
 

Multiquark production in p+A collisions: Quantum interference effects

Alex Kovner1,2,3,4,5 and Amir H. Rezaeian2,3
1Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

2Departamento de Física, Universidad Técnica Federico Santa María,
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We consider forward inclusive production of several quarks in the high energy p-A collisions in the CGC
formalism. For three particle production we provide a complete expression in terms of multipole scattering
amplitudes on the nucleus and multiparticle generalized TMD’s of the proton. We then calculate all the terms
that are not suppressed by the factor of the area in four particle production, and generalize this result up to terms
of order 1=N2

c for arbitrary number of produced particles. Our results include the contribution of quantum inter-
ference effects both in the final state radiation (HBT) and in the initial projectilewave function (Pauli blocking).
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I. INTRODUCTION

The observation of ridge correlations in p-p and p-Pb
collisions at LHC [1–5] provided strong impetus for study of
correlations in particle production at high energy. Two main
physical sources of such correlations have been advocated in
recent years: strong collective effects due to final state
interactions [6], and initial state effects due to “quasicol-
lectivity”—correlations inherited from the nontrivial corre-
lated structure of the initial state [7–14]. The origin of the
initial state induced correlations has been better understood
in the last couple of years. In addition to the “classical
scattering effects”which collimate the emitted particles that
scatter off correlated adjacent regions of the target [9,10,14],
an important (and in some circumstances leading) role is
played by quantum interference effects. These last come in
two varieties: the variant of partonicHanbury-Brown, Twiss
correlations [15] and quantum statistics effects in the
incoming projectile wave function [16,17].
In our previous work [18] we have considered in detail

inclusive production of two quarks, whether identical or
non-identical. We have explicitly identified the quantum
interference contributions, and have shown that they pro-
duce a parametrically leading effect in production of
fundamental quarks. We have also argued that this effect
in gluon production is of the same order as other effects
studied so far, and therefore cannot be neglected.

Important as it is to understand quantum correlation
effects in two particle production, it is equally important
to analyze from this point of view production of more than
two particles. The interest mainly stems from the fact that
experimentally correlations are observed not only in ana-
lyzing production of pairs of particles, but in multiple
production as well. In particular the second flow harmonics
has been measured in p-Pb collisions at LHC from four, six
and even eight particles, the so called v2ðnÞwith n ¼ 4, 6, 8.
The coefficient v2ðnÞ is known to be sizable and in fact
approximately independent of n for n > 2 at least at high
enough multiplicity [19]. Since the effects of pure two
particle correlations are supposed to be subtracted when
extracting v2ðnÞ, the sizable values of v2ðnÞ are generally
taken to indicate collectivity due to final state interactions.
However it is not at all excluded that initial state effects also
contribute to correlations betweenmore than two particles. It
is thus important to understand whether quantum interfer-
ence effects contribute in an “irreducible” way to multiple
particle production, that is if they lead to correlations which
survive after pure two particle correlations are subtracted.
The aim of the present paper is to extend the analysis of

quantum interference effects to inclusive production ofmore
than two fundamentally charged particles. Ourmotivation in
considering fundamental particles is the same as in [18],
namely that of simplicity. In the context of the “ridge”
correlations the main physics interest is in gluon production
at mid rapidity. However production of fundamental rather
than adjoint particles at forward, rather than midrapidities
offers significant technical simplifications. It therefore
makes sense to start exploratory calculations in this sim-
plified framework. This is the attitude we take in the present
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work. It would be of course very interesting if the correla-
tions we consider here could be observed among three
(or more) quark jets. However in the present paper our aim is
not in phenomenology of three jet production, but in a
sample calculationwhich can hopefully give us some insight
of what to expect in more realistic context.
The framework of our approach is identical to that in [18].

We use the extension of the hybrid formalism to include
the multiple-parton-scattering (MPS) in the color-glass-
condensate (CGC) approach [20]. Wewill be working within
a variant of the “hybrid” approximation [21] which is
appropriate for forward particle production. In the hybrid
CGC approach, we assume that the small-x gluon modes of
the nucleus have a large occupation number so that the target
nucleus can be described in terms of a classical color field.
This should be a good approximation for large enough
nucleus at high-energy. This color field emerges from the
classical Yang-Mills equation with a source term provided by
faster partons. The renormalization group equations which
govern the separation between the soft and hard models
are then given by the non-linear Jalilian-Marian, Iancu,
McLerran, Weigert, Leonidov, Kovner (JIMWLK) [22] and
Balitsky-Kovchegov (BK) [23] evolution equations. We
further assume that the projectile proton is in the dilute regime
and can be described in the ordinary perturbative approach
usingpartonpicture like assumptions. This somewhat restricts
the validity range of our approximation as discussed in [18].
We also neglect processes where the quarks are produced

from the splitting of scattered projectile gluons [24]. For n
quark production this approximation is parametrically lead-
ing for projectiles which contain at least n valence quarks.
Thus for n > 3 our calculation is more appropriate for a light
nucleus projectile rather than a proton in the sense that for a
proton projectile our results may get significant corrections.
These corrections can be in principle straightforwardly
calculated in perturbation theory, but we do not endeavor
this calculation in the present paper.
The plan of the paper is as follows. In Sec. II we calculate in

detail production of three quarks following themethodof [18]
and exhibit all the different contribution to the production: the
ones due to quantum interference effects, which are not
suppressed by a power of area, as well as the aforementioned
“classical” effects which have an area suppression. In Sec. III
we extend the calculation to four quarks. This time however
we consider only the quantum interference terms, as complete
calculation becomes rather long and cumbersome. In Sec. IV
we generalize the results to arbitrary number of produced
particles. Here we only consider the quantum interference
terms and only contributions to production cross section
down to order 1=N2

c. In principle the analysis can be extended
to higher orders in 1=Nc as well, but the expressions become
rather lengthy and we refrain from recording them here. We
close by a short discussion in Sec. V.
We note two interesting recent papers [25,26] which

consider the quantum interference leading to the HBT effect
in gluon production, albeit froma somewhat different vantage
point. Compared to these works the problem of emission of

fundamental charges is calculationally simpler and thereby
also admits a more controlled treatment. Hopefully the two
approaches will converge in near future and we can have a
more complete picture of the importance of quantum inter-
ference effects in particle production, and whether they are
relevant for explanation of the experimental data.

II. INCLUSIVE THREE QUARK PRODUCTION
IN PROTON-NUCLEUS COLLISIONS

We start our analysis by considering the inclusive
production of three quarks.
The cross section for production of three quarks with

momentum q1, q2, q3 in the proton-nucleus (p-A) scatter-
ings can be written in the following general form,

dσpþA→qqqþX

¼ d3q1
ð2πÞ32q−1

d3q2
ð2πÞ32q−2

d3q3
ð2πÞ32q−3

× hjhjetðq1Þ; jetðq2Þjetðq3ÞjProtonij2icolor sources; ð1Þ
where jProtoni is the wave function of the energetic proton
with vanishing transverse momentum, and the averaging
should be performed over the distribution of the color
charges in the target.
The wave function of the proton can be written generally

as [20],

jProtoni ¼
X
X

X
c1;s1

X
c2;s2

X
c3;s3

Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3

× Ãðp1; c1; s1;p2; c2; s2;p3; c3; s3;XÞjp1;

c1; s1;p2; c2; s2;p3; c3; s3;Xi; ð2Þ

,a
3

q
3

,a
3

q
3

,a
2

q
2

,a
2

q
2

,a
1

q
1

,a
1

q
1

, c
2

p
2

, c
2

p
2

, c
1

p
1

,p
1

c
1

,p
2

c
2

,p
3

c
3

FIG. 1. The diagram contributing to three quark production in
the background of the CGC field. The diagrams on the left and
right side of the dashed line correspond to the amplitude and the
complex conjugate amplitude. The shaded box (the CGC shock
waive) denotes the interaction of a quark to all orders with the
background field via multiple gluon exchanges. The color (ci, c0i),
spin (si, s0i) and momenta (pi, p0

i) of the i-th quark in the
amplitude and the complex conjugate amplitude are also shown.
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where ðpi; ci; siÞ labels the momentum, color and spin of the ith quark (see Fig. 1), and X labels the configuration of all the
spectator partons in the proton.
The S-matrix element of the proton scattering into the state with three quarks and an arbitrary configuration of spectator

particles can be written as

hq1;a1;q2;a2;q3;a3;X0jProtoni

¼
X
X

X
c1;c2;c3

Z Z Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3 Ãðp1;c1;p2;c2;p3;c3;XÞhq1;a1;q2;a2;q3;a3;X0jp1;c1;p2;c2;p3;c3;Xi: ð3Þ

In the above hAjBi denotes the S-matrix element of the initial state B scattering into the final state A. For simplicity of
notation we have suppressed the spin indexes of quarks. In the spirit of the parton model we assume that partons scatter
independently. For three distinct quarks this translates into

hq1; a1; q2; a2; q3; a3; X0jp1; c1;p2; c2;p3; c3; Xi ¼ hq1; a1jp1; c1ihq2; a2jp2; c2ihq3; a3jp3; c3ihX0jXi: ð4Þ
With the above definitions we can write down the expression for the triple inclusive cross section as

I ¼
X
X0

jhq1; a1; q2; a2; q3; a3;X0jProtonij2

¼
X

c1;c2;c3;c01;c
0
2
;c0

3
;a1;a2;a3

Z
p1;p2p3;p0

1
;p0

2
;p0

3

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c

0
1;p

0
2; c

0
2;p

0
3; c

0
3; XÞ

× ½hq1; a1jp1; c1ihq1; a1jp0
1; c

0
1i��½hq2; a2jp2; c2ihq2; a2jp0

2; c
0
2i��½hq3; a3jp3; c3ihq3; a3jp0

3; c
0
3i��; ð5Þ

where for distinct quarks we have A≡ Ã, while for the
identical quark case, the amplitude A is the completely
antisymmetric part of amplitude Ã, where the antisymmet-
rization is performed with respect to momenta, spin and
color of the three quarks.
The above expression is only valid under the parton model

assumption, namely for the cases that the typical transverse
momentumof the quarks in the protonwave function is much
smaller than themomentumof the producedparticles. If this is
not the case, additional terms arise in the expression for the
cross section which involve scattering of the “spectator”
particles. The evaluation of these extra terms requires the
knowledge of complicated matrix elements, which goes
beyond our present ability, see discussion in [18].
Throughout this paper we therefore limit ourselves to con-
sideration of large transverse momentum of produced
quarks.

