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We investigate wide-angle π0 photoproduction within the handbag approach to twist-3 accuracy.
In contrast to earlier work both the 2-particle as well as the 3-particle twist-3 contributions are taken into
account. It is shown that both are needed for consistent results that respect gauge invariance and crossing
properties. The numerical studies reveal the dominance of the twist-3 contribution. With it fair agreement
with the recent CLAS measurement of the π0 cross section is obtained. We briefly comment also on
wide-angle photoproduction of other pseudoscalar mesons.
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I. INTRODUCTION

Since 1996 there have been a lot of activities on the field
of hard exclusive processes in conjunction with handbag
factorization. A vast amount of data on such processes has
been accumulated from HERMES, COMPASS, BABAR,
and BELLE and from experiments performed at Jefferson
Lab and HERA. Many theoretical studies of these proc-
esses have been carried through within the framework of
the handbag approach in which the process amplitudes
factorize in hard, perturbatively calculable subprocesses
and soft hadron matrix elements, parametrized as general-
ized parton distributions (GPDs).
Of particular importance for the present work is wide-

angle Compton scattering (WACS). There are reasonable
arguments [1,2] that for large Mandelstam variables, s, −t,
and −u, the Compton amplitudes can be represented as a
product of amplitudes for the subprocess, Compton
scattering off quarks, and form factors that represent
1=x moments of GPDs. Since the GPDs in question,
namely H, E, and H̃, are known from an analysis of the
form factors of the nucleon [3] one can compute the
Compton form factors and subsequently the Compton
cross section as well as other observables for this process.
The results of this parameter-free prediction [3] agrees
quite well with experiment [4] given that the Mandelstam
variables achieved in current experiments are not large
as compared to a typical hadronic scale of order 1 GeV2.
An analogous calculation of wide-angle photoproduction

of mesons however fails [5]: the cross sections are under-
estimated by about 2 orders of magnitude. An attempt to
improve this result has been presented in [6]: under the
assumption of a vanishing contribution from the qq̄g
Fock component of the meson (frequently termed the
Wandzura-Wilczek approximation) the 2-particle twist-3
meson distribution amplitudes (DAs) have been taken into
account along with the helicity-flip or transversity GPDs
[7,8]. The analysis, however, revealed that the correspond-
ing 2-particle twist-3 contribution is zero. Thus, this attempt
turned out to be unsuccessful.
A HERMES measurement [9] of the asymmetry in

electroproduction of positively charged pions, obtained
with a transversely polarized target, indicated a strong
contribution from transversely polarized virtual photons
which in the generalized Bjorken regime of large photon
virtuality, Q2, and large photon-proton center-of-mass
energy but fixed Bjorken-x and −t ≪ Q2 is in principle
suppressed by 1=Q2 in the cross section as compared to the
asymptotically leading contribution from longitudinally
polarized photons [10]. In [11,12] it has been shown that
the HERMES result on the asymmetry can be understood
by just the same dynamical mechanism, namely the
combination of transversity GPDs and twist-3 pion DAs,
that failed in wide-angle photoproduction as we mentioned
above. We stress that in pion electroproduction the mecha-
nism in question is probed at large Q2 but t → 0 in contrast
to photoproduction where −t (and −u) are large but
Q2 → 0. The twist-3 contribution is large in the case of
pions because it is proportional to a mass parameter, μπ ,
which is related to the chiral condensate

μπ ¼
m2

π

mu þmd
ð1Þ
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by means of the divergence of the axial vector current.
Here,mi are current quark masses andmπ denotes the mass
of the pion. This parameter is large, about 2 GeV at the
scale 2 GeV. The transverse cross section for pion electro-
production is parametrically suppressed by μ2π=Q2 as
compared to the longitudinal cross section. For the acces-
sible range of Q2 in current experiments the suppression
factor is of order unity. Predictions for the π0 electro-
production cross sections given in [12] (see also [13])
revealed a transverse cross section that is much larger than
the longitudinal one. This prediction has been confirmed
by a recent measurement of the separated π0 cross sections
performed by the Jefferson Lab Hall A Collaboration [14].
The longitudinal cross section is found to be compatible
with zero within the experimental errors. A preliminary
COMPASS result [15] for the unseparated cross section at a
much larger center-of-mass energy but approximately the
same Q2 is, in tendency, in agreement with the Hall A
findings. Thus, the same situation appears in both hard π0

electroproduction and wide-angle π0 photoproduction—a
leading-twist analysis fails badly in comparison with experi-
ment at presently available hard scales.
In view of these experimental and theoretical results on

hard exclusive pion electroproduction a resumption of the
investigation on the wide-angle meson photoproduction
seems to be appropriate, and this is the purpose of the
present work. It differs from the earlier work [5,6] by the
inclusion of the full, genuine twist-3 contribution, i.e., its
2-particle as well as its 3-particle parts. Both parts are
related to each other by the equation of motion [16] and
both are required in order to accomplish gauge invariance
and crossing properties. In Sec. II we recapitulate the
handbag approach to photoproduction of uncharged pions
to twist-3 accuracy. In the next section, Sec. III, we discuss
the large −t behavior of the relevant helicity flip and
nonflip GPDs and the corresponding form factors. The
subprocess amplitudes to twist-3 accuracy are discussed in
Sec. IV and, in Sec. V, results for the cross section and
spin-dependent observables for photoproduction of the π0

are presented. There are also comments on photoproduc-
tion of other mesons. The paper is finished with the usual
summary. In Appendix A the 2- and 3-particle twist-3
DAs are discussed in some detail. The separate 2- and
3-particle twist-3 subprocess amplitudes are presented in
Appendix B.

II. THE HANDBAG MECHANISM

The handbag mechanism for wide-angle photoproduction
of uncharged pions, γp → π0p, where p denotes a proton,
has been developed in [5,6]. For a better comprehension of
the present workwe are going to recapitulate themain results
and arguments for factorization of the photoproduction
amplitude in hard subprocesses and soft form factors.
Prerequisite is that the Mandelstam variables s, −t, and

−u are much larger than Λ2 where Λ is a typical hadronic

scale of order 1 GeV. It is advantageous to work in a
symmetrical frame which is a center-of-mass frame (c.m.s.)
rotated in such a way that the momenta of the ingoing (p)
and outgoing (p0) nucleons have the same light-cone plus
components

p ¼
�
pþ;

m2 − t=4
2pþ ;−

1

2
Δ⊥

�
;

p0 ¼
�
pþ;

m2 − t=4
2pþ ;

1

2
Δ⊥

�
; ð2Þ

where m is the mass of the proton. In this frame the
skewness, defined by

ξ ¼ ðp − p0Þþ
ðpþ p0Þþ ; ð3Þ

is zero. We assume restricted parton virtualities k2i < Λ2

and intrinsic transverse parton momenta, k⊥i, defined with
respect to their parent hadron’s momentum, which satisfy
the condition k2⊥i=xi < Λ2. Here, xi denotes the momentum
fraction that parton i carries. On these premises one can
show [5] that the subprocess Mandelstam variables ŝ and û
coincide with the ones for the full process, photoproduction
of pions, up to corrections1 of order Λ2=s,

t̂ ¼ t; ŝ ¼ ðkj þ qÞ2 ≃ ðpþ qÞ2 ¼ s;

û ¼ ðk0j − qÞ2 ≃ ðp0 − qÞ2 ¼ u; ð4Þ
where kj and k0j ¼ kj þ q − q0 denote the momenta of the
active partons, i.e., the in and out partons to which the
photon couples; q and q0 are the momenta of the photon and
meson, respectively. Thus, the active partons are approx-
imately on shell, move collinear with their parent hadrons,
and carry a momentum fraction close to unity, xj, x0j ≃ 1.
As in deeply virtual exclusive scattering, the physical
situation is that of a hard parton-level subprocess,
γqa → π0qa, and a soft emission and reabsorption of quarks
from the proton. Up to corrections of order Λ=

ffiffiffiffiffi
−t

p
the

light-cone helicity amplitudes for wide-angle photoproduc-
tion are then given by a product of subprocess amplitudes,
H, and form factors

M0þ;μþ ¼ e0
2

X
λ

�
H0λ;μλðRπ0

V ðtÞþ2λRπ0
A ðtÞÞ

−2λ

ffiffiffiffiffi
−t

p
2m

H0−λ;μλS̄π
0

T ðtÞ
�
;

