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Using the Nambu–Jona-Lasinio model with the Uð2Þ × Uð2Þ chiral symmetric effective four-quark
interactions, we derive the amplitude of the radiative decay f1ð1285Þ → πþπ−γ, find the decay width
Γðf1 → πþπ−γÞ ¼ 346 keV and obtain the spectral dipion effective mass distribution. It is shown that in
contrast to the majority of theoretical estimates (which consider the a1ð1260Þ meson exchange as the
dominant one), the most relevant contribution to this process is the ρ0-resonance exchange related with the
triangle f1ρ0γ anomaly. The spectral function is obtained to be confronted with the future empirical data.
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I. INTRODUCTION

The anomalous radiative decay f1 → ρ0γ of the axial-
vector IGðJPCÞ ¼ 0þð1þþÞf1ð1285Þ meson has been
described recently [1], with dynamics determined by the
effective meson Lagrangian. For that the Nambu–Jona-
Lasinio (NJL) model with Uð2Þ ×Uð2Þ chiral symmetry
spontaneously broken down to the diagonal SUð2ÞI ×
Uð1ÞV subgroup [2–7] has been used (the quantum
anomaly breaks the axial Uð1ÞA symmetry). The model
not only reproduces the nontrivial structure of the f1ργ
vertex (which accumulates the most general restrictions
imposed on it by gauge symmetry and statistics [8,9]),
but also fixes fully the values of the coupling constants
involved. The decay width that has been obtained,
Γf1→ργ ¼ 311 keV, is compatible with the recently pub-
lished value Γf1→ρ0γ ¼ 453� 177 keV [10] measured for
the first time in photo-production from a proton target using
the CLAS detector at Jefferson Laboratory. The calculated
value, however, is four times smaller than the value
Γf1→ρ0γ ¼ 1326� 313 keV, quoted by the Particle Data
Group [11]. Arguments based on the large Nc (number of
colors) limit have been used to explain why the derivative
expansion of the underlying triangle quark diagram is
suitable for the phenomenological description of the f1 →
ρ0γ decay amplitude.
In the present work we apply the same approach to

describe the radiative decay f1ð1285Þ → πþπ−γ. We call

attention to the fact that apart from the AVV triangle
anomaly, which has been newly analyzed by the CLAS
Collaboration [10], this process contains also information
about the triangle AAA and the box AAAV anomalies.
Therefore, it would be interesting to analyze as well the
role of these anomalies in the f1ð1285Þ → πþπ−γ decay.
Unfortunately, this transition has not been measured yet,
although a clear signal of f1ð1285Þ has been seen in the
effective mass spectrum of the πþπ−γ system in the reaction
π−N → π−πþπ−γN at a pion beam with the momentum
pπ− ¼ 37 GeV=c studied at the VES spectrometer of IHEP
[12]. The centrally produced exclusive final states formed
in the reaction pp → pfðπþπ−γÞps at 300 GeV=c have
been studied by the WA76 Collaboration at CERN Omega
Spectrometer [13]. The πþπ−γ mass spectrum shows two
enhancements, one at 0.96 GeV due to the η0ð958Þ and one
at 1.27 GeV which could be due to the f1ð1285Þ. In
particular, the WA76 Collaboration has measured the πþπ−

mass spectrum from the reaction f1ð1285Þ → πþπ−γ,
where a ρ0ð770Þ signal can clearly be seen. Events γp →
pf1ð1285Þ → pπþπ−γ were also identified by CLAS [10]
using kinematic fitting and time-of-flight selections.
An earlier attempt of the theoretical description of the