For the single quark scattering amplitude we have [27],

hq1; a1jp1; c1i ¼ 2πδðp−
1 − q−1 Þ

1ffiffiffiffiffiffiffiffi
2p−

1

p

×
Z

d2xeiðp1−q1Þx½UðxÞ�a1c1 ūðqÞγ−uðp1Þ;

ð6Þ
where UðxÞ is the scattering matrix of a quark on the colored
glass condensate target, and it is represented as aunitarymatrix
in fundamental representation of SUðNcÞ. The factor 1ffiffiffiffiffiffi

2p−
1

p
was introduced for convenience in order to avoid extra
normalization factor in the cross section defined in Eq. (1).
Throughout the paper we denote transverse coordinates and
momenta by boldface letters. In the following we use the
standard relation between spinors, namely ūsðqÞus0 ðqÞ ¼
qss0 . Using Eq. (6), the cross section is written as

I ¼ ð2πÞ6δðp−
1 − q−1 Þδðp0−

1 − q−1 Þδðp−
2 − q−2 Þδðp0−

2 − q−2 Þδðp−
3 − q−3 Þδðp0−

3 − q−3 Þ
1

8q−1 q
−
2 q

−
3

X
c1;c2;c3;c01;c

0
2
;c0

3
;a1;a2;a3

Z
pi;p0

i;xi

× h½U†ðx1Þ�c0
1
a1 ½Uðx0

1Þ�a1c1 ½U†ðx2Þ�c0
2
a2 ½Uðx0

2Þ�a2c2 ½U†ðx3Þ�c0
3
a3 ½Uðx0

3Þ�a3c3i
× ei½ðp0

1
−q1Þx1þðq1−p1Þx01þðp0

2
−q2Þx2þðq2−p2Þx02�þðp0

3
−q3Þx3þðq3−p3Þx03�ūðp0

1Þγ−=q1γ−uðp1Þūðp0
2Þγ−=q2γ−uðp2Þūðp0

3Þγ−=q3γ−uðp3Þ
×
X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c

0
1;p

0
2; c

0
2;p

0
3; c

0
3; XÞ; ð7Þ

where for brevity, we used the notation
R d2p

ð2πÞ2 ≡
R
p. In the above all spin indexes and summation over spins are implicit.
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In the high energy limit one can perform the spin algebra in a straightforward way. First, we have

γ−qγ− ¼ 2γ−q−: ð8Þ
In the approximation where the largest component of momentum pμ

i is p
−
i (and the same for p0

i) the spinors do not depend
on the transverse momentum, so that for different momenta they only differ by a normalization factor 1ffiffiffiffi

p−
1

p usðp1Þ ¼
1ffiffiffiffiffi
p0−
1

p usðp0
1Þ. Therefore, at high energies we have

ūs0
1
ðp0

1Þγ−qγ−us1ðp1Þ ¼ 4q−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p−
1p

0−
1

q
δs1s01 : ð9Þ

Using the above relation, we can simplify the spin algebra in Eq. (7) and obtain

I ¼ 8ð2πÞ6δðp−
1 − q−1 Þδðp0−

1 − q−1 Þδðp−
2 − q−2 Þδðp0−

2 − q−2 Þδðp−
3 − q−3 Þδðp0−

3 − q−3 Þq−1 q−2 q−3
X

c1;c2;c3;c01;c
0
2
;c0

3
;a1;a2;a3

Z
pi;p0

i;xi

× h½U†ðx1Þ�c0
1
a1 ½Uðx0

1Þ�a1c1 ½U†ðx2Þ�c0
2
a2 ½Uðx0

2Þ�a2c2 ½U†ðx3Þ�c0
3
a3 ½Uðx0

3Þ�a3c3i
× ei½ðp0

1
−q1Þx1þðq1−p1Þx01þðp0

2
−q2Þx2þðq2−p2Þx02�þðp0

3
−q3Þx3þðq3−p3Þx03�

×
X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c

0
1;p

0
2; c

0
2;p

0
3; c

0
3; XÞ: ð10Þ

We have for now suppressed the spin dependence of the amplitude, but will deal with the question of polarization in the
amplitude later on.

A. The color algebra

Averaging over the eikonal scattering matrices has to be performed in the target ensemble. We will use the fact that the
target ensemble is globally color invariant. The average of any tensor in such an ensemble has to be proportional to a linear
combination of available invariant tensors. Consequently for any such ensemble we must have

h½U†ðx1Þ�c0
1
a1 ½Uðx0

1Þ�a1c1 ½U†ðx2Þ�c0
2
a2 ½Uðx0

2Þ�a2c2 ½U†ðx3Þ�c0
3
a3 ½Uðx0

3Þ�a3c3i
¼ δc0

1
c1 ½A1δc0

2
c2δc03c3 þA2δc0

2
c3δc2c03 � þ δc0

1
c2 ½A3δc0

2
c1δc03c3 þA4δc0

2
c3δc1c03 � þ δc0

1
c3 ½A5δc0

2
c2δc03c1 þA6δc0

2
c1δc2c03 �: ð11Þ

Tracing this relation over different pairs of indexes we obtain a simple set of linear equations for Ai

N3
cA1 þ N2

cA2 þ N2
cA3 þ NcA4 þ N2

cA5 þ NcA6 ¼ N3
chDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3iÞ;
N2

cA1 þ NcA2 þ N3
cA3 þ N2

cA4 þ NcA5 þ N2
cA6 ¼ N2

chQðx1;x0
1;x2;x0

2ÞDðx3;x0
3Þi;

N2
cA1 þ N3

cA2 þ NcA3 þ N2
cA4 þ NcA5 þ N2

cA6 ¼ N2
chQðx3;x0

3;x2;x0
2ÞDðx1;x0

1Þi;
N2

cA1 þ NcA2 þ NcA3 þ N2
cA4 þ N3

cA5 þ N2
cA6 ¼ N2

chQðx3;x0
3;x1;x0

1ÞDðx2;x0
2Þi;

NcA1 þ N2
cA2 þ N2

cA3 þ NcA4 þ N2
cA5 þ N3

cA6 ¼ NchXðx1;x0
1;x2;x0

2;x3;x0
3Þi;

NcA1 þ N2
cA2 þ N2

cA3 þ N3
cA4 þ N2

cA5 þ NcA6 ¼ NchXðx1;x0
1;x3;x0

3;x2;x0
2Þi; ð12Þ

with

Dðx1;x0
1Þ≡ 1

Nc
Tr½U†ðx1ÞUðx0

1Þ�;

Qðx1;x0
1;x2;x0

2Þ≡ 1

Nc
Tr½U†ðx1ÞUðx0

1ÞU†ðx2ÞUðx0
2Þ�;

Xðx1;x0
1;x2;x0

2;x3;x0
3Þ≡ 1

Nc
Tr½U†ðx1ÞUðx0

1ÞU†ðx2ÞUðx0
2ÞU†ðx3ÞUðx0

3Þ�; ð13Þ

whereD,Q and X are the traces of two (dipole), four (quadrupole) and six (sextupole) lightlike fundamental Wilson lines in
the background of the color fields of the target respectively.
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The solution is

A1 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
4
chDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi

− N2
c½2hDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi þ hDðx1;x0
1ÞQðx3;x0

3;x2;x0
2Þi þ hDðx3;x0

3ÞQðx1;x0
1;x2;x0

2Þi
þ hDðx2;x0

2ÞQðx1;x0
1;x3;x0

3Þi� þ 2½hXðx1;x0
1;x2;x0

2;x3;x0
3Þi þ hXðx1;x0

1;x3;x0
3;x2;x0

2Þi��;

A2 ¼ −
Nc

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½hDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi − hDðx1;x0
1ÞQðx2;x0

2;x3;x0
3Þi�

þ 2hDðx1;x0
1ÞQðx3;x0

3;x2;x0
2Þi − 2hDðx3;x0

3ÞQðx1;x0
1;x2;x0

2Þi − 2hDðx2;x0
2ÞQðx1;x0

1;x3;x0
3Þi

þ hXðx1;x0
1;x3;x0

3;x2;x0
2Þi þ hXðx1;x0

1;x2;x0
2;x3;x0

3Þi�;
A3 ¼ −

Nc

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½hDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi − hDðx3;x0
3ÞQðx1;x0

1;x2;x0
2Þi�

þ 2hDðx3;x0
3ÞQðx1;x0

1;x2;x0
2Þi − 2hDðx1;x0

1ÞQðx3;x0
3;x2;x0

2Þi − 2hDðx2;x0
2ÞQðx1;x0

1;x3;x0
3Þi

þ hXðx1;x0
1;x3;x0

3;x2;x0
2Þi þ hXðx1;x0

1;x2;x0
2;x3;x0

3Þi�;

A4 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½2hDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi − hDðx1;x0
1ÞQðx3;x0

3;x2;x0
2Þi

− hDðx3;x0
3ÞQðx1;x0

1;x2;x0
2Þi − hDðx2;x0

2ÞQðx1;x0
1;x3;x0

3Þi þ hXðx1;x0
1;x3;x0

3;x2;x0
2Þi�

− 2½hXðx1;x0
1;x3;x0

3;x2;x0
2Þi − hXðx1;x0

1;x2;x0
2;x3;x0

3Þi��;

A5 ¼ −
Nc

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½hDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi − hDðx2;x0
2ÞQðx1;x0

1;x3;x0
3Þi�

þ 2hDðx2;x0
2ÞQðx1;x0

1;x3;x0
3Þi − 2hDðx1;x0

1ÞQðx3;x0
3;x2;x0

2Þi − 2hDðx3;x0
3ÞQðx1;x0

1;x2;x0
2Þi

þ hXðx1;x0
1;x2;x0

2;x3;x0
3Þi þ hXðx1;x0

1;x3;x0
3;x2;x0

2Þi�;

A6 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½2hDðx1;x0

1ÞDðx2;x0
2ÞDðx3;x0

3Þi − hDðx1;x0
1ÞQðx3;x0

3;x2;x0
2Þi

− hDðx3;x0
3ÞQðx1;x0

1;x2;x0
2Þi − hDðx2;x0

2ÞQðx1;x0
1;x3;x0

3Þi þ hXðx1;x0
1;x2;x0

2;x3;x0
3Þi�

− 2½hXðx1;x0
1;x2;x0

2;x3;x0
3Þi − hXðx1;x0

1;x3;x0
3;x2;x0

2Þi��; ð14Þ
Another bit of algebra gives

I ∝
Z
pi;p0

i;xi

ei½ðp0
1
−q1Þx1þðq1−p1Þx0

1
þðp0

2
−q2Þx2þðq2−p2Þx02�þðp0

3
−q3Þx3þðq3−p3Þx03�

×

�
A1

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c1;p

0
2; c2;p

0
3; c3; XÞ;

þA2

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c1;p

0
2; c3;p

0
3; c2; XÞ;

þA3

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c2;p

0
2; c1;p

0
3; c3; XÞ;

þA4

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c2;p

0
2; c3;p

0
3; c1; XÞ;

þA5

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c3;p

0
2; c2;p

0
3; c1; XÞ;

þA6

X
X

Aðp1; c1;p2; c2;p3; c3;XÞA�ðp0
1; c3;p

0
2; c1;p

0
3; c2; XÞ

�
;

¼
Z
pi;p0

i;xi

ei½ðp1−q1Þx1þðq1−p0
1
Þx0

1
þðp2−q2Þx2þðq2−p0

2
Þx0

2
�þðp3−q3Þx3þðq3−p0

3
Þx0

3
�

× ½A1T3
123 −A2T3

132 −A3T3
213 þA4T3

231 −A5T3
321 þA6T3

312�: ð15Þ
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Here we have dropped an irrelevant overall kinematic factor
and have renamed the primed and unprimed momenta in the
last equality for future convenience. We have also defined
the three quark generalized parton distribution (3GTMD) as

T3
ijk ≡ hPjψ†aðp1Þψaðp0

iÞψ†bðp2Þψbðp0
jÞψ†cðp3Þψcðp0

kÞjPi;
ð16Þ

Here the spin indexes are suppressed for simplicity of
notation. We will restore the various factors of 1=2 which
arise due to spin averaging in the final expressions.
The fist term in Eq. (15) clearly contains the leading in

Nc term, which describes independent production of the
three particles. The rest of the terms encode correlated
production. The above expression together with Eq. (14) is
as far as we can go without further simplifying assumptions
about the projectile 3GTMD’s and the multipole scattering
amplitudes. As in [18] we will make some headway by
using the properties of the scattering amplitudes as well as a
simplifying approximation for 3GTMD’s.

