afngBnBiM

mf −mn

�
þ � � � ; ð2:13Þ

respectively. Ellipses in the above equation denote other
pole contributions which are negligible for our purposes,4

and the baryon-baryon matrix elements are defined by [10]

hBijHeff jBji ¼ ūiðaij − bijγ5Þuj;
hB�

i ð1=2−ÞjHPV
eff jBji ¼ ibi�jūiuj: ð2:14Þ

When M ¼ P, one can apply the Goldberger-Treiman
relation for the strong coupling gB0BP and its generalization
for gB�BP,

gB0BPa ¼
ffiffiffi
2

p

fPa
ðmB0 þmBÞgAB0B;

gB�BPa ¼
ffiffiffi
2

p

fPa
ðmB� −mBÞgAB�B; ð2:15Þ

to express Eq. (2.13) as

Apole ¼ −
ffiffiffi
2

p

fPa

X
B�
nð1=2−Þ

�
gABfBn�

=pf −mn�

=pi −mn�
bn�i

− bfn�
=pi −mn�

=pf −mn�
gABn�Bi

�
;

Bpole ¼ −
ffiffiffi
2

p

fPa

X
Bn

�
gABfBn

mf þmn

mi −mn
ani þ afn

mi þmn

mf −mn
gABnBi

�
;

ð2:16Þ

with the decay constant normalized to fP3 ¼ fπ ¼
132 MeV. In the soft pseudoscalar-meson limit, pf ¼ pi

and hence the S-wave amplitude can be recast to the form

Acom ¼ −
ffiffiffi
2

p

fPa

X
B�
nð1=2−Þ

½hBfjQa
5jB�

nihB�
njHPV

eff jBii

− hBfjHPV
eff jB�

nihB�
njQa

5jBii�

¼ −
ffiffiffi
2

p

fPa
hBfj½Qa

5; H
PV
eff �jBii; ð2:17Þ

with

Qa ¼
Z

d3xq̄γ0
λa

2
q; Qa

5 ¼
Z

d3xq̄γ0γ5
λa

2
q: ð2:18Þ

The above expression for Acom is precisely the well-
known soft-pion theorem in the current-algebra approach.
Using the relation ½Qa

5; H
PV
eff � ¼ ½Qa;HPC

eff �, we see that in the
soft-meson limit, the parity-violating amplitude is reduced
to a simple commutator term expressed in terms of parity-
conserving matrix elements. Therefore, the great advantage
of current algebra is that the evaluation of the parity-
violating S-wave amplitude does not require the information
of the negative-parity 1=2− poles.

FIG. 1. Quark diagrams contributing to Λþ
c → pη and pπ0.

4For example, contributions to the S-wave amplitude from the
parity-violating matrix elements bij defined in Eq. (2.14) are
much smaller than the parity-conserving ones aij, which have
been shown explicitly in [35,36].
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To apply the soft-meson theorem, we notice that

AcomðBi → Bfπ
0Þ ¼ −

ffiffiffi
2

p

fπ
hBfj½I3; HPC

eff �jBii;

AcomðBi → Bfπ
�Þ ¼ −

1

fπ
hBfj½I∓; HPC

eff �jBii;

AcomðBi → BfK�Þ ¼ −
1

fK
hBfj½V∓; HPC

eff �jBii;

AcomðBi → BfK0
ð−Þ

Þ ¼ −
1

fπ
hBfj½U∓; HPC

eff �jBii;

AcomðBi → Bfη8Þ ¼ −
ffiffiffi
3

2

r
1

fη8
hBfj½Y;HPC

eff �jBii; ð2:19Þ

where I�, U�, and V� are isospin, U-spin, and V-spin
ladder operators, respectively, with

Iþjdi ¼ jui; I−jui ¼ jdi;
Uþjsi ¼ jdi; U−jdi ¼ jsi;
Vþjsi ¼ jui; V−jui ¼ jsi: ð2:20Þ

The use of the hypercharge Y ¼ 2ffiffi
3

p Q8 has been made in the

last line of Eq. (2.19). In the SU(3) case, the hypercharge is
given by the well-known relation Y ¼ Bþ S. However, its
generalization to the SU(4) case depends on the generalized

definition of the hypercharge. For example, Y ¼ Bþ S − C
is derived in the textbook of [37], while the relation Y ¼
Bþ Sþ C also can be found in the literature. For our
purpose, we adopt the first one, so that YðpÞ ¼ 1 and
YðΛþ

c Þ ¼ 0. We come back to this point in Sec. III.
Applying Eq. (2.20) to the commutator terms for singly

Cabibbo-suppressed modes, Λþ
c → ΛKþ; pπ0; pη; nπþ;

Σ0Kþ;ΣþK0, we obtain

AcomðΛþ
c → ΛKþÞ ¼ 1

fK

� ffiffiffiffiffiffiffiffi
3=2

p
apΛc

þ aΛΞ0
c

�
;

AcomðΛþ
c → pπ0Þ ¼ −

1ffiffiffi
2

p
fπ

apΛc
;

AcomðΛþ
c → Σ0KþÞ ¼ 1ffiffiffi

2
p

fK

�
apΛc

þ
ffiffiffi
2

p
aΣ0Ξ0

c

�
;

AcomðΛþ
c → nπþÞ ¼ −

1

fπ
apΛc

;

AcomðΛþ
c → ΣþK0Þ ¼ 1

fK
ðapΛc

− aΣþΞþ
c
Þ;

