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We make a detailed study on the J=ψ meson longitudinal leading-twist distribution amplitude ϕk
2;J=ψ by

using the QCD sum rules within the background field theory. By keeping all the nonperturbative

condensates up to dimension 6, we obtain accurate QCD sum rules for the moments hξkn;J=ψ i. The first three
ones are hξk2;J=ψ i ¼ 0.083ð12Þ, hξk4;J=ψ i ¼ 0.015ð5Þ, and hξk6;J=ψ i ¼ 0.003ð2Þ, respectively. Those values

indicate a single peaked behavior for ϕk
2;J=ψ. As an application, we adopt the QCD light-cone sum rules to

calculate the Bc meson semileptonic decay Bþ
c → J=ψlþνl. We obtain ΓðBþ

c → J=ψlþνlÞ ¼
ð89.67þ24.76

−19.06 Þ × 10−15 GeV and ℜðJ=ψlþνlÞ ¼ 0.217þ0.069
−0.057 , which agree with both the extrapolated

next-to-leading order pQCD prediction and the new CDF measurement within errors.

DOI: 10.1103/PhysRevD.97.074025

I. INTRODUCTION

The Bþ
c meson has been discovered by the Collider

Detector at Fermilab (CDF) Collaboration via the semi-
leptonic decay channel Bþ

c → J=ψlþνl [1]. At the same
time, they also measured the ratio of the production cross
sections times branching fractions of the Bþ

c meson in the
decay mode Bþ

c → J=ψlþνl to the Bþ meson in the decay
mode Bþ → J=ψKþ, i.e.,

ℜðJ=ψlþνlÞ ¼
σðBþ

c ÞBðBþ
c → J=ψlþνlÞ

σðBþÞBðBþ → J=ψKþÞ ð1Þ

¼ 0.132þ0.041
−0.037ðstÞ � 0.031ðsyÞþ0.032

−0.020ðlfÞ; ð2Þ

where the symbols “st”, “sy,” and “lf” stand for the
statistical error, the systematic error, and the error of the
Bc meson lifetime, respectively. In year 2016, the CDF
Collaboration updates the value of ℜðJ=ψlþνlÞ by using

the CDF Run II data with an integrated luminosity 8.7 fb−1,
i.e., ℜðJ=ψlþνlÞ ¼ 0.211� 0.012ðstÞþ0.021

−0.020ðsyÞ [2].
In the literature, the decay width for the semileptonic

decay Bþ
c → J=ψlþνl has been calculated under various

frameworks, such as the constituent quark model (CQM)
[3,4], the Bethe-Salpeter (BS) equation [5], the relativistic
potential model (PM) [6], the perturbative QCD (pQCD)
theory [7], the QCD sum rules (QCD SR) [8,9], and the
QCD light-cone sum rules (QCD LCSR) [10,11]. In those
predictions, the decay width is always small, leading to a
large discrepancy between the experiment and theoretical
predictions on ℜðJ=ψlþνlÞ.
Many effects have been tried to solve this discrepancy. In

2013, a next-to-leading order (NLO) pQCD calculation
gives ΓðBþ

c → J=ψlþνlÞ ¼ ð97.30þ36.22
−20.33Þ × 10−15 GeV

[12], whose accuracy has lately been improved by applying
the principle of maximum conformality (PMC) [13–16]
scale-setting approach such that there is no renormalization
scale independence in the decay width [17], which gives
ΓðBþ

c → J=ψlþνlÞ ¼ ð106.31þ18.59
−14.01Þ × 10−15 GeV. Those

pQCD predictions lead to a larger ratio ℜðJ=ψlþνlÞ in
agreement with the CDF Run II data. However, the pQCD
calculation for the Bc → J=ψ transition form factor (TFF)
is only reliable in large recoil region q2 ∼ 0, which should
be extended to the whole q2 region via a model-dependent
extrapolation. This introduces extra model dependence into
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pQCD predictions; thus predictions from other approaches
are helpful for a cross-check.
On the other hand, the TFFs under the QCD SR and

LCSR approaches are reliable for both the low and
intermediate q2 region. To compare with the pQCD
predictions, more reliable predictions could be expected
by applying those two approaches. However, previous
QCD SR or QCD LCSR predictions on those TFFs are
quite small [8–11], leading to a smaller ℜðJ=ψlþνlÞ well
below the measured value. It is thus helpful to know
whether the QCD SR or QCD LCSR prediction can be
improved by carefully reconsidering its key components
such as the TFFs and the light-cone distribution amplitudes
(LCDAs) of the J=ψ meson.
The QCD LCSR is based on the operator product

expansion near the light cone x2 ⇝ 0, which parametrizes
all the nonperturbative dynamics into the LCDAs. Those
LCDAs are nonperturbative but universal, which is a key
component to exclusive processes. Up to twist-4 accuracy,
there are totally fifteen LCDAs for the vector meson. For
the light vector meson such ρ or K�, it is helpful to
distribute the LCDA contributions in the B → light vector
meson TFFs by using the parameter δρ ∼mρ=mB ∼ 0.16 or
δK� ∼m�

