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We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model,
where the mean field approximation is compared to the renormalized version for quarks and mesons. In a
combined approach at finite temperature, all the renormalized versions show a crossover transition. The
inclusion of different renormalization scales leave the order parameter and the mass spectra nearly
untouched but strongly influence the thermodynamics at low temperatures and around the phase transition.
We find unphysical results for the renormalized version of mesons and the combined one.
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I. INTRODUCTION

Since QCD is non-perturbative in the low energy regime,
effective theories and models based on the QCD
Lagrangian and its properties have to be utilized [1–4].
The QCD Lagrangian possesses an exact color and flavor
symmetry for Nf massless quark flavours [5–11], and
chiral symmetry controls the hadronic interactions in the
low energy regime [12,13]. At high temperatures or
densities chiral symmetry is expected to be restored
[14,15]. In general, the interaction can be modeled by
the exchange of scalar, pseudoscalar, and vector mesons
[16]. If one adopts the linear sigma model [17,18] for quark
interactions, it is referred to as the chiral quark-meson
model [10,19–22], which is well studied [23–30]. Its
advantage in comparison to other chiral effective models
like the Nambu-Jona-Lasinio (NJL) model [31–34] lies in
its renormalizability. Renormalizability takes into account
the contribution of vacuum fluctuations [23,35–37]. Works
which included the vacuum term by using the renormal-
ization group flow equations focused in particular on the
neighborhood of critical points [2,21,38,39].
In this article, we study quarks, by using a chiral

SU(2) quark-meson model within the path integral formal-
ism, and mesons, which are examined within the 2PI
formalism, within a combined approach. We investigate
this approach also in the mean field approximation and
consider the vacuum term contribution, which depends on a

renormalization scale resulting from the inclusion of the
meson fields.
Besides the order parameter and the masses of the sigma

and the pion, we study thermodynamical quantities. In all
cases studied, the masses of the pion and the sigma meson
start to be degenerate around the phase transition, which is
defined by the order parameter. The impact of the meson
contribution on the order parameter and mass is compa-
ratively small, whereas thermodynamic quantities are
strongly influenced. At low temperatures, the impact of
the mesonic contribution is substantial within the com-
bined approach. In our approach, we vary the mass of the
sigma meson in the range 500 ≤ mvac

σ ≤ 900 MeV. For the
standard value of mσ ¼ 550 MeV we find a smooth
chiral crossover phase transition around the critical temper-
ature Tc ≃ 155 MeV [2,29]. We compare our studies
for the quark fields with works from Refs. [23–25] and
for the mesonic fields with works from Refs. [26–29]. In
the combined approach, we compare our results with the
work from Ref. [2], in which the authors derive an effective
action for the meson fields and linearize it around the
ground state.
We find that the renormalization scale cancels when

considering the SU(2) quark-meson model for the quark
fields, and the inclusion of the vacuum term shifts the phase
transition to larger temperatures. The combined model is
dependent on the renormalization scales. Hence, a com-
bined model for quarks and mesons is only acceptable in
the mean field approximation.

II. GENERAL CONSIDERATIONS

Before going into more details, we briefly sketch a
general consideration to show that the approach used is
thermodynamically consistent. A general ansatz for the
effective action Γ½ϕ; G;Q� according to [2,26,40,41] is
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Γ½ϕ; G;Q� ¼ I½ϕ� − 1

2
TrðlnG−1Þ − 1

2
TrðD−1G − 1Þ

þ TrðlnQ−1Þ þ TrðS−1Q − 1Þ
þ Γ2½ϕ; G;Q�; ð1Þ

where ϕ represents the fields involved, and I½ϕ� is the
classical action or the tree-level potential. G is the full
propagator andD−1 the inverse tree-level propagator for the
mesons. Q is the full propagator and S−1 the inverse tree-
level propagator for the quarks. Γ2½ϕ; G;Q� is the contri-
bution from the two-particle irreducible diagrams, which in
our case only depends on the fields and the full propagator
of the mesons, i.e. Γ2½ϕ; G�; see also Fig. 2.
In the absence of sources, the stationary conditions

determine the vacuum expectation values of ϕ. They read

δΓ½ϕ; G;Q�
δϕ

¼ δI½ϕ�
δϕ

−
1

2
Tr

�
δD−1

δϕ
G

�

þ Tr

�
δS−1

δϕ
Q

�
þ δΓ2½ϕ; G�

δϕ
¼ 0; ð2Þ

δΓ½ϕ; G;Q�
δG

¼ −
1

2
D−1 þ 1

2
G−1 þ δΓ2½ϕ; G�

δG
¼ 0; ð3Þ

δΓ½ϕ; G;Q�
δQ

¼ −Q−1 þ S−1 ¼ 0: ð4Þ

Since no contribution from Γ2½ϕ; G� to the stationary
conditions occurs for the quark propagator Q, no diagrams
containing a quark propagator within a meson loop appear
within our approach. Hence, it is justified to evaluate the
potentials independently, and the respective gap equations
in the combined approach are consequently additive.
In the following, we briefly sketch the derivation of the

individual approaches to finally combine them.