M0−;μþ ¼ e0
2

X
λ

� ffiffiffiffiffi
−t

p
2m

H0λ;μλRπ0
T ðtÞ

−2λ
t

2m2
H0−λ;μλSπ

0

S ðtÞ
�
þe0H0−;μþSπ

0

T ðtÞ; ð5Þ

1Possible corrections due to the proton mass have been
discussed in [17].
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where μ denotes the helicity of the photon, λ the helicity of
the active quark, and e0 the positron charge. Note that for
the sake of legibility helicities are labeled by their signs
only. The amplitudes for helicity configurations other than
quoted in (5) follow from parity invariance:

M0−ν0;−μ−ν ¼ ð−1Þν−ν0M0ν0;μν: ð6Þ
An analogous relation holds for the subprocess amplitudes
H. The soft form factors, Rπ0

i and Sπ
0

i , are specific to
photoproduction of uncharged pions. They represent
1=x-moments of GPDs at zero skewness, where x ¼ ðkj þ
k0jÞþ=ðpþ p0Þþ is the average momentum fraction the two
active quarks carry. The form factors parametrize the soft
physics that controls the emission from and reabsorption of
a quark by the proton. They will be discussed in some detail
in the next section. The representation (5), which requires
the dominance of the plus components of the proton matrix
elements, is a nontrivial feature given that, in contrast to
deep inelastic lepton-nucleon and deep virtual exclusive
processes, not only the plus components of the proton
momenta but also their minus and transverse components
are large in this case [2]. The generalization of (5) to
photoproduction of other pseudoscalar mesons is straight-
forward [6].

III. GPDs AND FORM FACTORS AT LARGE-t

The form factors for an active quark of flavor a are
defined by [5,6]

Ra
VðtÞ ¼

Z
1

−1

dx
x
signðxÞHaðx; tÞ;

SaTðtÞ ¼
Z

1

−1

dx
x
signðxÞHa

Tðx; tÞ;

Ra
AðtÞ ¼

Z
1

−1

dx
x
H̃aðx; tÞ;

SaSðtÞ ¼
Z

1

−1

dx
x
signðxÞH̃a

Tðx; tÞ;

Ra
TðtÞ ¼

Z
1

−1

dx
x
signðxÞEaðx; tÞ;

SaVðtÞ ¼
Z

1

−1

dx
x
signðxÞEa

Tðx; tÞ: ð7Þ

It is also convenient to introduce the combination

S̄aTðtÞ ¼ 2SaSðtÞ þ SaVðtÞ ð8Þ

associated with the GPD ĒT ¼ 2H̃T þ ET . The functions
Ha, H̃a, and Ea are the familiar helicity nonflip GPDs at
zero skewness, whereasHa

T , H̃
a
T , and E

a
T denote the helicity

flip or transversity GPDs. The skewness variable is omitted
in the GPDs for convenience. The GPDs Ẽa and Ẽa

T and
their associated form factors decouple in the symmetrical

frame. Note that x runs from −1 to þ1. As usual a parton
with a negative momentum fraction is reinterpreted as an
antiproton with a positive momentum fraction. One has

Kāðx; tÞ ¼ −Kað−x; tÞ ðx > 0Þ ð9Þ

for all GPDs, K, except for H̃ for which the relation

H̃āðx; tÞ ¼ H̃að−x; tÞ ðx > 0Þ ð10Þ

holds. Thus, the flavor form factors in (7) can also be
written as (Fi ¼ RV; RA;…; SV)

Fa
i ðtÞ ¼

Z
1

0

dx
x
ðKa

i ðx; tÞ − Kā
i ðx; tÞÞ: ð11Þ

One notices that quarks and antiquarks contribute with
opposite signs to photoproduction of pseudoscalar mesons;
i.e., only valence quarks contribute. This is to be contrasted
with Compton scattering [2] or photoproduction of vector
mesons [5] where they contribute with the same sign. This
feature reflects the charge-conjugation properties of the
GPDs.
The flavor form factors are to be combined in form

factors specific to a given process. Thus, for the process
on which we focus our interest, π0 photoproduction off
protons, the relevant combination of the flavor form
factors is

Fπ0
i ðtÞ ¼ 1ffiffiffi

2
p ½euFu

i ðtÞ − edFd
i ðtÞ�; ð12Þ

where ea is the charge of a quark of flavor a in units of the
positron charge, e0.
In [3] the GPDs H and E for valence quarks have been

extracted from the data on the magnetic form factors of the
proton and the neutron and from the ratio of electric and
magnetic form factors exploiting the sum rules for the form
factors with the help of a parametrization of the zero
skewness GPDs

Ka
i ¼ kai ðxÞ exp ½tfai ðxÞ�: ð13Þ

In [3,18] it is advocated for the following parametrization
of the profile function:

fai ðxÞ ¼ ðBa
i − α0i

a ln xÞð1 − xÞ3 þ Aa
i xð1 − xÞ2; ð14Þ

with Ai, Bi, and αi being the parameters discussed below.
The forward limit of the GPD Ha is given by the flavor-a
parton density, qaðxÞ. On the other hand, the forward limit
of Ea is not accessible in deep-inelastic scattering and is,
therefore, to be determined in the form factor analysis, too.
For the parametrization (13) and (14) there is a strong x − t
correlation in the GPD as has been discussed in [3,18]. The
GPDs at small x control the behavior of the associated
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flavor form factors at small −t, whereas large x determine
their large −t behavior which is required for wide-angle
photoproduction of mesons. As is obvious from (14) at
small x the first term of the profile function dominates
while at large x its second term is important. In analyses of
deeply virtual exclusive processes, as electroproduction of
photons or meson, for which only data at rather small −t are
available, the so-called Regge-like profile function is
frequently used. This profile function is just the first term
of (14) with the factor ð1 − xÞ3 being dropped. Clearly, in
view of the x − t correlation, we can only learn about the
GPDs at small x from data on deeply virtual exclusive
processes; an extrapolation to large x and large −t is
dangerous and may lead to misleading results.2 The
parameter A of the second term in (14) cannot be fixed
from small −t data. Information on the large −t (large x)
behavior of the GPDs is for instance obtained from the
electromagnetic form factors of the nucleon.
After these preliminaries we move on to the discussion

of the actual choice of the form factors: Rπ0
V and Rπ0

T are
evaluated from the GPDs derived in [3]. The GPD H̃ is
known only for −t less than about 3 GeV2 [3] from the data
on the axial form factor [19]. Data at larger −t are to be
expected from the upcoming Fermilab MINERvA experi-
ment. From data on the helicity correlations ALL and/orKLL
in wide-angle Compton scattering we may also learn about
the large −t behavior of the GPD H̃ [20]. Measurements of
these helicity correlations are planned at Jefferson Lab. On
the basis of the parametrization (13) and (14) (with the
unpolarized parton densities replaced by the polarized
ones) and the results on H̃ given in [3] several examples
of the large −t behavior of H̃ are discussed in [20]. For the
numerical estimates of observables for wide-angle photo-
production of pseudoscalar mesons to be presented in
Sec. V below we will use example 1 quoted in [20].
In [11,12] hard pion electroproduction has been studied

and the valence quark GPDs HT and ĒT at small −t
extracted. These GPDs are also parametrized as in (13) and
(14). Their forward limits read

haT ¼ Na
Hx

1=2ð1 − xÞ½qaðxÞ þ ΔqaðxÞ�;
ēaT ¼ Na

Ex
−αaeT ð1 − xÞβaeT : ð15Þ

The particular parametrization of the forward limit of HT
guarantees that the Soffer bound is respected. For the
numerical studies the parton densities are taken from
[21,22]. The parameters of the GPDsHT and ĒT are quoted
in Table I. In addition there are the parameters of the forward
limit of ēT ,

αueT ¼ αueT ¼ 0.3; βueT ¼ 4; βdeT ¼ 5; ð16Þ
which are also taken from [12].

