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The Landau-Khalatnikov-Fradkin transformations (LKFTs) allow one to interpolate n-point functions
between different gauges. We first offer an alternative derivation of these LKFTs for the gauge and fermions
field in the Abelian (QED) case when working in the class of linear covariant gauges. Our derivation is
based on the introduction of a gauge invariant transversal gauge field, which allows a natural generalization
to the non-Abelian (QCD) case of the LKFTs. To our knowledge, within this rigorous formalism, this is the
first construction of the LKFTs beyond QED. The renormalizability of our setup is guaranteed to all orders.
We also offer a direct path integral derivation in the non-Abelian case, finding full consistency.

DOI: 10.1103/PhysRevD.97.074017

I. INTRODUCTION

When we study strong color interaction, quantum
chromodynamics (QCD), we start from the most basic
fields, namely the quarks, gluons and also the Faddeev-
Popov ghosts in covariant gauges. Due to the infrared
enhancement of the strong coupling constant, perturbation
theory alone is unable to provide a description of the
observable hadronic world made up of quarks and gluons.
Therefore, the need for nonperturbative approaches
arises, requiring a radically different treatment of these
interactions.
In the continuum formulation, gauge fixing is required to

warrant computations, whatever nonperturbative scheme
one has in mind. However, QCD remains a gauge theory,
meaning physically observable quantities should not
depend on what gauge is actually chosen to carry out
the computation. In this article, we concern ourselves with

linear covariant gauges, with the Landau gauge as a special
case thereof.
Within the functional approach of Dyson-Schwinger

equations (DSEs) [1–10] or functional renormalization
group equations [11,12], one is confronted with an infinite
tower of nonlinear coupled equations with an ever-increasing
order of n-point correlation functions. This is of course
unamenable to computation, so a sacrifice must be made:
the tower is truncated and some of the necessary low order
n-point correlation functions are introduced via a sensible
Ansätze preserving some key features of a gauge field theory.
Much care is generally taken as regards the low energy
constraint of chiral symmetry, namely the axial vector
Ward identity, and the pattern in which this symmetry is
dynamically broken. The corresponding low energy
Goldberger-Treiman relations provide an intimate connec-
tion between the quark propagator and the Bethe-Salpeter
amplitudes of the corresponding bound state. It is of para-
mount importance, not only to get the correct QCD spectrum
for low lying mesons, but also to study corresponding
elastic and transition form factors which have come under
immense experimental and theoretical scrutiny in the last few
years [13–18].
However, the constraints of gauge covariance are not

always fully implemented. These constraints manifest
themselves not only in terms of Slavnov-Taylor identities
but also as generalized Landau-Khalatnikov-Fradkin trans-
formations (LKFTs) which are less studied, except for the
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Abelian (QED) case; see e.g. [1,19–21] and recent works
such as [22–24]. In principle, if gauge covariance is
manifest, transforming the n-point functions in one gauge
to those in another gauge has no consequence whatsoever
on physical observables computed from these n-point
functions. However, as soon as model-building is done
in some particular gauge, there can be conflicts with gauge
(BRST) invariance which can lead to uncontrollable gauge
parameter dependence filtering into physical quantities. For
example, one can expect such a thing to happen if models
specific to Landau gauge were to be used in other gauges
without appropriate gauge modifications.
In fact, most functional studies are restricted to the

Landau gauge case, because of its interesting properties,
such as it being a fixed point of the renormalization group
and the fact that it is accessible also to gauge-fixed lattice
QCD studies [25–35]. However, during the course of the
past few years, we have witnessed an increased activity in
extending both functional and numerical lattice efforts to
general linear covariant gauges. In the long run, it will lead
to a better understanding of how to extract truly gauge
invariant physical information in a gauge-fixed context
[36–49]. That such a goal is far from being trivial has been
illustrated even in the case of QED, whose state-of-the-art
is well captured by exhaustive studies of the fermion-
photon vertex [50–54] to implement gauge invariance of
physical observables. In principle, a sound Ansatz for the
fermion-photon vertex should be made in one gauge, say
the Landau gauge. The vertex in any other gauge can then
be obtained as the LKFT of the Landau gauge Ansatz. The
sensible implementation of this procedure guarantees
gauge covariance and hence obviates any question about
the gauge dependence of gauge invariant quantities.
We expect the same to be true for QCD, albeit with

increasing complexity. The Landau gauge vertex models in
QCD would transform under some generalized LKFTs to
provide an appropriate model in other linear covariant
gauges. An example which motivates current study takes
into account the simple two-point Green function, more
specifically, the Dyson-Schwinger output for the trans-
versal projection of the gluon propagator for small values of
the gauge parameter. From the available lattice data for the
gluon propagator or its dressing function, it turns out that
there is almost no gauge parameter dependence for the
considered interval of gauge parameter variation [36–38].
This is in sharp contrast with the Dyson-Schwinger
estimates presented in [39,40] which show sizeable varia-
tion with the gauge parameter; compare for example [38],
Fig. 3 (right panel), with [39], Fig. 2 (right panel).
In the Abelian QED case, a frequently adopted strategy is

based on the LKFTs [55,56] (see also [57]) which allow us
to explicitly transform correlation functions from one linear
covariant gauge with gauge parameter α to another gauge
with parameter α0. There is a large body of work which has
used these transformations as a guiding principle toward an

improved Ansatz for the three-point vertex and imposing
gauge invariant chiral symmetry breaking; see for example
[19,58–60]. More recently, these transformations have also
been studied in the world line formalism, where LKFTs are
generalized to arbitrary amplitudes in scalar QED [61].
Similar work in the non-Abelian QCD case has only just

begun [62], the delay being mostly due to the complexities
of the non-Abelian LKFTs. The purpose of the current
article is to write down the formal and natural generaliza-
tion of the LKFTs to the non-Abelian case of QCD without
jeopardizing renormalizability.
We study LKFTs by using the gauge invariant fields Ah

and ψh as introduced in [44,47–49,63]; see also [64,65].
We see that these fields, which correspond in fact to
invariant nonlocal composite gluonic and fermionic oper-
ators, provide us with a rather natural setting to derive both
the known Abelian and the novel non-Abelian LKFTs.
This article is organized as follows: in Sec. II the

construction of the gauge invariant fields Ah and ψh

[44,47,49] is briefly summarized, and then fully exploited
in Sec. III to study the LKFTs for both gluon and fermion
correlation functions. We take a closer look at the lowest
order gluon propagator, retrieving the known LKFT for the
photon propagator. Furthermore, we establish a relation for
the LKFT for the fermion propagator. In Sec. IV the LKFTs
are derived once more, but now from a different viewpoint,
namely within the path integral formalism. Fully exploiting
the gauge symmetry of the original classical action, the path
integral allows us to recover the same LKFTs as in Sec. III.
At last, Sec. V summarizes our conclusions and directions
for future work.