AcomðΛþ
c → pη8Þ ¼ −

ffiffiffi
3

2

r
1

fη8
apΛc

; ð2:21Þ

for S-wave amplitudes with aBBc
≡ hBjHPC

eff jBci. For
P-wave amplitudes, we have

BcaðΛþ
c → pπ0Þ ¼ −

ffiffiffi
2

p

fπ

�
gAðπ

0Þ
pp

mp þmp

mΛc
−mp

apΛc
þ apΣþ

c

mΛc
þmΣc

mp −mΣc

gAðπ
0Þ

Σþ
c Λc

þ apΛc

mΛc
þmΛc

mp −mΛc

gAðπ
0Þ

ΛcΛc

�
;

BcaðΛþ
c → nπþÞ ¼ −

1

fπ

�
gAnp

mn þmp

mΛc
−mp

apΛc
þ anΣ0

c

mΛc
þmΣc

mn −mΣc

gAΣ0
cΛc

�
;

BcaðΛþ
c → pη8Þ ¼ −

ffiffiffi
2

p

fη8

�
gAðη8Þpp

mp þmp

mΛc
−mp

apΛc
þ apΣþ

c

mΛc
þmΣc

mp −mΣc

gAðη8ÞΣþ
c Λc

þ apΛc

mΛc
þmΛc

mp −mΛc

gAðη8ÞΛcΛc

�
;

BcaðΛþ
c → ΛKþÞ ¼ −

1

fK

�
gAΛp

mΛ þmp

mΛc
−mp

apΛc
þ aΛΞ0

c

mΛc
þmΞc

mΛ −mΞc

gAΞ0
cΛc

þ aΛΞ00
c

mΛc
þmΞ0

c

mΛ −mΞ0
c

gAΞ00
c Λc

�
;

BcaðΛþ
c → Σ0KþÞ ¼ −

1

fK

�
gAΣ0p

mΣ þmp

mΛc
−mp

apΛc
þ aΣ0Ξ0

c

mΛc
þmΞc

mΣ −mΞc

gAΞ0
cΛc

þ aΣ0Ξ00
c

mΛc
þmΞ0

c

mΣ −mΞ0
c

gAΞ00
c Λc

�
;

BcaðΛþ
c → ΣþK0Þ ¼ −

1

fK

�
gAΣþp

mΣ þmp

mΛc
−mp

apΛc
þ aΣþΞþ

c

mΛc
þmΞc

mΣ −mΞc

gAΞþ
c Λc

þ aΣþΞ0þ
c

mΛc
þmΞ0

c

mΣ −mΞ0
c

gAΞ0þ
c Λc

�
; ð2:22Þ

where the superscript π0 of gAðπ
0Þ

pp implies that the form
factor gApp is evaluated using the axial-vector current
corresponding to P3 ¼ π0, and likewise for the superscript
η8 of gAðη8Þpp . In Eqs. (2.19) and (2.22), η8 is the octet
component of the η and η0,

η ¼ cos θη8 − sin θη0; η0 ¼ sin θη8 þ cos θη0; ð2:23Þ

with θ ¼ −15.4° [33]. For the singlet component η0, the
soft pseudoscalar-meson theorem is not applicable. Hence,
we do not consider the S-wave amplitude of Λþ

c → pη0

within the current-algebra framework. As shown in
Appendix C, the axial-vector form factor vanishes for
antitriplet-antitriplet heavy baryon transitions, i.e.,
gAB3̄B3̄

¼ 0. Hence, in the P-wave amplitudes we can drop
those terms with gAΛcΛc

or gAΞcΛc
.

C. Baryon matrix elements

To evaluate the nonfactorizable amplitudes we need to
know the baryon matrix elements and the axial-vector form
factor at q2 ¼ 0, gAB0B. For the matrix elements, we write
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aBBc
≡ hBjHPC

eff jBci

¼ GF

2
ffiffiffi
2

p
X
q¼d;s

VcqVuqhBjcþOq
þ þ c−Oq

−jBci; ð2:24Þ

with Oq
� ¼ Oq

1 �Oq
2 ¼ ðq̄cÞðūqÞ � ðq̄qÞðūcÞ and c� ¼

c1 � c2. Since the four-quark operator Oþ is symmetric
in color indices whileO− is antisymmetric, the former does
not contribute to the baryon transition matrix element since
the baryon wave function is totally antisymmetric in color.
Hence,

aBBc
¼ GF

2
ffiffiffi
2

p
X
q¼d;s

VcqVuqðc1 − c2ÞhBjOq
−jBci: ð2:25Þ

We evaluate the matrix elements using the MIT bag model
(see Appendix B). The relevant PC matrix elements are

hpjOd
−jΣþ

c i ¼
2

ffiffiffi
2

p

3
ð−Xd

1 þ 9Xd
2Þð4πÞ;

hΣþjOd
−jΣþ

c i ¼ −
2

ffiffiffi
2

p

3
ð−Xd

1 þ 9Xd
2Þð4πÞ;

hpjOd
−jΛþ

c i ¼
4ffiffiffi
6

p ðXd
1 þ 3Xd

2Þð4πÞ;

hnjOd
−jΣ0

ci ¼ 5ðXd
1 þ Xd

2Þð4πÞ;
hΛjOd

−jΞ0
ci ¼ −4Xd

2ð4πÞ;
hΛjOs

−jΞ0
ci ¼ 2ð−Xs

1 þ Xs
2Þð4πÞ;

hΛjOd
−jΞ00

c i ¼ −4
ffiffiffi
3

p
Xd
2ð4πÞ;