f1ð1285Þ → πþπ−γ decay width can be found in [14].
It is made in the framework of the Uð2ÞL ×Uð2ÞR chiral
theory of mesons. In this approach the amplitude gets two
types of contributions: the direct coupling f1 → ππγ and
the a1ð1260Þ-meson exchange f1 → a1π → ππγ. The ρ
exchange was not taken into account because the Bardeen’s
form of the non-Abelian anomaly [15–17] used there
forbids the f1 → ρ0γ transition. As a result, the estimate
Γf1→ππγ ¼ 18.5 keV has been obtained. A consistent
scheme [18,19] contains the anomalous f1ρ0γ vertex.
Its contribution through the channel f1 → ρ0γ → ππγ can
be more important than the a1 exchange. The reason for
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this is very simple. The a1 exchange is described by two
propagators ðm2

a1 − tÞ−1, or ðm2
a1 − uÞ−1. The physical

region for the kinematical variables t and u is given by
mπ ≤

ffiffi
t

p
;

ffiffiffi
u

p
≤ ðmf1 −mπÞ. It is clear that both propaga-

tors have no poles at physical values of meson masses.
Contrary to this, the propagator of the ρ meson contributes
as ðm2

ρ − sÞ−1, where 2mπ ≤
ffiffiffi
s

p
≤ mf1 . Thus, it has a pole

on the real axis (to lowest order in 1=Nc). This certainly
indicates that a contribution from the a1 exchange alone is
not sufficient.
The purpose of this paper is to examine the role of the

vector ρð770Þ and axial-vector a1ð1260Þ resonances in the
radiative decay f1ð1285Þ → πþπ−γ in more detail. On one
hand, our treatment of the problem goes beyond the
simplified version employed in [14]. On the other hand,
our calculations of the dipion mass spectrum, may be
further improved by taking into account the nonperturba-
tive effects of final-state interactions. However, due to the
absence of empirical data we postpone the calculations of
these 1=Nc suppressed contributions.
The paper is organized as follows. In Sec. II we discuss

the quark-meson Lagrangian of the NJL model and fix the
coupling constants. In Sec. III we obtain the f1ð1285Þ →
πþπ−γ decay amplitude. Our estimates of the decay width
and dipion spectral function are presented in Sec. IV.
Finally, Sec. V contains our summary and conclusions.

II. EFFECTIVE LAGRANGIAN

The main tool of our study is the bosonized version of the
NJL model with Uð2Þ × Uð2Þ chiral symmetric four-quark
interactions. The effective meson vertices can be obtained
through the derivative expansion of the underlying one-
quark-loop diagrams. This can be done both in momentum
space [2,3,6] or in position space [4,5,7]. In the latter case, the
heat kernel technique adjusts the derivative expansion of
the quark determinant in such a way that chiral symmetry is
protected for each Seeley-DeWitt coefficient. The result is
well known, thuswewillwrite downhere only the partwhich
is responsible for quark-meson interactions governing the
f1ð1285Þ → πþπ−γ decay. The corresponding Lagrangian
density is

Lint ¼ q̄

�
iγμð∂μ − ieAμÞ −M þ igπγ5π⃗ τ⃗

þ gρ
2
γμ½ρ⃗μτ⃗ þ γ5ða⃗01μτ⃗ þ f1μτ0Þ�

�
q: ð1Þ

Our notations are as follows: τ⃗ are the standard SUð2Þ Pauli
matrices, τ0 is a unit 2 × 2matrix in the isospin space; γμ and
γ5 areDiracmatrices in a four dimensionalMinkowski space.
The light quark fields q ¼ ðu; dÞ have color and 4-spinor
indiceswhich are suppressed. The diagonalmatrixM ¼ mτ0,
where m ¼ 277 MeV is a constituent quark mass, preserves
isospin symmetry, i.e.,m ¼ mu ¼ md.Aμ ¼ QAμ, whereAμ

is the electromagnetic field, and Q is the matrix of the light
quark’s charges in relative units of the proton charge e