B. The multipole amplitudes

As we have discussed in [18], the multipole scattering
amplitudes have certain propertieswhich allow us to separate
different contributions to the production cross section in
terms of terms suppressed and unsuppressed by a power of
the area of the projectile. The calculation of the production
cross section involves integration over the transverse coor-
dinates of the produced particles, which are also coordinates

of the multipole amplitudes. The largest contribution there-
fore comes from the region of the multiple integration space
where as many legs of the multipole amplitudes are as far
away from each other as possible.On the other hand,we have
to remember that the target ensemble is color invariant, with
the color invariance dynamically imposed on the transverse
distance scales of order of the inverse saturation momentum
of the target. In such an ensemble a multipole amplitude
which has one coordinate very far way from all the others,
vanishes due to color averaging. Thus in order for the
scattering amplitudes not to vanish, the points have to be
at least pairwise close to each other, so that the two legs in the
pair are in a color singlet. The leading (area unsuppressed)
term therefore comes from the configurations where the
points are pairwise close to each other, but the pairs are far
away from each other in the transverse plane. For the
quadrupole amplitude it means that it is convenient to
decompose it in the following way:

hQð1; 10; 2; 20Þi ¼ Q̄ð1; 10; 2; 20Þ þ hDð1; 10ÞihDð2; 20Þi
þ hDð1; 20ÞihDð2; 10Þi: ð17Þ

This decomposition is such that Q̄ð1; 10; 2; 20Þ is only large
when all points are close to each other, and thus should
contribute to any cross section a term suppressed by a factor
of the projectile area. This is not to say that this term is
unimportant, but it certainly has different physics associated
with it. Similar considerations apply to the sextupole. The
convenient decomposition is

Xð1; 10; 2; 20; 3; 30Þ ¼ X̄ð1; 10; 2; 20; 3; 30Þ þDð1; 10ÞDð2; 20ÞDð3; 30Þ þDð1; 10ÞDð2; 30ÞDð3; 20Þ
þDð1; 30ÞDð2; 1f0ÞDð3; 20Þ þDð1; 30ÞDð2; 20ÞDð3; 10Þ þDð1; 20ÞDð2; 10ÞDð3; 30Þ
þDð1; 10ÞQ̄ð2; 20; 3; 30Þ þDð1; 30ÞQ̄ð2; 20; 3; 10Þ þDð2; 10ÞQ̄ð1; 20; 3; 30Þ
þDð2; 20ÞQ̄ð1; 10; 3; 30Þ þDð3; 20ÞQ̄ð1; 10; 2; 30Þ þDð3; 30ÞQ̄ð1; 10; 2; 20Þ: ð18Þ

For simplicity of notation in Eq. (18) and in the rest of the
paper we do not indicate the averaging over the target
ensemble any longer, so that from now on one should
understand Dðx; yÞ, Qðx; y; u; vÞ and so on as already
averaged over the target ensemble.1

This decomposition reproduces all the leading
terms that arise when all possible pairs of points that can
produce local color singlets in the amplitude are
far away from each other. This refers to pairs in which
one point is a quark and one is an anti quark corresponding
to factors SS†. Whenever the adjacent points produce
a factor of the type SS which carries a non vanishing
triality, we neglect this contribution, since such averages
have extra suppression in a color invariant ensemble. This
decomposition has three types of terms. The pure dipole
terms are the leading ones in terms of area dependence.
The terms involving the reduced quadrupole, i.e. Q̄ are
suppressed by a single power of area, while we expect the
term X̄ to be suppressed by two powers of the area of the
projectile.

1We note that Eq. (14) contains also terms of the form
hDðx1;x0

1ÞQðx3;x0
3;x2;x0

2Þi. These terms in general do not reduce
to the product of the averages, but the correction is small at largeNc,
e.g. hDðx1;x0

1ÞQðx3;x0
3;x2;x0

2Þi¼hDðx1;x0
1ÞihQðx3;x0

3;x2;x0
2Þiþ

Oð1=N2
cÞ, see e.g. the discussion in [18]. Since such terms in

Eq. (14) are multiplied by negative powers of Nc, and we are only
keeping terms of order 1=N2

c in our final result, wewill neglect these
nonfactorizable contributions. The same comment applies to the
averages of the type hDð1; 10ÞDð2; 20ÞDð3; 30Þi and the like. It
should be remembered however that in order to calculate compete
area non suppressed terms at order 1=N3

c and higher, these
contributions have to be included.
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C. How to deal with GTMD’s

The 3GTMD’s defined in Eq. (16) are slightly different
objects than the ones we dealt with in [18]. Consider for
example the simplest “diagonal” 3GTMD

T3
D ≡ hPjψ†aðp1Þψaðp0

1Þψ†bðp2Þψbðp0
2Þψ†cðp3Þψcðp0

3ÞjPi;
ð19Þ

where as before jPi is the proton state with vanishing
transverse momentum. For now we consider all quarks to
be identical. We will use the same nucleon intermediate
state dominance approximation as in [18]. The leading Nc
piece in this approximation is

T3
D ¼ hPjψ†aðp1Þψaðp0

1ÞjP;p0
1 − p1i

× hP;p0
1 − p1jψ†bðp2Þψbðp0

2ÞjP;p0
1 þ p0

2 − p1 − p2i
× hjP;p0

1 þ p0
2 − p1 − p2jψ†cðp3Þψcðp0

3ÞjPi: ð20Þ

Recall that due to momentum conservation (translational
invariance of the target) p0

3 − p3 ¼ p1 þ p2 − p0
1 − p0

2. The
middle factor in Eq. (20) is not exactly a single particle
GTMD, since the latter is a matrix element between two
proton state where one of the protons has zero transverse
momentum. We can of course boost the whole expression
so that the transverse momentum of one of the protons
vanishes. This boost leads to shift in the momenta of the
quark operators and not just the momenta of the proton
wave functions. However in the present paper instead we
will use the approximation:

hP;p0
1 − p1jψ†bðp2Þψbðp0

2ÞjP;p0
1 þ p0

2 − p1 − p2i
≈ hPjψ†bðp2Þψbðp0

2ÞjP;p0
2 − p2i: ð21Þ

The logic here is the following. Throughout the calculation
we have assumed that the momenta in the quark operators
are relatively small, say of the order of several hundred
Mev. This is also the typical order of magnitude of p0

1 − p1.
Since the longitudinal momentum of the proton is assumed
to be much larger, the transverse boost parameter needed to
eliminate this transverse momentum of the proton state is
very small, so that he transverse velocity involved in the
boost is essentially nonrelativistic, v ¼ 1=M½p1 − p0

1�
whereM is the proton mass. Under the same transformation
the quark momentum changes by mv ≪ p0

1, since the
current quark mass is small m ≪ M. Thus the change in
the quark momentum is very small and we will neglect it in
the following.
In the single nucleon dominance approximation we have

T3 ¼ Tðp1;p0
1ÞTðp2;p0

2ÞT�ðp3;p0
3Þ; ð22Þ

where Tðp1;p0
1Þ ¼ hPjψ†aðp1Þψaðp0

1ÞjP;p0
1 − p1i etc. is a

single quark GTMD. We have chosen to label the TMD by
the momenta of the two quarks, rather than by one
momentum and a momentum transfer as in [18]. In this
equation we have suppressed the longitudinal momentum
label of the GTMD, since the focus of this paper is the
transverse momentum dependence. This is not to say that
the longitudinal momentum transfer is unimportant for the
structure of GTMD. It is however easily restored by simply
promoting the transverse momenta to full three momenta of
the operators and states involved.
We now need to understand the structure of the various

3GTMD’s that appear in our master expression Eq. (15)
given this single nucleon dominance approximation.The
generic 3GTMD we are dealing with has the structure

T3
ijk ≡ hPjψ†aðp1Þψaðp0

iÞψ†bðp2Þψbðp0
jÞψ†cðp3Þψcðp0

kÞjPi:
ð23Þ

To leading order in 1=Nc for identical quarks we obviously
have

T3
ijk ¼ Tðp1;p0

iÞTðp2;p0
jÞTðp3;p0

kÞ: ð24Þ

For production of nonidentical quarks the expression Eq. (22)
has to be modified along the lines of [18]. In particular the
leading contribution is given by the product of possibly
nondiagonal matrix elements between distinct nucleon states:

T3
ijk ¼ TPαðp1;p0

iÞTαβðp2;p0
jÞTβPðp3;p0

kÞ; ð25Þ

with

Tαβ ¼ hPαjψ†a
i ðpiÞψa

j ðp0
jÞjPβi; ð26Þ

where jPαi and jPβi are the nucleon states for which the
particularmatrix element in Eq. (26) does not vanish given the
flavors of the quarks i and j.
For identical particles on the other hand we need to keep

subleading in 1=Nc terms which are necessary to ensure the
(anti)symmetry of the amplitudes. These terms lead to the
Pauli blocking contribution discussed in [18] which is also
of interest to us in the present paper. To that end we should
remember that the original average which gives rise to this
color contraction was antisymmetric with respect to inter-
changes of any two momenta plus color indexes. We started
with

hPjψ†a1ðp1Þψa2ðp0
iÞψ†b1ðp2Þψb2ðp0

jÞψ†c1ðp3Þψc2ðp0
kÞjPi;