hΛjOs
−jΞ00

c i ¼ −
2ffiffiffi
3

p ðXs
1 þ 3Xs

2Þð4πÞ;

hΣ0jOd
−jΞ0

ci ¼ −
4ffiffiffi
3

p Xd
1ð4πÞ;

hΣ0jOs
−jΞ0

ci ¼ −
2ffiffiffi
3

p ðXs
1 þ 3Xs

2Þð4πÞ;

hΣ0jOd
−jΞ00

c i ¼
4

3
Xd
1ð4πÞ;

hΣ0jOs
−jΞ00

c i ¼ −
2

3
ðXs

1 − 9Xs
2Þð4πÞ;

hΣþjOs
−jΞþ

c i ¼ 2
ffiffiffi
6

p
Xs
2ð4πÞ;

hΣþjOs
−jΞ0þ

c i ¼ 4

3
ffiffiffi
2

p ðXs
1 − 9Xs

2Þð4πÞ; ð2:26Þ

where Xq
1 and X

q
2 with q ¼ d, s are the bag integrals defined

in Eq. (B8). The numerical values of the bag integrals can
be found in Eq. (B10). It should be stressed that the relative
signs of matrix elements are fixed by the baryon wave
functions given in Appendix D.
For the q2 dependence of the form factors defined in

Eq. (2.7), we follow the conventional practice to assume a
pole dominance

fiðq2Þ ¼
fið0Þ

ð1 − q2=m2
VÞn

; giðq2Þ ¼
gið0Þ

ð1 − q2=m2
AÞn

;

ð2:27Þ

with n ¼ 2 or 1, where mVðmAÞ is the pole mass of the
vector (axial-vector) meson with the same quantum number
under consideration, for example, mV ¼ mD�

s
and mA ¼

mDs1ð2536Þ for Λc → Λ transition. Form factors fi and gi for
Λc → Λ and Λc → p transitions at zero recoil and at
maximal recoil q2 ¼ 0 have been calculated in the literature
[10,38–41]. Presumably, the SU(3) relation

fΛcp
i ðq2Þ ¼ −

ffiffiffi
3

2

r
fΛcΛ
i ðq2Þ; gΛcp

i ðq2Þ ¼ −
ffiffiffi
3

2

r
gΛcΛ
i ðq2Þ;

ð2:28Þ

should be respected at zero recoil q2 ¼ ðmi −mfÞ2. For our
purpose, we follow [38] to use

fΛcp
1 ð0Þ ¼ −0.470; gΛcp

1 ð0Þ ¼ −0.414 ð2:29Þ
forΛc − p transition. Form factors forΛc − Λ transition are
discussed in Sec. III below.
As for the axial-vector form factors gAB0B, they are

discussed in Appendix C.

III. RESULTS AND DISCUSSIONS

In terms of the decay amplitude of Bi → Bf þ P given in
Eq. (2.3), its decay rate reads

Γ¼ pc

8π

	ðmi þmfÞ2 −m2
P

m2
i

jAj2 þ ðmi −mfÞ2 −m2
P

m2
i

jBj2


;

¼ pc

8π

	ðmi þmfÞ2 −m2
P

m2
i

jAj2 þ 4p2
c

ðmi þmfÞ2 −m2
P
jBj2



;

ð3:1Þ

with pc being the c.m. three-momentum in the rest frame of
Bi, and the up-down asymmetry α is given by

α ¼ 2κReðA�BÞ
jAj2 þ κ2jBj2 ð3:2Þ

with κ ¼ pc=ðEf þmfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEf −mfÞ=ðEf þmfÞ

p
. If the

parent baryon Bi is unpolarized, the produced baryon Bf is
longitudinally polarized by an amount of α. The predicted
S- and P-wave amplitudes of singly Cabibbo-suppressed
decays Λþ

c → ΛKþ; pπ0; pη; nπþ;Σ0Kþ;ΣþK0 and their
branching fractions and decay asymmetries are shown in
Table II.
We first discuss the two modes Λþ

c → pπ0 and pη. In the
topological quark-diagram approach for charmed-baryon
decays [22], the relevant quark diagrams for Λþ

c → pη, pπ0

SINGLY CABIBBO-SUPPRESSED HADRONIC … PHYS. REV. D 97, 074028 (2018)

074028-7



are depicted in Fig. 1. There are two internal W-emission
diagrams C1 and C2 and three W-exchange ones E1, E2,
and E3. Symmetry properties of the baryon wave function
are taken into account in the analysis of [22]. Among these
diagrams, only C1 is factorizable. Since the CKM matrix
elements VcsVus and VcdVud are similar in magnitude but
opposite in sign and since the decay constants fsη and fqη
also have opposite signs [see Eq. (2.12)], it is obvious that
the factorizable amplitude of pη is significantly larger than
pπ0 in magnitude owing to the constructive interference in
the former (see Table II). Considering the factorizable
contributions alone, we already have BðΛþ

c → pηÞfac ¼
4.0 × 10−4, while BðΛþ

c → pπ0Þfac ¼ 0.93 × 10−4. We rely
on the current-algebra approach to evaluate nonfactorizable
W-exchange amplitudes, namely, the commutator terms for
the S-wave and the current-algebra pole terms for the
P wave.
To compute the Λþ

c → pη rate, we have followed [33]
to use the decay constant f8 ¼ 1.26fπ to get fη8 ¼
f8cosð−15.4°Þ. Our prediction BðΛþ