Q ¼ 1

2

�
τ3 þ

1

3

�
: ð2Þ

The π⃗ and ρ⃗μ are the field operators associated with the
isotriplet of pions πð140Þ and vector ρð770Þ-mesons; f1μ
describes the isosinglet axial-vector f1ð1285Þ-meson, and
a⃗01μ stands for the unphysical axial-vector field that should be
redefined to avoid the π⃗ − a⃗01μ mixing

a⃗01μ ¼ a⃗1μ þ
ffiffiffiffiffiffi
2Z
3

r
κm∂μπ⃗: ð3Þ

Here Z ¼ ð1 − 6m2=m2
a1Þ−1 ¼ 1.4, and a dimensionful

parameter κ is fixed by requiring that the Lagrangian does
not contain the π⃗ − a⃗1μ transitions, it gives κ ¼ 3=m2

a1 . The
a⃗1μ field represents a physical axial-vector state a1ð1260Þ of
mass ma1 ¼ 1230� 40 MeV. In our estimates we take the
value ma1 ¼ 1260 MeV.
Since the free part of the meson Lagrangian following

from evaluation of the one-quark-loop self-energy dia-
grams must preserve its canonical form, one should
renormalize the bare meson fields by introducing the
Yukawa coupling constants gπ and gρ in Eq. (1). To absorb
infinities of self-energy graphs, these couplings depend on
the divergent integral which is regularized in a standard
way [7]

J1ðm2Þ ¼ ln

�
1þ Λ2

m2

�
−

Λ2

Λ2 þm2
: ð4Þ

A finite ultraviolet cutoff Λ ¼ 1240 MeV restricts the
region of integration in the quark-loop integrals and
characterizes the energy scale where the NJL model is
applicable. Thus, we have

gπ ¼
ffiffiffiffi
Z

p
g; gρ ¼

ffiffiffi
6

p
g; g2 ¼ 4π2

NcJ1
: ð5Þ

The coupling gπ satisfies the quark analog of the Goldberger-
Treiman relation, which is m ¼ fπgπ , where fπ ¼ 93 MeV
is the weak pion decay constant. gρ is the coupling of the
ρ → ππ decay (g2ρ=4π ¼ αρ ¼ 3).
To summarize the above input data, we can state that, on

thewhole, the phenomenological value ofαρ ¼ 3 leads [with
the use of Eq. (5)] to the estimateNcJ1 ¼ 2π. That gives the
ratio Λ=m ¼ 4.48, and determines the coupling g ¼ ffiffiffiffiffiffi

2π
p

.
The Goldberger-Treiman relation contains the second input
value fπ . However, this does not give us thevalue ofm due to
its dependence on factorZ. Namely,m ¼ fπ

ffiffiffiffiffiffiffiffiffi
2πZ

p
. To findZ

we use the mass of the a1ð1260Þ axial-vector meson. In this
case, the Goldberger-Treiman relation leads to the quadratic
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equation with respect to x ¼ 6m2=m2
a1 ¼ 2κm2, xð1 − xÞ ¼

12πðfπ=ma1Þ2. Solving it and taking the root x ¼ 0.289,

one obtains that Z ¼ ð1 − xÞ−1 ¼ 1.4, m ¼ ma1

ffiffiffiffiffiffiffiffi
x=6

p ¼
277 MeV, and Λ ¼ 4.48m ¼ 1240 MeV.
Let us consider now the effectivemesonvertices generated

by the Lagrangian density (1) in the one-quark-loop approxi-
mation (large Nc limit) which describe the f1ð1285Þ →
πþπ−γ decay.
The two nonanomalous vertices needed for our calcu-

lations are [7]