K=mB ∼ 0.17 [18–20]. We can define a similar
parameter δJ=ψ for the J=ψ meson, whose value is much
larger than that of the light vector, i.e., δJ=ψ ∼ 0.50 > δρ or
δK� . So we do not use the parameter δJ=ψ to classify the J=ψ
meson LCDAs.
As a tricky point of the LCSR approach, one can

highlight the wanted LCDA contributions and suppress
the unwanted LCDA contributions to the LCSR by choos-
ing a proper chiral correlator [21–23]. For example, by
using a left-handed chiral correlator, we have calculated the
LCSRs for the B → ρ TFFs in Refs. [24,25]. By further
replacing the ρ-meson LCDAs with those of the J=ψ
meson, we obtain the LCSRs for the Bc → J=ψ TFFs. It
is found that the resultant LCSRs for the Bc → J=ψ TFFs
highlight the contributions from the chiral-even J=ψ meson

LCDAs ϕk
2;J=ψ , ϕ

⊥
3;J=ψ , ψ

⊥
3;J=ψ , Φ

k
3;J=ψ , Φ̃

k
3;J=ψ , ϕ

k
4;J=ψ , and

ψk
4;J=ψ , respectively, while, the chiral-odd LCDAs ϕ⊥

2;J=ψ ,

ϕk
3;ρ;ψ

k
3;J=ψ ;Φ

⊥
3;J=ψ , ϕ

⊥
4;J=ψ ;ψ

⊥
4;J=ψ ;Ψ

⊥
4;J=ψ , and Ψ̃⊥

4;J=ψ give
zero contributions to the TFFs. Among the nonzero chiral-

even LCDAs, the LCDAs ϕk
2;J=ψ , ϕ

⊥
3;J=ψ , and ψ

⊥
3;J=ψ provide

dominant contributions to the TFFs, and the contributions

from ϕk
4;J=ψ , ψ

k
4;J=ψ ,Φ

k
3;J=ψ , and Φ̃

k
3;J=ψ are negligible which

are similar to the case of the ρ meson. Furthermore, the
LCDAs ψ⊥

3;J=ψ and ϕ⊥
3;J=ψ can be related to the leading-twist

LCDA ϕk
2;J=ψ under the Wandzura-Wilczek approximation

[26]. Thus, by using a left-handed chiral correlator, our

main task is to determine a precise ϕk
2;J=ψ .

Several models for the twist-2 LCDA ϕk
2;J=ψ have been

suggested in the literature. For example, Bondar and

Chernyak [27], Bodwin et al. [28], and Sun et al. [29]
suggested three different models to resolve the disagree-
ment between the experimental observations and the
theoretical predictions on the production cross section of
the process eþe− → J=ψ þ ηc.
Generally, the twist-2 LCDA ϕk

2;J=ψ at the scale μ can be
expanded in a Gegenbauer polynomial as [30]

ϕk
2;J=ψðx; μÞ ¼ 6xx̄

�
1þ

X∞
n¼1

akn;J=ψðμÞC3=2
n ðξÞ

�
; ð3Þ

where akn;J=ψðμÞ stands for the nth-order Gegenbauer
moment. x̄ ¼ 1 − x and ξ ¼ x − x̄. When the scale μ is

large enough, the twist-2 LCDA ϕk
2;J=ψðx; μÞ tends to the

well-known asymptotic form 6xx̄ [31].
In the paper, we study the properties of ϕk

2;J=ψ via
studying its moments by using the Shifman-Vainshtein-
Zakharov (SVZ) sum rules [32] under the background field
theory (BFT). The SVZ sum rules relate the hadronic
parameters, such as the meson masses and strong coupling
constants, the baryon magnetic moments, etc., to a few
nonperturbative gluon and quark condensates. Those con-
densates are universal, and once we have determined their
values by comparing with the known observables, they can
be applied to all observables involving them. The SVZ
sum rules approach has been applied, with remarkable
success, for a large variety of properties of the low-lying
hadronic states. The BFT provides a self-consistent
description on those vacuum condensates and provides a
systematic way to achieve the goal of the SVZ sum rules
[33,34]. The SVZ sum rules for the J=ψ meson LCDAs are
much more involved than the light vector LCDAs, since we
have to take the charm-quark mass effect into consider-
ation. Fortunately, Ref. [35] has given the quark propagator

and vertex operator ðz ·D↔Þn with full mass dependence
within the framework of BFT. Thus one can derive precise

SVZ sum rules for the moments of ϕk
2;J=ψ with full mass

dependence, as is the purpose of the paper.
The remaining parts of the paper are organized as

follows. In Sec. II, we present the SVZ sum rules for
the moments of ϕk

2;J=ψ . Properties of the resultant ϕk
2;J=ψ ,

together with its application for the semileptonic decay
Bþ
c → J=ψlþνl, are discussed in Sec. III. The final section

is reserved for a summary.