c →pηÞ¼1.28×10−3

is in excellent agreement with the BESIII measurement of
ð1.24� 0.29Þ × 10−3 [19].5 We see from Table II that the
pη (pπ0) mode has a large (small) rate because of a large
constructive (destructive) interference between the factor-
izable and nonfactorizable amplitudes for both S and
P waves.
Various other model predictions for the singly Cabibbo-

suppressed decays Λþ
c → B þ P are summarized in

Table III. Except for the dynamic calculation in [42] and
the consideration of factorizable contributions in [43], all
other predictions are based on the SU(3) symmetry argu-
ment. A global fit of the SU(3) amplitudes of Λþ

c → B þ P
to the data of branching fractions of Cabibbo-allowed
decays Λþ

c → pK̄0;Λπþ;Σþπ0;Σ0πþ;Σþη;Ξ0Kþ, and
singly-Cabibbo-suppressed decays Λþ

c → ΛKþ;Σ0Kþ; pη
in [28] yields BðΛþ

c → pπ0Þ ¼ ð5.7� 1.5Þ × 10−4,

which is too large compared to the experimental limit of
2.7 × 10−4 [19]. Assuming the sextet 6 dominance over 15
(i.e., c−O− ≫ cþOþ), the authors of [25] obtained the
relation6

MðΛþ
c → nπþÞ ¼

ffiffiffi
2

p
MðΛþ

c → pπ0Þ; ð3:3Þ
and the sum rule

BðΛþ
c → nπþÞ ¼ sin2θC½3BðΛþ

c → ΛπþÞ
þ BðΛþ

c → Σ0πþÞ − BðΛþ
c → pK̄0Þ�;

ð3:4Þ
derived from the relations [26]

ffiffiffi
6

p
MðΛþ

c → ΛπþÞ þ
ffiffiffi
2

p
MðΛþ

c → Σ0πþÞ
¼ 2MðΛþ

c → pK̄0Þ;ffiffiffi
6

p
MðΛþ

c → ΛπþÞ −
ffiffiffi
2

p
MðΛþ

c → Σ0πþÞ

¼ 2

sin θC
MðΛþ

c → nπþÞ: ð3:5Þ

The current PDG values for branching fractions [7] lead to
BðΛþ

c → nπþÞ ∼ 0.97 × 10−3 and hence BðΛþ
c → pπ0Þ∼

0.48 × 10−3. The predictions of both are consistent with the
SU(3) global fit of [28]. The discrepancy between the
SU(3) approach and experiment for Λþ

c → pπ0 is ascribed
to the SU(3) relations given by Eqs. (3.3) and (3.4). First of
all, the relation (3.3) does not hold in the general quark-
diagram approach owing to the presence of factorizable
contributions [22]. Since the factorizable amplitude of
Λþ
c → nπþ (Λþ

c → pπ0) is governed by the external (inter-
nal) W emission, we have (see also Table II)

MðΛþ
c → nπþÞfac

MðΛþ
c → pπ0Þfac ¼ −

ffiffiffi
2

p �
a1
a2

�
≈ 2.8

ffiffiffi
2

p
: ð3:6Þ

Hence, the factorizable amplitudes alone strongly violate
the SU(3) relation (3.3). If we just consider the operator
c−Od

− alone, it is easily seen that naive factorization leads to

TABLE II. The predicted S- and P-wave amplitudes of singly Cabibbo-suppressed decays Λþ
c → B þ P in units of GF10

−2 GeV2.
Branching fractions and the asymmetry parameter α are shown in the last three columns. Experimental results are taken from [7,19].

Channel Afac Acom Atot Bfac Bca Btot Btheo Bexpt αtheo

Λþ
c → pπ0 −0.41 0.81 0.40 0.87 −1.57 −0.70 0.75 × 10−4 <2.7 × 10−4 −0.95

Λþ
c → pη 0.96 1.11 2.08 −1.93 −1.24 −3.17 1.28 × 10−3 ð1.24� 0.29Þ10−3 −0.56

Λþ
c → nπþ −1.64 1.15 −0.50 3.45 −1.57 1.88 2.66 × 10−4 −0.90

Λþ
c → ΛKþ −1.66 0.09 −1.57 4.43 −0.54 3.70 1.06 × 10−3 ð6.1� 1.2Þ10−4 −0.96

Λþ
c → Σ0Kþ 0 −1.48 −1.48 0 2.30 2.30 7.18 × 10−4 ð5.2� 0.8Þ10−4 −0.73

Λþ
c → ΣþK0 0 −2.10 −2.10 0 3.25 3.25 1.44 × 10−3 −0.74

5If the hypercharge convention Y ¼ Bþ Sþ C is used, we
have YðΛþ

c Þ ¼ 2. In this case, Afac flips it sign and gets a large
destructive interference with the Acom term. The predicted rate
becomes very small, BðΛþ

c → pηÞ ¼ 1.18 × 10−4. 6It was also noticed in [24].
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a1 ¼ 2
3
c− and a2 ¼ − 2