Lρππ ¼ −i
gρ
4
tr

�
ρμ½π; ∂μπ� − Z − 1

2m2
a1

ρμν½∂μπ; ∂νπ�
�
; ð6Þ

La1πγ ¼
i
2
fπegρZtr

�
aμ1½Aμ; π�

þ 1

m2
a1

ðFμν½aμ1; ∂νπ� þ aμν1 ½Aμ; ∂νπ�Þ
�
; ð7Þ

where ρμ ¼ ρ⃗μτ⃗, a1μ ¼ a⃗1μτ⃗, π ¼ π⃗ τ⃗; the quantities
ρμν; a1μν; Fμν stand for the field strengths ρμν ¼ ∂μρν−
∂νρμ, a1μν ¼ ∂μa1ν − ∂νa1μ, and Fμν ¼ ∂μAν − ∂νAμ. In
the following we neglect the second term in (6). On the
ρ-meson mass shell it has a small factor ðZ−1Þðmρ=ma1Þ2=
2¼0.076 (compared with the factor 1 of the first term).
Following [1], we may write down the effective

Lagrangian density, which describes the f1ρ0γ anomalous
transition

Lf1ρ0γ ¼ −
eαρ
8πm2

eμναβ
�
ρ0μνFασ∂σf1β

þ 1

2
f1μνFα

σρ0σβ þ Fμν∂σρ0σαf1β

�
ð8Þ

with the strength tensor f1μν ¼ ∂μf1ν − ∂νf1μ.
The other anomalous vertex describes the f1a1π inter-

action

Lf1a1π ¼ gf1a1πe
αβμνf1α∂μa⃗1β∂νπ⃗; ð9Þ

where

gf1a1π ¼
αρ

2πfπ

�
1þ ð1 − 3aÞZ − 1

2Z

�
: ð10Þ

The second term in the brackets is due to the replacement (3).
The derivative coupling q̄γμγ5∂μπq makes the correspond-
ing triangle quark diagram linearly divergent. A superficial
linear divergence appears in the course of evaluation of the
overall finite integral. Shifts in the internal momentum
variable of the closed fermion loop integrals induce an
arbitrary finite surface term contribution proportional to
ð1 − 3aÞ. Here a is a dimensionless constant, controlling the

magnitude of an arbitrary local part [20,21]. Hereinafter it
will be fixed by the requirement of gauge invariance of the
f1ð1285Þ → πþπ−γ decay amplitude.

III. AMPLITUDE OF THE f 1ð1285Þ → π +π − γ
DECAY

The Lagrangian density (1) generates three different
types of contributions to the amplitude of the reaction
f1ðlÞ → πþðpþÞ þ π−ðp−Þ þ γðpÞ. These are the contri-
butions through the intermediate ρ0 and a�1 mesons and a
contact interaction induced by the quark box diagram
(Figs. 1–3). The corresponding amplitude can be written
as follows

T ¼ ieμναβϵβðlÞϵ�γðpÞ½gαγðF1lμpνþ þ F2lμpν
− þ F3p

μ
þpν

−Þ
þ F4pαlγpμ

þpν
−� ð11Þ

where ϵβðlÞ, ϵγðpÞ are the polarization vectors of the
f1-meson and the photon; l, p, pþ, p− are the 4-momenta
of f1-meson, photon and charge pions. For the respective

form factors Fi ¼ FðρÞ
i þ Fða1Þ

i þ FðbÞ
i (i ¼ 1, 2, 3, 4) the

diagram with the exchange of the ρ0-meson (Fig. 1) gives

FðρÞ
1 ¼ 3egρ

Zð4πfπÞ2
m2

f1
− 2mf1ðε − ε−Þ

m2
ρ − s − imρΓρðsÞ

; ð12Þ

FIG. 1. The contribution through the intermediate ρ0 meson to
the radiative decay amplitude f1 → πþπ−γ. The first triangle
diagram is described by the effective Lagrangian density (8), the
second one by the Lagrangian density (6).