ð27Þ

which is obviously antisymmetric under permutations. The
leading Nc expression Eq. (24) is equivalent to assuming
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hPjψ†a1ðp1Þψa2ðp0
iÞψ†b1ðp2Þψb2ðp0

jÞψ†c1ðp3Þψc2ðp0
kÞjPi ð28Þ

≈ hPjψ†a1ðp1Þψa2ðp0
iÞjPihPjψ†b1ðp2Þψb2ðp0

jÞjPihPjψ†c1ðp3Þψc2ðp0
kÞjPi

≈
1

N3
c
Tðp1;p0

iÞTðp2;p0
jÞTðp3;p0

kÞδa1a2δb1b2δc1c2 : ð29Þ

To make this consistent with the (anti)commutativity of the annihilation operators, we generalize it in the following natural
way

hPjψ†a1ðp1Þψa2ðp0
iÞψ†b1ðp2Þψb2ðp0

jÞψ†c1ðp3Þψc2ðp0
kÞjPi

¼ 1

N3
c
½Tðp1;p0

iÞTðp2;p0
jÞTðp3;p0

kÞδa1a2δb1b2δc1c2 − Tðp1;p0
iÞTðp2;p0

kÞTðp3;p0
jÞδa1a2δb1c2δc1b2

− Tðp1;p0
jÞTðp2;p0

iÞTðp3;p0
kÞδa1b2δb1a2δc1c2 þ Tðp1;p0

jÞTðp2;p0
kÞTðp3;p0

iÞδa1b2δb1c2δc1a2
− Tðp1;p0

kÞTðp2;p0
jÞTðp3;p0

iÞδa1c2δb1b2δc1a2 þ Tðp1;p0
kÞTðp2;p0

iÞTðp3;p0
jÞδa1c2δb1a2δc1b2 �: ð30Þ

Taking the appropriate trace we have

T3
ijk ¼ Tðp1;p0

iÞTðp2;p0
jÞTðp3;p0

kÞ −
1

Nc
½Tðp1;p0

iÞTðp2;p0
kÞTðp3;p0

jÞ þ Tðp1;p0
jÞTðp2;p0

iÞTðp3;p0
kÞ

þ Tðp1;p0
kÞTðp2;p0

jÞTðp3;p0
iÞ� þ

1

N2
c
½Tðp1;p0

jÞTðp2;p0
kÞTðp3;p0

iÞ þ Tðp1;p0
kÞTðp2;p0

iÞTðp3;p0
jÞ�: ð31Þ

Wewill use this approximation to the 3GTMD in the rest of
this section, and its natural generalization for nGTMD later
in the paper.
Clearly the most generic case is when some of the

produced quarks are identical and some are not. This can be
analyzed along similar lines by combining Eqs. (25) and
(31) for appropriate quark flavors. In the rest of this paper
we will not dwell on this case which is combinatorially
more complicated. In fact in the following we will only
consider the case when all the particles are identical. With a
little extra work inferring the expression for the generic
case from our results should be straightforward.
Finally we have to restore the effects of spin in our

expressions. In the approximation of the dominance of the
intermediate nucleon state the basic objects we have to deal
with are polarization dependent GTMD’s which depend on
polarization of the quarks as well as the polarization of the
proton states

Tλλ̄
ss̄ðp1;p0

iÞ≡ hP; sjψ†a
λ ðp1Þψa

λ̄
ðp0

iÞjP; s̄i: ð32Þ

This object can in principle be decomposed into irreducible
representations with respect to the little group of the fast
moving quark, which leads to the appearance of several
polarized GTMD’s. This would complicate our expressions
considerably. Since our main interest here is the effect of
quantum interference and not the effects of spin, we choose
to use the same simplifying assumption as in [18]. Namely
wewill assume that the single particle spin averages over the

proton state do not depend on the proton polarization and are
dominated by the spin singlet average of the quark, i.e.

Tλλ̄
ss̄ðp1;p0

iÞ ¼ δλλ̄Tðp1;p0
iÞ: ð33Þ

We do not have a physical argument why this should be a
good approximation and will content ourselves with the
consideration of simplicity.
To leading order in energy, the high energy scattering does

not affect the spin of the propagating particle. Thus the
polarization of a quark with momentum p0

i in the conjugate
amplitude is always the same as that of the same quark (with
momentum pi) in the amplitude. The cross section is traced
over the polarizations of all quarks. The polarization indexes
entering anyGTMDcan be identified following themomen-
tum label of the two quarks. It therefore follows that every
timewe have an interchange of two quarks in our expression
we lose a factor of 2 since we loose one trace over
polarizations. Thus we should substitute in our expressions

Tðp1;p0
2ÞTðp2;p0

1Þ →
1

2
Tðp1;p0

2ÞTðp2;p0
1Þ

Tðp1;p0
3ÞTðp2;p0

1ÞTðp3;p0
2Þ

→
1

4
Tðp1;p0

3ÞTðp2;p0
1ÞTðp3;p0

2Þ; etc: ð34Þ

D. Fourier transforms and notations

Since the expression for the cross section involves
Fourier transforms, we define momenta
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p̄i ≡ pi − qi; p̄0
i ¼ p0

i − qi: ð35Þ

Since the coordinates x1, x2, x3 appear in the conjugate
amplitude while x0

1;x
0
2;x

0
3 in the amplitude, the momentum

conjugate to x1 is p̄1, to x0
1 is −p̄0

1 and so on [recall our
renaming pi ↔ p0

i in Eq. (15)].
To save a little bit of space we introduce concise

notations for the projectile TMD’s

fi; j0g≡ Tðpi;p0
jÞ: ð36Þ

As for the multipole scattering amplitudes, we will denote
those similarly by

½1; 10�≡Dðx1;x0
1Þ;

½1; 10; 2; 20�≡ Q̄ðx1;x0
1:x2;x0

2Þ; etc: ð37Þ

With a slight abuse of notations we will use the same
symbols to denote the Fourier transform of the amplitude
with coordinates being the momenta p̄i and p̄0

i defined
above, i.e.

½1; 10� ¼ Dðp̄1;−p̄0
1Þ; etc: ð38Þ

E. Expanding in 1=Nc

With these preliminaries we now write down Eq. (15) in
an explicit form in terms of TMD’s. We organize the terms
in expansion in powers of 1=Nc except for the overall
normalization factor, which we keep exact. We only write
here the terms up to Oð1=N2

cÞ since at this order we first
encounter the terms contributed by the sextupole X which
are not present for the two quark case analyzed in [18].

Thus

I0 ¼
N4

c

ðN2
c − 1ÞðN2

c − 4Þ ½1; 1
0�½2; 20�½3; 30�f1; 10gf2; 20gf3; 30g;

I1 ¼ −
N3

c

2ðN2
c − 1ÞðN2

c − 4Þ ½½½1; 1
0�½2; 20�½3; 30� þ ½1; 10�½2; 30�½2; 10� þ ½1; 10�½2; 20; 3; 30��f1; 10gf2; 30gf3; 20g

þ ½½1; 10�½2; 20�½3; 30� þ ½1; 20�½2; 10�½3; 30� þ ½3; 30�½1; 10; 2; 20��f1; 20gf2; 10gf3; 30g
þ ½½1; 10�½2; 20�½3; 30� þ ½2; 20�½1; 30�½3; 10� þ ½2; 20�½1; 10; 3; 30��f1; 30gf2; 20gf3; 10g�;

I2 ¼
N2

c

ðN2
c − 1ÞðN2

c − 4Þ
�
ð−5½1; 10�½2; 20�½3; 30� þ ½1; 10�½2; 20; 3; 30� þ ½2; 20�½1; 10; 3; 30� þ ½3; 30�½1; 10; 2; 20�Þ

× f1; 10gf2; 20gf3; 30g þ 1

4
ð½1; 10�½2; 20�½3; 30� þ ½1; 10�½2; 30�½3; 20� þ ½1; 20�½2; 10�½3; 30� þ ½1; 30�½2; 20�½3; 10�

þ ½1; 30�½2; 10�½3; 20� þ ½1; 30�½3; 20; 2; 10� þ ½2; 10�½1; 20; 3; 30� þ ½3; 20�½1; 10; 2; 30� þ ½1; 10�½2; 20; 3; 30� þ ½2; 20�½1; 10; 3; 30�
þ ½3; 30�½1; 10; 2; 20� þ ½1; 10; 2; 20; 3; 30�Þf1; 30gf2; 10gf3; 20g

þ 1

4
ð½1; 10�½2; 20�½3; 30� þ ½1; 10�½2; 30�½3; 20� þ ½1; 20�½2; 3�½3; 30� þ ½1; 30�½2; 20�½3; 10� þ ½1; 20�½3; 10�½2; 30�

þ ½1; 20�½2; 10; 3; 30� þ ½3; 10�½1; 30; 2; 20� þ ½2; 30�½1; 10; 3; 20� þ ½1; 10�½2; 20; 3; 30� þ ½2; 20�½1; 10; 3; 30� þ ½3; 30�½1; 10; 2; 20�

þ ½1; 10; 3; 30; 2; 20�Þf1; 20gf2; 30gf3; 10g
�
; ð39Þ

where the factors 1=2 in I1 and 1=4 in two of the terms in I2 are due to polarization averaging, as discussed above.
The most interesting terms in this expression are the ones that are not suppressed by the area, namely those that involve

only product of dipoles. We assume that the average of a product of two or more dipoles factorizes into the product of
averages in accordance with our earlier discussion. Assuming translational invariance of the target we have
In general

½1; i0�½2; j0�½3; k0� ¼ Dðp̄1ÞDðp̄2ÞDðp̄3Þδ2ðp̄1 − p̄0
iÞδ2ðp̄2 − p̄0

jÞδ2ðp̄3 − p̄0
kÞ: ð40Þ

Realizing the momentum delta functions we can therefore write the terms that involve only dipole contributions as
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I0 ¼ Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3ÞTðp1;p1ÞTðp2;p2ÞTðp3;p3Þ;

I1 ¼ −
1

2Nc
Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3Þ½Tðp1;p2ÞTðp2;p1ÞTðp3;p3Þ þ Tðp1;p1ÞTðp2;p3ÞTðp3;p2Þ

þ Tðp1;p3ÞTðp2;p2ÞTðp3;p1Þ þ Tðp1;p1ÞTðp2;p2 þ q3 − q2ÞTðp3;p3 þ q2 − q3Þ
þ Tðp1;p1 þ q3 − q1ÞTðp2;p2ÞTðp3;p3 þ q1 − q3Þ þ Tðp1;p1 þ q2 − q1ÞTðp2;p2 þ q1 − q2ÞTðp3;p3Þ�;

I2 ¼
1

4N2
c
Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3Þ½Tðp1;p2ÞTðp2;p3ÞTðp3;p1Þ þ Tðp1;p3ÞTðp2;p1ÞTðp3;p2Þ

þ Tðp1;p3 þ q2 − q3ÞTðp2;p2 þ q3 − q2ÞTðp3;p1Þ þ Tðp1;p2 þ q3 − q2ÞTðp2;p1ÞTðp3;p3 þ q2 − q3Þ
þ Tðp1;p1 þ q2 − q1ÞTðp2;p3ÞTðp3;p2 þ q1 − q2Þ þ Tðp1;p3ÞTðp2;p2 þ q2 − q1ÞTðp3;p1 þ q2 − q1Þ
þ Tðp1;p2ÞTðp2;p1 þ q2 − q1ÞTðp3;p3 þ q3 − q2Þ þ Tðp1;p1 þ q3 − q1ÞTðp2;p3 þ q2 − q3ÞTðp3;p2Þ
þ Tðp1;p1 þ q3 − q1ÞTðp2;p2 þ q1 − q2ÞTðp3;p3 þ q2 − q3Þ
þ Tðp1;p1 þ q2 − q1ÞTðp2;p2 þ q3 − q2ÞTðp3;p3 þ q1 − q3Þ�: ð41Þ

In the above expressions we have included the terms arising
from the expansion of the normalization factor in the first
line of Eq. (39) to Oð1=N2

cÞ.
It is straightforward towrite out the complete expression to

all orders in 1=Nc, but wewill not do it explicitly in this paper.