3
c−, and hence MðΛþ

c → nπþÞfac ¼ffiffiffi
2

p
MðΛþ

c → pπ0Þfac. However, in reality a1 ∼ 1.26 ≫
ja2j ∼ 0.45. Since the matrix element aB0B is governed by
the operator O−, it is clear that the relation (3.3) should
be respected by Acom and Bca terms, but not by Afac;tot and
Bfac;tot (see Table II). By the same token, the first line of
Eq. (3.5) does not hold as the factorizable amplitudes
of Λþ

c → Λπþ and Λþ
c → pK̄0 are of different types, gov-

erned by a1 and a2, respectively. Hence, we conclude that the
rates of nπþ and pπ0 cannot be extracted from experiment
through the invalid SU(3) relations (3.4) and (3.3). In our
work, both nπþ and pπ0 are suppressed owing to the
destructive interference between factorizable and nonfactor-
izable terms. Experimentally, the Cabibbo-allowed decay
Λþ
c → nKSπ

þ involving a neutron was observed by BESIII
recently [44]. It is conceivable that the Cabibbo-suppressed
mode Λþ

c → nπþ can be reached in the near future.
Only factorizable contributions to Λþ

c → nπþ and pπ0

were considered in [43]. In the naive factorization with
Neff

c ¼ 3, the branching ratio of Λþ
c → pπ0 of order 10−6 is

smaller than that of Λþ
c → nπþ by a factor of order 50. It

was argued in [43] that final-state rescattering effects
through Λþ

c → fnπþ; nρþ;ΛKþ;ΛKþ�g → pπ0 will en-
hance the former so that BðΛþ

c → pπ0Þ≳ BðΛþ
c → nπþÞ

(see Tables 2 and 3 of [43]). We make two remarks: (i) In
order to enhance the rate of pπ0 to the order of 10−4, a
common wisdom is that the branching fraction of
the intermediate states, e.g. Λþ

c → nρþ;ΛKþ, should
be at least 2 orders of magnitude larger than 10−4 [45].
(ii) We find that even in the absence of final-state
rescattering, the nonfactorizable contributions denoted by
Acom and Bca in Table II, which were neglected in [43],
yield BðΛþ

c → pπ0Þnf ¼ 3.3 × 10−4. Therefore, it is man-
datory to take into account the nonfactorizable contribu-
tions from internal W emission (denoted by C2 in Fig. 1)
and W exchange (E1, E2, E3) in the study.
As for Λþ

c → ΣK decays, we see from Eqs. (2.25) and
(2.26) that aΞþ

c Σþ ≅ −
ffiffiffi
2

p
aΞ0

cΣ0 due to the smallness of the

bag integrals Xd;s
1 compared to Xs

2 [see Eq. (B10)]. It
follows from Eq. (2.21) that AðΛþ

c →ΣþK0Þ≅ ffiffiffi
2

p
AðΛþ

c →
Σ0KþÞ. Moreover, the relations gAΣþp ¼ −

ffiffiffi
2

p
gAΣ0p and

gAΞ00
c Λc

¼ −gAΞ0þ
c Λc

(cf., Appendix C) and the identity aΣ0Ξ00
c
¼

aΣþΞ0þ
c
for matrix elements also lead to BðΛþ

c → ΣþK0Þ ¼ffiffiffi
2

p
BðΛþ

c → Σ0KþÞ; see Eq. (2.22). It is thus expected
that

ΓðΛþ
c → ΣþK0Þ ≅ 2ΓðΛþ

c → Σ0KþÞ; ð3:7Þ

and identical decay asymmetries in both channels.
We did not consider the decay mode Λþ

c → pη0 as the
evaluation of its nonfactorizable amplitude is beyond the
current-algebra framework. Nevertheless, We find from
Eq. (2.10) that BðΛþ

c → pη0Þfac ¼ 0.9 × 10−4 due to the
factorizable effect alone. Notice that it has been claimed in
[26] that its branching fraction is as large as Λþ

c → pη,
namely, BðΛþ

c → pη0Þ ¼ ð1.22þ1.43
−0.87Þ × 10−3.

For the decay Λþ
c → ΛKþ, if we follow [38] to use

the form factors fΛcΛ
1 ð0Þ ¼ 0.511 and gΛcΛ

1 ð0Þ ¼ 0.466,
we obtain BðΛþ

c → ΛKþÞ ∼ 1.9 × 10−3, which is too
large by a factor of 3 compared to experiment. The same
is also true for the Cabibbo-allowed decay Λþ

c → Λπþ.
Using the same set of Λc − Λ transition form factors, we
find BðΛþ

c → ΛπþÞ ¼ 2.4%, while it is ð1.30� 0.07Þ%
experimentally [7]. Nevertheless, the predicted ratio
R≡ ΓðΛKþÞ=ΓðΛπþÞ ¼ 0.078, which is close to
ðsin2 θCfKÞ2, is smaller than the BABAR measurement of
R ¼ 0.044� 0.005 [46], but consistent with Belle’s value
of 0.074� 0.016 [47]. An average of R ¼ 0.047� 0.009 is
quoted by PDG [7]. In Table II we use the form factors
fΛcΛ
1 ð0Þ ¼ 0.406 and gΛcΛ

1 ð0Þ ¼ 0.370 fitted to Λþ
c → Λπþ

to predict Λþ
c → ΛKþ.

Finally, other model calculations for the up-down
decay asymmetry are collected in Table IV for comparison.
The predicted decay asymmetries under current algebra for
the singly Cabibbo-suppressed modes are always negative

TABLE III. Comparison of various theoretical predictions for the branching fractions (in units of 10−3) of singly Cabibbo-suppressed
decays of Λþ

c .