II. A SHORT SUMMARY TO THE GAUGE
INVARIANT TRANSVERSAL GLUON FIELD Ah

μ

We start from the action [47,49]

S ¼ SFP þ Sf þ Sh; ð1Þ

with the Faddeev-Popov term given by

SFP¼
Z

d4x

�
1

4
Fa
μνFa

μνþ
α

2
babaþ iba∂μAa

μþ c̄a∂μDab
μ cb

�
;

ð2Þ

the matter sector by

Sf ¼
Z

d4xðψ̄ði=DþmfÞψÞ; ð3Þ

and

Sh¼
Z

d4x

�
τa∂μA

h;a
μ þm2

2
Ah;a
μ Ah;a

μ þ η̄a∂μDab
μ ðAhÞηb

�
;

ð4Þ
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where Ah
μ is defined through

Ah
μ ¼ h†Aμhþ i

g
h†∂μh: ð5Þ

Here, we set

h ¼ eigϕ
aTa

; ð6Þ

with Ta being the adjoint generators of SUðNÞ. As it is
apparent, the action Sh contains a new field ϕa, besides
the Lagrange multiplier τa as well as the additional ghost
fields ðη̄a; ηaÞ.1 All these fields belong to the adjoint
representation.
By construction, the field Ah

μ turns out to be transverse,
∂μAh

μ ¼ 0, and gauge invariant [44,47]. The transversality
of Ah

μ is precisely ensured by the presence of the Lagrange
multiplier τa. The gauge invariant character of Ah

μ can be
nicely appreciated from the transformation laws

h → U†h; h† → h†U;

Aμ → AU
μ ¼ U†AμU þ i

g
U†∂μU; ð7Þ

with U being a generic local SUðNÞ transformation. From
Eq. (5), it follows that

ðAh
μÞU ¼ Ah

μ: ð8Þ

At the quantum level, Ah
μ is a rather complicated

composite operator, nonetheless via the Stueckelberg-like
formulation of Eq. (5), the all order renormalizability of Ah

μ,
and thus of its correlation functions, was proven, thanks to
the powerful Ward identities underlying the dynamics of
the action (1) [47,49]. Upon solving the τ-constraint (see
also later in this paper), Ah can be explicitly written as a
formal power series in g (or powers of the field A) given by

Ah
μ ¼ Aμ −

∂μ

∂2
∂Aþ ig

�
Aμ;

1

∂2
∂A

�
þ ig

2

�
1

∂2
∂A; ∂μ

1

∂2
∂A

�

þ ig
∂μ

∂2

�∂ν

∂2
∂A; Aν

�
þ i

g
2

∂μ

∂2

�∂A
∂2

; ∂A
�
þOðA3Þ:

ð9Þ

From this expression, it is clear that in the Landau gauge,
∂μAμ ¼ 0, Ah

μ reduces to Aμ, given the overall presence of
∂μAμ. This is not a coincidence, as Ah

μ can be seen as the
series solution to the stationary condition obtained from

minimizing the functional
R
d4xAu

μAu
μ along the gauge

orbit, u ∈ SUðNÞ [44,64,66,67]. This minimization pro-
cedure can be extended to the nonperturbative level, in
particular, to provide a lattice formulation of the Landau
gauge. Any solution to the stationary condition (first
order variation) is a (local) minimum of the functional if
the second order variation is positive. This amounts to
requiring −∂μDμðAhÞ > 0, i.e. the Faddeev-Popov operator
evaluated at A ¼ Ah should be a positive operator. This
observation is closely linked to the issue of gauge (Gribov)
copies [68]. Indeed, specifying to the Landau gauge,
imposing−∂μDμðAÞ > 0 eliminates the infinitesimal gauge
copies related to zero modes of the Faddeev-Popov
operator [68,69]. Recently, the generalization of this con-
struction to a generic linear covariant gauge was developed
in a series of papers [44–46,48,49,70], allowing one to put
the Gribov-Zwanziger construction for the first time on a
firm Bechi-Rouet-Stora-Tyutin (BRST) invariant footing.
The mass term, m2

2

R
d4xAh;a

μ Ah;a
μ , can be put to 0 in

Eq. (1). The parameter m2 rather serves to introduce the
gauge invariant mass operator

R
d4xAh

μAh
μ, well-known

from phenomenology [71–75] and corresponding to the
minimum of the functional

R
d4xAu

μAu
μ. Though, for our

current purposes, we setm2 ¼ 0, to restore full equivalence
with the standard Yang-Mills QCD action. In that case, the
quark-gluon-ghost dynamics of ðSFP þ Sf þ ShÞ is equiv-
alent to that ðSFP þ SfÞ, as integrating over τ, ϕ, η̄, η gives
no more than a unity. Let us explain in more detail. It is
important to appreciate the role of the multipliers τa which
impose the constraint ∂μA

h;a
μ ¼ 0. The latter can be solved

iteratively allowing one to express ϕ explicitly in terms of
Aμ. More precisely, one finds (see e.g. [46])

ϕ ¼ 1

∂2
∂Aþ i

g
∂2

�
∂A; ∂A∂2

�
þ i

g
∂2

�
Aμ; ∂μ

∂A
∂2

�

þ i
2

g
∂2

�∂A
∂2

; ∂A
�
þOðA3Þ: ð10Þ

In the expression above, we recognize that the fields ϕa are
the SUðNÞ gauge rotation angles we need to gauge trans-
form a generic field configuration Aμ into its transversal,
gauge equivalent, configuration Ah

μ. When the τ is inte-
grated over, i.e. we work with the on-shell ϕ-formulation,
the integration over the ϕ gives rise to a nontrivial Jacobian,
which is lifted into the action via the Grassmann η̄, η-fields,
thereby giving an overall unity. This is discussed in more
detail in other work. Notice that this procedure shares great
similarity with the introduction of the unit factor corre-
sponding to the Faddeev-Popov quantization procedure.
Also here, both gauge condition and related Jacobian, i.e.
the Faddeev-Popov determinant, are lifted into the action
through the introduction of the Lagrange multiplier ba and
of the Faddeev-Popov ghosts ðca; c̄aÞ.

1As underlined in [49], the additional ghosts ðη̄a; ηaÞ are
needed to take into account the Jacobian arising from integration
over the Lagrange multiplier τa, which gives rise to a delta
function of the type δð∂μA

h;a
μ Þ.
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Let us also point out that the constraint ∂μA
h;a
μ ¼ 0 is

what discriminates between the standard Stueckelberg
action and the formulation (1). In particular, as shown in
[47,49], where a detailed comparison was made with the
standard nonrenormalizable Stueckelberg theory, the con-
dition ∂μA

h;a
μ ¼ 0 plays a pivotal role in order to ensure the

all order renormalizability of the action (1).