II. CALCULATION TECHNOLOGY

A. SVZ sum rules for the moments of ϕk
2;J=ψ

The QCD Lagrangian within the framework of BFT can
be obtained from the conventional QCD Lagrangian by
replacing the gluon field AA

μ ðxÞ and quark field ψðxÞ to the
following ones:
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AA
μ ðxÞ → AA

μ ðxÞ þ ϕA
μ ðxÞ; ð4Þ

ψðxÞ → ψðxÞ þ ηðxÞ: ð5Þ

Here AA
μ ðxÞ with A ¼ ð1;…; 8Þ and ψðxÞ are gluon and

quark background fields. ϕA
μ ðxÞ and ηðxÞ are gluon and

quark quantum fields, i.e., the quantum fluctuation on the
background fields. The QCD Lagrangian within the BFT is
given by Ref. [34]. The background fields satisfy the
equations of motion

ði=D −mÞψðxÞ ¼ 0 ð6Þ

and

D̃AB
μ GBνμðxÞ ¼ gsψ̄ðxÞγνTAψðxÞ; ð7Þ

where Dμ ¼ ∂μ − igsTAAA
μ ðxÞ and D̃AB

μ ¼ δAB − gsfABC ×
AC

μ ðxÞ are fundamental and adjoint representations of the
gauge covariant derivative, respectively.
The physical observables should be gauge independent;

one may take different gauges for the quantum fluctuations
and the background fields such as to make the sum rules
calculation relatively simpler. Practically, we adopt the
background gauge, D̃AB

μ ϕBμðxÞ ¼ 0, for the gluon quantum
field [33,36,37], and the Schwinger gauge or the fixed-
point gauge, xμAA

μ ðxÞ ¼ 0, for the background field [38].
Using those inputs, the quark propagator SFðx; 0Þ and the

vertex operators Γðz ·D↔Þn are ready to be derived, whose
explicit expressions up to dimension-six operators can be
found in Ref. [35].
The twist-2 LCDA ϕk

2;J=ψ ðx; μÞ is defined via the
following equation,

h0jQ̄1ðzÞ=zQ2ð−zÞjJ=ψi

¼ iðz · qÞfkJ=ψ
Z

1

0

dxeiξðz·qÞϕk
2;J=ψ ðx; μÞ; ð8Þ

where ξ ¼ 2x − 1 and fkJ=ψ is the J=ψ meson decay
constant. It leads to

h0jQ̄ð0Þ=zðiz ·D↔ÞnQð0ÞjJ=ψi
¼ ðeðλÞ� · zÞðq · zÞnmJ=ψf

k
J=ψhξkn;J=ψ i; ð9Þ

where q and eðλÞ are the momentum and polarization vector

of J=ψ meson, ðz ·D↔Þn ¼ ðz · D⃗ − z · D⃖Þn. The nth-order

moment hξkn;J=ψ i at the scale μ is defined as

hξkn;J=ψ i ¼
Z

1

0

dxξnϕk
2;J=ψ ðx; μÞ: ð10Þ

As a special case, the 0th moment satisfies the normali-
zation condition

hξk0;J=ψ i ¼
Z

1

0

dxϕk
2;J=ψðx; μÞ ¼ 1: ð11Þ

To derive the SVZ sum rules for the moments hξkn;J=ψ i,
we introduce the following correlator,

Πðn;0Þ
J=ψ ðz; qÞ ¼ i

Z
d4xeiq·xh0jTfJnðxÞJ†0ð0Þgj0i

¼ ðz · qÞnþ2Iðn;0Þðq2Þ; ð12Þ

where JnðxÞ ¼ Q̄ðxÞ=zðiz ·D↔ÞnQðxÞ and z2 ¼ 0. For the
present cc̄ system, only even moments are nonzero,
n ¼ ð0; 2; 4;…Þ.
The correlator (12) is an analytic q2 function.
In the physical region (q2 > 0), the hadronic content of

the correlator can be quantified by inserting a complete set
of the intermediate hadronic states into the matrix element
with the help of the unitarity relation. By further singling
out the ground state and introducing a compact notation for
the rest of contributions including excited vector mesons
and continuum states, we obtain

1

π
ImIðn;0Þhad ðq2Þ ¼ δðq2 −m2

J=ψÞfk2J=ψhξkn;J=ψi

þ 3

4π2ðnþ 1Þðnþ 3Þ θðq
2 − sJ=ψÞ; ð13Þ

where the quark-hadron duality has been adopted and the
symbol sJ=ψ stands for the continuum threshold for the
lowest continuum state.
In deep Euclidean region q2 < 0, one can apply the

operator product expansion for the correlator (12), and the
coefficients before the operators are perturbatively calcu-
lable. As a combination of the correlator within the

different q2 region, the sum rules for hξkn;J=ψi can be
derived by using the dispersion relation. As a final step,
the Borel transformation is always applied such that to
suppress the contributions from excited and continuum
states and those from high dimensional operators.
Following standard SVZ sum rules procedures [32,39],

the final sum rules read
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hξkn;J=ψi ¼
em