As mentioned before and shown in Fig. 1 the Regge-
like profile function leads to form factors that rapidly drop
with −t. Clearly, also for wide-angle photoproduction of
pseudoscalar mesons the second term of the profile
function (14) is required. In the absence of any informa-
tion on the parameter A we tentatively choose for it the
value 0.5 GeV−2 in all cases. Fortunately, the dependence
of the form factors Si on that parameter is rather mild in
the range of t relevant to current photoproduction experi-
ments. This is demonstrated by the band for S̄π

0

T evaluated
from A ¼ 0.3 GeV−2 and 0.7 GeV−2. The form factor S̄π

0

T
is rather large since Ēu

T and Ēd
T have the same sign and

about the same normalization, a fact that is supported by
results from lattice QCD [23]. This feature of ĒT is also
responsible for the dominance of this GPD in electro-
production of π0.
With the help of the saddle point method [18] one can

show that the moments of the GPDs, parametrized by (13)
and (14), behave power-law-like:

Fi ∼ 1=ð−tÞdi : ð17Þ

The power di is determined by the power βi of the factor
1 − x that characterizes the behavior of the forward limits
of the GPDs for x → 1,

TABLE I. Parameters of the GPDs HT and ĒT taken from [12].

Hu
T Hd

T Ēu
T Ēd

T

N 0.78 −1.01 4.83 3.57
α0½GeV−2� 0.45 0.45 0.45 0.45
B½GeV−2� 0 0 0.50 0.50

FIG. 1. The form factors for π0 photoproduction scaled by t2.
The dimension is GeV4. For the transversity form factor the value
of the parameter A is 0.5 GeV−2. The upper (lower) edge of the
band for S̄T is evaluated from A ¼ 0.3ð0.7Þ GeV−2.

2As shown in [18] the Regge-like profile function leads to an
infinitely large distance between the active quark and the cluster
of spectators; i.e., it leads to a violation of confinement.
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di ¼ ð1þ βiÞ=2: ð18Þ

We stress that the power βi is fixed in a region of x less than
about 0.8. For larger x there is no experimental information
on the forward limits available at present. Therefore, the
powers βi are to be considered rather as effective powers
which are likely subject to change as soon as data at larger
x become available. The current powers di are listed in
Table II.
At present there is no information available on the GPD

H̃T and its associated form factor SS. It has been neglected
in the analysis of electroproduction of pseudoscalar
mesons because its contribution is suppressed by a factor
t=ð2m2Þ [see also (5)]. However, this argument no longer
holds for wide-angle meson photoproduction since −t is
large. As an estimation of its significance we take Sπ

0

S ≃
S̄π

0

T =2 [Sπ
0

V ≃ 0; cf. (8)].

IV. THE SUBPROCESS AMPLITUDES

We calculate the amplitudes for the subprocess γqa →
π0qa to twist-3 accuracy. In the definitions of the various
vacuum-meson matrix elements as frequently done in QCD
calculations of exclusive processes, we are using the light-
cone (axial) gauge. All possible Wilson lines become unity
in that gauge. Our calculation method is similar to the light-
cone collinear factorization approach discussed in detail in
[24,25] for the case of electroproduction of transversely
polarized vector mesons.
Typical lowest-order Feynman graphs for the process of

interest are depicted in Fig. 2. In particular the four graphs
of type (a) are relevant for the 2-particle contributions. With
the help of the qq̄ → π0 projector [26,27]

P2;fg ¼
fπ

2
ffiffiffiffiffiffiffiffiffi
2NC

p δfgffiffiffiffiffiffiffi
NC

p
�
γ5ffiffiffi
2

p q 0ϕπðτÞ þ μπ
γ5ffiffiffi
2

p

×

�
ϕπpðτÞ −

i
6
σμν

q0μk0νj
q0 · k0j

ϕ0
πσðτÞ

þ 1

6
σμνq0μϕπσðτÞ

∂
∂k⊥ν

��
k⊥→0

ð19Þ

the subprocess amplitudes for the twist-2 and for the
2-particle twist-3 contributions have already been calcu-
lated in [6]. The usual twist-2 pion DA is denoted by ϕ
and ϕp, ϕσ are the two 2-particle twist-3 DAs while

ϕ0
σ ¼ dϕσ=dτ. Their definitions are given in Appendix A.

In (19) fπ is the familiar decay constant of the meson
(fπ ¼ 0.132 MeV); τ denotes the momentum fraction the
quark entering the meson carries; NC is the number of
colors; and f and g represent color labels of the quark and
antiquark, respectively. The Dirac labels are omitted for
convenience. In (19), k⊥ denotes the intrinsic transverse
momentum of the quark entering the meson, defined with
respect to the meson’s momentum, q0. It is usually
neglected in the collinear hard-scattering approach. The
quark and antiquark momenta are thus given by

kq ¼ τq0 þ k⊥; kq̄ ¼ τ̄q0 − k⊥; ð20Þ

where τ̄ ¼ 1 − τ. After the derivative in (19) is performed,
the collinear limit, k⊥ ¼ 0, is to be taken. Finally, the mass
parameter μπ is defined in Eq. (1). Taking from [28] the
current-quark masses appearing in Eq. (1), one obtains
μπðμ20Þ ¼ 2.6 GeV at the scale μ20 ¼ 4 GeV2. The uncer-
tainty of μπ is, however, large.3 The mass parameter
evolves as

μπðμ2RÞ ¼ L−4=β0μπðμ20Þ; ð21Þ

where

L ¼ αSðμ2RÞ
αSðμ20Þ

¼ ln ðμ20=Λ2
QCDÞ

ln ðμ2R=Λ2
QCDÞ

ð22Þ

and β0 ¼ ð11NC − 2nfÞ=3. We work with four flavors
(nf ¼ 4) and adopt the value ΛQCD ¼ 0.22 GeV. For the
factorization and renormalization scale we choose μ2F ¼
μ2R and

μ2R ¼ t̂ û
ŝ
; ð23Þ

which takes care of the requirement that both t and u
should be large.
The twist-2 contribution only affects the subprocess

amplitude for quark helicity nonflip. At leading order (LO)
of perturbative QCD it reads [6]

Htwist−2
0λ;μλ ¼ 2παsðμ2RÞfπ

CF

NC

ffiffiffiffiffiffiffiffiffiffi
−t̂=2

p
û ŝ

× h1=τiπ½ð1þ 2λμÞŝ − ð1 − 2λμÞû�; ð24Þ

where as usual CF ¼ ðN2
C − 1Þ=ð2NCÞ is a color factor,

while h1=τi is the 1=τ moment of twist-2 pion DA. The
symmetry of twist-2 pion DA under the replacement τ ↔ τ̄
is in (24) already taken into account. For this DAwe use the
truncated Gegenbauer expansion

TABLE II. The powers di for the various form factors con-
tributing to the wide-angle photoproduction of pseudoscalar
mesons.

RV RA RT ST S̄T

u 2.25 2.22 2.83 2.5 2.5
d 3.0 2.61 3.12 3.5 3.0

3For instance values of 1.8 GeVand 1.9 GeVat μ20 are quoted in
[29,30], respectively.
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ϕπðτ; μ2RÞ ¼ 6ττ̄½1þ a2ðμ20ÞLγ2=β0C3=2
2 ð2τ − 1Þ� ð25Þ

with the recent lattice QCD result on the second
Gegenbauer coefficient [31]

a2ðμ20Þ ¼ 0.1364� 0.0213 ð26Þ

and the anomalous dimension γ2 ¼ 50=9. The 1=τ moment
of the twist-2 pion DA is given by

h1=τiπ ¼ 3½1þ a2ðμ2RÞ�: ð27Þ

Let us turn to twist-3 contributions. The 2-particle
twist-3 contributions were determined in [6], and in this
work we rewrite them in a compact form suitable for
combining with 3-particle results. We list both 2- and
3-particle twist-3 contribution in Appendix B, while, as
we will show, their sum can be simplified and expressed in
terms of the convolution with just the 3-particle twist-3
DA. Typical lowest order Feynman diagrams relevant for
3-particle twist-3 contributions are shown in Fig. 2. The
16 Feynman graphs with (c) and without (b) the triple-
gluon coupling make up the 3-particle contribution. The
graphs (c) and (b) have different color factors. Graphs of
type (d) for which the constituent gluon of the pion
couples to one of its quark constituents are soft contri-
butions and are to be considered as part of the meson wave
function. In perturbation theory the gluon field, Aa

μðxÞ,

appears in the vacuum-meson matrix elements, whereas
the 3-particle DA, ϕ3π , is defined through the gluon field
strength tensor, Gμν; see (A7). In the light-cone gauge
which we are using, the two quantities are related to each
other by [32]