Sharma et al. [24] Uppal et al. [42] Chen et al. [43] Lu et al. [25] Geng et al. [28] This work Experiment [7,19]

Λþ
c → pπ0 0.2 0.1–0.2 0.11–0.36 0.48 0.57� 0.15 0.08 <0.27

Λþ
c → pη 0.2a(1.7)b 0.3 1.24� 0.41 1.28 1.24� 0.29

Λþ
c → pη0 0.4–0.6 0.04–0.2 1.22þ1.43

−0.87

Λþ
c → nπþ 0.4 0.8–0.9 0.10–0.21 0.97 1.13� 0.29 0.27

Λþ
c → ΛKþ 1.4 1.2 0.18–0.39 0.46� 0.09 1.06 0.61� 0.12

Λþ
c → Σ0Kþ 0.4–0.6 0.2–0.8 0.40� 0.08 0.72 0.52� 0.08

Λþ
c → ΣþK0 0.9–1.2 0.4–0.8 0.80� 0.16 1.44
aThe P-wave amplitude of Λþ

c → Ξ0Kþ is assumed to be positive.
bThe P-wave amplitude of Λþ

c → Ξ0Kþ is assumed to be negative.
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and range from −0.56 to −0.96. The SU(3) approach
usually cannot give definite predictions without further
assumptions.

IV. CONCLUSIONS

We have studied singly Cabibbo-suppressed two-body
hadronic decays of the charmed baryon Λþ

c . We use the
measured rate of Λþ

c → pϕ to fix the effective Wilson
coefficient a2 for naive color-suppressed modes and the
effective number of color Neff

c . We rely on the current-
algebra method to evaluate W-exchange and nonfactoriz-
able internal W-emission amplitudes, that is, the commu-
tator terms for the S-wave and the pole terms for the P
wave. Our prediction for Λþ

c → pη is in excellent agree-
ment with the BESIII measurement. The pη (pπ0) mode
has a large (small) rate because of a large constructive
(destructive) interference between the factorizable and
nonfactorizable amplitudes for both S and P waves.
Some of the SU(3) relations such as MðΛþ

c → nπþÞ ¼ffiffiffi
2

p
MðΛþ

c → pπ0Þ and Eq. (3.4) derived under the
assumption of sextet dominance are not valid for decays
with factorizable contributions. Sextet dominance is justi-
fied for nonfactorizable terms as the baryon matrix ele-
ments aB0B are governed by the four-quark operatorO−, but
not for factorizable amplitudes as both O− and Oþ
operators contribute. Our calculation indicates that the
branching fraction of Λþ

c → nπþ is about 3.5 times larger
than that of Λþ

c → pπ0. Decay asymmetries are found to be
negative for all singly Cabibbo-suppressed modes and
range from −0.56 to −0.96.
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APPENDIX A: THE DECAY Λ+
c → pϕ

The decay Λþ
c → pϕ proceeds only through the internal

W emission governed by

MðΛþ
c → pϕÞ ¼ GFffiffiffi

2
p VcsVusa2hϕjðs̄sÞj0ihpjðūcÞjΛþ

c i:

ðA1Þ
Given the general amplitude

ūfðpfÞε�μ½A1γμγ5 þ A2pfμγ5 þ B1γμ þ B2pfμ�uiðpiÞ;
ðA2Þ

for the decay Bið1=2þÞ → Bfð1=2þÞ þ V, we find

A1 ¼ −a2hfϕmϕ½gΛcp
1 ðm2

ϕÞ − gΛcp
2 ðm2

ϕÞðmΛc
−mpÞ=mΛc

�;
A2 ¼ 2a2hfϕmϕg

Λcp
2 ðm2

ϕÞ=mΛc
;

B1 ¼ a2hfϕmϕ½fΛcp
1 ðm2

ϕÞ þ fΛcp
2 ðm2

ϕÞðmΛc
þmpÞ=mΛc

�;
B2 ¼ 2a2hfϕmϕf

Λcp
2 ðm2

ϕÞ=mΛc
; ðA3Þ

with h ¼ GFVcsVus=
ffiffiffi
2

p
, where use of the decay constant

fϕ defined by hϕjðs̄sÞj0i ¼ fϕmϕε
�
μ and form factors

defined in analog to Eq. (2.7) has been made. The partial
decay rate and decay asymmetry then read7

ΓðΛþ
c →pϕÞ¼pc

4π

Epþmp

mΛc

�
2ðjSj2þjP2j2Þ

þE2
ϕ

m2
ϕ

ðjSþDj2þjP1j2Þ
�
;

αðΛþ
c →pϕÞ¼ 4m2

ϕReðS�P2Þþ2E2
ϕReðSþDÞ�P1

2m2
ϕðjSj2þjP2j2ÞþE2

ϕðjSþDj2þjP1j2Þ
;

ðA4Þ
with the S, P, and D waves given by [48,50]

S ¼ −A1;

P1 ¼ −
pc

Eϕ

�
mΛc

þmp

Ep þmp
B1 þmΛc

B2

�
;

P2 ¼
pc

Ep þmp
B1;

D ¼ −
p2
c

EϕðEp þmpÞ
ðA1 −mΛc

A2Þ: ðA5Þ

TABLE IV. The same as Table III except for decay asymme-
tries. The P-wave amplitude of Λþ

c → Ξ0Kþ is assumed to be
positive (negative) in case a (b) [24], while jψð0Þj2 scale violation
is (not) taken into account in case c (d) [42].