III. QUARK-QUARK INTERACTION

A Lagrangian with Nf ¼ 2 respecting quark fields may
be written as [19,20,26,27]

L ¼ Lq þ Lm −Uðσ; π⃗Þ ð5Þ

¼ Ψ̄ði=∂ − gðσ þ iγ5τ⃗ · π⃗ÞÞΨ ð6Þ

þ 1

2
ð∂μσ∂μσ þ ∂μπ⃗∂μπ⃗Þ −Uðσ; π⃗Þ; ð7Þ

where g ¼ mq;vac=fπ is a Yukawa type coupling to the
quark spinors Ψ. Here, mq;vac is the constituent quark
mass chosen to be 300 MeV and fπ ¼ 92.4 MeV the pion
decay constant [11]. Uðσ; π⃗Þ is the tree-level potential and
is given as

Uðσ; π⃗Þ ¼ λ

4
ððσ2 þ π⃗2Þ − v2Þ2 −Hσ; ð8Þ

with the coupling λ and the mass term m ¼ −λv2. The
term H breaks chiral symmetry explicitly and is therefore
responsible for the nonvanishing mass of the pion
[19,20,42–44]. The grand canonical potential is commonly
derived with the path integral formalism [2,39,45–48]
and reads

Ωq̄q ¼ Uðσ; π⃗Þ þ Ωth
q̄q þ Ωvac

q̄q ð9Þ

¼ λ

4
ðσ þ π⃗Þ4 þm2

2
ðσ þ π⃗Þ2 þ λv4

4
−Hσ ð10Þ

−NfNcT
Z

∞

0

dk3

ð2π3Þ ½ln ð1þ e−βðEk�μfÞÞ� ð11Þ

−NfNcT
Z

∞

0

dk3

ð2π3Þ
�
E
T

�
: ð12Þ

Here, Nc ¼ 3, the single particle energy

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m̃2

f

q
with m̃f ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ π⃗2

p
ð13Þ

as the effective mass, and μf, as the flavor dependent quark
chemical potential, have been introduced. The term of line
(12) represents the contribution due to vacuum fluctuations.
Solutions are then obtained by solving

∂Ωq̄q

∂σ ¼! 0; ∂2Ωq̄q

∂σ2 ¼ mσ; and
∂2Ωq̄q

∂π⃗2 ¼ mπ⃗; ð14Þ

also known as gap equations. The derivatives read

∂Ωth
q̄q

∂σ
����
T¼μ¼0

¼ ∂Uðσ; π⃗Þ
∂σ

����
π⃗¼0

¼ λðσ2 − v2Þσ −H ð15Þ

∂Ωth
q̄q

∂π⃗
����
T¼μ¼0

¼ ∂Uðσ; π⃗Þ
∂π⃗

����
π⃗¼0

¼ λðπ⃗2 þ σ2 − v2Þπ⃗: ð16Þ

Equation (15) gives the minimum of the potential, which is
identified as the ground state of a particle. Note that
Eq. (16), i.e. the first derivative of Ωth

q̄q with respect to
π⃗, yields zero. This is reasonable since the π⃗ does not
condensate due to its negative parity. The vacuum expect-
ation value of the sigma field is the pion decay constant, fπ ,
which is an input parameter. The second derivatives read
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∂2Ωth
q̄q

∂σ2
����
T¼μ¼0

¼ ∂U2ðσ; π⃗Þ
∂σ2

����
π⃗¼0

¼ λð3σ2 − v2Þ ¼ m2
σ;vac: ð17Þ

∂2Ωth
q̄q

∂π⃗2
����
T¼μ¼0

¼ ∂U2ðσ; π⃗Þ
∂π⃗2

����
π⃗¼0

¼ 0

¼ λðσ2 − v2Þ ¼ m2
π;vac: ð18Þ

and yield the respective mass spectrum of the particles,
which we used as input parameters to determine λ, v2, and
H; see also [30]. Using Eqs. (15), (17), and (18), one can
extract the values for

λ ¼ m2
σ −m2

π

2f2π
; ð19Þ

v2 ¼ f2π −
m2

π

λ
or v2 ¼ 3f2π −

m2
σ

λ
; ð20Þ

H ¼ m2
πfπ ð21Þ

in the vacuum.
The vacuum parameters can be found in Table II.

A. Regularization for the quark fields

Taking into account vacuum fluctuations needs regulari-
zation schemes [2,26,27,35]. To regularize the divergen-
cies, we use dimensional regularization.
The vacuum term in Eq. (9) [Eq. (12)] is, to lowest order,

just the one-loop effective potential at zero temperature
and reads in d ¼ 3 − 2ϵ dimensions, where lim ϵ → 0,
regularized [35]

Ωvac
q̄q ¼ NcNf

16π2
m̃4

f

�
1

ϵ
−
1

2

�
−3þ 2γ þ 4 ln

�
m̃f

2
ffiffiffi
π

p
Λ

���
:

ð22Þ

Here, γ is the Euler-Mascheroni constant and Λ an arbitrary
renormalization scale parameter. To renormalize the
thermodynamic potential, an appropriate counterterm δL
needs to be introduced to the Lagrangian [35]. The minimal
substraction (MS) scheme allows for

δL ¼ NcNf

16π2
m̃4

f

�
1

ϵ
−
1

2
½−3þ 2γ − 4 ln ð2 ffiffiffi

π
p Þ�

�
; ð23Þ

and the renormalized vacuum contribution becomes

Ωvac
q̄q → Ωdr

q̄q ¼ −
NcNf

8π2
m̃4

f ln

�
m̃f

Λ

�
: ð24Þ

The vacuum contributions to the gap equations,
Eqs. (14), due to Eq. (24), are

∂Ωdr
q̄q

∂σ ¼ −
NcNfg4σ3

8π2

�
1þ 4 ln

�
σ

fπ

��
; ð25Þ

∂2Ωdr
q̄q

∂σ2 ¼ −
NcNfg4σ2

8π2

�
7þ 12 ln

�
σ

fπ

��
; ð26Þ

∂2Ωdr
q̄q

∂π⃗2 ¼ −
NcNfg4σ2

8π2

�
1þ 4 ln

�
σ

fπ

��
: ð27Þ

These equations are then added to the gap equations and
change the vacuum parameters λ, m2, and H. Note that Λ
cancels in the determination of the vacuum parameters
(case Qthþvac in Table II), and hence, the grand canonical
potential is also independent of the choice of Λ. This is also
the case for an SU(3) approach [23,36,49].