2
J=Ψ=M

2

fk2J=Ψ

�
3

8π2ðnþ 1Þðnþ 3Þ
�
1þ αs

π
A0
n

�Z
sJ=ψ

tmin

dse−s=M
2

�
vnþ1

2ðnþ 1Þm2
c þ s

s
− ðv → −vÞ

�
þ hαsG2i

6πM2

×
Z

1

0

dx e−
m2
c

xx̄M2
ξn−2

x2x̄2

�
nðn − 1Þx3x̄3 þ ξ2

2

�
1 −

m2
cðx3 þ x̄3Þ
x3x̄3M2

��
þ hg3sfG3i

16π2M4

Z
1

0

dx e−
m2
c

xx̄M2
ξn−2

2

×

��
−ξ2

�
69þ 2nð11þ 64xx̄Þ

72xx̄
þ 45ð1 − 3xx̄Þ

8x2x̄2

�
−
nðn − 1Þ

9
½16þ ðn − 31Þxx̄�

�
þ 1

3M2

�
ξ2
�
m2

cð1þ 2xx̄Þ
12x2x̄2

−
8nm2

c

3xx̄
−
3m2

cðx4 þ x̄4Þ
4x3x̄3

�
þ ξ

11nm2
cðx3 − x̄3Þ
6x2x̄2

−
nðn − 1Þm2

c

3

�
þ ξ2

m2
cðx5 þ x̄5Þ
30M4x4x̄4

��
: ð14Þ

As an estimation of the NLO coefficients A0
n, we adopt the ones without quark mass effect. The first four ones are [40],

A0
0 ¼ 1, A0

2 ¼ 5=3, A0
4 ¼ 59=27, and A0

6 ¼ 353=135, respectively. By using the moments hξkn;J=ψ i, we can obtain the

Gegenbauer moments akn;J=ψ up to n ¼ 6 by using the following relations, i.e.,

hξk2;J=ψi ¼
1

5
þ 12

35
ak2;J=ψ ;

hξk4;J=ψi ¼
3

35
þ 8

35
ak2;J=ψ þ 8

77
ak4;J=ψ ;

hξk6;J=ψi ¼
1

21
þ 12

77
ak2;J=ψ þ 120

1001
ak4;J=ψ þ 64

2145
ak6;J=ψ :

� � � ð15Þ

Those relations are obtained by applying the Gegenbauer polynomial expansion of ϕk
2;J=ψ [Eq. (3)] into Eq. (10).

B. The semileptonic decay for B+
c → J=ψl+ νl

The differential decay width for the semileptonic decay Bþ
c ðPÞ → J=ψðpÞlþνl over the momentum transfer q2 can be

formulated as

dΓLðBþ
c → J=ψlþνlÞ

dq2
¼

�
q2 −m2

l

q2

�
2

ffiffiffiffiffiffiffiffiffiffiffi
λðq2Þ

p
G2

FjVcbj2
384m3

Bþ
c
π3

�
3m2

l

q2
λðq2ÞA2

0ðq2Þ þ ðm2
l þ 2q2Þjh0ðq2Þj2

�
; ð16Þ

dΓTðBþ
c → J=ψlþνlÞ

dq2
¼

�
q2 −m2

l

q2

�
2

ffiffiffiffiffiffiffiffiffiffiffi
λðq2Þ

p
G2

FjVcbj2
384m3

Bþ
c
π3

ðm2
l þ 2q2Þ½jhþðq2Þj2 þ jh−ðq2Þj2�; ð17Þ

where q ¼ P − p is the momentum transfer of this process,
the Fermi constant GF ¼ 1.16638 × 10−5, and the phase-
space factor λðq2Þ ¼ ðm2

Bþ
c
þm2

J=ψ − q2Þ2 − 4m2
Bþ
c
m2

J=ψ.

Here we have separated the decay width into longitudinal
and transverse ones as Γ ¼ ΓL þ ΓT . In this paper, the
lepton is taken as the light ones, e.g., l ¼ e or μ,
respectively. Thus the TFF A0ðq2Þ contributes 0 to the
decay width due to the chiral suppression.
The longitudinal and transverse helicity amplitudes for

the decay widths ΓL and ΓT are

h�ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
λðq2Þ

p
mBþ

c
þmJ=ψ

�
Vðq2Þ ∓ ðmBþ

c
þmJ=ψ Þ2ffiffiffiffiffiffiffiffiffiffiffi
λðq2Þ

p

× A1ðq2Þ
�
; ð18Þ

h0ðq2Þ ¼
1

2mJ=ψ

ffiffiffiffiffi
q2

p
�
−

λðq2Þ
mBþ

c
þmJ=ψ

A2ðq2Þ

þ ðmBþ
c
þmJ=ψÞðm2

Bþ
c
−m2

J=ψ − q2ÞA1ðq2Þ
�
:

ð19Þ
The four Bc → J=ψ TFFs Vðq2Þ, A0ðq2Þ, A1ðq2Þ, and
A2ðq2Þ, as mentioned in the introduction, can be read from
Refs. [24,25], which are either directly or indirectly related

to the twist-2 LCDA ϕk
2;J=ψ .