III. DERIVATION OF THE LKFTS VIA Ah

In this section, we first rederive the Abelian LKFTs,
followed by the non-Abelian generalization.
A Stueckelberg-based derivation of the LKFTs was

already realized in [76], though this analysis is restricted
to the Abelian case, with no clear generalization to the non-
Abelian case.
Up to second order in the coupling constant g, we

may write

Ah
μ ¼ Aμ − ∂μϕþ ig½Aμ;ϕ� þ

ig
2
½ϕ; ∂μϕ�

−
g2

2
ðAμϕ

2 − 2ϕAμϕþ ϕ2AμÞ

þ g2

3!
ðð∂μϕÞϕ2 − 2ϕð∂μϕÞϕþ ϕ2ð∂μϕÞÞ þOðg3Þ;

ð11Þ

or, by denoting the color index explicitly

Ah;a
μ ¼ Aa

μ − ∂μϕ
a − gfabcAb

μϕ
c −

g
2
fabcϕb∂μϕ

c

−
g2

2
DabcdðAb

μϕ
cϕd − 2ϕbAc

μϕ
d þ ϕbϕcAd

μÞ

þ g2

3!
Dabcdðð∂μϕ

bÞϕcϕd − 2ϕbð∂μϕ
cÞϕd

þ ϕbϕcð∂μϕ
dÞÞ þOðg3Þ; ð12Þ

with Dabcd ¼ 2TrðTaTbTcTdÞ.

A. The LKFT for the photon propagator
via hAh

μðpÞAh
νð− pÞi

The expression (12) can be used to expand the two-point
correlation function hAh;a

μ ðpÞAh;b
ν ð−pÞi. In the Abelian

approximation, i.e. Ah
μ ¼ Aμ − ∂μϕ, one immediately

obtains

hAh;a
μ ðpÞAh;b

ν ð−pÞiα
¼ hAa

μðpÞAb
νð−pÞiα þ hAa

μðpÞ∂νϕ
bð−pÞiα

þ h∂μϕ
aðpÞAb

νð−pÞiα þ h∂μϕ
aðpÞ∂νϕ

bð−pÞiα:
ð13Þ

The two-point correlation functions hAa
μðpÞϕbð−pÞiα and

hϕaðpÞϕbð−pÞiα are given by [47]

hAa
μðpÞϕbð−pÞiα ¼ iα

pμ

p4
δab; ð14Þ

hϕaðpÞϕbð−pÞiα ¼
α

p4
δab: ð15Þ

So, Eq. (13) becomes2

hAh;a
μ ðpÞAh;b

ν ð−pÞiα ¼ hAa
μðpÞAb

νð−pÞiα − α
pμpν

p4
δab;

ð16Þ

or, specifying to the Landau gauge, α ¼ 0,

hAh;a
μ Ah;b

ν iα¼0 ¼ hAa
μAb

νiα¼0
: ð17Þ

It is worth recalling that the transverse field Ah
μ is gauge

invariant or, equivalently, BRST invariant; see [47,49].
From this important feature it follows that the correlation
function hAh;a

μ ðpÞAh;b
ν ð−pÞiα is BRST invariant as well. As

such, it does not depend on the gauge parameter α [47,49].
Therefore,

hAh;a
μ Ah;b

ν iα ¼ hAh;a
μ Ah;b

ν iα¼0 ð18Þ

and we find

hAa
μðpÞAb

νð−pÞiα ¼ hAa
μðpÞAb

νð−pÞiα¼0
þ α

pμpν

p4
δab:

ð19Þ

Said otherwise, we simply recover the LKFT for the
photon. Of course, this result can also be easily derived
using the underlying BRST invariance of the theory, which
ensures that the longitudinal component of the gluon
propagator does not receive any quantum correction, being
given by its tree-level approximation.

B. The LKFT for the gluon propagator
via hAh

μðpÞAh
νð− pÞi

As Ah
μ is defined also for the non-Abelian case, we can

generalize the foregoing to get LKFTs for the gluon
propagator via the expansion of

hAh;a
μ ðpÞAh;b

ν ð−pÞiα ¼ hAh;a
μ ðpÞAh;b

ν ð−pÞiα¼0

¼ hAa
μðpÞAb

νð−pÞiα¼0
; ð20Þ

2Note that the partial derivations ∂μ refer to coordinate
space. A Fourier transformation of the relevant fields has
been taken, under the convention AμðpÞ ¼

R
AμðxÞeip·xdx, so

that ∂μAνðpÞ ¼ −ipμAνðpÞ.
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where, in the last step, we explicitly used that correlation
functions of Ah

μ reduce to those of Aμ in the Landau gauge
[48]. This property can be appreciated by realizing that the
field ϕa decouples in the Landau gauge, as it becomes
apparent from the vanishing of the correlation functions
hAa

μðpÞϕbð−pÞiα, hϕaðpÞϕbð−pÞiα, when α ¼ 0; see
Eq. (15). Notice also that the leading order term of the
expansion of hAh;a

μ ðpÞAh;b
ν ð−pÞiα always contains the

gluon propagator in the linear covariant gauge with gauge
parameter α.

In what follows, for the benefit of the reader, the
next-to-leading order expansion of the lhs of Eq. (20) is
given, but the contractions of the terms are left open, as
this depends on the precise action one intends to use.3

Also not included are the necessary vertex insertions in
the lowest order terms to get the complete Oðg2Þ
corrections.
Up to second order in the coupling constant, the