IV. THE 2PI FORMALISM

At finite temperature, perturbative expansion in powers
of the coupling constant breaks down due to infrared
divergencies, and an approach for the mesonic fields via
the path integral formalism leads to difficulties, because
at low momentum, spontaneous symmetry breaking, for
instance, leads to quasiparticle exitations with imaginary
energies [26,27,29].
These difficulties can be circumvented utilizing the

Cornwall-Jackiw-Toumboulis (CJT) [40] or, more com-
monly, the 2PI formalism, which is understood as a
relativistic generalization of the Luttinger Ward formalism
[50,51]. The 2PI formalism can be viewed as a prescription
for computing the effective action of a theory, where the
stationary conditions are the Greens functions and the
effective action corresponds to the effective potential [40].
However, the in-medium masses of the σ- and the π-meson
can then be solved self-consistently [26,27]. The starting
point is the Lagrangian from the O(N) model

LOðNÞ ¼
1

2
ð∂μσ∂μσ þ ∂μπ⃗∂μπ⃗Þ ð28Þ

þ λ

N
ððσ2 þ π⃗2Þ − v2Þ2 −Hσ; ð29Þ

where N ¼ 4 in our calculations to remain in contact with
QCD. For H ¼ 0 and m2 ≥ 0, LOðNÞ is invariant under
O(N) rotations of the fields, whereas forH ¼ 0 andm2 ≤ 0
this symmetry is spontaneously broken down to O(N-1),
with N-1 Goldstone bosons, which are the pions. Pions
become massive for the explicit symmetry breaking term
H ≥ 0. Spontaneous breaking of a symmetry leads to a
nonvanishing vacuum expectation value for the σ field,
which is the pion decay constant fπ ¼ 92.4 MeV.
The grand canonical potential can be derived via the

generating functional for the respective Greens functions
[40], which, in the presence of the two sources J and K, is
given as
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Z½J; K� ¼ eW½J;K� ¼
Z

DϕeðϕJþ1
2
ϕKϕþI½ϕ�Þ; ð30Þ

withW½J; K� as the generating functional for the connected
Greens functions. I½ϕ� ¼ R

x L is the classical action with
L ¼ Lm þ Uðσ; π⃗Þ from Eq. (7). Throughout this article we
stick to the shorthand notation

Z
x
FðxÞ ¼

Z
β

0

dτ
Z

d3k⃗Fðτ; k⃗Þ ð31Þ

for the corresponding integrals, where F is the appropriate
distribution function.
The expectation values for the one- and two-point

functions according to [26,27] are

δW½J; K�
δJðxÞ ≡ ϕ̄ðxÞ ð32Þ

δW½J; K�
δKðx; yÞ ≡ 1

2
ðGðx; yÞ þ ϕ̄ðxÞϕ̄ðyÞÞ: ð33Þ

To obtain the effective action, a double Legendre trans-
formation needs to be performed, leading to

Γ½ϕ̄; G� ¼ W½J;K� − ϕ̄J −
1

2
ϕ̄Kϕ̄ −

1

2
GK; ð34Þ

where GK ≡ R
x;y Gðx; yÞKðy; xÞ. Thus,

δΓ½ϕ̄; G�
δϕ̄

¼ JðxÞ −
Z
y
Kðx; yÞϕðyÞ; ð35Þ

δΓ½ϕ̄; G�
δGðx; yÞ ¼ −

1

2
Kðx; yÞ: ð36Þ

For vanishing sources JðxÞ ¼ Kðx; yÞ ¼ 0, the stationary
conditions then read

δΓ½ϕ̄; G�
δϕ̄

����
ϕ̄¼φ;G¼G

¼ 0; ð37Þ

δΓ½ϕ̄; G�
δGðx; yÞ

����
ϕ̄¼φ;G¼G

¼ 0; ð38Þ

where Eq. (37) corresponds to a Schwinger-Dyson equa-
tion for the dressed propagator. The effective action
according to [40] is

Γ½ϕ̄; G� ¼ I½ϕ̄� − 1

2
TrðD−1G − 1Þ

−
1

2
TrðlnG−1Þ þ Γ2½ϕ̄; G� ð39Þ

with D−1 as the inverse tree-level propagator and G as the
full propagator. Γ2½ϕ̄; G� represents the sum of all two

particle irreducible diagrams; see Fig. 2, where all lines
represent full propagators G. In momentum space

D−1ðk; ϕ̄Þ ¼ −k2 þ U00ðϕ̄Þ; ð40Þ

and the full propagator is

Gσ;πðkÞ ¼
1

−k2 þ m̄2
σ;π

: ð41Þ

The self-energy is assumed to be momentum independent;
however, there is a two-loop diagram with a quark
propagator and a meson propagator, which would give a
momentum dependent self-energy contribution. For sim-
plicity, we ignore this contribution and leave it for future
work because the numerical effort is beyond the scope of
the present investigation.
For constant fields ϕ̄ðxÞ ¼ ϕ̄ and homogenous systems,

the effective potential is [26,27,40,41]

Ω½ϕ̄; G� ¼ Uðϕ̄Þ þ 1

2

Z
k
lnG−1ðkÞ

þ 1

2

Z
k
½D−1ðk; ϕ̄ÞGðkÞ − 1� þ Ω2: ð42Þ

Here, Ω2 ≡ −T · Γ2½ϕ̄; G�=V, V being the 3-volume of the
system. The 2PI potential reads