Sharma et al. [24] Uppal et al. [42] This work

Λþ
c → pπ0 0.05a(0.05)b 0.82c(0.85)d −0.95

Λþ
c → pη −0.74ð−0.69Þ −1.00ð−0.79Þ −0.56

Λþ
c → pη0 −0.97ð−0.99Þ 0.87(0.87)

Λþ
c → nπþ 0.05(0.05) −0.13ð0.67Þ −0.90

Λþ
c → ΛKþ −0.54ð0.97Þ −0.99ð−0.99Þ −0.96

Λþ
c → Σ0Kþ 0.68ð−0.98Þ −0.80ð−0.80Þ −0.73

Λþ
c → ΣþK0 0.68ð−0.98Þ −0.80ð−0.80Þ −0.74

7The formula for Γð1=2þ → 1=2þ þ VÞ given in Eq. (A4) in
terms of partial-wave amplitudes was originally derived in [48]
and has been widely used in the literature. However, the original
expression for Γ is too small by a factor of 2. We thank Hong-Wei
Ke for pointing this out to us. Later, we learned that the correct
expression of Γ was also obtained by Wang et al. in the spring of
2017 [see Eq. (57) of [49]]. It should be stressed that both Γ and α
can be expressed in terms of the helicity amplitudes defined by
hλf ;λV ;λi ¼ hBfðλfÞVðλVÞjHW jBiðλiÞi with λi ¼ λf − λV [13],
which yield the same results as Eq. (A4). Hence, the partial-
wave method and the helicity-amplitude method are equivalent.
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Using the data BðΛþ
c → pϕÞ ¼ ð1.04� 0.21Þ × 10−3 [19],

we obtain ja2j ¼ 0.45� 0.03 and hence Neff
c ≈ 7 for c1 ¼

1.346 and c2 ¼ −0.636 and fϕ ¼ 215 MeV. This leads
to a1 ¼ 1.26� 0.01.

APPENDIX B: BARYON MATRIX ELEMENTS
IN THE BAG MODEL

For the evaluation of the baryon matrix element of O in
the MIT bag model [51], see [10]. Consider the four-quark
operatorO ¼ ðq̄1q3Þðq̄2q4Þ. This operator can be written as
O ¼ 6ðq̄1q3Þ1ðq̄2q4Þ2, where the superscript i indicates
that the quark operator acts only on the ith quark in the
baryon wave function. In the bag model the parity-
conserving matrix elements have the expression [10]Z

r2drhq1q2jðq̄1q3Þ1ðq̄2q4Þ2jq3q4i

¼ ð−X1 þ X2Þ −
1

3
ðX1 þ 3X2Þσ1 · σ2;Z

r2drhq1q2jðq̄1q4Þ1ðq̄2q3Þ2jq3q4i

¼ ðX1 þ X2Þ −
1

3
ð−X1 þ 3X2Þσ1 · σ2; ðB1Þ

with

X1 ¼
Z

R

0

r2drðu1v2 − v1u2Þðu3v4 − v3u4Þ;

X2 ¼
Z

R

0

r2drðu1u2 þ v1v2Þðu3u4 þ v3v4Þ; ðB2Þ

where R is the radius of the bag and uðrÞ, vðrÞ are the large
and small components of the quark wave function, respec-
tively, defined by

ψ ¼
�

iuðrÞχ
vðrÞσ · r̂χ

�
: ðB3Þ

As an example for illustration, we consider the matrix
element apΛc

given by

apΛc
≡ hpjHPC

eff jΛþ
c i ¼

GF

2
ffiffiffi
2

p VcdVudc−hpjOd
−jΛþ

c i: ðB4Þ

Applying the relation

σ1 · σ2 ¼
1

2
ðσ1þσ2− þ σ1−σ2þÞ þ σ1zσ2z; ðB5Þ

and the wave functions (see Appendix D)

Λþ
c ¼ −

1ffiffiffiffiffi
12

p ½u↑d↓c↑ − u↓d↑c↑ − d↑u↓c↑ þ d↓u↑c↑

þ ð13Þ þ ð23Þ�;

p ¼ 1ffiffiffiffiffi
18

p ½2u↑u↑d↓ − u↑u↓d↑ − u↓u↑d↑ þ ð13Þ þ ð23Þ�;

ðB6Þ

with obvious notation for permutation of quarks, it is
straightforward to show that

hpjðd̄cÞðūdÞjΛþ
c i ¼ 6ð4πÞhpjb†1db1cb†2ub2d

×

�
−Xd

1 þ Xd
2 −

1

3
ðXd

1 þ 3Xd
2Þσ1 · σ2

�

× jΛþ
c i

¼
ffiffiffi
2

3

r
ðXd

1 þ 3Xd
2Þð4πÞ;

hpjðd̄dÞðūcÞjΛþ
c i ¼ 6ð4πÞhpjb†1db1db†2ub2c

×

�
Xd
1 þ Xd

2 −
1

3
ð−Xd

1 þ 3Xd
2Þσ1 · σ2

�

× jΛþ
c i

¼ −
ffiffiffi
2

3

r
ðXd

1 þ 3Xd
2Þð4πÞ; ðB7Þ

with

Xq
1 ¼

Z
R

0

r2drðuqvu − vquuÞðuqvc − vqucÞ;

Xq
2 ¼

Z
R

0

r2drðuquu þ vqvuÞðuquc þ vqvcÞ ðB8Þ

for q ¼ d, s. Hence,

hpjOd
−jΛþ

c i ¼
4ffiffiffi
6

p ðXd
1 þ 3Xd

2Þð4πÞ: ðB9Þ

Numerically, we obtain

Xd
1 ¼ 0; Xd

2 ¼ 1.60 × 10−4;