expansion of the correlation function hAh;a
μ ðpÞAh;b

ν ð−pÞi
is found to be4

hAh;a
μ ðpÞAh;b

ν ð−pÞi ¼ hAa
μðpÞAb

νð−pÞi þ hAa
μðpÞ∂νϕ

bð−pÞi þ h∂μϕ
aðpÞAb

νð−pÞi þ h∂μϕ
aðpÞ∂νϕ

bð−pÞi

þ gfbcd
�
−hAa

μðpÞAc
νð−pÞϕdð−pÞi þ h∂μϕ

aðpÞAc
νð−pÞϕdð−pÞi

−
1

2
hAμðpÞaϕcð−pÞ∂νϕ

dð−pÞi þ 1

2
h∂μϕ

aðpÞϕcð−pÞ∂νϕ
dð−pÞi

�

þ gfacd
�
−hAc

μðpÞϕdðpÞAb
νð−pÞi þ hAc

μðpÞϕdðpÞ∂νϕ
bð−pÞi

−
1

2
hϕcðpÞ∂μϕ

dðpÞAb
νð−pÞi þ

1

2
hϕcðpÞ∂μϕ

dðpÞ∂νϕ
bð−pÞi

�

þ g2

3!
Dbcde½hAa

μðpÞ∂νϕ
cð−pÞϕdð−pÞϕeð−pÞi − 2hAa

μðpÞϕcð−pÞ∂νϕ
dð−pÞϕeð−pÞi

þ hAa
μðpÞϕcð−pÞϕdð−pÞ∂νϕ

eð−pÞi − h∂μϕ
aðpÞ∂νϕ

cð−pÞϕdð−pÞϕeð−pÞi
þ 2h∂μϕ

aðpÞϕcð−pÞ∂νϕ
dð−pÞϕeð−pÞi − h∂μϕ

aðpÞϕcð−pÞϕdð−pÞ∂νϕ
eð−pÞi�

þ g2

3!
Dacde½h∂μϕ

cðpÞϕdðpÞϕeðpÞAb
νð−pÞi − 2hϕcðpÞ∂μϕ

dðpÞϕeðpÞAb
νð−pÞi

þ hϕcðpÞϕdðpÞ∂μϕ
eðpÞAb

νð−pÞi − h∂μϕ
cðpÞϕdðpÞϕeðpÞ∂νϕ

bð−pÞi
þ 2hϕcðpÞ∂μϕ

dðpÞϕeðpÞ∂νϕ
bð−pÞi − hϕcðpÞϕdðpÞ∂μϕ

eðpÞ∂νϕ
bð−pÞi�

−
g2

2
Dbcde½hAa

μðpÞAc
νð−pÞϕdð−pÞϕeð−pÞi − 2hAa

μðpÞϕcð−pÞAd
νð−pÞϕeð−pÞi

þ hAa
μðpÞϕcð−pÞϕdð−pÞAe

νð−pÞi − h∂μϕ
aðpÞAc

νð−pÞϕdð−pÞϕeð−pÞi
þ 2h∂μϕ

aðpÞϕcð−pÞAd
νð−pÞϕeð−pÞi − h∂μϕ

aðpÞϕcð−pÞϕdð−pÞAe
νð−pÞi�

−
g2

2
Dacde½hAc

μðpÞϕdðpÞϕeðpÞAb
νð−pÞi − 2hϕcðpÞAd

μðpÞϕeðpÞAb
νð−pÞi

þ hϕcðpÞϕdðpÞAe
μðpÞAb

νð−pÞi − hAc
μðpÞϕdðpÞϕeðpÞ∂νϕ

bð−pÞi
þ 2hϕcðpÞAd

μðpÞϕeðpÞ∂νϕ
bð−pÞi − hϕcðpÞϕdðpÞAe

μðpÞ∂νϕ
bð−pÞi�

þ g2facdfbef½hAc
μðpÞϕdðpÞAe

νð−pÞϕfð−pÞi þ 1

2
hAc

μðpÞϕdðpÞϕeð−pÞ∂νϕ
fð−pÞi

þ 1

2
hϕcðpÞ∂μϕ

dðpÞAe
νð−pÞϕfð−pÞi þ 1

4
hϕcðpÞ∂μϕ

dðpÞϕeð−pÞ∂νϕ
fð−pÞi� þOðg3Þ: ð21Þ

As already remarked, the first term of the expansion, i.e. hAa
μðpÞAb

νð−pÞi, is nothing but the gluon propagator in linear
covariant gauge with gauge parameter α.

3E.g. with or without the mass m2 present.
4We suppress the index α from here on.
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In work in progress, expression (21) will be used
to verify the just derived gluonic LKFT in perturbation
theory, thereby extending the results of [62]. Com-
parison can be made with the known perturbative results
in generic linear covariant gauge [77]. We refrain from
including this explicit verification here, since there are
actually a few dozen Feynman diagrams involved. The
main reason for this large number of diagrams is
twofold: first, there is the increasing number of vertices
when the nonlocal field Ah is expanded in g up to the
required order in the action (1), and, secondly, there are
various mixed propagators that increase the number of
possible contractions giving nontrivial contributions. We
kindly refer the interested reader to Appendix A of [46]
for an exhaustive list of all propagators in the
ðA; b;ϕ; τÞ-sector.5 Albeit complicated, this loop com-
putation does not require any further assumption or
approximation. A resummation into exponential form
might be necessary. We come back to this issue in our
concluding Sec. VI where we survey the connection
with the Nielsen identities. Depending on the employed
underlying action, the number of vertices and diagrams
can further grow. Let us mention here that the operators
Ah
μ and Ah

μAh
μ have also been shown to be fully

renormalizable when working with the (refined)
Gribov-Zwanziger effective action [49]. This ensures
that the operator −∂μDμðAhÞ, see also the discussion
below Eq. (9), is positive when performing the path
integration over the gauge configurations. This fact
guarantees that one would actually be considering, at
the level of expectation values, those gauge fields Ah

which correspond to a minimum of the functionalR
d4xAu

μAu
μ. Taking all these considerations into account,

it should be clear that any formal LKF relation in
this paper remains fully valid if we prefer to work with
the (refined) Gribov-Zwanziger action when explicitly
evaluating the necessary expectation values, of course
at the cost of introducing further computational
complexity.

C. The gauge invariant fermion fields
and associated LKFT

In the matter sector, the fermion fields also have a gauge
invariant counterpart, namely [46,64]

ψh ¼ h†ψ ; ð22Þ

with h being still defined via Eq. (6), using the same ϕa, but
now coupled to the generators of the fundamental repre-
sentation. Clearly, ψh is gauge invariant per construction.
This feature can be explicitly verified by combining the
gauge transformation of the fermion field

ψ → U†ψ ð23Þ
and Eq. (7).
The renormalizability of the composite operator ψh,

although not yet fully established, can be achieved along
the same lines of the proof of the renormalizability of the
operator Ah [47,49]. Even if this is technically challenging,
we do not expect major conceptual issues to occur in the
fermion sector when compared to the gluon Ah

μ case.
In principle, ψh can be expanded in powers of the ϕ-field

as before, yielding

ψh ¼ ψ − igϕψ −
g2

2
ϕ2ψ þOðg3Þ: ð24Þ

D. The LKFT for general n-point functions

Overall, when the gauge invariance is translated into the
corresponding BRST symmetry [47,49], it turns out that
the correlation functions of gauge invariant quantities like,
for instance, hAh

μ…ψh…ψ̄h…iα, are independent from the
gauge parameters. Therefore, for a general n-point func-
tion, it must hold that

hAh
μ…ψh…ψ̄h…iα ¼ hAh

μ…ψh…ψ̄h…iα0 ð25Þ

as all entering variables are explicitly gauge invariant. At
first order this becomes

D
Aμ − ∂μϕþ ig½Aμ;ϕ� þ

ig
2
½ϕ; ∂μϕ�…ψ − igϕψ…ψ̄ þ igϕψ̄…

E
α

¼
D
Aμ − ∂μϕþ ig½Aμ;ϕ� þ

ig
2
½ϕ; ∂μϕ�…ψ − igϕψ…ψ̄ þ igϕψ̄…

E
α0
:

Proceeding as before, in the gluon sector, we can always
connect to α0 ¼ 0 (i.e., the Landau gauge), thereby replac-
ing Ah

μ by Aμ.
Let us have a closer look at the fermion sector to

illustrate what happens there. We specify to the fermion
propagator. Using the gauge symmetry,

hψ̄hðxÞψhðyÞiα ¼ hψ̄hðxÞψhðyÞiα¼0; ð26Þ

the transformation of the ψ̄ψ-propagator can be
expressed as

hψ̄ðxÞeigϕðxÞe−igϕðyÞψðyÞiα ¼ hψ̄ðxÞeigϕðxÞe−igϕðyÞψðyÞiα¼0

¼ hψ̄ðxÞψðyÞiα¼0; ð27Þ5The field ϕ is denoted by ξ in the latter reference.
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where we used that ∂A ¼ 0 in the Landau gauge. The
relation (27) can be equivalently written as

hψ̄ðxÞψðyÞiα ¼ hψ̄ðxÞe−igϕðxÞeigϕðyÞψðyÞiα¼0 ð28Þ

which is nothing else than the conventional LKFT for the
fermion propagator; see for instance [55–57,62].
In the standard Abelian works on LKFTs, the rhs of

Eq. (28) is usually factorized into

hψ̄ðxÞψðyÞiα ¼ hψ̄ðxÞψðyÞiα¼0he−igϕðxÞeigϕðyÞiα¼0; ð29Þ

with

hϕðpÞϕð−pÞi ¼ −α
1

p4
: ð30Þ

We come back in detail to this issue in the next section.

IV. LFKTS FROM THE PATH INTEGRAL:
THE ABELIAN CASE

In what follows, we refresh the direct path integral
derivation of the Abelian LKFT, which is a kind of
rewriting of the original argument provided in [55,56] in
a more modern language. In the next section, we generalize
this derivation to the non-Abelian case, at the cost of adding
several complications of course.
Consider for now the QED action

S ¼
Z

d4x

�
1

4
FμνFμν þ ψ̄ =Dψ þ ib∂μAμ

þ α

2
b2 þ c̄∂2cþ J̄ψψ þ ψ̄Jψ̄

�
; ð31Þ

where we included sources for ψ and ψ̄ to define the
generating functional of Green functions, ZðJÞ, via the path
integral6

ZðJÞ ¼
Z

½dμ�e−S: ð32Þ

Next, we transform the path integral variables A, ψ , and ψ̄
using the gauge transformation

U ¼ eieϕ; ð33Þ

Aμ → A0
μ ¼ Aμ − ∂μϕ; ð34Þ

ψ → ψ 0 ¼ U†ψ ð35Þ

and we select

ϕ ¼ −X
1

∂2
∂μAμ; ð36Þ

where the constant X can still be chosen appropriately; see
later. The gluon field transforms as

Aμ → A0
μ ¼ Aμ þ X

1

∂2
∂μ∂νAν ð37Þ

and so

∂μA0
μ ¼ ð1þ XÞ∂μAμ: ð38Þ

When we perform the following transformation on the
Lagrange multiplier b,

b → b0 ¼ 1

1þ X
b; ð39Þ

and redefine the gauge parameter via

α → α0 ¼ ð1þ XÞ2α; ð40Þ

the action, up to its source part, is transformed into itself,
except that the gauge parameter α gets replaced by α0.
Importantly, also the source terms vary; more precisely we
end up with

S0 ¼
Z

d4x

�
1

4
FμνFμν þ ψ̄ 0=Dψ 0 þ ib0∂μA0

μ þ
α0

2
b02

þ c̄∂2cþ J̄ψUψ 0 þ ψ̄ 0U†Jψ̄

�
: ð41Þ

It is consequently found that the ϕ-propagator has the
expected form [56,57,62]

hϕðpÞϕð−pÞiα0 ¼ −
X2

ð1þ XÞ2
pμ

p2

pν

p2
hA0

μðpÞA0
νð−pÞiα0

ð42Þ

¼ −
X2

ð1þ XÞ2
pμ

p2

pν

p2
α0
pμpν

p4
ð43Þ

¼ −
X2

ð1þ XÞ2 α
0 1
p4

ð44Þ

¼ −X2α
1

p4
: ð45Þ

Starting from any gauge α, if we take the limit X → −1 we
arrive at the Landau gauge α0 ¼ 0, while the ϕ-propagator
remains proportional to 1

p4. This rather singular behaviour is

6We consider here the complete Green functions obtained by
differentiating ZðJÞ with respect to the source J, though the
conclusions immediately go through for the connected Green
functions as well when ZðJÞ is replaced by the corresponding
generator ZcðJÞ via the usual identification ZðJÞ ¼ e−Z

cðJÞ.
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fundamental to correctly transform the longitudinal pro-
jection of the gluon propagator. We recall here that the latter
projection is uniquely fixed by means of the underlying
Ward identities, i.e. the BRST invariance as well as other
additional Ward identities defining the class of linear
covariant gauges at the quantum level; see for in-
stance [2,47].

A. Application to the fermion propagator

The relevant partition function is given by

Zα ¼
Z

½dμ�e−S ð46Þ

and, after the earlier described path integral variable
transformation, by

Zα0 ¼
Z

½dμ�e−S0 ; ð47Þ

with S and S0 given by Eqs. (31) and (41). We assume that
the measure remains invariant, a feature which is proven
explicitly in the next section. Let us emphasize that

Zα ≡ Zα0 : ð48Þ

The fermion propagator is found by deriving Zα with
respect to Jψ̄ and J̄ψ ,

hψ̄ðxÞψðyÞiα ¼
δ2Zα

δJ̄ψðyÞδJψ̄ ðxÞ
ð49Þ

¼
Z

½dμ�ψ̄ðxÞψðyÞe−S: ð50Þ

Moreover, from Eq. (48), it is also given by

hψ̄ðxÞψðyÞiα ¼
δ2Zα0

δJ̄ψðyÞδJψ̄ðxÞ
ð51Þ

¼
Z

½dμ�ψ̄ 0ðxÞU†ðxÞUðyÞψ 0ðyÞe−S0 : ð52Þ

When ϕ is a free field, it is evidently possible to factorize

hψ̄ðxÞψðyÞiα ¼ hψ̄ 0ðxÞψ 0ðyÞiα0 hU†ðxÞUðyÞiα0 : ð53Þ

We may ask ourselves if this is still the case when the ϕ-
field couples to A. The propagator in the new gauge
becomes

hψ̄ 0ðxÞe−ieX
1þX

1

∂2∂μA0
μðxÞe

ieX
1þX

1

∂2∂νA0
νðyÞψ 0ðyÞiα0 : ð54Þ

In the next step we expand the exponentials. In first order,
this becomes the hψ̄ψi-propagator. In second order we

obtain, upon inclusion of a single fermion-gauge boson
vertex,Z

d4z
−ieX
1þ X

ðieγνÞhψ̄ 0ðzÞψ 0ðyÞiα0 hψ̄ 0ðxÞψ 0ðzÞiα0

×

�
1

∂2
∂μA0

μðxÞA0
νðzÞ

�
α0

ð55Þ

which might spoil the above-mentioned factorization.
Notice, however, that expression (55) is proportional to