Ω2PIðϕ; Gσ;πÞ ¼
1

2
m2ϕ2 þ 1

4
λϕ4 −Hϕ

þ 1

2

Z
k
½lnG−1

σ ðkÞ þD−1
σ ðk;ϕÞGσðkÞ − 1�

þ 3

2

Z
k
½lnG−1

π ðkÞ þD−1
π ðk;ϕÞGπðkÞ − 1�

þ Ω2; ð43Þ

with the two-loop contribution to the potential

Ω2 ¼
3λ

4

�Z
k
GσðkÞ

�
2

þ 15λ

4

�Z
k
GπðkÞ

�
2

þ 3λ

2

�Z
k
GσðkÞ

��Z
k
GπðkÞ

�
: ð44Þ

The respective diagrammatic expressions for the potential
from Eq. (43) are shown in Figs. 1 and 2.
The gap equations obtained via Eqs. (14) for the meson

fields read

H ¼ ϕ½m2 þ λðϕ2 þ 3Fðm̄σ; TÞ þ 3Fðm̄π; TÞÞ�; ð45Þ

m̄σ ¼ m2 þ λ½3ϕ2 þ 3Fðm̄σ; TÞ þ 3Fðm̄π; TÞ�; ð46Þ

m̄π ¼ m2 þ λ½ϕ2 þ Fðm̄σ; TÞ þ 5Fðm̄π; TÞ�: ð47Þ
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Herein the function

Fðm̄σ;π; TÞ ¼ FTðm̄σ;π; TÞ þ Fvacðm̄σ;π; TÞ

¼
Z

d3k⃗
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ m̄2

σ;π

q ·

�
1

eβ
ffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2þm̄2

σ;π

p
− 1

þ 1

2

�

ð48Þ

displays the temperature dependence including the vacuum
contribution [26]. For more details on the calculation,
see [26,27,40,41]. The vacuum parameters are listed in
Table II. Note that for JðxÞ ¼ Kðx; yÞ ¼ 0 and for
ϕ̄ðxÞ ¼ ϕ̄, it is justified to combine the potentials from
the quarks, i.e. Eq. (9), with the potential from the mesons,
i.e. Eq. (43), to evaluate the potentials independently.
Note that on the two-loop level there exist two more

diagrams which were also not taken into account and which
are connected to the three particle vertices λσ3 and λπ2σ.
These depend explicitly on the boson fields and introduce
an additional momentum dependence in the Schwinger-
Dyson equations Eqs. (2), (3), and (4), which makes their
solution far more complicated and which would violate the

ansatz Eq. (41). Our Schwinger-Dyson equations for the
full propagators contain no momentum dependence. Thus,
our equations are simple gap equations [Eqs. (45)–(47)] for
the masses of the σ and the π⃗ meson and imply that two-
loop diagrams containing quarks and mesons are forbidden.
This is in accordance with the general considerations
briefly discussed in Sec. II.

A. Regularization for the meson fields

We use the dimensional regularization procedure for
meson fields [52]. Whereas for the quark fields we added a
counter term to the Lagrangian, for the meson fields it is
sufficient to just add a correction to the mass term, δm,
since no higher order diagrams are considered. The
correction to the naked mass is calculated to be [26,28]

δm2 ¼ −
λm2

16π2ϵ
−

λm2

32π2
ln

�
4πμ2e
m2eγ

�
þOðϵ2Þ: ð49Þ

Here, μ plays the role of Λ from the quark fields, i.e. an
arbitrary renormalization scale parameter.
The procedure is equivalent to the one for the quark

fields [41], utilizing the MS scheme. The renormalized
vacuum contribution from Eq. (48) finally reads

Fvacðm̄σ;πÞ ¼
Z

d3k⃗
ð2πÞ3

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þ m̄2

σ;π

q

¼ −
m̄σ;π

16π2

�
1þ ln

�
μ2

m̄σ;π

��
≡ Fdrðm̄σ;πÞ: ð50Þ

Again, the vacuum parameters are given in Table II.

V. COMBINING INTERACTIONS BETWEEN
QUARKS AND MESONS

Since the grand canonical potential is an intensive
quantity, it is additive and so are the respective gap
equations of the corresponding sectors, obtained in each
case with Eq. (14). This section now combines both
approaches to a unified set of equations. First, we will
treat the thermal contributions only, whereas in the follow-
ing we include the vacuum fluctuations from the quark
fields. The potential is a sum of the independent potentials

Ωth
QAM ¼ Ωth

q̄q þ Ω2PIðϕ; Gσ;πÞ: ð51Þ

Here, Ωth
QAM is the thermal part of the combined grand

canonical potential of quarks and mesons (QAM).

A. Regularization for the combined approach

As mentioned above, all relevant quantities are additive
and so are the vacuum contributions. Hence, there is no
need to regularize and renormalize anew. Both equations
for the divergent vacuum contributions, Eqs. (24) and (50),

(a)

(b)

FIG. 2. (a) Two-loop Hartree contributions, Eq. (44), to the CJT
effective potential (Ω2). The solid red line corresponds to Gσ ,
whereas the dashed blue line corresponds to Gπ . The right-most
diagram stands for the last term in Eq. (43). (b) Tadpole
contribution to the self-energy, obtained by cutting a line.

FIG. 1. 1-PI loops contributing to the effective potential in
Eq. (42), i.e. Eq. (43) without Ω2 from Eq. (44).
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can be merged into a single set of gap equations. The
potential is the sum of the independent potentials, i.e.
Eqs. (9) and (43). The tree-level potential, Eq. (8), appears
only once,

ΩQAM ¼ Ωth
q̄q þ Ωdr

q̄q þ Ω2PIðϕ; Gσ;πÞ: ð52Þ

The vacuum parameters λ, m2, and H, obtained by solving
Eq. (14) are determined to be

λ ¼ m2
σ þm2

π þ NcNf

8π2
g4σ2½6þ 8 lnðgσΛÞ�

2ðFdrðm̄σÞ − Fdrðm̄πÞ þ σ2Þ ; ð53Þ

m2 ¼ NcNf

8π2
g4σ2

�
7þ 12 ln

�
gσ
Λ

��

− 3λðFdrðm̄σÞ þ Fdrðm̄πÞÞ þm2
σ − 3λσ2; ð54Þ

H ¼ −
NcNf

8π2
g4σ3

�
1þ 4 ln

�
gσ
Λ

��

þ 3λσðFdrðm̄σÞ þ Fdrðm̄πÞÞ þ σðm2 þ λσ2Þ; ð55Þ

and the corresponding gap equations read

∂ΩQAM

∂σ ¼ −
NcNf

8π2
g4σ3

�
1þ 4 ln

�
gσ
Λ

��

þ 3λσðFðm̄σÞ þ Fðm̄πÞÞ þm2σ þ λσ3 ¼ H;