FIG. 2. The contribution through the intermediate a1ð1260Þ
meson to the radiative decay amplitude f1 → πþπ−γ. The first
triangle diagram is described by the effective Lagrangian density
(9), the second one by the Lagrangian density (7).
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FðρÞ
2 ¼ −3egρ

Zð4πfπÞ2
m2

f1
− 2mf1ðε − εþÞ

m2
ρ − s − imρΓρðsÞ

; ð13Þ

FðρÞ
3 ¼ 3egρ

Zð2πfπÞ2
m2

f1
−mf1ε

m2
ρ − s − imρΓρðsÞ

; ð14Þ

FðρÞ
4 ¼ −3egρ

2Zð2πfπÞ2
1

m2
ρ − s − imρΓρðsÞ

; ð15Þ

where s ¼ ðl − pÞ2, ε; ε� are the energies of photon and
charged pions in the rest frame of the f1 meson, and ΓρðsÞ
is the hadronic off-shell width of the ρð770Þ resonance [22]

ΓρðsÞ ¼
mρs

96πf2π

�
σ3πθðs − 4m2

πÞ þ
1

2
σ3Kðs − 4m2

KÞ
�
; ð16Þ

with σP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

P=s
p

, mπ ¼ 138 MeV and mK ¼
494 MeV. We find that the contribution of this channel
is Γðf1 → ρ0γ → πþπ−γÞ ¼ 276 keV. One can use the
sequential decay formula to do a cross check

Γðf1 → ρ0γ → πþπ−γÞ ¼ Γðf1 → ρ0γÞΓðρ0 → πþπ−Þ
Γρ

:

ð17Þ
Since ρ decays into ππ to hundred percent, and it is known
from our previous estimates that Γðf1 → ρ0γÞ ¼ 311 keV
[1] we conclude that both results are in good agreement.
Notice that for simplicity we could ignore the energy
dependence in ΓρðsÞ taking its empirical value Γρ ¼
149.1� 0.8 MeV. This would diminish the result only
on 1%.
Let us consider now the amplitudes corresponding to the

diagrams plotted on Figs. 2 and 3. The diagram with the
intermediate a1 meson contributes as a contact interaction.
The terms with a1 propagators have a factor p2 which is
equal zero for real photons. Actually, this is a common
feature of the NJL, massive Yang-Mills and hidden local
symmetry approaches [23,24]. In all these models the
decay amplitude a1 → πγ is zero on the a1 mass shell.
The experimental situation is not settled yet (the PDG [11]
does not give a definite number for the a1 → πγ decay
width). For this reason we are not going into details here

and postponing such analyses for the future, when we will
have enough experimental information on this mode. Thus,
we get

Tða1Þ ¼ −i
egρ

8π2f2π
eμναβϵβðlÞϵ�αðpÞ

× 2κm2½1þ ð1 − 3aÞκm2�lμqν ð18Þ

where the 4-vector q ¼ pþ − p−. Notice that only con-
tributions due to π⃗ − a⃗1 transitions survived in (18).
Observing that

eμναβðlμqνÞ ¼ eμναβðpμqν − 2pμ
þpν

−Þ ð19Þ

one sees that the term ∝ pμ
þpν

− brakes gauge invariance.
Thus there must be other diagrams to restore the symmetry.
These diagrams are shown in Fig. 3 (we do not show

there, but it is assumed, that each pion line represents the
direct creation of a pion by the quark-antiquark pair and the
indirect one through the π⃗ − a⃗1 transition). At leading order
of the derivative expansion we obtain the amplitude

TðbÞ ¼ i
egρ

8π2f2π
eμναβϵβðlÞϵ�αðpÞ

×

�
pμqν
Z

− κm2ð4 − κm2Þpμ
þpν

−

�
: ð20Þ

Now, one can restore the gauge symmetry of the whole
amplitude by fixing the parameter a. The requirement is to
cancel the unwanted pμ

þpν
− term of the sum Tða1Þ þ TðbÞ.