III. NUMERICAL RESULTS

We adopt the following parameters to do the numerical
calculation. Two nonperturbative gluon condensates are
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taken as hαsG2i ¼ 0.038ð11Þ GeV4 and hg3sfG3i ¼
0.013ð7Þ GeV6 [35,39]. The current charm-quark mass,
m̄cðm̄cÞ ¼ 1.275� 0.025 GeV, the masses of Bþ

c and J=ψ
mesons are mBþ

c
¼ 6.274 GeV and mJ=ψ ¼ 3.097 GeV

from the Particla data group (PDG) [41]. The J=ψ decay
constant can be related to its leptonic decay width
ΓJ=ψ→eþe− via the relation [42],

fk2J=ψ ¼ 3

4πα2cJ=ψ
mJ=ψΓJ=ψ→eþe− ; ð20Þ

where α ¼ 1=137 and cJ=ψ ¼ 4=9. Taking the PDG aver-
aged value, ΓJ=ψ→eþe− ¼ 5.547� 0.14 KeV [41], we

obtain fkJ=ψ ¼ 416.2� 5.3 MeV.

A. The J=ψ meson leading-twist LCDA ϕk
2;J=ψðx;μÞ

We set the continuum threshold sJ=ψ for the moments

hξkn;J=ψi as the value around the squared mass of the J=ψ
meson’s first excited state. The structure of the excited J=ψ
meson state is not yet clear; as suggested by Braguta et al.
[43], we set the value of sJ=ψ to infinity.
To determine the allowable range of M2, i.e., the Borel

window, for the sum rules of the moments hξkn;J=ψi, we
adopt three usually used criteria: (I) The continuum
contributions are less than 40% of the total dispersion

relation; (II) the contributions from the dimension-six
condensates do not exceed 10%; (III) the flatness of the
moments versus M2, since the moments should be inde-
pendent to the Borel parameter M2 when all 1=M2 terms
have been summed up. For definiteness, we require the
variations of the moments within the Borel window be less
than 20%. This could be treated as the residual 1=M2

dependence due to the fact that we only know the series up

to 1=M4. Figure 1 shows how the moments hξkn;J=ψ i vary
with M2. The determined Borel window is M2 ∈
½2; 3� GeV2; within this range the moments hξk4;J=ψ i and

hξk6;J=ψi are almost flat, and the moment hξk2;J=ψ i changes
by ∼� 10%.

We present the moments hξkð2;4;6Þ;J=ψi at the scale μ ¼ M

in Table I, where the perturbative contributions are
calculated up to NLO level and the nonperturbative con-
tributions are up to dimension-six condensates. The errors
are squared averages of the uncertainties from the Borel
parameter, the nonperturbative gluon condensates, and the
c-quark mass. Table I shows that the dominant contribution
is from the LO terms, which provide ∼95% contribution to

hξk2;J=ψi, ∼91% to hξk4;J=ψi, and ∼94% to hξk6;J=ψi, respec-
tively. The NLO terms provide ∼6.0% contribution to

hξk2;J=ψi, ∼7% contribution to hξk4;J=ψi, and ∼10% contri-

bution to hξk6;J=ψi. Contributions of the high dimensional
condensates are small, and the condensates do not follow
the usual power counting of 1=M2 suppression.
Contribution from the dimension-six condensate has the
same importance as that of the dimension-four condensate;
thus both of them should be treated on an equal footing.
Using the relations among the Gegenbauer moments

akn;J=ψ and the moments hξkn;J=ψi, we can get akn;J=ψ at the

same scale. The Gegenbauer moments akn;J=ψ at any other
scale can be obtained via the QCD evolution. At the NLO
accuracy, we have [44–46]

akn;J=ψ ðμÞ ¼ akn;J=ψðμ0ÞENLO
n;J=ψ

þ αsðμÞ
4π

Xn−2
k¼0

ak;J=ψ ðμ0ÞLγð0Þk =ð2β0Þdð1Þnk : ð21Þ

FIG. 1. The first three moments hξkn;J=ψ i (n ¼ 2, 4, 6) versus the
Borel parameter M2. All input parameters are taken as their
central values.

TABLE I. The moments hξkð2;4;6Þ;J=ψ i of the J=ψ longitudinal twist-2 DA at the scale μ ¼ M. The contributions
from the LO terms, the NLO terms, the dimension-four condensates, and the dimension-six condensates are
presented separately. The errors are the squared average of all the mentioned error sources.