ð56Þ
∂2ΩQAM

∂σ2 ¼ −
NcNf

8π2
g4σ2

�
7þ 12 ln

�
gσ
Λ

��

þ 3λðFðm̄σÞ þ Fðm̄πÞÞ þm2 þ 3λσ2 ¼ m2
σ;

ð57Þ
∂2ΩQAM

∂π2 ¼ −
NcNf

8π2
g4σ2

�
1þ 4 ln

�
gσ
Λ

��

þ λðFðm̄σÞ þ Fðm̄πÞÞ þm2 þ λσ2 ¼ m2
π:

ð58Þ
Unfortunately, these equations leave us with the possibility
of having two renormalization scales, one from the quark-
quark contribution,Λ, and one hidden in Fðm̄σπÞ, namely, μ
[see Eq. (50)]. The vacuum parameters are listed in Table II.

VI. RESULTS FOR THE RENORMALIZED
QUARK FIELDS

The upper panel of Fig. 3 shows the order parameter σ as
a function of the temperature for three different vacuum
sigma meson masses mvac

σ , neglecting (denoted in the
figures as “th.”) and including (denoted in the figures as
“vac.”) the vacuum term of the quarks. This corresponds to
the cases Qth and Qthþvac in Table II.

We find that with increasing vacuum sigma meson mass
mvac

σ the phase transition in the thermal case is shifted to
higher temperatures and becomes slightly more crossover-
like, whereas smaller values ofmvac

σ lead to a behavior close
to a first order phase transition, which is not achieved even
for our lowest choice of mvac

σ ¼ 500 MeV. The curves
containing the vacuum contribution show the same behav-
ior; only the trends are noticeably more crossoverlike and
hence shifted to higher transition temperatures with
increasing values of mvac

σ .
The behavior of the order parameter σ can be translated

to the behavior of the masses as a function of the temper-
ature; see the lower two panels in Fig. 3. The respective
minimum of the sigma mass in the lower left panel in Fig. 3
represents the point of the chiral phase transition. From
there on, the mass of the sigma and the pion start to be
degenerate.
For mvac

σ ¼ 500 MeV, when neglecting the vacuum
term, the sigma and the pion mass come close to the chiral
limit. Here, T¼ 130MeV and mσ ¼ 120MeV; see also
Table I, and the pion mass nearly jumps vertically around
this temperature. The inclusion of the vacuum contribution
for all values of the initial vacuum massmvac

σ leads to a less
distinctive decrease of mσ toward the chiral transition,
going along with a clearly less pronounced minimum,
which is also located at higher temperatures and higher mσ

compared to the respective thermal value, i.e. when
neglecting the vacuum term. From the phase transition
point on the mass of the pion, which is seen in the
lower right panel of Fig. 3, is degenerate to the mass of
the sigma. At T ¼ 400 MeV, sigma and pion masses of
∼1.2 GeV are achieved. The upper panel in Fig. 4 shows
the pressure for the three different vacuum sigma meson
masses including and neglecting the vacuum term. All
curves rise monotonically. In the temperature region
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FIG. 3. σ condensate as a function of temperature for zero
chemical potential without (denoted as “th.”) and with vacuum
contribution (denoted as “vac.”) for three different values of the
vacuo sigma meson mass mvac

σ shown in the upper panel. The
lower panels show the in-medium masses of the σ and the π.
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100 MeV ≤ T ≤ 350 MeV, the curves separate, and the
pressure becomes smaller with increasing value of the
vacuum sigma meson mass. The inclusion of vacuum
fluctuations intensifies this trend at a given mvac

σ so that
the pressure within this temperature range is the smallest
for high mvac

σ and for inclusion of the self-energy. The
higher the vacuum mass of the sigma, the less pronounced
are the effects from the inclusion of the vacuum fluctua-
tions. For the smallest value of the initial vacuum sigma
meson mass mvac

σ ¼ 500 MeV and neglecting the vacuum
contribution, the quarks reach the Stefan-Boltzmann limit
(SB limit in the figures) at the lowest temperature, whereas
the inclusion of the vacuum contribution at mvac

σ ¼
500 MeV pushes down the pressure within the temperature
region 100 MeV ≤ T ≤ 350 MeV. This statement is valid
for all mvac

σ and can be understood as an intrinsic property
of the self-energy. The quarks are more massive for high
mvac

σ . This matches the statement concerning the respective

mass spectrum of the sigma and the pion at high temper-
ature and can also be observed from the behavior of the
order parameter σ. Recalling that the effective mass of the
quarks is generated through the coupling g and the fields
[see Eq. (13)], this conclusion is not surprising.
The lower plot in Fig. 4 shows the entropy density

divided by T3 of the three different initial sigma meson
masses mvac

σ including and neglecting the vacuum contri-
butions. The entropy density for smallmvac

σ and without the
vacuum term has higher values at a given temperature
compared to that in the cases with high initial vacuum mass
mσ and the inclusion of self-energy. This feature stems from
the fact that as the disorder in the system gets larger, the
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FIG. 4. Pressure, divided by T4 as a function of temperature for
zero chemical potential without (denoted as “th.”) and with
vacuum contribution (denoted as “vac.”) for three different values
of the initial vacuum sigma meson mass mvac

σ shown in the upper
plot. The lower plot shows the entropy density s divided by T3 as
a function of the temperature. The SB limit represents the Stefan
Boltzmann limit.

TABLE I. The minimal mass for the σ-meson for all three
different approaches, i.e. quarks with and without the vacuum
term, case Qth=vac (Sec. III), mesons with and without the vacuum
term, case Mth=vac (Sec. IV), and quarks and mesons combined
with and without the vacuum term for the quark fields, Qth=vac þ
Mth (Sec. V). All values are given in MeV.