It gives a ¼ 5=12. The rest of the sum

Tða1þbÞ ¼ Tða1Þ þ TðbÞ ¼ iAeμναβϵβðlÞϵ�αðpÞpμqν; ð21Þ

where

A ¼ egρ
8π2f2π

�
2 − Z
Z

þ ðZ − 1Þ2
8Z2

�
; ð22Þ

will contribute to the amplitude (11) in the form

Fða1þbÞ
1 ¼ −Fða1þbÞ

2 ¼ 1

2
Fða1þbÞ
3 ¼ A: ð23Þ

The latter follows from Eq. (19). This contribution numeri-
cally is not large Γða1þbÞðf1 → πþπ−γÞ ¼ 5.5 keV.
Nonetheless, in the next section we will show that the
interference of this amplitude with the pure ρ exchange
channel is positive and relatively large. It enhances notice-
ably the final result.

IV. f 1ð1285Þ → π +π − γ DECAY WIDTH

The rate of the three-body decay f1ð1285Þ → πþπ−γ can
be obtained from the standard formula

FIG. 3. The contribution of the contact interaction to the
radiative decay amplitude f1 → πþπ−γ.
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dΓ ¼ jTj2
24mf1ð2πÞ3

dεdεþ ð24Þ

where

jTj2 ¼
X
i≤j

ReðFiF�
jÞTij; ð25Þ

Fi ¼ FðρÞ
i þ Fða1þbÞ

i and the coefficients Tij are

T11 ¼ 2m2
f1
p⃗2þ

T22 ¼ 2m2
f1
p⃗2
−

T33 ¼ 2½ðpþp−Þ2 −m4
π� þ ðp⃗þ × p⃗Þ2

T44 ¼ −m4
f1
ðp⃗þ × p⃗Þ2

T12 ¼ 4m2
f1
p⃗þp⃗−

T13 ¼ 4mf1 ½m2
πε− − ðpþp−Þεþ�

T23 ¼ −4mf1 ½m2
πεþ − ðpþp−Þε−�

T14 ¼ T24 ¼ 0

T34 ¼ −2m2
f1
ðp⃗þ × p⃗Þ2: ð26Þ

Notice that

ðp⃗þ × p⃗Þ2 ¼ ðp⃗− × p⃗Þ2 ¼ ðp⃗þ × p⃗−Þ2
¼ p⃗2þp⃗2 − ðp⃗þp⃗Þ2: ð27Þ

Here all kinematical variables are given in the rest frame
of the f1 meson. With the use of the kinematic invariants
s ¼ ðl − pÞ2, t ¼ ðl − pþÞ2 and u ¼ ðl − p−Þ2 one can
find the boundary of the physical region in the
Mandelstam plane. For a given value of s from the closed
interval 4m2

π ≤ s ≤ m2
f1

the boundary is given by the two
roots of the quadratic equation. They are

t�ðsÞ ¼
1

2

	
m2

f1
þ 2m2

π − s�
ffiffiffiffiffiffiffiffiffiffi
DðsÞ

p 

; ð28Þ

where m2
π ≤ t� ≤ ðmf1 −mπÞ2, and

DðsÞ ¼ ðm2
f1
þ 2m2

π − sÞ2 − 4m2
π

�
m4

f1

s
−m2

f1
þm2

π

�
:

ð29Þ

Collecting above formulas we come to the following
result

Γ ¼ 1

24mf1ð2πÞ3
Z

εmax

0

dε
Z

εmax
þ

εmin
þ

dεþjTj2 ð30Þ

where

εmax ¼ m2
f1
− 4m2

π

2mf1

;

εminþ ¼ 1

2

h
mf1 − ε

	
1þ

ffiffiffiffiffiffiffiffiffiffi
ΩðεÞ

p 
i
;

εmaxþ ¼ 1

2

h
mf1 − ε

	
1 −

ffiffiffiffiffiffiffiffiffiffi
ΩðεÞ

p 
i
;