Aa
μðzÞ ¼ lim

ϵ→0
nν

Z
∞

0

dσe−ϵσGa
μνðzþ nσÞ; ð28Þ

where n is a lightlike vector with n · A ¼ 0. By making use
of this relation and the definition of the 3-particle twist-3
DA (A7) we derive the expression for the vacuum-pion
matrix element to be used in the perturbative calculation
of the contribution involving qq̄g Fock component

h0jūgðzbÞAβ;cðzgÞdfðzaÞjπ−ðq0Þi

¼
Z

½dτ�3e−iq0·ðτazaþτbzbþτgzgÞPβ;c
3;fg ð29Þ

with the 3-particle projector, qq̄g → π, given by

Pβ;c
3;fg¼

i
g

f3π
2

ffiffiffiffiffiffiffiffiffi
2NC

p ðtcÞfg
CF

ffiffiffiffiffiffiffi
NC

p γ5ffiffiffi
2

p σμνq0μg
νβ
⊥
ϕ3πðτa;τb;τgÞ

τg
:

ð30Þ

The transverse metric tensor is defined as4

gνβ⊥ ¼
�
gνβ −

k0j
νq0β þ q0νk0j

β

k0j · q
0

�
; ð31Þ

and the integration measure, ½dτ�3, is defined in (A9),
while tc ¼ λc=2 is the SU(3) color matrix for a gluon of
color c and g denotes the QCD coupling. As is detailed
in Appendix A the equation of motion relates the 2- and
3-particle twist-3 DAs to each other. In the light-cone
gauge the relation for the antiquark for instance reads
[see (A12) and (A14)]

fπμπ

�
τ̄ϕπpðτÞ −

1

6
τ̄ϕπσ

0ðτÞ − 1

3
ϕπσðτÞ

�

¼ 2f3π

Z
1−τ

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ: ð32Þ

(c) (d)

(b)(a)

FIG. 2. Typical leading-order Feynman graphs for γq → π0q.
(a) For a 2-particle Fock component of a pseudoscalar meson. (b),
(c) Contribution from the qq̄g Fock component without and with
triple gluon coupling. (d) A soft contribution which is to be
considered as part of the 3-particle DA.

4We remind the reader that in our symmetrical c.m.s. the pion
and the outgoing quark move back to back, i.e., k⃗0j ¼ −q⃗0.
Transforming q0 and k0j to a frame in which the pion moves
along the 3-direction these momenta become

q0 → ½qþ; 0; 0⃗⊥�; k0j → ½0; qþ; 0⃗⊥�;

with the pion mass being neglected. In this frame the tensor gνβ⊥
has the components g11⊥ ¼ g22⊥ while all other components are
zero.
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Using this relation, we can express the full twist-3
subprocess amplitude, the sum of the 2-particle and
3-particle contributions, through the 3-particle DA alone

Htwist−3
0−λ;μλ ¼ 4παsðμ2RÞ

f3πðμ2RÞ
NC

ð2λ − μÞ
ffiffiffiffiffiffiffiffiffiffi
−
û ŝ
2

r
1

ŝ2û2

×
Z

1

0

dτ
Z

τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τg; μ2RÞ

×

�
CF

�
1

τ̄2
−

1

τ̄ðτ̄ − τgÞ
�
ðŝ2 þ û2Þ

þ
�
CF −

1

2
CA

��
1

τ
þ 1

τ̄ − τg

�
t̂2

τg

�
; ð33Þ

where CA ¼ NC. The first term in (33) represents a
combination of 2- and 3-particle contributions while the
second term is a pure 3-particle contribution. For the
interested reader we present the 2- and 3-particle con-
tributions separately in Appendix B. We see from (33) that
the twist-3 contribution only feeds the quark helicity-flip
subprocess amplitudes in contrast to the twist-2 contri-
bution which controls the helicity nonflip ones.
We have checked our results by analyzing the gauge

invariance conditions. As expected the 2- and 3-particle
twist-3 contributions are separately gauge invariant with
respect to the choice of gauge of the virtual gluon. In
contrast, the gauge invariance with respect to the choice of
gauge of the photon is only satisfied by the complete
twist-3 result but not separately for the 2- and 3-particle
contributions. Another important property of the amplitude
(33) is its crossing symmetry. As has been shown long ago
[33] the amplitudesH0−λ;μλ are ŝ − û crossing symmetric to
any order of perturbation theory,5 which is evidently the
case for (33). As can be seen in Appendix B the separate
2- and 3-particle contributions are not crossing symmetric.
Thus, as is evident from the above remarks, both the 2- and
the 3-particle twist-3 contributions have to be taken into
account in order to obtain a physically consistent result
that respects the fundamental properties of gauge invari-
ance and crossing symmetry.
Obviously the 2-particle twist-3 contribution vanishes if

the 3-particle DA is assumed to be zero. This has already
been noticed in [6]. This situation is to be contrasted with
that one in deeply virtual electroproduction of pseudoscalar
mesons. In the latter process the contribution from the
solution of (A16) for ϕEOM

i ¼ 0—the so-called Wandzura-
Wilczek approximation—

ϕWW
p ≡ 1; ϕWW

σ ¼ 6ττ̄ ð34Þ

does not vanish. Up to corrections of order t=Q2 where Q2

is the virtuality of the photon, the subprocess amplitude in
electroproduction is under control of the DA ϕπp. Because
of its end-point behavior it leads to an infrared singularity
in collinear approximation. In [11,12] this singularity is
regularized by retaining the quark transverse momenta in
the subprocess.
The 3-particle DA can be expanded upon the Jacobi

polynomials [16]. We employ a truncated version of it:

ϕ3πðτa; τb; τg; μ2RÞ ¼ 360τaτbτ
2
g

�
1þ ω1;0ðμ2RÞ

1

2
ð7τg − 3Þ

þ ω2;0ðμ2RÞð2 − 4τaτb − 8τg þ 8τ2gÞ

þ ω1;1ðμ2RÞð3τaτb − 2τg þ 3τ2gÞ
�
:

ð35Þ

The parameters of the 3-particle DA evolve as

f3πðμ2RÞ ¼ Lð16=3CF−1Þ=β0f3πðμ20Þ;
ω1;0ðμRÞ ¼ Lð−25=6CFþ11=3CAÞ=β0ω1;0ðμ20Þ;

ω11ðμ2RÞ ¼
1

γþ − γ−
½ðγ− − γqqÞAþðμ20ÞLðγþ−16=3CFþ1Þ=β0

þðγþ − γqqÞA−ðμ20ÞLðγ−−16=3CFþ1Þ=β0 �;

ω20ðμ2RÞ ¼
1

4

γqg
γ− − γþ

½Aþðμ20ÞLðγþ−16=3CFþ1Þ=β0

þA−ðμ20ÞLðγ−−16=3CFþ1Þ=β0 �; ð36Þ

where

Aþðμ20Þ ¼ −ω11ðμ20Þ − 4
γþ − γqq

γqg
ω20ðμ20Þ;

A−ðμ20Þ ¼ ω11ðμ20Þ þ 4
γ− − γqq

γqg
ω20ðμ20Þ: ð37Þ

The anomalous dimensions are

γqq ¼
122

9
; γgg ¼

511

45
; γqg ¼

5

3
;

γgq ¼
21

5
; ð38Þ

with the eigenvalues

γ� ¼ 1

2

h
γqq þ γgg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγqq − γggÞ2 þ 4γqgγgq

q i
: ð39Þ

The anomalous dimensions are to be found in the
literature [16,30].