Qth=vac Mth=vac Qth=vac þMth

mvac
σ T mσ T mσ T mσ

500ðthÞ 130 120 230 290 118 150
500ðthþvacÞ 163 287 260 320 166 285
700ðthÞ 165 185 238 324 143 214
700ðthþvacÞ 198 310 305 414 185 316
900ðthÞ 205 243 245 355 165 267
900ðthþvacÞ 233 336 360 510 201 344

TABLE II. The parameters λ, m2, and H for all considered cases. Thermal quarks are labeled Qth, including the vacuum term for the
quark fields, which is labeled Qthþvac. Thermal mesons without the vacuum term are labeled Mth and those with the vacuum term
Mthþvac. The approach combining quarks and mesons without the vacuum term is labeled Qth þMth. For these cases the sigma meson
mass is mvac

σ ¼ 500 MeV. The combination of both approaches with the vacuum term only for the quark fields is labeled Qthþvac þMth
and that with the vacuum term in both approaches Qthþvac þMthþvac. Here mvac

σ ¼ 550 MeV for the different choices of the
renormalization scale, which is given in MeV. λ is dimensionless, m2 is in MeV2, and H is given in MeV3.

Case mvac
σ Λ μ λ m2 H

Qth 500 � � � � � � 16.744 −122 683 1.75 × 106

Qthþvac 500 � � � � � � 42.521 −268 130 1.75 × 106

Mth 500 � � � � � � 16.744 −122 683 1.75 × 106

Mthþvac 500 � � � 333.591 16.11 −90 449 2.74 × 106

Qth þMth 500 � � � � � � 16.744 −122 683 1.75 × 106

Qthþvac þMth 550 1033 � � � 0.0268 −268 130 1.75 × 106

Qthþvac þMthþvac∶Λ ¼ μ 550 1033 1033 0.013 −268 148 1.77 × 106

Qthþvac þMthþvac∶Λ ≠ μ 550 900 333.591 4.583 −258 959 2.03 × 106

Qthþvac þMthþvac∶Λ ≠ μ 550 1000 333.591 1.099 −265 930 1.82 × 106

Qthþvac þMthþvac∶Λ ≠ μ 550 1100 333.591 −2.052 −272 236 1.62 × 106
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more free are the quarks. Remember, that the higher
vacuum value mvac

σ , the higher is the temperature, where
quarks reach the chiral limit, leading to heavier quarks at
intermediate temperatures. The inclusion of the vacuum
energy term amplifies this effect, for low mvac

σ more
significantly than for large mvac

σ .

VII. RESULTS FOR THE COMBINED APPROACH

At first, we neglect the vacuum contribution from the
quark and meson fields, which is denoted as (usual) “th.”
(Qth þMth in Table II) by setting Fdrðm̄σ;π⃗Þ ¼ 0. Even
when excluding the mesonic vacuum contribution, the
dependence on the quark renormalization scale Λ
does not vanish contrary to the case for the quark fields
only; see Sec. III A. This is due to the contribution from
Ω2PI and corresponds to the case Qthþvac þMth in
Table II. We choose a value of Λ ¼ 1033 MeV due to
reasons which will become clear in Sec. VII B, where we
discuss the dependence on both renormalization scales
(Qthþvac þMthþvac in Table II).

A. Results for the combined approach 1:
Quark vacuum energy

The upper panel in Fig. 5 shows the order parameter σ as
a function of the temperature within the combined approach
for the choice of the renormalization scale Λ ¼ 1033 MeV.
As expected, the larger the value of the initial vacuum
sigma meson mass mvac

σ , the further is the curve shifted to
higher temperatures. The vacuum contribution leads to the
same trend as when raising the initial value ofmvac

σ so that a

high vacuum mass mvac
σ accompanied with the inclusion of

the vacuum energy leads to the highest phase transition
temperature. The sigma meson mass as a function of
the temperature is shown in the lower panel of Fig. 5.
The minima of the sigma meson mass curve, indicating the
critical phase transition temperature Tc, are closer to
the values from the case Qth than from the case Mth; see
Table I. This statement is valid in the thermal cases as well
when including the fermion vacuum term Qvac. For low
mvac

σ , the minima values are relatively close to the ones
from the case Qth. Increasing mvac

σ shifts the minima,
indicating that the meson contribution gains influence.
The behavior of the pion mass can be seen in the lower

right panel in Fig. 5. The curves seem to be a combination
of the pion mass spectrum from the case Qth and the one
from the case Mth, where also the quark contribution
dominates. For larger values of mvac

σ , the pion mass starts
to increase at lower temperatures, which is a feature seen
for the case Mth. This again emphasizes the statement that
for larger sigma meson mass the meson contributions gain
influence within the combined approach. In conclusion,
the quarks are dominant in the combined approach. The
influence of the meson fields leads to a slightly steeper
decrease of the order parameter σ indicating a trend toward
a first order phase transition, which is not achieved.
Both mass spectra in Fig. 5 reach ∼1.2 GeV at T ¼
400 MeV as is the case for the cases Qth and Qvac
exclusively. In comparison, the mass spectra in the cases
Mth andMvac reach 500 ≤ mσ;π ≤ 700 MeV, depending on
the initial value of mvac

σ . The vacuum parameters λ, m2, and
H [Eqs. (53)–(55)] for the case Qthþvac þMth are listed
in Table II.
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FIG. 5. σ condensate in the combined approach as a function of
temperature for zero chemical potential without (denoted as “th.”)
and with quark vacuum contribution (denoted as “vac.”) for three
different values of the initial vacuo sigma meson mass mvac