III. INCLUSIVE MULTIPLE QUARK
PRODUCTION

Our next goal is to extend the calculation to inclusive
production of an arbitrary number of quarks. The calcu-
lation albeit straightforward, is combinatorially rather
complicated. We therefore will not endeavor to derive
complete expression including all possible multipole

contributions. It is however not too difficult to derive the
most interesting terms, i.e. those that are not suppressed by
powers of area and which dominate the physics of quantum
interference. Those are the terms where all multipoles can
be approximated by products of dipoles in analogy with in
Eqs. (17), (18). We will perform the explicit calculation for
the production of four quarks, and then generalize the result
in a straightforward way.

A. Four quark production

For production of four quarks our starting point is the
following expression foe the cross section (where we have
omitted trivial kinematic factors)

I ∝e½−iq1ðx1−x01Þ−iq2ðx01−x02Þ−iq3ðx2−x03Þ−iq4ðx4−x04Þ�

×h½U†ðx1ÞUðx0
1Þ�a1b1 ½U†ðx2ÞUðx0

2Þ�a2b2 ½U†ðx3ÞUðx0
3Þ�a3b3 ½U†ðx4ÞUðx0

4Þ�a4b4i
×T4ðfx1;a1;x2;a2;x3;a3;x4;a4g;fx0

1;b1;x
0
2;b2;x

0
3;b3;x

0
4;b4gÞ; ð42Þ

where

T4ðfx1; a1;x2; a2;x3; a3;x4; a4g; fx0
1; b1;x

0
2; b2;x

0
3; b3;x

0
4; b4gÞ

≡ hPjψ†ðx1; a1Þψ†ðx2; a2Þψ†ðx3; a3Þψ†ðx4; a4Þψðx0
4; b4Þψðx0

3; b3Þψðx0
2; b2Þψðx0

1; b1ÞjPi: ð43Þ
Previously we have used the color invariance of the target field distribution to write this expression in terms of multipoles,
and the factored the multipoles into dipoles and remaining terms which are suppressed by the area. Since now we are only
interested in the dipole contributions, we can directly factorize the target average using pairwise contractions

hU†ðxÞαβUðyÞγδi ¼ δαδδβγ½x; y�: ð44Þ

These pairwise contractions generate 24 terms:
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I ≡ h½U†ðx1ÞUðx0
1Þ�a1b1 ½U†ðx2ÞUðx0

2Þ�a2b2 ½U†ðx3ÞUðx0
3Þ�a3b3 ½U†ðx4ÞUðx0

4Þ�a4b4i
× T4ðfx1; a1;x2; a2;x3; a3;x4; a4g; fx0

1; b1;x
0
2; b2;x

0
3; b3;x

0
4; b4gÞ

¼ ½1; 10�½2; 20�½3; 30�½4; 40�T4
1234 −

1

N
½½1; 10�½2; 20�½3; 40�½4; 30�T4

1243 þ ½1; 20�½2; 10�½3; 30�½4; 40�T4
2134

þ ½1; 10�½2; 30�½3; 20�½4; 40�T4
1324 þ ½1; 10�½2; 40�½3; 30�½4; 20�T4

1432 þ ½1; 30�½2; 20�½3; 10�½4; 40�T4
3214

þ ½1; 40�½2; 20�½3; 30�½4; 10�T4
4231� þ

1

N2
½½1; 20�½2; 10�½3; 40�½4; 30�T4

2143 þ ½1; 30�½2; 40�½3; 10�½4; 20�T4
3412

þ ½1; 40�½2; 30�½3; 20�½4; 10�T4
4321 þ ½1; 10�½2; 30�½3; 40�½4; 20�T4

1342 þ ½1; 10�½2; 40�½3; 20�½4; 30�T4
1423

þ ½1; 40�½2; 20�½3; 10�½4; 30�T4
4213 þ ½1; 30�½2; 20�½3; 40�½4; 10�T4

3241 þ ½1; 20�½2; 40�½3; 30�½4; 10�T4
2431

þ ½1; 40�½2; 10�½3; 30�½4; 20�T4
4132 þ ½1; 20�½2; 30�½3; 10�½4; 40�T4

2314 þ ½1; 30�½2; 10�½3; 20�½4; 40�T4
3124�

−
1

N3
½½1; 20�½2; 30�½3; 40�½4; 10�T4

2341 þ ½1; 20�½2; 40�½3; 10�½4; 30�T4
2413 þ ½1; 30�½2; 10�½3; 40�½4; 20�T4

3142

þ ½1; 30�½2; 40�½3; 20�½4; 10�T4
3421 þ ½1; 40�½2; 10�½3; 20�½4; 30�T4

4123 þ ½1; 40�½2; 30�½3; 10�½4; 20�T4
4312�: ð45Þ

The signs in this expression arise from the reordering of the fermionic operators in the definition of TMD’s so that each
TMD is a product of color singlets, i.e.

T4
ijkl ≡ hPjψ†ðx1; a1Þψðx0

i; a1Þψ†ðx2; a2Þψðx0
j; a2Þψ†ðx3; a3Þψðx0

k; a3Þψ†ðx4; a4Þψðx0
l; a4ÞÞjPi: ð46Þ

Clearly to leading order in 1=Nc we have

T4
ijkl →Nc→∞f1; i0gf2; j0gf3; k0gf4; l0g: ð47Þ

Adhering to this approximation we will correctly account for the HBT-like terms, but will not take into account the terms
due to Fermi statistics effects in the initial wave function—the Pauli blocking.

B. The Pauli blocking contribution

To include the Pauli blocking terms we have to antisymmetrize the proton wave function. We will use the same
approximation as for three quark production. We write in coordinate space

T4
ijkl ¼ f1; i0gf2; j0gf3; k0gf4; l0g

−
1

N
½f1; j0gf2; i0gf3; k0gf4; l0g þ f1; k0gf2; j0gf3; j0gf4; l0g þ f1; l0gf2; j0gf3; k0gf4; i0g

þ f1; i0gf2; k0gf3; j0gf4; l0g þ f1; i0gf2; l0gf3; k0gf4; j0g þ f1; i0gf2; j0gf3; l0gf4; k0g�

þ 1

N2
½f1; j0gf2; i0gf3; l0gf4; k0g þ f1; k0gf2; l0gf3; i0gf4; j0g þ f1; l0gf2; k0gf3; j0gf4; i0g

þ f1; i0gf2; k0gf3; l0gf4; j0g þ f1; i0gf2; l0gf3; j0gf4; k0g þ f1; k0gf2; j0gf3; l0gf4; i0g
þ f1; l0gf2; j0gf3; i0gf4; k0g þ f1; j0gf2; l0gf3; k0gf4; i0g þ f1; l0gf2; i0gf3; k0gf4; j0g
þ f1; j0gf2; k0gf3; i0gf4; l0g þ f1; k0gf2; i0gf3; j0gf4; l0g�

−
1

N3
½f1; j0gf2; k0gf3; l0gf4; i0g þ f1j0gf2; l0gf3; i0gf4; k0g þ f1; k0gf2; i0gf3; l0gf4; j0g

þ f1; k0gf2; k0gf3; l0gf4; i0g þ f1; l0gf2; i0gf3; j0gf4; k0g þ f1; l0gf2; k0gf3; i0gf4; j0g�: ð48Þ
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Finally, just like for three quark production to account for
the spin we need to introduce a factor of 1=2n for every
permutation of indexes ði0; j0; k0; lÞ0 where n is the number
of index permutations necessary to obtain it from the trivial
permutation (1,2,3,4).
We can now organize all terms in orders of 1=N. The

resulting expression is fairly long and we do not write it out
exhaustively in the text. Instead we present it in
Appendix B for reference. In the same appendix we give
the expression for the cross section transformed to Fourier
space. Our main goal is to extend these expressions to an
arbitrary number of particles. Thankfully this can be done
essentially by inspection.

C. Generalizing to arbitrary number
of produced particles

We start with writing Eq. (45) is a suggestive form.
Obviously the expression is a sum over all permutations of
the four coordinates i0, j0, k0, l0. let us introduce the following
notations:Pij denotes a permutation of the four coordinates in
which only the ith and jth coordinates are interchanged,
Pijk—a permutation where the three coordinates are inter-
changed with each other without leaving any one in its place,
Pij;kl—permutation where the coordinates are interchanged
within two pairs, etc. Accordingly PðkÞij etc. means the kth
number in the appropriate permutation. We can then write
directly the generalization ofEq. (45) to n particle production:

I ¼
Yn
a¼1

½a; a�Tn
12…n −

1

N

X
Pij

Yn
a¼1

½a; PðaÞij�Tn
Pð1Þij…PðnÞij

þ 1

N2

�X
Pijk

Yn
a¼1

½a; PðaÞijk�Tn
Pð1Þijk…PðnÞijk þ

X
Pij;kl

Yn
a¼1

½a; PðaÞij;k�Tn
Pð1Þij;kl…PðnÞij;kl

�

−
1

N3

X
Pijkl

Yn
a¼1

½a; PðaÞijkl�Tn
Pð1Þijkl…PðnÞijkl þ…: ð49Þ

Here we have defined the nGTMD’s Tn in exact analogy with Eq. (46). We now use the same parametrization of nGTMD in
terms of single TMD’s as in Eq. (48). We can then immediately generalize Eq. (B1)

I0 ¼
Yn
a¼1

½a; a�
Yn
b¼1

fb; bg;

I1 ¼ −
1

2N

X
Pij

�Yn
a¼1

½a; PðaÞij� þ
Yn
a¼1

½a; a�
�Yn
b¼1

fb; PðbÞijg;

I2 ¼
1

4N2

�X
Pij;kl

�Yn
a¼1

½a; PðaÞij;kl� þ
Yn
a¼1

½a; PðaÞij� þ Πn
a¼1½a; PðaÞkl� þ Πn

a¼1½a; a�
�Yn
b¼1

fb; PðbÞij;klg

×
X
Pijk

�Yn
a¼1

½a; PðaÞijk
�
þ
Yn
a¼1

½a; PðaÞij� þ
Yn
a¼1

½a; PðaÞjk� þ
Yn
a¼1

½a; PðaÞkl� þ
Yn
a¼1

½a; a��
Yn
b¼1

fb; PðbÞijkg

þ 4
X
Pij

Yn
a¼1

½a; PðaÞij�
Yn
b¼1

fb; bg
�
: ð50Þ

And finally the generalization of the expression in momentum space Eq. (B3) is

Ik ¼
Yn
i¼1

Dðpi − qiÞJk; ð51Þ

with
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J0 ¼
Yn
i¼1

fpi;pig;