X
1þ X

α0 ¼ X
ffiffiffiffiffiffiffi
αα0

p
: ð56Þ

The α0 in the lhs of Eq. (56) arises from the longitudinal part
of the gauge boson propagator, hidden in the last factor of
Eq. (55). In the Landau gauge, i.e. α0 ¼ 0 from X → −1,
this term disappears and we are effectively able to factorize
this expectation value as in Eq. (29). This also holds at
higher orders, since any contraction of a gauge field A from
a vertex with a field A lurking in the exponential of ϕ
always vanishes in the Landau gauge, similarly to what was
just illustrated.

B. Application to the photon propagator

We can also investigate the photon propagator. Therefore,
we add the term

R
d4xJμAμ to the action, so that

hAμðxÞAνðyÞiα ¼
δ2Zα

δJνðyÞδJμðxÞ
ð57Þ

in the original gauge.
This extra source term in the Lagrangian transforms as

JμAμ → JμðA0
μ þ ∂μϕÞ ð58Þ

¼ Jμ

�
A0
μ −

X
1þ X

1

∂2
∂μ∂νA0

ν

�
: ð59Þ

From this, we find for the photon propagator

DðαÞ
μν ðp2Þ ¼ hAμðpÞAνð−pÞiα ð60Þ

¼
��

A0
μðpÞ−

X
1þX

1

∂2
∂μ∂αA0

αðpÞ
�

×
�
A0
νð−pÞ−

X
1þX

1

∂2
∂ν∂βA0

βð−pÞ
��

α0
ð61Þ

¼ Dðα0Þ
μν ðp2Þ þ

�
−2α0

X
1þ X

þ α0
X2

ð1þ XÞ2
�
Lμν

p2

ð62Þ

¼ Dðα0Þ
μν ðp2Þ − α

�
α0

α
− 1

�
pμpν

p4
: ð63Þ
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We used α0 ¼ αð1þ XÞ2 and the standard photon propa-
gator decomposition in a general linear gauge,

hAμðpÞAνð−pÞiα ¼ DðαÞ
μν ðp2Þ ¼ Δðp2ÞPμν þ

α

p2
Lμν; ð64Þ

with the transversal and longitudinal projectors

Pμν ¼ δμν −
pμpν

p2
; ð65Þ

Lμν ¼
pμpν

p2
: ð66Þ

Clearly, Eq. (64) expresses that only the longitudinal part of
the photon propagator is affected by shifting α → α0, as it is
well known in the Abelian case.

V. LFKT FROM THE PATH INTEGRAL:
THE NON-ABELIAN CASE

We now generalize the foregoing path integral derivation
of the LKFTs to a non-Abelian gauge theory supplemented
with fermion matter.
We must first establish a general SUðNÞ transformation

with matrix U ¼ eigϕ for all fields, namely, gauge, matter
and Faddeev-Popov ghosts, while maintaining the property
that ∂μA0

μ ¼ ð1þ XÞ∂μAμ. This is a necessary requirement,
as it precisely allows for the rescaling of the Lagrange
multiplier b, and thereby for that of the gauge parameter α.
As before, ϕ ¼ ϕaTa.
The gauge and matter fields transform as

Aμ → A0
μ ¼ U†AμU þ i

g
U†∂μU; ð67Þ

ψ → ψ 0 ¼ U†ψ ; ð68Þ

U ¼ eigϕ ¼ 1þ igϕ −
g2

2
ϕ2 þOðϕ3Þ: ð69Þ

Now, if we let the Faddeev-Popov ghosts transform in the
adjoint representation,

c → U†cU; ð70Þ

c̄ → U†c̄U; ð71Þ

we obtain

c̄∂μDμc → c̄∂μDμcþ c̄Uð∂μU†ÞDμcþ c̄Dμcð∂μUÞU†:

ð72Þ

This variation can be reabsorbed by means of the shift

c → c0 ¼ cþ 1

∂μDμ
Uð∂μU†ÞDμcþ

1

∂μDμ
Dμcð∂μUÞU†:

ð73Þ

Doing so, we obtain the original action, but now with the
changed gauge parameter α0.
Concretely, let us expand the transformation (67) to

second order in the fields,

A0
μ ¼ Aμ − ∂μϕ − igϕAμ þ igAμϕþ igϕ∂μϕ −

ig
2
∂μϕ

2

þOðfields3Þ ð74Þ

¼ Aμ − ∂μϕþ ig½Aμ;ϕ� þ
ig
2
½ϕ; ∂μϕ� þOðfields3Þ; ð75Þ

thence we impose that

∂μA0
μ ¼ ∂μAμ − ∂2ϕþ ig½Aμ; ∂μϕ� þ ig½∂μAμ;ϕ�

þ ig
2
½ϕ; ∂2ϕ� þOðfields3Þ ð76Þ

≡ ð1þ XÞ∂μAμ ð77Þ

and so we require

∂2ϕ ¼ −X∂μAμ þ ig½Aμ; ∂μϕ� þ ig½∂μAμ;ϕ�

þ ig
2
½ϕ; ∂2ϕ� þOðfields3Þ: ð78Þ

At first order this gives

ϕ ¼ −X
1

∂2
∂μAμ; ð79Þ

which is nothing but the Abelian result. Solving iteratively
for ϕ in powers of Aμ, we get

ϕ ¼ −X
1

∂2
∂μAμ − igX

1

∂2

�
Aμ;

1

∂2
∂μ∂νAν

�

− igX
1

∂2

�
∂νAν;

1

∂2
∂μAμ

�
þ igX2

2

1

∂2

�
1

∂2
∂μAμ; ∂νAν

�

þOðA3Þ: ð80Þ

Using this solution, we can calculate A0
μ as a function of the

original Aμ,

A0
μ ¼ Aμ þX

∂μ∂A
∂2

− igX
∂μ

∂2

�∂ν∂A
∂2

;Aν

�

− igX
∂μ

∂2

�∂A
∂2

;∂A
�
−
igX2

2

∂μ

∂2

�∂A
∂2

;∂A
�

þ igX

�∂A
∂2

;Aμ

�
þ igX2

2

�∂A
∂2

;
∂μ∂A
∂2

�
þOðA3Þ: ð81Þ
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Note that for the Landau gauge, X ¼ −1, this expression
coincides with the gauge invariant transversal field Ah