σ

shown in the upper panel. The lower panels show the masses
of the sigma and the pion as a function of temperature. The value
of the quark renormalization scale has been chosen to
be Λ ¼ 1033 MeV.
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FIG. 6. Negative of the potential, i.e. the pressure, divided by
T4 as a function of temperature without (denoted as “th.”) and
with vacuum contribution (denoted as “vac.”) for three different
values of the initial vacuo sigma meson mass mvac
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function of temperature. Some curves clearly show maxima
and minima.
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The pressure of the combined system divided by T4

provided by the SU(2) quark-meson model and the CJT
formalism is shown in the upper panel in Fig. 6.
All curves for the case without the vacuum term

start to rise significantly at T ≃ 30 MeV, whereas the
inclusion of the vacuum term causes the pressure to
rise at T ≃ 20 MeV. This behavior results from the
mesonic contributions. The curves show distinct extrema,
less pronounced with larger mvac

σ , located around
T ≃ 45 MeV. This clearly is correlated to the influence
of the vacuum term leading to a higher pressure at a given
temperature compared to the case without the vacuum
term. In the combined approach, this leads to distinct
extrema, indicating the dominance of the meson contri-
bution at low temperature. It is important to note that these
extrema are not instabilities since the pressure itself is a
monotonically rising function, and so is the entropy
density, which is seen in the lower panel in Fig. 6.
Neglecting the vacuum contribution, the curves also
exhibit a nontrivial behavior within the temperature range
100 ≤ T ≤ 180 MeV, again leading to very distinctive
maxima in the entropy density. The entropy density curves
without the vacuum term rise approximately linear at
low temperature. For mvac

σ ¼ 500 MeV, a maximum at
T ¼ 116 MeV and s=T3 ¼ 9.85 can be observed, which
can be traced back to the hardly visible change of slope
in the pressure in the upper panel. The higher the vacuum
sigma meson mass, the more pronounced are the maxima
in s=T3. This occurs in all cases considered at the
phase transition. These peaks arise from the fact that
the pressure has a considerable change of slope at the
chiral phase transition temperature. A possible explan-
ation of having two maxima might be that the change of
the relativistic degrees of freedom (d.o.f.) occurs in two
different temperature regions. One can interpret these
pronounced peaks as an intermediate sudden increase in
relativistic d.o.f. or as an field energy contribution. Note
also, that an entropy jump as in a first-order phase
transition is not observed.
Table I shows the minimal value of the sigma meson

mass in the medium for the cases Qth, Qvac, Mth,Mvac, and
for Qth=vac þMth. With or without the vacuum term, the
minima of the combined approach are closer to the values
of the thermal quarks than to the values for thermal mesons.
The impact of the thermal mesons shifts the minima of the
combined approach to lower temperatures.

B. Results for the combined approach 2:
Dependence on the renormalization scale

In this section, we explore the impact of having two
renormalization scales, one from the quark fields Λ and one
from the mesonic fields μ. This corresponds to the case
Qthþvac þMthþvac in Table II. In the last subsection, we set
Fdrðm̄σ;π⃗Þ ¼ 0, omitting the self-energy resulting from the
2PI formalism from the mesonic fields. In this section, we

show that this contribution is negligible for the fields and
the mass spectra but not for the thermodynamics, i.e. the
respective relativistic d.o.f. First we run the code with one
value for the renormalization scale, i.e. setting Λ ¼ μ, and
in a second approach, we keep μ fixed at the value used in
[28], i.e. μ ¼ mσ=

ffiffiffi
e

p
. We first study the three vacuum

parameters λ [Eq. (53)],m2 [Eq. (54)], andH [Eq. (55)] as a
function of the renormalization scale for Λ ¼ μ and for
the choice μ ¼ mσ=

ffiffiffi
e

p
, such as to locate the most reason-

able renormalization scale value, which turns out to be the
one used in the previous section, Λ ¼ 1033 MeV. The
value of the sigma meson mass has been chosen to be
at a value of mσ ¼ 550 MeV. The renormalization scale
parameter is naturally placed at the chiral scale [2,26,27],
i.e. of the order 1 GeV. Setting Λ ¼ μ or even μ ¼ mσ=

ffiffiffi
e

p
,

we find reasonable solutions only within the range
850 ≤ Λ ≤ 1150 MeV, which we investigate in this
section.
Figure 7 shows the coupling λ, the mass termm2, and the

explicit symmetry breaking term H normalized to their
respective tree-level values as a function of the renormal-
ization scale with Λ ¼ μ (dotted curve) and with μ ¼
mσ=

ffiffiffi
e

p ¼ 333.591 MeV held fixed (solid curve). The
respective values are also given in Table II.
The tree-level value for λ for the choice Λ ¼ μ is

found to be located at Λ ¼ 343 MeV, which is surpri-
singly close to μ ¼ mσ=

ffiffiffi
e

p
MeV. However, for the

choice μ ¼ mσ=
ffiffiffi
e

p
MeV the tree-level value is located

at Λ ¼ 623 MeV. Note that the two curves in the upper
panel intersect at Λ ¼ 1033 MeV.
The tree-level value of m2 for Λ ¼ μ is never reached