J1 ¼ −
1

2N

X
fi;jg

½fpi;pi þ qj − qigfpj;pj þ qi − qjg þ fpi;pjgfpj;pig�
Y
k≠i;j

fpk;pkg;

J2 ¼
1

4N2

� X
fi;jg;fl;mg

fpi;pi þ qj − qigfpj;pj þ qi − qjgfpl;pl þ qm − qlgfpm;pm þ ql − qmg
Y

k≠i;j;l;m
fpk;pkg

þ
X

fi;jg;fl;mg
fpi;pi þ qj − qigfpj;pj þ qi − qjgfpl;pmgfpm;plg

Y
k≠i;j;l;m

fpk;pkg

þ
X

fi;jg;fl;mg
fpi;pjgfpj;pigfpl;pmgfpm;plg

Y
k≠i;j;l;m

fpk;pkg

þ 1

3

X
fi;j;lg

fpi;pi þ qj − qigfpj;pj þ ql − qjgfpl;pl þ qi − qlg
Y
k≠i;j;l

fpk;pkg

þ 1

3

X
fi;j;lg

fpi;pjgfpj;plgfpl;pig
Y
k≠i;j;l

fpk;pkg

þ
X
fi;j;lg

fpi;pj þ qk − qjgfpj;pigfpl;pl þ qi − qlg
Y
k≠i;j;l

fpk;pkg

þ 4
X
fi;jg

fpi;pi þ qj − qigfpj;pj þ qi − qjg
Y
k≠i;j

fpk;pkg
�
: ð52Þ

Here fi; jg is a pair of indexes, and fi; j; lg is an ordered
triplet of indexes, such that for example f1; 2; 3g is
considered distinct from f2; 1; 3g and from f2; 3; 1g.
The meaning of the various terms in Eq. (52) is quite

clear. All terms that involve TMD’s that depend on the final
state momenta qi arise from the HBT—like contributions
of the final state particles. On the other hand any TMD of
the form fpi;pjg with i ≠ j appears due the Pauli blocking
effects in the projectile wave function. It is thus clear how
this result is modified if not all the quarks are identical. In
this case any term that has a factor fpi;pjg where i and j
refer to nonidentical quarks, should be dropped. Also any
TMD of the form fpi;pi þ qj − qig with i and j corre-
sponding to nonidentical quarks should be replaced by Tαβ

defined in Eq. (26) with jPαi and jPβi allowed by flavor
conservation.

IV. DISCUSSION

In this paper we have derived formal expressions for
multi quark inclusive production, keeping only terms that
are not suppressed by factors of area. Our main motivation
was to explore how the effects of quantum interference
affect multi particle production beyond the two particle
correlations effects present already for inclusive production
of two particles. Although our final expressions are fairly
lengthy, the main properties of the cross section can be
inferred without numerical calculations. In this section we
would like to discuss these qualitative features.

We first concentrate on the three particle production
Eq. (41), since to order 1=N2

c no qualitatively new features
appear in multiple quark production. The leading term I0
clearly describes independent production of the three quarks.
The next term I1 is essentially the same as in the two particle
production considered in [18]. Here one particle is produced
independently, while the other two are correlated via either
the HBTeffect or the Pauli blocking effect in the initial wave
function. It is easy to distinguish between the “HBT” and
“Pauli blocking” terms. The former involve GTMD’s with
momentum transfer corresponding tomomentumdifferences
of final state particlesqi − qj, while the latter—the incoming
parton momenta pi − pj. As in [18] we can use a simplified
form of the GTMD in order to understand the qualitative
features of the correlation. We take

Tðp;kÞ ¼ T

�
pþ k
2

�
Fðk − pÞ; FðkÞ ¼ 1

k2

Λ2 þ 1
:

ð53Þ

Here TðqÞ is the TMD and the form factor F suppresses
momentum transfer larger than some soft hadronic scale Λ,
which naturally has the meaning of the inverse radius of the
proton. Thus the various HBT terms in I1 suppress particle
productionwhenmomenta of any two particles arewithin the
distance Λ of each other. There is also suppression of
production from incoming particles with similar momenta
due to the Pauli blocking effect. This effect is different in the
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sense that as a result of the interaction with the target the
incomingmomenta are smeared by the amount of the order of
the saturation momentum of the target Qs. Thus the width
of the trough in correlation of the producedmomentum is of
order Qs and not Λ as in the case of HBT.
One should keep in mind this significant difference

between the HBT induced and the Pauli bocking induced
correlations [16]. The HBT correlations are due to inter-
ference of the signals emitted by incoherent emitters from
the surface of the proton right after scattering, see for
example discussion in [16]. The width of the HBT
correlated signal in momentum space is determined by
the inverse size of the proton and is approximately
independent of the momentum of produced particles. It
is thus present at large transverse momenta qi. The value of
the saturation momentum of the target place a secondary
role as long as it is large enough. However for small Qs the
magnitude of the HBT signal must be suppressed, since in
this case the number of uncorrelated emitters is small.
On the other hand the Pauli blocking directly correlates

momenta of partons in the proton wave function. The
momenta transferred from the target to the two partons are
not correlated. If Qs of the target is greater than the average
transverse momentum of the incoming partons we expect the
correlations present in the initial wave function to bewashed
awayby the scattering. In this regimewe thus expect the Pauli
blocking terms to contribute to the isotropic “pedestal” but
not to angularly correlated signal. This property in fact can be
explicitly seen from our formulae. Consider for example one
of the Pauli blocking terms in Eq. (41)

Z
pi

Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3ÞTðp1;p2ÞT

× ðp2;p1ÞTðp3;p3Þ: ð54Þ

For large transverse momenta, which are much larger than
possible intrinsic momenta in the proton wave function

qi ≫ pi, one can neglect the transverse momenta pi in the
argument of the dipole amplitudes Dðqi − piÞ. We then get

Dðq1ÞDðq2ÞDðq3Þ
Z
pi

Tðp1;p2ÞTðp2;p1ÞTðp3;p3Þ: ð55Þ

This clearly does not induce any angular correlations
between the produced particles, although it does gives a
negative isotropic contribution to the inclusive three particle
production.
On the other hand if Qs is smaller than the intrinsic

transverse momentum of the projectile, the Pauli blocking
correlations should be directly observed as angular corre-
lations in the emission.
Thus for an asymmetric collision, like p-Awe expect the

HBT signal to dominate at large qi for emission in the
direction of the dilute object (proton), while the Pauli
blocking signal to dominate in the direction of the nucleus.
It is possible that at midrapidity both contributions are
comparable. One has to keep in mind though that our
present framework is quantitatively correct only for the
forward production in the proton direction and thus a
discussion of correlations at midrapidity is strictly speaking
outside the scope of the present paper.
The terms contained in I1 contribute to correlations

between two particles only, while the third particle in any of
these terms is emitted independently. These terms do not
contribute to three particle collectivity measures, such as v32
since the emission angle of one of the particles is isotropic
with respect to the other two. In this respect the first
interesting term is I2. It is thus interesting to understand
what kind of three particle correlation it induces. First off
we note that all the terms in I2 are positive. Therefore they
lead to partial compensation of the negative correlation due
to “pairwise” HBT and Pauli blocking. There are three
types of terms in I2. The first type is

Z
pi

Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3ÞTðp1;p2ÞTðp2;p3ÞTðp3;p1Þ: ð56Þ

This is a kind of “unitarization” correction to pairwise Pauli blocking. We interpret it as an indication that I1 “over
subtracts” the Pauli blocking contribution in the regime when all three quarks in the proton wave function have equal
momenta. The positive contribution from I2 rectifies this “oversubtraction.”
The second type of term is proportional to

Z
pi

Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3ÞTðp1;p1 þ q3 − q1ÞTðp2;p3 þ q2 − q3ÞTðp3;p2Þ: ð57Þ

This is a “mixed” HBT-Pauli blocking correction. The magnitude of this term is maximal when q3 ¼ q1 ¼ q2 and p2 ¼ p3.
Interestingly, although this term clearly requires particles 2 and 3 to be identical, it does contribute to angular correlations
even if we neglect the p dependence of the dipole amplitudes.
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Finally the last type of terms is exemplified byZ
pi

Dðq1 − p1ÞDðq2 − p2ÞDðq3 − p3ÞTðp1;p1 þ q2 − q1ÞTðp2;p2 þ q3 − q2ÞTðp3;p3 þ q1 − q3Þ: ð58Þ

This again has a simple interpretation as a “unitarization
correction.” This time the correction is to the pairwise HBT
interference term.
For production of more than 3 quarks, the only difference

is that at order 1=N2
c one also has terms that correlate two

pairs of quarks, again by either HBT or PB mechanisms. In
fact the pattern is quite clear and one can straightforwardly
generalize Eq. (52) to higher order terms in 1=Nc.
We note, that in the imaginary world where the quarks

were scalar particles, the calculation would have been
almost identical. The only difference (except for the absence
of the factors of 1=2 that appeared due to spin averaging) is
that all the interference terms would be positive. Thus not
only the interference effects would enhance rather than
deplete the “same side” particle emission, the higher order in
1=Nc terms would add to the effect rather than suppress it.
Another point worth mentioning is that although we

formally expand in powers of 1=Nc, this expansion quickly
becomes unreliable for large number of produced particles
n. Even if we count only the “HBT” type terms, it is clear

from Eq. (52) that J1 is a sum of nðn−1Þ
2

∼Oðn2Þ such terms,

while J2 is a sum of nðn−1Þðn−2Þðn−3Þ
4

þ nðn−1Þðn−2Þ
3!

∼Oðn4Þ
terms. Already at n ∼

ffiffiffiffiffiffi
Nc

p
the number of terms in all Jm

compensates for the suppression factor 1=Nm
c . Thus one has

to study the unexpanded expression rather than fixed order
in 1=Nc. Since the terms in the series have alternating signs it
would be interesting to see what is the nett effect at large n.
Again we note that for scalar quarks where all the terms are
positive, the effect at large n is positive and can bevery large.