5The crossing behavior of the amplitude H0λ;μλ is more
complicated but, as shown in [6], the expression (24) has the
correct ŝ − û crossing property.
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With the help of (35) the integrations in (33) can be
performed analytically

Htwist−3
0−λ;μλ ¼−80παs

f3π
NC

ð2λ−μÞ
ffiffiffiffiffiffiffiffiffi
−
û ŝ
2

r
1

ŝ2û2

×

�
CF

�
1−

3

16
ω1;0þ

6

25
ω2;0−

3

50
ω1;1

�
ðŝ2þ û2Þ

−
�
CF−

1

2
CA

��
6−

15

4
ω1;0þ

12

5
ω2;0þ

3

5
ω1;1

�
t̂2
�
:

ð40Þ

V. PREDICTIONS FOR PHOTOPRODUCTION
OF PSEUDOSCALAR MESONS

A. The cross section for π0 photoproduction

The most recent determination of the 3-particle pion DA
is made in [30] on the basis of QCD sum rules. Instead of
f3π the parameter η3 is quoted in that work. It is related to
f3π by (A15). Evolved to the scale μ20 the value of η3
derived in [30] leads to

f3πðμ20Þ ¼ 0.004 GeV2: ð41Þ

The expansion coefficients of the 3-particle DA quoted in
[30] are

ω1;0ðμ20Þ ¼ −2.55; ω2;0ðμ20Þ ¼ ω1;1ðμ20Þ ¼ 0: ð42Þ

According to [30] the uncertainties of the parameters (41)
and (42) are large, of order of 30%.
We are now in the position to evaluate the photo-

production cross section defined by

dσ
dt

¼ 1

32πðs −m2Þ2 ½jM0þþþj2 þ jM0þ−þj2

þ jM0−þþj2 þ jM0−−þj2�: ð43Þ

It turns out that with the 3-particle DA specified in Eqs. (41)
and (42) the cross section for π0 photoproduction is still
somewhat small as compared to the CLAS data [34]. Since
there is no physical reason why ω20 should be zero and its
contribution is by no means suppressed as compared toω10,
we fit this parameter to the CLAS data. We obtain

ω20ðμ20Þ ¼ 8.0: ð44Þ

This value is a bit smaller than the value quoted in [16,35].
The results of the fit to the π0 cross section are shown in
Fig. 3. The cross section is multiplied by s7. This scaling
behavior, which holds at a fixed c.m.s. scattering angle θ,
follows from dimensional counting for the leading-twist
contribution. In order to match roughly the requirement for

the handbag approach of Mandelstam variables much larger
than Λ2 we only show results for −t and −u larger than
2.5 GeV2. As one sees from Fig. 3 our results are in
reasonable agreement with the CLAS data [34] at
s ¼ 11.06 GeV2. For comparison we also present predic-
tions at s ¼ 9 and 20 GeV2. Obviously, the theoretical
results drop faster with energy than s−7. Leaving aside the
logs of s from the evolution the leading-twist handbag
results would scale as s−7 only if the form factors RV and
RA would drop as 1=t2 which is not exactly the case; see
Table II. In the range of s we are interested in, our cross
section effectively behaves ∝ s−9. This is a consequence of
the twist-3 dominance. From the subprocess amplitude one
gets a suppression factor μ2π=s in the cross section as
compared to the twist-2 contribution; cf. (24) and (33).
In addition there are the logs of s from the evolution of the
DAs. The transversity form factors effectively contribute to
the energy dependence of the cross section somewhat
stronger than 1=s4 because their stronger t-dependence
(see Table II) is only partly compensated by the extra
factors of t in the amplitudes (5). Since our form factors
represent 1=x-moments of GPDs they evolve with the scale
in principle. This effect is neglected by us for the following
reason: because of the strong x − t correlation the form
factors at large −t are under the control of a narrow region
of large x. With increasing −t this region approaches 1.
Therefore, our form factors become approximately equal to
the scale-independent lowest moment of the GPDs con-
cerned (e.g.,Ra

V → Fa
1 for −t → ∞ where Fa

1 is the flavor-a
Dirac form factor of the proton). Thus, as it is argued in
[18], the 1=x-factors in the form factors can be viewed as a
phenomenological estimate of effects beyond the strict

FIG. 3. Results for the cross section ofπ0 photoproductionversus
the cosine of the c.m.s. scattering angle, θ. The solid (dashed,
dotted) curves represent our results at s ¼ 11.06ð20; 9Þ GeV2.
The data at s ¼ 11.06 GeV2 are taken from CLAS [34]. The cross
sections are multiplied by s7, and the theoretical results are only
shown for −t and −u larger than 2.5 GeV2.
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Λ=
ffiffiffiffiffi
−t

p
expansion. The evolution effects of the DAs are

small.6 Since at fixed s the renormalization scale (23)
scarcely varies in the wide-angle region, the shape of the
theoretical results on the cross section is hardly altered
when neglecting the DA evolution, but the effective energy
dependence of dσ=dt is reduced to about s−8. In contrast to
electroproduction of the π0 [12] the cross section is not
dominated by single transversity GPDs but the total twist-3
contribution is. For π0 electroproduction the twist-3 con-
tribution feeds the cross section for transversely polarized
photons while twist-2 controls the longitudinal one. Hence,
twist-3 dominance means the dominance of the transverse
cross section in π0 electroproduction which is experimen-
tally confirmed [14] for photon virtualities of the order of
2 GeV2. In π0 photoproduction, on the other hand, both
twist-2 and twist-3 contribute to the same helicity ampli-
tudes leading to interference terms in the cross section. The
twist-2–twist-3 interference term is largest in the forward
hemisphere. For −t → 2.5 GeV2 it is negative and amounts
to 10%–15% in absolute value. In the backward hemi-
sphere the interference term amounts to merely a few
percent. Since the twist-3 contribution dominates, the
uncertainty of our cross section is correspondingly large.
In fact, the parametric uncertainty of the cross section
arising from those of the transversity form factors and the
twist-3 DA is about 70% near 90 deg.
As we discuss in Appendix A, the 3-particle twist-3 DA

fixes the 2-particle twist-3 DAs through the equations of
motion. For the DA (35) with the parameters (41), (42), and
(44) the Gegenbauer coefficients of the 2-particle twist-3
DAs are [see Eqs. (A19), (A22), and (A23)]

apπ2ðμ20Þ ¼ −0.56; apπ4ðμ20Þ ¼ 0.17;

aσπ2ðμ20Þ ¼ −0.084; aσπ4ðμ20Þ ¼ 0.031 ð45Þ

(apπn ¼ aσπn ¼ 0 for n ≥ 4), and

ησðμ20Þ ¼ 0.64: ð46Þ

The values of the Gegenbauer coefficients apπ2 and, with
regard to the value of ησ, also that of aσπ2 are compatible
with those to be found in the literature while the coefficients

apðσÞπ4 have opposite signs. These 2-particle twist-3 DAs
from the literature have been derived with various methods:
the Dyson-Schwinger approach [36], a light-cone quark
model [37], and a chiral quark model [38]. The 3-particle
DA is not considered in these papers, and therefore no
result on f3π is quoted. However, this parameter plays an

important role in the present work. Our values for the
Gegenbauer coefficients of ϕπp (45) have opposite signs to
those quoted in [30]. The latter Gegenbauer coefficients
have been derived from the same 3-particle DA that we are
using, but the Fock-Schwinger gauge is employed in the
vacuum-meson matrix elements. Thus, the different meth-
ods applied in [30] and by us lead to drastic differences in
the 2-particle twist-3 DAs. The normalization ησ may be
absorbed into, say, the mass parameter μπ in the case of the
DA ϕπσ leading to a mass parameter μπσ which is somewhat
smaller than the mass parameter μπ appearing for ϕπp. In
[29] it is claimed that such differences in the mass
parameter may be generated by the off-shellness of the
quarks and antiquarks in the pion.