μ; see
e.g. [47]. In general, A0

μ is not transversal though.
Denoting the color dependence explicitly, this equation

becomes

A0a
μ ¼ Aa

μ þ X
∂μ∂Aa

∂2
− igXfabc

∂μ

∂2

�∂ν∂Ab

∂2
Ac
ν

�

− igXfabc
∂μ

∂2

�∂Ab

∂2
∂Ac

�
−
igX2

2
fabc

∂μ

∂2

�∂Ab

∂2
∂Ac

�

þ igXfabc
∂Ab

∂2
Ac
μ þ

igX2

2
fabc

∂Ab

∂2

∂μ∂Ac

∂2
þOðA3Þ:

ð82Þ

This functional relation can be inverted to find the old fields
in terms of the new. Using ∂A0 ¼ ð1þ XÞ∂A we obtain

Aμ ¼ A0
μ −

X
1þX

∂μ∂A0

∂2
þ igX
1þ X

∂μ

∂2

�∂ν∂A0

∂2
; Aν

�

þ igX
ð1þ XÞ2

∂μ

∂2

�∂A0

∂2
;∂A0

�
þ igX2

2ð1þ XÞ2
∂μ

∂2

�∂A0

∂2
;∂A0

�

−
igX
1þX

�∂A0

∂2
; Aμ

�
−

igX2

2ð1þ XÞ2
�∂A0

∂2
;
∂μ∂A0

∂2

�

þOðA3Þ: ð83Þ

Again, in first order we find the Abelian result

Aμ ¼ A0
μ −

X
1þ X

∂μ∂A0

∂2
: ð84Þ

Up to second order we find the old A-field as a function of
the new

Aμ ¼ A0
μ −

X
1þ X

∂μ∂A0

∂2
þ igX
1þ X

∂μ

∂2

�∂ν∂A0

∂2
; A0

ν

�
−

igX2

ð1þ XÞ2
∂μ

∂2

�∂ν∂A0

∂2
;
∂ν∂A0

∂2

�
þ igX
ð1þ XÞ2

∂μ

∂2

�∂A0

∂2
; ∂A0

�

þ igX2

2ð1þ XÞ2
∂μ

∂2

�∂A0

∂2
; ∂A0

�
−

igX
1þ X

�∂A0

∂2
; A0

μ

�
þ igX2

ð1þ XÞ2
�∂A0

∂2
;
∂μ∂A0

∂2

�
−

igX2

2ð1þ XÞ2
�∂A0

∂2
;
∂μ∂A0

∂2

�
þOðA3Þ

ð85Þ

which constitutes the generalization of Eq. (58). When
applied to the source term, we can perform a similar
derivation to get an explicit connection between the gluon
propagator in two different linear covariant gauges, para-
metrized by α and α0. Since the expression in the rhs of
Eq. (85) is not restricted to terms containing a space-time
derivative ∂μ beyond leading order, this implies that the
transformation (85) is also affecting the transversal com-
ponent of the gluon propagator. In particular, when trans-
forming to the Landau gauge, it is clear that we recover the
same transformation law as obtained in Sec. III A.
Given that we have constructed ϕ in full generality, we

can also easily construct the non-Abelian transformation
law for the fermion propagator. In fact, the analysis leading
to Eq. (51) can be mostly taken over; thus we find

hψ̄ðxÞψðyÞiα ¼ hψ̄ 0ðxÞU†ðxÞUðyÞψ 0ðyÞiα¼0 ð86Þ

¼ hψ̄ 0ðxÞe−igϕðxÞeigϕðyÞψ 0ðyÞiα¼0: ð87Þ

As expected, this non-Abelian LKFT law is in perfect
agreement with the alternative derivation with the gauge
invariant fermion field ψh that resulted in Eq. (28). For
completeness, in the Landau gauge, the factorization into

hψ̄ðxÞψðyÞiα ¼ hψ̄ 0ðxÞψ 0ðyÞiα¼0he−igϕðxÞeigϕðyÞiα¼0 ð88Þ

still holds, following the same logic as in the Abelian case.
It is important to realize here the inherent complication
compared to the Abelian case: the LKF field ϕ is now an
infinite series, represented by Eq. (80). This is important, in
particular, for the renormalizability of the whole construc-
tion; see also the comments in Sec. II and [47,49]. As such,
our construction is more general than that explored in [62],
where higher order corrections to the quark propagator
LKFTwere explored, though keeping the Abelian approxi-
mation for the fields ϕa. We have now unraveled that a self-
consistent approach requires adding more and more terms
to ϕa as the perturbative order increases.
Before turning to our conclusions and giving an outlook

to follow-up work, there is a subtle point we did not address
so far. In order that Zα ¼ Zα0 , we used that the action
remains invariant under the applied transformations. At the
level of the path integral, in order for our derivation to be
correct, we also need that the integration measure remains
invariant,

½dμ� ¼ ½dμ0�; ð89Þ

i.e., that there is no Jacobian. We do not expect a nontrivial
Jacobian, since we already derived the transformations
using the gauge invariant h-fields without encountering any
differences with the rederivation via path integral tools and
deliberate omittance of the Jacobian. Though, to be sure, let
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us also verify this explicitly. More precisely, we show that
the super-Jacobian7 of the transformation,

J ¼
�
A0a
μ ; c0a; c̄0a

Ab
ν ; cb; c̄b

�
¼

�
A B

C D

�
; ð90Þ

is trivial. The superdeterminant is given by

sdet
�
A B

C D

�
¼ detAþBD−1C detD−1: ð91Þ

The transformation of the gluon fields Aμ is independent of
c and c̄, resulting in C ¼ 0 and we see that the super-
determinant collapses to the product of the individual
determinants.
For the gluons, using Eq. (82), the argument of this

determinant can be calculated (in what follows only the
color dependence concerns us),

δA0a
μ

δAb
ν
¼ δabCþ fabcD: ð92Þ

The infinitesimal transformation in the ghost sector,
Eq. (70), is found to be

δca ¼ −igfabcϕbcc; ð93Þ

δc̄a ¼ −igfabcϕbc̄c; ð94Þ

and thence the matrix D becomes

�
δab − igfacbϕc 0

0 δab − igfacbϕc

�
; ð95Þ

which also leads to trivial 1 when taking the determinant.
Finally, the shift of Eq. (73) evidently comes with a trivial
Jacobian.