Xs
1 ¼ 2.60 × 10−6; Xs

2 ¼ 1.96 × 10−4; ðB10Þ

where we have employed the following bag parameters:

mu ¼ md ¼ 0; ms ¼ 0.279 GeV;

mc ¼ 1.551 GeV; R ¼ 5 GeV−1: ðB11Þ

APPENDIX C: AXIAL-VECTOR FORM
FACTOR gAB0B

To evaluate the S- and P-wave amplitudes in the pole
model, one needs to know the strong couplings gB�BP and
gB0BP in Eq. (2.13). In the approach of current algebra, the
B0BP coupling is related to gAB0B, the axial-vector form
factor at q2 ¼ 0 through the Goldberger-Treiman relation
given in Eq. (2.15). In the bag model the axial form factor
in the static limit has the expression [9]

gAB0B ¼ hB0↑jb†q1bq2σzjB↑i
Z

d3r

�
uq1uq2 −

1

3
vq1vq2

�
:

ðC1Þ
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Here we show those results relevant to the present work,

gAnp ¼
ffiffiffi
2

p
gAðπ

0Þ
pp ¼ 5

ffiffiffi
2

p
gAðη8Þpp ¼ 5

3
ð4πZ1Þ;

gAΛp ¼ −
ffiffiffi
6

p

2
ð4πZ2Þ; gAΣþp ¼

ffiffiffi
2

p
gAΣ0p ¼ 1

3
ð4πZ2Þ;

ðC2Þ
for octet baryons,

gAðπ
0Þ

Σþ
c Λc

¼ 1ffiffiffi
2

p gAΣ0
cΛc

¼ 1ffiffiffi
3

p ð4πZ1Þ;

gAðη8ÞΣþ
c Λc

¼ 0; gAΞ00
c Λc

¼ −gAΞ0þ
c Λc

¼ 1ffiffiffi
3

p ð4πZ2Þ; ðC3Þ

and

gAB3̄B3̄
¼ 0 ðC4Þ

for charmed baryons, where

Z1 ¼
Z

r2dr

�
u2u −

1

3
v2u

�
;

Z2 ¼
Z

r2dr

�
uuus −

1

3
vuvs

�
; ðC5Þ

and B3̄ is an antitriplet heavy baryon, Λþ
c ;Ξ0

c, and Ξþ
c . To

compute the form factors gAðπ
0Þ

pp and gAðπ
0Þ

Σþ
c Λc

, we notice the

axial-vector current for P3 ¼ π0 is 1
2
ðūγμγ5u − d̄γμγ5dÞ,

and likewise for the form factors gAðη8Þpp and gAðη8ÞΣþ
c Λc

. Although

the quark model leads to gAB3̄B3̄
¼ 0, it is indeed a model-

independent result in the heavy-quark limit. In the limit of
mQ → ∞, the diquark of the antitriplet baryon B3̄ is a scalar
diquark with JP ¼ 0þ. Therefore, the diquark transition is
0þ → 0þ þ 0− for B3̄ → B3̄ þ P and it does not conserve
parity.
Numerically, we obtain 4πZ1 ¼ 0.65 and 4πZ2 ¼ 0.71.

Using the Goldberger-Treiman relation and the results of
(C2), we find that the strong couplings for octet baryons are
consistent with those in [52].

APPENDIX D: BARYON WAVE FUNCTIONS

In the present work, we use the following wave functions
for octet and charmed baryons with Sz ¼ 1=2:

p ¼ 1ffiffiffi
3

p ½uudχS þ ð13Þ þ ð23Þ�; n ¼ −
1ffiffiffi
3

p ½dduχS þ ð13Þ þ ð23Þ�;

Σþ ¼ −
1ffiffiffi
3

p ½uusχS þ ð13Þ þ ð23Þ�; Σ0 ¼ 1ffiffiffi
6

p ½ðudsþ dusÞχS þ ð13Þ þ ð23Þ�;

Ξ0 ¼ 1ffiffiffi
3

p ½ssuχS þ ð13Þ þ ð23Þ�; Ξ− ¼ 1ffiffiffi
3

p ½ssdχS þ ð13Þ þ ð23Þ�;

Λ ¼ −
1ffiffiffi
6

p ½ðuds − dusÞχA þ ð13Þ þ ð23Þ�; Λþ
c ¼ −

1ffiffiffi
6

p ½ðudc − ducÞχA þ ð13Þ þ ð23Þ�;

Σþ
c ¼ 1ffiffiffi

6
p ½ðudcþ ducÞχS þ ð13Þ þ ð23Þ�; Σ0

c ¼
1ffiffiffi
3

p ½ddcχS þ ð13Þ þ ð23Þ�;

Ξþ
c ¼ 1ffiffiffi

6
p ½ðusc − sucÞχA þ ð13Þ þ ð23Þ�; Ξ0

c ¼
1ffiffiffi
6

p ½ðdsc − sdcÞχA þ ð13Þ þ ð23Þ�;

Ξ0þ
c ¼ 1ffiffiffi

6
p ½ðuscþ sucÞχS þ ð13Þ þ ð23Þ�; Ξ00

c ¼ 1ffiffiffi
6

p ½ðdscþ sdcÞχS þ ð13Þ þ ð23Þ�; ðD1Þ

where abcχS ¼ ð2a↑b↑c↓ − a↑b↓c↑ − a↓b↑c↑Þ= ffiffiffi
6

p
and abcχA ¼ ða↑b↓c↑ − a↓b↑c↑Þ= ffiffiffi

2
p
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