ΩðεÞ ¼ 1 −
4m2

π

mf1ðmf1 − 2εÞ : ð31Þ

Integrating over energies εþ and ε in (30) we obtain
the radiative decay width Γðf1 → πþπ−γÞ ¼ 346 keV.
This includes the contributions of the ρ0 and a�1
exchanges, contact interaction and all possible interfer-
ences among these amplitudes. The vector ρ0 resonance
gives the major contribution. To be precise, we have
found that Γtot¼ð346;4¼275.6þ5.5þ65.3ÞkeV where in
the sum we present the contributions of ρ0 (first term), a1
plus contact interaction (second term), and interferences
(third term).
From Eq. (30) one can also derive the spectral effective

mass distribution for the system of two charged pions, i.e., a
derivative dΓ=d

ffiffiffi
s

p
as a function of

ffiffiffi
s

p
. We plot this

function in Fig. 4. The curve has a clear peak located atffiffiffi
s

p ¼ 767 MeV. If one would neglect a contact interaction
the maximum would shift to the point

ffiffiffi
s

p ¼ 768 MeV. We
conclude that the shift due to a contact interaction is rather
small, or, in other words, the AAA and AAAVanomalies do
not affect much the position of the extremum.
On the other hand, a new empirical information is hoped

to give more insight on the structure of the spectral
function. In particular, this can shed some light on the
axial-vector decay amplitude a1ð1260Þ → πγ. There are
experimental data indicating that the decay width of
a1ð1260Þ → πγ is not zero, Γðaþ1 → πþγÞ ¼ 640�
246 keV [25]. This may modify the spectral function of
Fig. 4 at energies

ffiffiffi
s

p
∼ma1 . Such theoretical study is

possible, however, without precise empirical data this
analysis would be too speculative.

600 800 1000 1200

0.0005

0.0010

0.0015

FIG. 4. The spectral effective mass distribution for the system
of two charged pions, dΓ=d

ffiffiffi
s

p
, as a function of

ffiffiffi
s

p
for the

radiative decay f1 → πþπ−γ.
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V. CONCLUSIONS

In this work, we calculate the radiative decay width of
the f1ð1285Þ axial-vector meson into two charged pions.
Our main assumptions are that the f1ð1285Þ state is mostly
made of u and d quarks; the decay is governed by the quark
triangle AVV anomaly; and the transition a1 → πγ is
suppressed on the mass shell of the a1 meson. We also
neglect the effects of the final-states interaction, which can
be essential for the ππ system. The latter can be a subject of
more refined amplitude analysis, as soon as high statistics
empirical data will be available.
We estimate the contribution of the box AAAVanomaly

and conclude that it is rather small. Nonetheless it affects
the result through the positive interference with an inter-
mediate ρ resonance amplitude, enhancing the total value
of the decay width on 25%.
We also derive the spectral function of the two pion

system and show that it has a clear signal of the ρð770Þ
state. We recommend the experimental study of this
spectral function in the future. Our reasoning is that in
this way one can extract new important information on the

anomaly structure of the amplitude. In particular, to clarify
the role of AAA and AAAV anomalies, by studying two
pions, and photon spectral functions. It would be also
interesting to measure the peak position in the dipion mass
spectrum. A deviation would indicate that a contribution
from the ρ exchange alone is not sufficient.
The decay width found, Γðf1 → πþπ−γÞ ¼ 346 keV,

agrees with our previous estimate, Γf1→ργ ¼ 311 keV, and
is compatible with the recently measured value Γf1→ρ0γ ¼
453� 177 keV [10] within errors. The contributions to
Γðf1 → πþπ−γÞ are quantified as follows: Γðf1 → ρ0γ →
πþπ−γÞ ¼ 275.6 keV, ΓAðf1→πþπ−γÞ¼5.5keV, ΓIðf1 →
πþπ−γÞ ¼ 65.3 keV, where the subscript A marks the box
AAAV anomaly, and I is used for the interference effects.
The ρ resonance dominates the amplitude whereas the box
anomaly is important through its positive interference with
the ρ exchange channel.
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