VI. CONCLUSIONS AND OUTLOOK

We have employed the gauge invariant fields Ah
μ and ψh

to provide an alternative way to derive the LKFTs for
general n-point correlators. This derivation was first per-
formed for the Abelian LKFT for the photon and fermion
fields. It reproduced the correct relations as already known
from the literature. The extension to non-Abelian theories
was then presented. To our knowledge, this is the first time
in which the non-Abelian LKFTs have been derived for
arbitrary n-point correlators without any approximation.
To lend further credit to the validity of our non-Abelian

LKFTs, we also presented an independent derivation of the

LKFTs, from the viewpoint of the path integral formalism,
leading to exactly the same transformations.
Specifically, considering the gluon and quark propaga-

tors for an SUðNÞ non-Abelian gauge theory, such as QCD,
leads to the relations (20), (21) and (88). Although these
non-Abelian LKFTs do look (and are) nonlocal in nature,
we stress here that our framework can be cast in a fully
local, and even renormalizable formulation. This claim
follows from the observation that the gauge invariant
composite operator Ah

μ is renormalizable, as discussed in
[47,49]. The key is using the algebraic renormalization
formalism based on a Stueckelberg-like reformulation of
Ah
μ, in which case the field ϕ is kept as a basic field with its

corresponding propagator given by Eq. (30). A delicate
point is the potential occurrence of infrared singularities
when such a propagator is explicitly used in d ¼ 4.
However, this can be overcome in a BRST consistent
fashion by introducing a regulating mass in the ϕ-sector
that is to be sent to 0 at the end of any calculation [47–49];
see also [78]. Details on this are presented in a work in
progress, where the one loop explicit check in terms of
Feynman diagrams will be worked out.
Let us discuss the prospect of applying these non-

Abelian LKFTs to nonperturbative functional studies of
QCD, in particular, related to its constituent gluon and
quark dynamics, followed by their role in the Bethe-
Salpeter and Faddeev equations, usually employed to study
the bound state spectrum of QCD. In the short run, a
perturbative verification of our formalism is planned. The
gauge invariance of chiral quark condensate, associated
primarily with the quark propagator, may be a next
relatively more involved problem.
In the long run, a comprehensive study of hadronic

observables through DSEs and establishing their strict
gauge invariance would be highly desirable, thus raising
this formalism to a higher level of credibility and accep-
tance. In this connection, as already mentioned in the
introduction, till now such efforts have been mostly
restricted to the Landau gauge. Several (constrained)
Ansätze have been put forward, with increasing complexity,
each time making improved contact with phenomenology
[79] and also with underlying QCD dynamics [80]. The
validity of such Ansätze at the level of gauge covariance,
and ultimately gauge invariance, is crucial. An ideal goal is
to construct Ansätze in a generic linear covariant gauge
parametrized in terms an arbitrary value of α, either
explicitly or through the defining entities of different
Green functions. Not only should such Ansätze abide by
the key symmetries of QCD but they should also stand firm
against any explicit check to what extent physical quantities
are effectively gauge invariant. This is a prohibitively
daunting task, as is evident in the much simpler QED
studies as well; see [50–54]. However, we must realize that
even if we now have access to the non-Abelian LKFTs, our
construction has been cast in a perturbative form, viz.

7As we have a mix of commuting and anticommuting
variables, we must consider the super-Jacobian (Berezinian).
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determined by the infinite series expansion of the gauge
invariant variables Ah

μ (or ψh) in the field ϕ. An intrinsically
nonperturbative setup would require one to work with the
matrix field h introduced in Eq. (6), and its exact quantum
behavior. This does not appear feasible at the moment
within our approach. So we may have to resort to an
approximate framework. Given that e.g. Dyson-Schwinger
equations anyhow require a truncation at finite order (i.e.
finite number of n-point interactions), one could restrict to
the four-point level expansion, which includes the three-
point and four-point gluon vertices, the three-point ghost-
gluon vertex and three-point quark-gluon vertex. For each
of these vertices in Landau gauge, several results are
available in the literature from a variety of sources; see
[81–87] for a small and thus incomplete selection. The
rigorous formalism developed in the current paper can be
applied to get corresponding vertices in another gauge. At
first instance, this can be done in perturbation theory,
thereby extending the work of [24,62]. This might be more
realistic than a priori expected, as it is conceivable that the
relevant nonperturbative infrared physics, hiding in gauge
variant interaction vertices and resulting in gauge-invariant
physical observables, may have the gauge dependent pieces
of a perturbative nature, not necessarily or easily summable
in a closed form. Though seemingly an interesting view-
point, it needs closer scrutiny and further exploration.
This being said, it is well known that the contemporary

way to deal with issues related to the gauge covariance is
via the powerful BRST invariance [88–91], or more
precisely via its functional representation, the Slavnov-
Taylor identity. From the latter, it is not only possible to
derive various relations between different correlation func-
tions in a fixed gauge, but also how n-point functions vary
in terms of the gauge parameter. The latter relations are
encoded in the Nielsen identities [92–94], which follow
directly from the Slavnov-Taylor identity. Given that the
original LKFTs predate the BRST construction by about
two decades, one cannot help but wonder if it would not be
possible to construct such transformations directly from
the Nielsen identities, which after all have the same goal
as the LKFTs: a mathematical way to write down how
n-point functions change under a changing gauge param-
eter. In recent work [48], the Nielsen identity and its

consequences in relation to the gauge invariant propagator
hAh

μðpÞAh
νð−pÞi were already discussed. As a corollary, we

derived the Abelian LKFT for the photon from the
integrated version of the photon propagator’s Nielsen
identity. Moreover, in a recent work, LKFT have been
employed to show the gauge invariance of the electron pole
mass in QED, something that was proved through the
corresponding Nielsen identities earlier [95]. We are now
aiming at exploring how this can be generalized to the non-
Abelian case, thereby hopefully uncovering new powerful
uses of the Nielsen identities. For example, when integrated
with respect to the gauge parameter, the Nielsen identity
automatically leads to an exponential factor connecting the
propagators in different linear gauges. Such a relation was
hinted at in [62] but not yet proven in the non-Abelian case.
The Nielsen identities also naturally provide a factorization
between the propagator in Landau gauge and that of any
other linear covariant gauge. An illustrative representation
of this fundamental property can be found in [48], Sec. 4.4.
In the case of the fermion propagator, this property is
already clear from the result (88), but in the gauge sector,
this is not immediately seen from Eq. (21). These and other
matters are discussed in a forthcoming work, including the
introduction of a unifying framework to discuss LKFTs
and Nielsen identities. In this context, it is also interesting
to point out that the Nielsen identities were also explored
in [40] in relation to a dynamical mass generation in
linear covariant gauges in a Dyson-Schwinger framework,
thereby uncloaking certain subtleties that deserve further
attention.
Overall, it should be clear that the current article is a first

preliminary step in our rigorous formalism that can be
extended in several directions, as sketched above.
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