B. Spin effects

The derivation of the photoproduction amplitudes within
the handbag approach naturally requires the use of the
light-cone helicity basis. However, for comparison with
experimental results on spin-dependent observables, the
use of the ordinary photon-proton c.m.s. helicity basis is
more convenient. The standard helicity amplitudes, Φ0ν0;μν,
are obtained from the light-cone helicity amplitudes (5), by
the transform [8]

Φ0ν0;μν ¼ M0ν0;μν þ
1

2
κ½ð−1Þ1=2−ν0M0−ν0;μν

þ ð−1Þ1=2þνM0ν0;μ−ν� þOðm2=sÞ; ð47Þ

where

κ ¼ 2mffiffiffi
s

p
ffiffiffiffiffi
−t

p
ffiffiffi
s

p þ ffiffiffiffiffiffi
−u

p : ð48Þ

For convenience the notation for the helicities is kept.
Obviously,

X
ν0;μ

jΦ0ν0;μþj2 ¼
X
ν0;μ

jM0ν0;μþj2: ð49Þ

As for wide-angle Compton scattering [20,39] the most
interesting spin-dependent observables are the correlations
of the helicities of the incoming photon and the incoming,
ALL, or outgoing proton, KLL:

ALL ¼ jΦ0þ;þþj2 − jΦ0þ;−þj2 þ jΦ0−;þþj2 − jΦ0−;−þj2P
ν0;μjΦ0ν0;μþj2

;

KLL ¼ jΦ0þ;þþj2 − jΦ0þ;−þj2 − jΦ0−;þþj2 þ jΦ0−;−þj2P
ν0;μjΦ0ν0;μþj2

:

ð50Þ

One can easily check that for the twist-3 contribution one
has

6Taking the parameters f3π ¼ 0.005 GeV2, ω1;0 ¼ −3,
ω2;0 ¼ 7, and ω1;1 ¼ 0, valid at a low scale of about 1 GeV
and ignoring evolution, the predictions for the photoproduction
cross section at s ¼ 11.06 GeV2 are almost indistinguishable
from that one shown in Fig. 3.
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Atwist−3
LL ¼ −Ktwist−3

LL ; ð51Þ

while for the twist-2 contribution

Atwist−2
LL ¼ Ktwist−2

LL ð52Þ

holds as is the case for wide-angle Compton scattering
[20,39]. Thus, the helicity correlations may provide a
characteristic signal for the dominance of twist-3 contri-
bution in photoproduction of pseudoscalar mesons. Thus
the observables ALL and KLL play a similar important role
for the discrimination between twist-2 and twist-3 in
photoproduction of pions as the longitudinal and transverse
cross sections in pion electroproduction.
In terms of helicity amplitudes the correlation between

the helicity of the photon and the sideways polarization of
the incoming proton is7

ALS ¼ 2
Re½Φ�

0þ;þþΦ0−;−þ −Φ�
0þ;−þΦ0−;þþ�P

ν0;μjΦ0ν0;μþj2
; ð53Þ

and the correlation between the helicity of the photon and
the sideways polarization of the recoil proton is

KLS ¼ 2
Re½Φ�

0þ;þþΦ0−;þþ −Φ�
0þ;−þΦ0−;−þ�P

ν0;μjΦ0ν0;μþj2
: ð54Þ

The last spin observable we consider is the asymmetry for
linearly polarized photons, transverse and parallel to the
photon momentum,

Σ ¼ 2
Re½Φ�

0þ;þþΦ0þ;−þ þΦ�
0−;þþΦ0−;−þ�P

ν0;μjΦ0ν0;μþj2
: ð55Þ

Since the twist-3 subprocess amplitude, Htwist−3
0−;þþ , is zero as

can be seen from (33), any spin observable is only given by
a ratio of the transversity form factors up to corrections
from twist-2. Hence, the predictions on spin-dependent
observables are more precise than those for the cross
sections since only the uncertainties of the form factors
matter. Consequently, they do not suffer from the large
uncertainties arising from the 3-particle DA as is the case
for the differential cross section.
It is instructive to quote the observables obtained from

the twist-3 contribution alone since this is the dominant
contribution. In this case the cross section is given by

dσtwist−3

dt
¼ παem

32ðs −m2Þ2 jH
twist−3
0−;−þ j2Fπ0 ; ð56Þ

where the combination of form factors, Fπ0 , reads

Fπ0 ¼ −
t

2m2

�
S̄π

02
T −

t
m2

Sπ
02

S þ 4Sπ
0

S Sπ
0

T − 8
m2

t
Sπ

02
T

�
:

ð57Þ

The spin-dependent observables then read

Atwist−3
LL ¼ −Ktwist−3

LL ¼ −4
Sπ

0

T ½Sπ0T − t
2m2 Sπ

0

S þ κ
ffiffiffiffi
−t

p
2m S̄π

0

T �
Fπ0

;

Atwist−3
LS ¼ −Ktwist−3

LS¼ −2 Sπ
0

T

Fπ0

� ffiffiffiffi
−t

p
m S̄π

0

T − 2κ

�
Sπ

0

T − t
2m2 Sπ

0

S

��
;

Σtwist−3 ¼ 1 − 4
Sπ

02
T

Fπ0
: ð58Þ

Since only the form factors are needed in (58), it seems
possible to give predictions of such observables for
different meson channels. It is also evident from (58)
that these spin observables are independent on energy at
fixed t up to corrections from twist-2 and corrections of
order Λ2=s.
In Fig. 4 we show predictions on the spin-dependent

observables for π0 photoproduction. One sees that ALL
and KLL are large in absolute value and almost mirror
symmetrical. The observables ALS and KLS are small in
absolute value. The twist-2 contributions to them are
relatively large. The observable Σ is close to unity and
only mildly t-dependent. In tendency this is in agreement
with a glueX measurement for π0 photoproduction at
small −t [40].
At Jefferson Lab the observablesKLL and KLS have been

measured twice: at s ¼ 7.8 GeV2 and a c.m.s. scattering
angle of 70 deg [41] and at s ¼ 6.9 GeV2 and θ ¼ 120°
[42]. These kinematical settings do not respect the require-
ment of large Mandelstam variables; either −t or −u is too
small. The data are as follows:

FIG. 4. Predictions for spin observables of π0 photoproduction
at s ¼ 11.06 GeV2. The parametric uncertainty is ≃15% near
90 deg.

7Sideways is defined as the direction perpendicular to the
proton momentum but in the scattering plane.
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½41� s ¼ 7.8 GeV2; t ¼ −2.1 GeV2∶

KLL ¼ −0.082� 0.007; KLS ¼ −0.296� 0.007;

½42� s ¼ 6.9 GeV2; u ¼ −1.04 GeV2∶

KLL ¼ 0.532� 0.006; KLS ¼ 0.480� 0.007:

ð59Þ

Inspection of Fig. 4 shows that the data at 6.9 GeV2 agree
with our predictions in tendency while the 7.8 GeV2 data
are smaller. This is similar to the situation in wide-angle
Compton scattering [20]. Before conclusions can be drawn
we have to wait for data at s;−t;−u ≫ Λ2. Such data are
planned to be measured at Jefferson Lab [43].

C. Other channels

In this section we are going to comment briefly on other
wide-angle photoproduction processes. From the theoreti-
cal point of view the simplest case is of course π0 photo-
production off neutrons. In this case we only have to
change the process form factors. By isospin invariance the
form factors are now

Fπ0
in ðtÞ ¼

1ffiffiffi
2

p ½euFd
i ðtÞ − edFu

i ðtÞ� ð60Þ

instead of (12). Predictions for the corresponding cross
section are shown in Fig. 5. They are about a factor of 2.5
smaller than those for π0 photoproduction off protons. For
very large −t the ratio of cross sections for π0 photo-
production off neutrons and off protons becomes equal to
ðed=euÞ2 since, according to Table II, the d-quark form
factors drop faster with increasing −t than the u-quark
ones. Consequently, the d-quark form factors can be
neglected at large −t. Spin effects are similar to those

for the case of a proton target; see Fig. 4. The observables
ALL; KLL; ALS, and KLS are merely somewhat smaller in
absolute value than the corresponding observables mea-
sured with a proton target.
For η photoproduction off protons the situation is more

complex as is detailed in [12]. The mixing of the η and η0 is
to be taken into account, and the form factors for strange
quarks are also needed in principle. However, for the
charge-conjugation even mesons the GPDs only contribute
in the valence quark (or flavor nonsinglet) combination
Fa
i − Fā

i . For the strange quark it seems to be plausible to
assume Fs

i ≃ Fs̄
i [3]. Hence, there is no contribution from

strange quarks and, as is discussed in [12], the flavor-octet
and singlet form factors are approximately given by

Fð8Þ
i ðtÞ ≃ 1ffiffiffi

2
p Fð1Þ

i ðtÞ ≃ 1ffiffiffi
6

p ½euFu
i ðtÞ þ edFd

i ðtÞ�: ð61Þ

Using the mixing scheme advocated for in [44], one can
also decompose the η amplitudes in a flavor-octet and
single part

Mη
i ¼ cos θ8M

ð8Þ
i − sin θ1M

ð1Þ
i ð62Þ

with the mixing angles

θ8 ¼ −21.2°; θ1 ¼ −9.2°; ð63Þ

derived in [44] on exploiting the divergences of the axial-
vector current. Assuming furthermore that the octet and
singlet DAs, for both twist-2 and twist-3, are the same as
the pion DAs and taking the values8

f8 ≃ 1.26fπ; ½44� fð8Þ3η ¼ 0.87f3π; ½30� ð64Þ

for the decay constants, one finds for the η amplitude

Mη
i ≃Mð8Þ

i ðcos θ8 −
ffiffiffi
2

p
sin θ1Þ: ð65Þ

In principle there is also a contribution from the two-gluon
Fock component of the η [27]. Since this contribution
possesses flavor-singlet quantum numbers and is of lead-
ing-twist nature, it can safely be neglected. Predictions for η
photoproduction cross section are shown in Fig. 5. The η
cross section is similar in shape to the π0 one but about a
factor of 2 smaller than the cross section for π0 production
off neutrons.
In Fig. 6 we present predictions on the helicity corre-

lations, ALL and KLL, for π0 photoproduction off neutrons
and for η photoproduction off proton.
It is also possible to calculate observables for the

photoproduction of charged pions and kaons. In theseFIG. 5. Predictions for the cross sections of π0 photoproduction
off neutrons (solid lines) and η photoproduction (dashed lines) at
s ¼ 11.06 (upper lines) and 20 GeV2 (lower lines). The para-
metric uncertainty amounts to about 70% near 90 deg.