LO NLO Dimension 4 Dimension 6 Total

hξk2;J=ψ i 0.0890(77) 0.0056(5) 0.0001(3) −0.0010ð7Þ 0.0937(108)

hξk4;J=ψ i 0.0195(32) 0.0016(3) 0.0007(5) −0.0004ð2Þ 0.0214(44)

hξk6;J=ψ i 0.0059(14) 0.0006(1) 0.0005(3) −0.0002ð1Þ 0.0063(17)
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Here μ0 is the initial scale, μ is the required scale, and

ENLO
n;J=ψ ¼ Lγð0Þn =ð2β0Þ

×

�
1þ γð1Þn β0 − γð0Þn β1

8πβ20
½αsðμÞ − αsðμ0Þ�

�
; ð22Þ

where L ¼ αsðμÞ=αsðμ0Þ, β0 ¼ 11 − 2nf=3, β1 ¼ 102−
38nf=3 with nf being the active flavor numbers; γð0Þn

and γð1Þn are LO and NLO anomalous dimensions.
Taking the scale as μc ¼ m̄cðm̄cÞ ¼ 1.275 GeV and

setting other parameters to be their central values, our

predictions for the moments hξkn;J=ψi are listed in Table II.
As a comparison, we also present the results derived within
various approaches in Table II, i.e., the QCD SR [47], the
Buchmuller-type (BT) potential model [48], the Cornell
potential model [49], and the NRQCD [50]. Our results
agree with other predictions within errors.
Using the relations (15), the first three Gegenbauer

moments at the scale μc are

ak2;J=ψ ¼ −0.340ð34Þ; ð23Þ

ak4;J=ψ ¼ 0.071ð28Þ; ð24Þ

ak6;J=ψ ¼ 0.002ð1Þ: ð25Þ

By substituting those Gegenbauer moments into Eq. (3), we
show the J=ψ meson longitudinal twist-2 LCDA in Fig. 2.
As a comparison, we also present several other models in
Fig. 2, i.e., the model suggested by Bondar and Chernyak
(BC) [27],

ϕBCðxÞ ¼ cðv2Þxx̄
�

xx̄
1 − 4xx̄ð1 − v2Þ

�
; ð26Þ

where v2 ¼ 0.3 and cð0.3Þ ≃ 9.62, the model constructed
from the PM [28], and its asymptotic form 6xx̄. Figure 2
shows that all LCDA models prefer a single-peaked

behavior; the BC and the PM LCDAs are close in shape.
Our present LCDA has the sharper peak around x ∼ 0.5
in agreement with the previous QCD SR prediciton [47],
which has a stronger suppression around the end point
x ∼ 0; 1.1

B. The B+
c → J=ψl+ νl semileptonic decay

One of the most important applications of the J=ψ
meson LCDAs is the Bc meson semileptonic decay,
Bþ
c → J=ψlþνl. They are the key components of the

Bc → J=ψ TFFs A1ðq2Þ, A2ðq2Þ, and Vðq2Þ. By using a
left-handed current j†BðxÞ ¼ ib̄ðxÞð1 − γ5Þq2ðxÞ to do the
LCSR calculation on the TFFs, one can suppress the
contributions from other LCDAs and highlight the con-

tributions from the longitudinal leading-twist LCDA ϕk
2;J=ψ ,

showing the properties of ϕk
2;J=ψ via a more transparent way.

Thus the LCSRs derived by using the left-handed chiral
correlator [24,25] inversely provide good platforms for

testing the behavior of ϕk
2;J=ψ .

To set the Borel window for the LCSRs of the Bc → J=ψ
TFFs we adopt the following criteria:

(i) We require the continuum contribution to be less
than 30% of the total LCSR.

(ii) We require all high-twist LCDAs contributions to be
less than 15% of the total LCSR.

(iii) The derivatives of LCSRs for TFFs with respect to
ð−1=M2Þ give three LCSRs for the Bc meson mass
mBc

. We require the predicted Bc meson mass to be
fulfilled in comparing with the experiment one, e.g.,
jmth

Bc
−mexp

Bc
j=mexp

Bc
less than 0.1%.

TABLE II. The moments hξkn;J=ψ i at the scale μc ¼ m̄cðm̄cÞ,
where the errors are the squared average of all the mentioned
error sources. The QCD SR prediction [47], the BT potential
model [48], the Cornell potential model [49], and the NRQCD
prediction [50] are also presented as a comparison.

hξkn;J=ψ i n ¼ 2 n ¼ 4 n ¼ 6

Our prediction 0.083(12) 0.015(5) 0.003(2)
QCD SR [47] 0.070(7) 0.012(2) 0.0031(8)
BT model [48] 0.086 0.020 0.0066
Cornell model [49] 0.084 0.019 0.0066
NRQCD [50] 0.075(11) 0.010(3) 0.0017(7)

FIG. 2. The J=ψ meson leading-twist LCDA ϕk
2;J=ψ ðx; μcÞ

predicted from the SVZ sum rules under the BFT (BFTSR).
As a comparison, the asymptotic form, the QCD SR [47], BC
model [27], and potential model [28] are also presented.