V. SUMMARY

To summarize, we found in the present calculation
“irreducible” contributions to multi particle production
due to quantum interference effects. The first such effect
appears at order 1=N2

c and correlates three produced
particles. It has the nature of “unitarization correction”
to the two particle quantum interference.
Our result for n ¼ 3 is complete, while for multiple

production (n > 3) it collect only the terms which are not
suppressed by powers of area. In the parlance of Ref. [26]
those are terms leading in the number of sources. These terms
are responsible for the quantum interference effects. The
recent impressive calculation of two quark production [28]
within the MVmodel [29] does not include these terms. The
starting point of [28] is the expression for the two particle
production given as the target average of product of two
dipoles. This target average is then carefully calculatedwithin
the MV model including non factorizable 1=N2

c suppressed

terms. This corresponds to a careful target averaging of our
term I0. The corrections that Ref. [28] takes into account
therefore is what we have called classical terms which arise
from the part of the phase spacewhenmore than two points in
the product of two dipoles arewithin the distance of 1=Qs. As
noted in [18] such terms are suppressed by at least the factor
of 1=N2

c, and are therefore sub leading relative to I1 and are of
the same order as I2. Clearly a calculation of particle
correlations within the CGC approach is incomplete without
including the quantum interference terms.
The “irreducible” contribution also appears at order

1=N2
c in inclusive four particle production, whereby out

of the four observed particles three are correlated between
themselves and the fourth one is emitted independently of
the other three. This effect however does not contribute to
v2ð4Þ. The point is that the four particle cumulant which
determines v2ð4Þ is defined as

c2ð4Þ ¼ hei2ðϕ1þϕ2−ϕ3−ϕ4Þi ð59Þ

where ϕi is the azimuthal angle of the transverse momen-
tum of the ith particle and the averaging is defined with
respect to the four particle inclusive cross section. Since
one of the four particles is produced independently of the
three (that may be correlated), the cumulant vanishes as a
result of the averaging over the azimuthal angle of this
particle. However, even though we have not explicitly
calculated terms of order 1=N3

c, from the mechanics of our
calculation it is clear that at this order there does appear a
contribution that correlates four produced particles. Such a
contribution will indeed contribute to v2ð4Þ as well as to all
v2ðnÞ for n ≥ 4. Whether its magnitude is large enough to
be phenomenologically important is a quantitative ques-
tion. It has to be explored specifically in the context of
gluon production, since this is the real process of interest.
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APPENDIX A: THE COEFFICIENT FUNCTIONS

Using the decomposition of the multipoles in terms of the localized amplitudes we can rewrite the coefficient functions
defined in Sec. II. To do that first of all we introduce a concise notation:

½1; 10�≡Dðx1;x0
1Þ;

½1; 10; 2; 20�≡ Q̄ðx1;x0
1:x2;x0

2Þ; etc: ðA1Þ

With this we can write

A1 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
4
c½1; 10�½2; 20�½3; 30� ðA2Þ

− N2
c½5½1; 10�½2; 20�½3; 30� þ ½1; 10�½2; 30�½3; 20� þ ½1; 20�½2; 10�½3; 30� þ ½1; 30�½2; 20�½3; 10� ðA3Þ

þ ½1; 10�½2; 20; 3; 30� þ ½3; 30�½1; 10; 2; 20� þ ½2; 20�½1; 10; 3; 30�� þ 4½1; 10�½2; 20; �½3; 30� þ 4½1; 10�½2; 30�½3; 20�
þ 4½1; 30�½3; 10�½2; 20� þ 4½1; 20�½2; 10�½3; 30� þ 2½1; 30�½2; 10�½3; 20� þ 2½1; 20�½3; 10�½2; 30�
þ 2½2½1; 10�½2; 20; 3; 30� þ 2½2; 20; �½1; 10; 3; 30� þ 2½3; 30�½1; 10; 2; 20� þ ½1; 30�½2; 20; 3; 10� þ ½1; 20�½2; 10; 3; 30�
þ ½2; 10�½1; 20; 3; 30� þ ½2; 30�½1; 10; 3; 20� þ ½3; 10�½1; 30; 2; 20� þ 2½3; 20�½1; 10; 2; 30��
þ 2½½1; 10; 2; 20; 3; 30� þ ½1; 10; 3; 30; 2; 20���;

A2 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
3
c½½1; 10�½2; 30�½3; 20� þ ½1; 10�½2; 20; 3; 30�� þ Nc½4½1; 10�½3; 20�½2; 30� þ ½1; 20�½3; 10�½2; 30�

þ ½1; 30�½2; 10�½3; 20� þ 4½1; 10�½2; 20; 3; 30� þ ½1; 20�½2; 10; 3; 30� þ ½1; 30�½2; 20; 3; 10� þ ½3; 10�½1; 30; 2; 20�
þ ½3; 20�½1; 10; 2; 30� þ ½2; 10�½1; 20; 3; 30� þ ½2; 30�½1; 10; 3; 20� þ ½1; 10; 3; 30; 2; 20� þ ½1; 10; 2; 20; 3; 30���;

A3 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
3
c½½1; 20�½2; 10�½3; 30� þ ½3; 30�½1; 10; 2; 20�� − Nc½4½1; 20�½2; 10�½3; 30� þ ½1; 30�½2; 10�½3; 20�

þ ½1; 20�½3; 10�½2; 30� þ 4½3; 30�½1; 10; 2; 20� þ ½1; 30�½2; 20; 3; 10� þ ½1; 20�½2; 10; 3; 30� þ ½2; 10�½1; 20; 3; 30�
þ ½2; 30�½1; 10; 3; 20� þ ½3; 10�½1; 30; 2; 20� þ ½3; 20�½1; 10; 2; 30� þ ½1; 10; 2; 20; 3; 30� þ ½1; 10; 3; 30; 2; 20���;

A4 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½½1; 20�½3; 10�½2; 30� þ ½1; 20�½2; 10; 3; 30� þ ½3; 10�½1; 30; 2; 20� þ ½2; 30�½1; 10; 3; 20�

þ ½1; 10; 3; 30; 2; 20�� þ 2½½1; 30�½2; 10�½3; 20� − ½1; 20�½3; 10�½2; 30� þ ½1; 30�½2; 20; 3; 10� − ½1; 20�½2; 10; 3; 30�
þ ½2; 10�½1; 20; 3; 30� − ½2; 30�½1; 10; 3; 20� þ ½3; 20�½1; 10; 2; 30� − ½3; 10�½1; 30; 2; 20�
þ ½1; 10; 2; 20; 3; 30� − ½1; 10; 3; 30; 2; 20���;

A5 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
3
c½½2; 20�½1; 30�½3; 10� þ ½2; 20�½1; 10; 3; 30�� þ Nc½4½2; 20�½3; 10�½1; 30� þ ½2; 10�½3; 20�½1; 30�

þ ½2; 30�½1; 20�½3; 10� þ 4½2; 20�½1; 10; 3; 30� þ ½2; 10�½1; 20; 3; 30� þ ½2; 30�½1; 10; 3; 20� þ ½3; 20�½1; 10; 2; 30�
þ ½3; 10�½2; 20; 1; 30� þ ½1; 20�½3; 2; 3; 30� þ ½1; 30�½2; 20; 3; 10� þ ½1; 10; 3; 30; 2; 20� þ ½1; 10; 2; 20; 3; 30���;

A6 ¼
1

ðN2
c − 1ÞðN2

c − 4Þ ½N
2
c½½1; 30�½2; 10�½3; 20� þ ½1; 30�½2; 10; 3; 30� þ ½2; 10�½1; 20; 3; 30� þ ½3; 20�½1; 10; 2; 30�

þ ½1; 10; 2; 20; 3; 30�� − 2½½1; 30�½2; 10�½3; 20� − ½1; 20�½3; 10�½2; 30� þ ½1; 30�½2; 20; 3; 10� − ½1; 20�½2; 10; 3; 30�
þ ½2; 10�½1; 20; 3; 30� − ½2; 30�½1; 10; 3; 20� þ ½3; 20�½1; 10; 2; 30� − ½3; 10�½1; 30; 2; 20�
þ ½1; 10; 2; 20; 3; 30� − ½1; 10; 3; 30; 2; 20���; ðA4Þ

APPENDIX B: THE FOUR QUARK PRODUCTION

In this Appendix we collect the expressions for the cross section for production of four identical quarks.
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The following refers to the expansion of Eq. (45) in powers of 1=N assuming all particles are identical.

I0 ¼ ½1; 10�½2; 20�½3; 30�½4; 40�f1; 10gf2; 20gf3; 30gf4; 40g;

I1 ¼ −
1

2N
½ð½1; 10�½2; 20�½2; 200�½4; 30� þ ½1; 10�½2; 20�½3; 30�½4; 40�Þf1; 10gf2; 20gf3; 40gf4; 30g

þ ð½1; 20�½2; 10�½3; 30�½4; 40� þ ½1; 10�½2; 20�½3; 30�½4; 40�Þf1; 20gf2; 10gf3; 30gf4; 40g
þ ð½1; 10�½2; 30�½3; 20�½4; 40� þ ½1; 10�½2; 20�½3; 30�½4; 40�Þf1; 10gf2; 30gf3; 20gf4; 40g
þ ð½1; 10�½2; 40�½3; 30�½4; 20� þ ½1; 10�½2; 20�½3; 30�½4; 40�Þf1; 10gf2; 40gf3; 30gf4; 20g
þ ð½1; 30�½2; 20�½3; 10�½4; 40� þ ½1; 10�½2; 20�½3; 30�½4; 40�Þf1; 30gf2; 20gf3; 10gf4; 40g
þ ð½1; 40�½2; 20�½3; 30�½4; 10� þ ½1; 10�½2; 20�½3; 30�½4; 40�Þf1; 40gf2; 20gf3; 30gf4; 10g�;

I2 ¼
1

4N2
½ð½1; 20�½2; 10�½3; 40�½4; 30� þ ½1; 10�½2; 20�½3; 40�½4; 30� þ ½1; 20�½2; 10�½3; 30�½4; 40�Þf1; 20gf2; 10gf3; 40gf4; 30g