8For the mass parameter μð8Þη one may take approximately the
same value as for μπ [12].
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reactions transition GPDs and form factors appear which,
due to flavor symmetry, are related to the proton-proton
ones [45]. For instance the form factors for photoproduc-
tion of charged pions are given by

Fπ
ip→n ¼ Fπ

in→p ¼ Fu
i − Fd

i : ð66Þ

Since this combination of flavor form factors is not well
known, we refrain from presenting predictions for the
corresponding cross sections. A new feature for the
kaon-hyperon channels is the appearance of form factors
for strange quarks which, at large −t, are unknown as yet.
Moreover, the 3-particle DA for the kaon is also needed
which is not well known [46]. We therefore refrain from
giving predictions for these channels too. We stress,
however, that from data on these channels one may extract
information on the form factors and the twist-3 DAs. For
instance, from spin-dependent observables one may learn
about the form factors for strange quarks and subsequently
from the differential cross section on the 3-particle DA of
the kaon.

VI. SUMMARY

We have calculated wide-angle photoproduction of π0

mesons within the handbag factorization scheme to
twist-3 accuracy. The twist-3 contribution includes both
the 2-particle, qq̄, as well as the 3-particle, qq̄g, parts. In
the light-cone gauge which we are using for the vacuum-
meson matrix elements, the equation of motion enables us
to express the 2-particle twist-3 DAs through an integral
upon the 3-particle DA. This relation is formally an
inhomogeneous linear differential equation of first order
which can readily be solved for a given 3-particle DA. The
use of the light-cone gauge made it also possible to derive
a compact 3-particle twist-3 projector in momentum
space. Our twist-3 subprocess amplitude respects gauge

invariance in QCD and QED and ŝ − û crossing sym-
metry. On the other hand, the separate 2- and 3-particle
twist-3 amplitudes do not possess these properties. This
reveals the necessity of taking into account both the 2- and
3-particle contributions in order to obtain a physically
consistent result. Our calculation method for the subpro-
cess amplitudes is similar to a one exploited in [24,25] in
a calculation of electroproduction of transversely polar-
ized ρ-mesons. We emphasize that the twist-3 effect we
considered which follows from the twist-3 pion DA in
conjunction with leading-twist transversity GPDs, is very
strong due to the large mass parameter μπ. Twist-3 effects
may also be generated by twist-3 GPDs [47]. However, for
these GPDs there is no similar enhancement known.
Therefore, the contribution from the twist-3 GPDs is
expected to be small and neglected by us.
With the help of the relation between the 2-particle

DAs, ϕp and ϕσ, and the 3-particle DA, ϕ3π , the twist-3
subprocess amplitude can solely be expressed by the latter
DA. This manifestly demonstrates the vanishing of the
twist-3 contribution in the Wandzura-Wilczek approxima-
tion which we observed previously [6]. For the numerical
analysis we thus have only to specify the 3-particle DA.
The parameters f3π and ω10 are taken from the literature
[30]. A third parameter, ω20, is fitted to the recent CLAS
data on π0 photoproduction at s ¼ 11.06 GeV2 [34]. The
twist-2 subprocess amplitude is taken from our previous
work [6], and for the twist-2 DA we used recent lattice
gauge theory results [31]. The form factors, RV and RT ,
representing 1=x-moments of GPDs, are taken from the
GPD analysis of the electromagnetic form factors of the
nucleon [3] while for the form factor RA a result advocated
for in [20] is employed. The transversity form factors, ST ,
S̄T , and SS, are evaluated from the transversity GPDs
discussed in [12] which describe fairly well exclusive
electroproduction of pions at small −t. These GPDs are
extrapolated to the large −t region.
Our results for the π0 cross section agree rather well with

the recent CLAS data [34]. It turns out that the twist-3
contribution dominates by far, and the twist-2 contribution
is almost negligible. Thus, we observed the same situation
for wide-angle π0 photoproduction as for deeply virtual π0

electroproduction. We also presented predictions for the
cross section at other energies and for a number of spin-
dependent observables. Particularly noteworthy are the
helicity correlations ALL and KLL. In contrast to wide-
angle Compton scattering where ALL ¼ KLL [39] they are
nearly mirror symmetric (i.e., ALL ≃ −KLL) in wide-angle
photoproduction of π0 or η mesons. This result is a
consequence of the twist-3 dominance.
The twist-3 mechanism we have proposed applies to the

s − t crossed process, pp̄ → γπ0, too. Also for that process
the twist-2 contribution falls short in comparison with
experiment [48]. A hint at a dominant higher-twist con-
tribution to this process comes from the FERMI lab E760

FIG. 6. Predictions for spin observables of π0 photoproduction
off neutrons and of η production at s ¼ 11.06 GeV2. The
parametric uncertainty is ≃15% near 90 deg.
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experiment [49] which clearly has a stronger energy
dependence than predicted by dimensional counting.
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APPENDIX A: THE 2- AND 3-PARTICLE
TWIST-3 PION DAs

In this section we supplement the main part of the paper
by summarizing the definitions of the 2- and 3-particle pion
distribution amplitudes up to twist-3 [16,30,50] and the
equations that relate them. For notational convenience we
quote the vacuum-pion matrix elements for a charged pion.
Their generalization to the case of a π0 is obvious. One has
to write the quark field operators as

1ffiffiffi
2

p h0jūΓu − d̄Γdjπ0i: ðA1Þ

All that we present in this appendix can straightforwardly
be generalized to other pseudoscalar mesons.
The twist-2 DA is defined by the vacuum-pion matrix

element

h0jūðz2Þγμγ5dðz1Þjπ−ðq0Þi

¼ ifπq0μ

Z
1

0

dτe−iðτ̄q0·z2þτq0·z1ÞϕπðτÞ: ðA2Þ

The 2-particle twist-3 DAs are defined by

h0jūðz2Þγ5dðz1Þjπ−ðq0Þi

¼ ifπμπ

Z
1

0

dτe−iðτ̄q0·z2þτq0·z1ÞϕπpðτÞ;

h0jūðz2Þσμνγ5dðz1Þjπ−ðq0Þi

¼ i
6
fπμπðq0μzν − q0νzμÞ

×
Z

1

0

dτe−iðτ̄q0·z2þτq0·z1ÞϕπσðτÞ: ðA3Þ

Here z ¼ z2 − z1 (z ¼ ½0; z−; 0⊥�) and we take the massless
limit, q02 ¼ 0. We remind the reader that we are working in
light-cone gauge. All Wilson lines, i.e., the path-ordered
exponentials of the gluon fields, are unity in that gauge. The
local limits of the γμγ5 and γ5 matrix elements

h0jūð0Þγμγ5dð0Þjπ−ðq0Þi ¼ ifπq0μ;

h0jūð0Þγ5dð0Þjπ−ðq0Þi ¼ ifπμπ ðA4Þ

provide constraints on the DAs ϕπ and ϕπp,

Z
1

0

dτϕπðτÞ ¼
Z

1

0

dτϕπpðτÞ ¼ 1; ðA5Þ

as one sees with the help of translation invariance. There is
no such constraint on ϕπσ. Its normalization is fixed by the
equation of motion as we will see below. The definitions
(A2) and (A3) can be combined into

h0jūgðz2Þdfðz1Þjπ−ðq0Þi

¼ ifπ
4

δfg
NC

Z
1

0

dτe−iðτ̄q0·z2þτq0·z1Þ

× fγ5q 0ϕπ þ μπγ5½ϕπp − σμνq0μxνϕπσ�g; ðA6Þ
leading to (19).
The 3-particle twist-3 DA is defined by the quark-

antiquark-gluon vacuum-pion matrix element

h0jūðzbÞσμνγ5gGαβðzgÞdðzaÞjπðq0Þi
¼ if3π½q0αðq0μgνβ − q0νgμβÞ − ðα ↔ βÞ�

×
Z

½dτ�3e−iðzaτaþzbτbþzgτgÞϕ3πðτa; τb; τgÞ; ðA7Þ

where

½dτ�3 ¼ dτadτbdτgδð1 − τa − τb − τgÞ: ðA8Þ
As usual also the 3-particle DA is normalized toZ