1This behavior is helpful for suppressing the end-point
singularity usually emerged in B meson physics.
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In agreement with the previous choice of Ref. [9], we
take the continuum threshold for the TFFs A1;2ðq2Þ and
Vðq2Þ as s0 ¼ 42.0ð5Þ GeV2, which is smaller than the
value used for LCSRs under the traditional correlator [51].
This choice in some sense ensures that the contributions
from the unwanted scalar resonances that are introduced
by using the chiral correlator are greatly suppressed. The
Borel windows are determined to be M2ðA1Þ ¼ 9.8ð3Þ,
M2ðA2Þ ¼ 11.0ð3Þ, and M2ðVÞ ¼ 11.0ð3Þ. We present the
TFFs at the maximum recoil point q2 ¼ 0 in Table III,
where the errors are squared averages of all the error
sources for the LCSRs. As a comparison, we also present
the predictions from the NLO pQCD prediction under PMC
scale setting [17], the QCD sum rule with a right-handed
correlator [9], the 3PSR (with the Coloumb corrections
included) [8], and the QM [52]. It has been pointed out that
the LCSRs under various choices of correlators should be
consistent with each other under the same input parameters;
the B → K� TFFs are such examples [53]. Table III shows
our LCSR predictions on the TFFs are larger than previous
SR predictions, which however agrees with the PMC
prediction within errors. The pQCD prediction is reliable
at the maximum recoil point; thus our present LCSR
prediction could be treated as a cross-check of the NLO
pQCD prediction.
The validity of the LCSR approach is restricted to the

kinematical regime of large meson energies, and for the
present case, the allowable region for q2 is very close to its
whole physical region, e.g., m2

l ≤ q2 ≤ ðmBþ
c
−mJ=ψÞ2 ≈

10 GeV2. Thus we do not need to do extra extrapolations
for the LCSR TFFs, while the pQCD prediction is reliable
only around the maximum recoil point and a certain model-
dependent extrapolation must be made, introducing extra
model dependence into the pQCD prediction. We present
the total differential decay width for the Bþ

c → J=ψlþνl
(l ¼ e, μ) versus q2 by adopting the SVZ sum rules under
the BFT (BFTSR) for the twist-2 LCDA in Fig. 3, where
the uncertainties are squared averages of the error sources.
The PMC prediction with a monopole extrapolation [17] is
presented as a comparison. The BFTSR prediction agrees
with the PMC prediction in the low and intermediate q2

region, but is smaller than the PMC one in the large q2

region. This difference leads to a slightly larger integrated
decay width for the PMC prediction, but they are consistent
with each other within reasonable errors.
After integrating over the allowable q2 region, we get the

total decay widths for Bþ
c → J=ψlþνl ðl ¼ e; μÞ, which

are presented in Table IV. We also present the results from
the NLO pQCD prediction under PMC scale setting [17],
NLO pQCD prediction under conventional scale setting
[12], the QCD sum rules predictions [8,9], LO pQCD
prediction [7], QCD relativistic potential model prediction
[6], prediction from the Bethe-Salpeter equation [5], and
constituent quark model predictions [3,4] in Table IV.

FIG. 3. Differential decay width for the Bþ
c → J=ψlþνl

(l ¼ e, μ) versus q2 by using the chiral LCSR for the TFFs
and by adopting the BFTSR for the twist-2 LCDA. The PMC
prediction [17] is presented as a comparison.

TABLE IV. Total decay width (in units 10−15 GeV) for the
Bþ
c → J=ψlþνl by using the chiral LCSR for the TFFs and by

adopting the BFTSR for the J=ψ meson twist-2 LCDA. As a
comparison, we present the results from the CDF measurement in
2016 [2] and predictions derived under various approaches, i.e.,
the PMC [17], NLO pQCD calculation [12], QCD sum rules
[8,9], LO pQCD calculation [7], QCD relativistic PM [6], Bethe-
Salpeter equation [5], and CQM [3,4].

References ΓðBþ
c → J=ψlþνlÞ

This work 89.67þ24.76
−19.06

PMC [17] 106.31þ18.59
−14.01

NLO pQCD [12] 97.30þ36.22
−20.33

LCSR [9] 28� 5
3PSR [8] 34.69
LO pQCD [7] 14.7þ1.94

−1.73
PM [6] 30.2
BS equation [5] 34.4
CQM-I [4] 21.9þ1.2

CQM-II [3] 28.2

TABLE III. The TFFs at the maximum recoil point q2 ¼ 0.
The predictions from various approaches, such as the PMC
prediction [17], the QCD SR prediction with a right-handed
correlator [9], the three-point sum rule (3PSR) (with the Coloumb
corrections being included) [8], and the QM [52], are presented as
a comparison.

A1ð0Þ A2ð0Þ Vð0Þ
This work 1.13þ0.13

−0.11 1.20þ0.14
−0.12 1.50þ0.17

−0.15
PMC [17] 1.07(52) 1.15(55) 1.47(72)
QCD SR [9] 0.75 1.69 1.69
3PSR [8] 0.63 0.69 1.03
QM [52] 0.68 0.66 0.96
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Being consistent with Table III, our prediction of
ΓðBþ

c → J=ψlþνlÞ ¼ 89.67þ24.76
−19.06 × 10−15 GeV is about

three times larger than previous SR predictions, but agrees
with the extrapolated NLO pQCD predictions within errors.
It is found that a larger decay width is helpful for explaining
the large value of ℜðJ=ψlþνlÞ derived from the CDF Run
II data [2]. Thus we think a reliable prediction on the
semileptonic decay Bþ

c → J=ψlþνl can be achieved by
applying the sum rules approach.