(middle figure), and when setting μ ¼ mσ=
ffiffiffi
e

p
MeV, the

curve surprisingly increases withΛ, and the tree-level value
is located atΛ ¼ 115 MeV. These two curves also intersect
at Λ ¼ 1033 MeV.
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FIG. 7. Vacuum parameters λ, m2, and H, normalized to their
respective tree-level value (λ ≃ 16.64, m2 ¼ −122683 MeV2 and
H ¼ 1.75 × 106 MeV3), as a function of the quark renormaliza-
tion scale Λ. The cross marks the tree-level values.
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The explicit symmetry breaking term H, which is
responsible for the mass of the pion, is shown normalized
to its tree-level value in the lowest panel in Fig. 7. The tree-
level value is for both choices (Λ ¼ μ and for μ ¼ mσ=

ffiffiffi
e

p
)

located at Λ ¼ 1033 MeV, where these two curves also
intersect (which motivates our choice for Λ ¼ μ ¼
1033 MeV in the previous subsection).
The order parameter σ for different renormalization

scales is shown in the upper panel in Fig. 8, whereas the
lower part shows the mass spectrum of the sigma and
the pion.
Figure 8 contains the calculation for only one renorm-

alization scale with Λ ¼ 1033 MeV and μ ¼ 0 for mvac
σ ¼

550 MeV from Sec. VII A for comparison. For the choice
for μ according to [28], we choose three values of Λ, and
finally we set Λ ¼ μ ¼ 1033 MeV. All cases show a
crossover phase transition at T ≃ 165 MeV, and there is
no notable difference in the order parameter. The different
cases for the mass spectrum do not show significant
differences up to T ≃ 250 MeV, where the degenerate
masses of the sigma and the pion start to have different
slopes. It is worth mentioning that the curves are very
similar to the curves from the case Qth or Qvac and result in
similar masses at large temperatures, demonstrating again
the dominance of the quark contribution.
The pressure divided by T4 as a function of tem-

perature for the renormalization scale choices Λ ¼
1033 MeV and μ ¼ 0 (Sec. VII A), Λ ¼ 900, 1000,
1100 MeV at μ ¼ mσ=

ffiffiffi
e

p
held fixed, and for Λ ¼ μ ¼

1033 MeV at mσ ¼ 550 MeV are represented in the
upper panel in Fig. 9. All of the curves show two maxima,
one at T ≃ 50 MeV and a smaller one around the phase
transition at T ≃ 165 MeV. For Λ ¼ 1033 MeV and μ ¼ 0,
the maximum is located within the same region as that for

two renormalization scales, whereas the minimum is
shifted to a considerably lower value of p=T4. The second
extrema are a result of the contribution from the mesonic
fields and change slightly with the choice of the renorm-
alization scale.

VIII. CONCLUSIONS

In this article, we have studied quarks, with the common
path integral formalism, and mesons, utilizing the 2PI
formalism, within the SU(2) quark-meson model at zero
chemical potential in a combined set of equations.
We investigated the influence of the vacuum fluctuations

for different values of the sigma meson mass and for
different choices of the renormalization scale parameters on
the order parameter, the mass spectra of the sigma and the
pion, and for thermodynamical quantities.
The inclusion of the vacuum fluctuations for the quark

fields is independent of the renormalization scale [23,36],
whereas for the meson fields the dependence on the
renormalization scale does not cancel. Inclusion of the
vacuum term for the quark fields leads to a distinct shift of
the chiral phase transition to higher temperatures. The
inclusion of the vacuum contribution turned out to be in
both cases not negligible. Within the combined case, we
were hence left with the option of having two renormal-
ization scales or one for quarks and mesons.
We investigated separately the vacuum parameters

λ, m2, and H as a function of the quark renormalization
scale Λ and conclude that the main impact comes from the
quark fields. There is a tiny window around Λ ∼ 1 GeV,
where the results are physically reasonable, i.e. close to
tree-level values. The fields and the mass spectra showed
hardly any difference when varying the renormalization
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scale. It seems that the thermal contributions of the
mesons have an influence within the temperature region
50 ≤ T ≤ 180 MeV for the pressure, which gives rise to
peaks within the entropy to temperature ratio. According to
lattice QCD calculations, this behavior is clearly unphys-
ical [53] so that only the results for Qthþvac and Qth þMth
are employable. We find that in all cases considered a chiral
first order phase transition is not present.
Reference [46] compares the renormalized linear sigma

model with the NJL model. Like in our case, a crossover
transition has been found for zero chemical potential,
and the authors stress the importance of the vacuum field
fluctuations to the thermodynamic properties. In Ref. [2],
the linear sigma model including the vacuum field fluctua-
tions, containing quark and mesonic d.o.f., has been
studied. The quark d.o.f. have been integrated out, and
the resulting effective action was linearized around the
ground state. Sigma mesons and pions were described as
quasiparticles, and their properties were taken into account
within the thermodynamic potential. Their parameter
choice is similar to ours, and they find a gradual decrease
of the chiral condensate, which results in a crossover type
transition at temperatures 150 ≤ Tc ≤ 200 MeV. Also, the
results for the masses are very similar to our results. Their
thermodynamical quantities do not show such an influence
from the meson fields in the low temperature region. We
argue that this feature comes from the 2PI formalism used
in our work.

IX. OUTLOOK

As is the case for the neglected bosonic two-loop
diagrams λðσ; π⃗Þ, recall Sec. IV, the neglected meson loop
with a quark propagator would also be momentum depen-
dent and hence violate our ansatz [Eq. (41)]. It might be

interesting to explore the implications of these momentum
dependent diagrams in future work, but for simplicity, we
ignore this contribution because the numerical effort is
beyond the scope of the present investigation. It is,
however, not suppressed because it is of the order ∼N,
but its implementation would make our calculation intrac-
table and the effort inadequate. A follow-up study based on
our results could monitor if the implementation of more
sophisticated diagrams changes the thermodynamical
results.
Future work could also implement the Polyakov loop to

mimic the quark confinement [25,54–56]. It would also be
interesting to perform calculations for nonzero chemical
potential to explore the QCD phase diagram [24] or
calculations for finite isospin [25]. The implementation
of the strange quark [7,8] in an SU(3) quark-meson model
and, if applicable, vector mesons [57,58] could yield a
realistic model for astrophysical applications, such as for
proto neutron stars or neutron star merger [59,60]. In
[48,61,62], we have already shown that the SU(3) approach
in the mean field approximation yields realistic compact
star scenarios. Hence, the expansion of the SU(3) quark-
meson model to finite temperatures with the vacuum term
or a combined approach with quark and meson fields in the
mean field approximation could indeed yield an appropri-
ate model for a quark based equation of state for astro-
physical application.
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