½dτ�3ϕ3πðτa; τb; τgÞ ¼ 1: ðA9Þ

The 2-particle and 3-particle twist-3 DAs are connected
through the equations of motion:

0 ¼ h0jūðz2ÞiDz1dðz1Þjπ−ðq0Þi
¼ h0jūðz2Þði∂z1Þdðz1Þjπ−ðq0Þi
þ h0jūðz2ÞAððz1Þdðz1Þjπ−ðq0Þi: ðA10Þ

An analogous equation holds for the antiquark field. Using
(A6) and (29), derived for the light-cone gauge, we cast the
equations of motion into the simple closed form

τϕπpðτÞ þ
1

6
τϕ0

πσðτÞ −
1

3
ϕπσðτÞ ¼ ϕEOM

1 ðτÞ; ðA11Þ

and for the antiquark

τ̄ϕπpðτÞ −
1

6
τ̄ϕ0

πσðτÞ −
1

3
ϕπσðτÞ ¼ ϕEOM

2 ðτÞ; ðA12Þ

where
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ϕEOM
1 ðτÞ ¼ 2η3

Z
τ

0

dτg
τg

ϕ3πðτ − τg; τ̄; τgÞ ðA13Þ

and

ϕEOM
2 ðτÞ ¼ 2η3

Z
τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ: ðA14Þ

The prefactor η3 is defined by

η3 ¼
f3π
fπμπ

: ðA15Þ

We stress that both the 2- and the 3-particle pion DAs are
symmetric under the exchange of the quark and antiquark
momentum fractions; (A13) and (A14) are related by the
replacement τ ↔ τ̄. Similar relations as (A11) and (A12)
have been derived in the light-cone gauge for the twist-3
DAs of a transversely polarized ρ meson in [24].
A suitable combination of (A11) and (A12) leads to a

first order linear differential equation for the DA ϕσ which
can easily be solved. The other DA, ϕp, can subsequently
be determined from (A11) for instance. We find for the
2-particle twist-3 DAs

ϕπσðτÞ ¼ 6ττ̄

�Z
dτ

τ̄ϕEOM
1 ðτÞ − τϕEOM

2 ðτÞ
2τ2τ̄2

þ C

�
;

ϕπpðτÞ ¼
1

6ττ̄
ϕπσðτÞ þ

1

2τ
ϕEOM
1 ðτÞ þ 1

2τ̄
ϕEOM
2 ðτÞ:

ðA16Þ
Using the 3-particle DA (35) and fixing the constant of
integration, C, such that the constraint (A5) on ϕπp is
respected, we find

C ¼ ½1þ η3ð7ω1;0 − 2ω2;0 − ω1;1Þ� ðA17Þ
and

ϕπp ¼ 1þ
X

n¼2;4;…

apπnC
ð1=2Þ
n ð2τ − 1Þ ðA18Þ

with the Gegenbauer coefficients (apπn ¼ 0 for n ≥ 6)

apπ2 ¼ −
10

3
apπ4 ¼

10

7
η3ð7ω1;0 − 2ω2;0 − ω1;1Þ: ðA19Þ

Obviously, the second 2-particle twist-3 DA is not nor-
malized to unity but we achieve that by a renormalization

ϕπσ ¼ ησϕ̃πσ ðA20Þ
with

ϕ̃πσ ¼ 6ττ̄

�
1þ

X
n¼2;4;…

aσπnC
ð3=2Þ
n ð2τ − 1Þ

�
: ðA21Þ

In this case the Gegenbauer coefficients read (aσπn ¼ 0 for
n ≥ 6)

aσπ2 ¼
1

6

η3
ησ

ð12þ 3ω1;0 − 4ω2;0Þ;

aσπ4 ¼
1

105

η3
ησ

ð22ω2;0 − 3ω1;1Þ; ðA22Þ

and with

ησ ¼ 1 − η3

�
12 − 4ω1;0 þ

8

7
ω2;0 þ

4

7
ω1;1

�
: ðA23Þ

In the limit η3 → 0, i.e., if the 3-particle DA is ignored, the
2-particle twist-3 DAs reduce to the Wandzura-Wilczek
approximation (34)

ϕπp → ϕWW
p ; ϕπσ → ϕWW

σ ; ησ → 1: ðA24Þ

In [16,30,50,51] the Fock-Schwinger gauge has been used
instead of the light-cone one. With the Fock-Schwinger
gauge one obtains a recursion formula for the moments of
the various twist-3 pion DAs from which one can also
determine 2-particle twist-3 DAs for a given 3-particle DA.
However, the 2-particle DAs determined from the recursion
formula differ from ours for the same 3-particle DA
markedly. If the Fock-Schwinger gauge is employed, the
Wilson lines are not unity and are of significance. We
expect that a consistent calculation of the subprocess
amplitudes using either the light-cone gauge or the
Fock-Schwinger one in the vacuum-particle matrix ele-
ments leads to the same results. At least for the case of
electroproduction of a transversely polarized ρ-meson the
equivalence of the two methods has been shown [24].

APPENDIX B: 2-PARTICLE AND 3-PARTICLE
TWIST-3 CONTRIBUTIONS TO SUBPROCESS

AMPLITUDES

In this section we list and comment on the separate
2- and 3-particle twist-3 contributions. Their sum is given
in (33). As mentioned above, the 2-particle contribution
can be completely expressed through the combination of
2-particle twist-3 DAs appearing on the left-hand side of
the equations of motion (A11) and (A12) and can thus be
simplified to

Htwist−3;2−particle
0−λ;μλ ¼ 4παsðμ2RÞfπμπ

CF

NC

ffiffiffiffiffiffiffiffiffi
−û ŝ

p
ffiffiffi
2

p
ŝ2û2

Z
1

0

dτϕEOM
2 ðτÞ

×

��
2λ−μ

2ð1− τÞ2þ
2λþμ

2τð1− τÞ
�
ðŝ2þ û2Þ

þμ
t̂ ŝ

τð1− τÞ
�
: ðB1Þ

On the other hand, for the 3-particle twist-3 amplitude
we derive
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Htwist−3;3−particle
0−λ;μλ ¼4παsðμ2RÞ

f3π
NC

ffiffiffiffiffiffiffiffiffi
−û ŝ

p
ffiffiffi
2

p
ŝ2û2

×
Z

1

0

dτ
Z

1−τ

0

dτg
τg

ϕ3πðτ;1−τ−τg;τgÞ

×

�
ð2λ−μÞ

�
CF

�
1

1−τ
−

1

1−τ−τg

�
ŝ2þ û2

τg

þ
�
CF−

CA

2

��
1

τ
þ 1

1−τ−τg

�
t̂2

τg

�

−
2λþμ

τð1−τÞðŝ
2þ û2Þ−2μ

ŝ t̂
τð1−τÞ

�
: ðB2Þ

The 2- and 3-particle twist-3 contributions do not respect
current conservation separately; only their sum does so.
However, the terms proportional to the color factor CA

occurring only in (B2) are gauge invariant separately. Note
that both (B1) and (B2) possess terms that are not
symmetric in ŝ ↔ û, i.e., do not obey the crossing proper-
ties expected for this process on general grounds [33].
However, their sum (33) is symmetric in ŝ ↔ û; i.e., the
expected crossing symmetry is recovered in the full twist-3
contribution.
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