C. A discussion on the ratio ℜðJ=ψl+ νlÞ
Taking the hadronization fractions fb→Bþ

c
¼ ð1.3�

0.2Þ × 10−3, fb̄→Bþ ¼ 0.404� 0.006, and BðBþ →
J=ψKþÞ ¼ ð1.026� 0.031Þ × 10−3 [41], we obtain the
value of ℜðJ=ψlþνlÞ defined in Eq. (1). The value of
ℜðJ=ψlþνlÞ as a function of Bþ

c meson lifetime τBþ
c
is

presented in Fig. 4. The CDF measurements [1,2,54–56]
as shown in Table V have also been presented in Fig. 4,
where all the errors are added in quadrature. Theoretical
predictions on ℜðJ=ψlþνlÞ are close in shape, all of
which increase with the increment of τBþ

c
. In comparison to

previous LCSR prediction such as that of Ref. [8] and the
LO pQCD prediction [7], our prediction of ℜðJ=ψlþνlÞ
shows a better agreement with the CDF measurements,
which is also consistent with the PMC NLO pQCD
prediction [17].
If setting the Bþ

c meson lifetime as the PDG averaged
value, τBþ

c
¼ 0.507� 0.009 ps [41], we get the value of

ℜðJ=ψlþνlÞ, which is listed in Table V, in which the
predictions by using the total decay width ΓðBþ

c →
J=ψlþνlÞ of Refs. [3–9,12,17] are also listed. Table V

shows that our prediction agrees with the data issued by the
CDF Collaboration in 2016 [2].

IV. SUMMARY

The LCDA is an important component for QCD exclu-
sive processes. In the paper, we make a detailed study
on the J=ψ longitudinal leading-twist LCDA ϕk

2;J=ψ by
using the QCD sum rules within the BFT. The moments of

the LCDA ϕk
2;J=ψ are presented in Table I, in which the

contributions from the LO terms, NLO terms, dimension-
four operators, and dimension-six operators are presented
separately. It shows that the LO terms are dominant, which

provide ∼95% contribution to hξk2;J=ψ i, ∼91% to hξk4;J=ψ i,
and ∼94% to hξk6;J=ψi, respectively. The contributions of
the dimension-four and dimension-six condensates are
small, and their contributions do not follow the power
counting of 1=M2 suppression. Thus the contribution from
the dimension-six condensate has the same importance
as that of the dimension-four condensate, which is also
helpful for determining more precise input parameters for
the SRs. By further using the relations (15), we obtain
the first three Gegenbauer moments at scale μc ¼ m̄cðm̄cÞ,
ak2;J=ψðμcÞ ¼ −0.340ð34Þ, ak4;J=ψðμcÞ ¼ 0.071ð28Þ, and

ak6;J=ψðμcÞ ¼ 0.002ð1Þ.
As an application of the derived ϕk

2;J=ψ , we have studied
the Bc meson semileptonic decay Bþ

c → J=ψlþνl, which
is one of the golden channels for observing the Bc meson.
Table III shows that our LCSR predictions on the TFFs
are larger than previous SR predictions, but agree with
the extrapolated NLO pQCD prediction within errors. This
leads to a larger prediction of the decay width, ΓðBþ

c →
J=ψlþνlÞ ¼ 89.67þ24.76

−19.06 × 10−15 GeV, which explains the
large value of ℜðJ=ψlþνlÞ obtained by the CDF Run II

TABLE V. Our prediction of σ · B ratio ℜðJ=ψlþνlÞ. Various
theoretical predictions are presented as a comparison. The CDF
measurement in 2016 [2] is also presented, where the symbols
“st” and “sy” stand for the statistical error and the systematic
error, respectively.

References ℜðJ=ψlþνlÞ
This work 0.217þ0.069

−0.057
CDF2016 [2] 0.211� 0.012ðstÞþ0.021

−0.020 ðsyÞ
PMC [17] 0.257þ0.045

−0.034
NLO pQCD [12] 0.235þ0.088

−0.049
QCDSR-LCSR [9] 0.068(12)
QCDSR-3PSR [8] 0.084
LO pQCD [7] 0.036þ0.005

−0.004
PM [6] 0.073
BS equation [5] 0.083
CQM-I [4] 0.053þ0.003

CQM-II [3] 0.068

FIG. 4. The value of ℜðJ=ψlþνlÞ versus the Bþ
c meson

lifetime τBþ
c
by using the chiral LCSR for the TFFs and by

adopting the BFTSR for the twist-2 LCDA. The PMC [17], QCD
SR prediction [8], and LO pQCD prediction [7] are presented as a
comparison. The lines are their central values and the shaded
bands are their errors. The CDF measurements [1,2,54–56] are
also presented.
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data [2], as shown by Fig. 4. More explicitly, if setting
τBþ

c
¼ 0.507� 0.009 ps [41], we obtain ℜðJ=ψlþνlÞ ¼

0.217þ0.069
−0.057 , which agrees well with the CDF predictions in

2016 and the PMC NLO pQCD prediction.
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