þ ð½1; 30�½2; 40�½3; 10�½4; 20� þ ½1; 10�½2; 40�½3; 30�½4; 20� þ ½1; 30�½2; 20�½3; 10�½4; 40Þf1; 30gf2; 40gf3; 10gf4; 20g
þ ð½1; 40�½2; 30�½3; 20�½4; 10� þ ½1; 10�½2; 30�½3; 20�½4; 40� þ ½1; 40�½2; 20�½3; 30�½4; 10�Þ�f1; 40gf2; 30gf3; 20gf4; 10g
þ ð½1; 10�½2; 30�½3; 40�½4; 20� þ ½1; 10�½2; 20�½3; 40�½4; 30� þ ½1; 10�½2; 30�½3; 20�½4; 40�
þ ½1; 10�½2; 40�½3; 30�½4; 20�Þf1; 10gf2; 30gf3; 40gf4; 20g þ ð½1; 10�½2; 40�½3; 20�½4; 30� þ ½1; 10�½2; 20�½3; 40�½4; 30�
þ ½1; 10�½2; 30�½3; 20�½4; 40� þ ½1; 10�½2; 40�½3; 30�½4; 20�Þf1; 10gf2; 40gf3; 20gf4; 30g þ ð½1; 40�½2; 20�½3; 10�½4; 30�
þ ½1; 10�½2; 20�½3; 40�½4; 30� þ ½1; 30�½2; 20�½3; 10�½4; 40� þ ½1; 40�½2; 20�½3; 30�½4; 10�Þf1; 40gf2; 20gf3; 10gf4; 30g
þ ð½1; 30�½2; 20�½3; 40�½4; 10� þ ½1; 10�½2; 20�½3; 40�½4; 30� þ ½1; 30�½2; 20�½3; 10�½4; 40�
þ ½1; 40�½2; 20�½3; 30�½4; 10�Þf1; 30gf2; 20gf3; 40gf4; 10g þ ð½1; 20�½2; 40�½3; 30�½4; 10� þ ½1; 20�½2; 10�½3; 30�½4; 40�
þ ½1; 10�½2; 40�½3; 30�½4; 20� þ ½1; 40�½2; 20�½3; 30�½4; 10�Þf1; 20gf2; 40gf3; 30gf4; 10g þ ð½1; 40�½2; 10�½3; 30�½4; 20�
þ ½1; 20�½2; 10�½3; 30�½4; 40� þ ½1; 10�½2; 40�½3; 30�½4; 20� þ ½1; 40�½2; 20�½3; 30�½4; 10�Þf1; 40gf2; 10gf3; 30gf4; 20g
þ ð½1; 20�½2; 30�½3; 10�½4; 40� þ ½1; 20�½2; 10�½3; 30�½4; 40� þ ½1; 10�½2; 30�½3; 20�½4; 40�
þ ½1; 30�½2; 20�½3; 10�½4; 40�Þf1; 20gf2; 30gf3; 10gf4; 40g þ ð½1; 30�½2; 10�½3; 20�½4; 40� þ ½1; 20�½2; 10�½3; 30�½4; 40�
þ ½1; 10�½2; 30�½3; 20�½4; 40� þ ½1; 30�½2; 20�½3; 10�½4; 40�Þf1; 30gf2; 10gf3; 20gf4; 40g þ 4ð½1; 10�½2; 20�½3; 40�½4; 30�
þ ½1; 20�½2; 10�½3; 30�½4; 40� þ ½1; 10�½2; 30�½3; 20�½4; 40� þ ½1; 10�½2; 40�½3; 30�½4; 20� þ ½1; 30�½2; 20�½3; 10�½4; 40�
þ ½1; 40�½2; 20�½3; 30�½4; 10�Þf1; 10gf2; 20gf3; 30gf4; 40g þ ½1; 10�½2; 20�½3; 30�½4; 40�ðf1; 20gf2; 10gf3; 40gf4; 30g
þ f1; 30gf2; 40gf3; 10gf4; 20g þ f1; 40gf2; 30gf3; 20gf4; 10g þ f1; 10gf2; 30gf3; 40gf4; 20g
þ f1; 10gf2; 40gf3; 20gf4; 30g þ f1; 40gf2; 20gf3; 10gf4; 30g þ f1; 30gf2; 20gf3; 40gf4; 10g
þ f1; 20gf2; 40gf3; 30gf4; 10g þ f1; 40gf2; 10gf3; 30gf4; 20g þ f1; 20gf2; 30gf3; 10gf4; 40g
þ f1; 30gf2; 10gf3; 20gf4; 40gÞ�: ðB1Þ

Finally we need to Fourier transfer this in order to write the physical cross section. We again use the approximation of a
translationally invariant target. In the Fourier space all the terms have the common factor Dðq1 − p1ÞDðq2−
p2ÞDðp3 − q3ÞDðp4 − q4Þ. Thus

Ik ¼ Dðq1 − p1ÞDðq2 − p2ÞDðp3 − q3ÞDðp4 − q4ÞJk; ðB2Þ

with

MULTIQUARK PRODUCTION IN pþ A COLLISIONS: … PHYS. REV. D 97, 074008 (2018)

074008-17



J0 ¼ fp1;p1gfp2;p2gfp3;p3gfp4;p4g;

J1 ¼ −
1

2N
½fp1;p1gfp2;p2gfp3;p4gfp4;p3g þ fp1;p1gfp2;p2gfp3;p3 þ q4 − q3gfp4;p4 þ q3 − q4g

þ fp1;p2gfp2;p1gfp3;p3gfp4;p4g þ fp1;p1 þ q2 − q1gfp2;p2 þ q1 − q2gfp3;p3gfp4;p4g
þ fp1;p1gfp2;p3gfp3;p2gfp4;p4g þ fp1;p1gfp2;p2 þ q3 − q2gfp3;p3 þ q2 − q3gfp4;p4g
þ fp1;p1gfp2;p4gfp3;p3gfp4;p2g þ fp1;p1gfp2;p2 þ q4 − q2gfp3;p3gfp4;p4 þ q2 − q4g
þ fp1;p3gfp2;p2gfp3;p1gfp4;p4g þ fp1;p1 þ q3 − q1gfp2;p2gfp3;p3 þ q1 − q3gfp4;p4g
þ fp1;p4gfp2;p2gfp3;p3gfp4;p1g þ fp1;p1 þ q4 − q1gfp2;p2gfp3;p3gfp4;p4 þ q1 − q4g�;

J2 ¼
1

4N2
½fp1;p1 þ q2 − q1gfp2;p2 þ q1 − q2gfp3;p3 þ q4 − q3gfp4;p4 þ q3 − q4g

þ fp1;p2gfp2;p1gfp3;p3 þ q4 − q3gfp4;p4 þ q3 − q4g
þ fp1;p1 þ q2 − q1gfp2;p2 þ q1 − q2gfp3;p4gfp4;p3g
þ fp1;p3 þ q1 − q3gfp2;p4 þ q2 − q4gfp3;p3 þ q1 − q3gfp4;p4 þ q2 − q4g
þ fp1;p3gfp2;p2 þ q4 − q2gfp3;p1gfp4;p4 þ q2 − q4g
þ fp1;p1 þ q3 − q1gfp2;p4gfp3;p3 þ q1 − q3gfp4;p2g
þ fp1;p1 þ q4 − q1gfp2;p2 þ q3 − q2gfp3;p3 þ q2 − q3gfp4;p4 þ q1 − q4g
þ fp1;p4gfp2;p2 þ q3 − q2gfp3;p3 þ q2 − q3gfp4;p1g
þ fp1;p1 þ q1 − q4gfp2;p3gfp3;p2gfp4;p4 þ q1 − q4g
þ fp1;p1gfp2;p2 þ q3 − q2gfp3;p3 þ q4 − q3gfp4;p4 þ q2 − q4g
þ fp1;p1gfp2;p4 þ q3 − q4gfp3;p3 þ q4 − q3gfp4;p2g
þ fp1;p1gfp2;p2 þ q3 − q2gfp3;p4gfp4;p3 þ q2 − q3g
þ fp1;p1gfp2;p3gfp3;p2 þ q4 − q2gfp4;p4 þ q2 − q4g
þ fp1;p1gfp2;p2 þ q4 − q2gfp3;p3 þ q2 − q3gfp4;p4 þ q3 − q4g
þ fp1;p1gfp2;p3 þ q4 − q3gfp3;p2gfp4;p4 þ q3 − q4g
þ fp1;p1gfp2;p4gfp3;p3 þ q2 − q4gfp4;p2 þ q3 − q2g
þ fp1;p1gfp2;p2g þ q4 − q2gfp3;p4 þ q2 − q4gfp4;p3g
þ fp1;p1 − q1 þ q4gfp2;p2gfp3:p1 − q1 þ q3gfp4 þ p4 − q4 þ q3g
þ fp1;p3 − q3 þ q4gfp2;p2gfp3;p1gfp4;p3 − q3 þ q4g
þ fp1;p4gfp2;p2gfp3;p3 − q3 þ q1gfp4;p1 − q1 þ q3g
þ fp1;p1 − q1 þ q4gfp2;p2gfp3;p4 − q4 þ q1gfp4;p3g
þ fp1;p1 − q1 þ q3gfp2;p2gfp3;p3 − q3 þ q4gfp4;p4 − q4 þ q1g
þ fp1;p4 − q4 þ q3gfp2;p2gfp3;p3 − q3 þ q4gfp4;p1g
þ fp1;p1 − q1 þ q3gfp2;p2gfp3;p4gfp4;p3 − q3 þ q1g
þ fp1;p3gfp2;p2gfp3;p1 − q1 þ q4gfp4;p4 − q4 þ q1g
þ fp1;p1 − q1 þ q2gfp2;p2 − q2 þ q4gfp3;p3gfp4;p4 − q4 þ q1g
þ fp1;p1 − q1 þ q2gfp2;p4gfp3;p3gfp4;p2 − q2 þ q1g
þ fp1;p4 − q4 þ q2gfp2;p2 − q2 þ q4gfp3;p3gfp4;p1g
þ fp1;p2gfp2;p1 − q1 þ q4gfp3;p3gfp4;p4 − q4 þ q1g

ALEX KOVNER and AMIR H. REZAEIAN PHYS. REV. D 97, 074008 (2018)

074008-18



þ fp1;p4 − q4 þ q1gfp2;p1 − q1 þ q2gfp3;p3gfp4;p4 − q4 þ q2g
þ fp1;p4gfp2;p2 − q2 þ q1gfp3;p3gfp4;p1 − q1 þ q2g
þ fp1;p2 − q2 þ q4gfp2;p1gfp3;p3gfp4;p4 − q4 þ q2g
þ fp1;p1 − q1 þ q4gfp2;p4 − q4 þ q1gfp3;p3gfp4;p2g
þ fp1;p1 − q1 þ q2gfp2;p2 − q2 þ q3gfp3;p3 − q3 þ q1gfp4;p4g
þ fp1;p1 − q1 þ q2gfp2;p3gfp3;p2 − q2 þ q1gfp4;p4g
þ fp1;p3 − q3 þ q2gfp2;p2 − q2 þ q3gfp3;p1gfp4;p4g
þ fp1;p2gfp2;p1 − q1 þ q3gfp3;p3 − q3 þ q1gfp4;p4g
þ fp1;p1 − q1 þ q3gfp2;p2 − q2 þ q1gfp3;p3 − q3 þ q2gfp4;p4g
þ fp1;p3gfp2;p2 − q2 þ q1gfp3;p1 − q1 þ q2gfp4;p4g
þ fp1;p2 − q2 þ q3gfp2;p1gfp3;p3 − q3 þ q2gfp4;p4g
þ fp1;p1 − q1 þ q3gfp2;p3 − q3 þ q1gfp3;p2gfp4;p4g
þ 4½fp1;p1gfp2;p2gfp3;p4 − q4 þ q3gfp4;p3 − q3 þ q4g
þ fp1;p2 − q2 þ q1gfp2;p1 − q1 þ q2gfp3;p3gfp4;p4g
þ fp1;p1gfp2;p3 − q3 þ q2gfp3;p2 − q2 þ q3gfp4;p4g
þ fp1;p1gfp2;p4 − q4 þ q2gfp3;p3gfp4;p2 − q2 þ q4g
þ fp1;p3 − q3 þ q1gfp2;p2gfp3;p1 − q1 þ q3gfp4;p4g
þ fp1;p4 − q4 þ q1gfp2;p2gfp3;p3gfp4;p1 − q1 þ q4g�
þ fp1;p2gfp2;p1gfp3;p4gfp4;p3g þ fp1;p3gfp2;p4gfp3;p1gfp4;p2g
þ fp1;p4gfp2;p3gfp3;p2gfp4;p1g
þ fp1;p1gfp2;p3gfp3;p4gfp4;p2g þ fp1;p1gfp2;p4gfp3;p2gfp4;p3g
þ fp1;p4gfp2;p2gfp3;p1gfp4;p3g þ fp1;p3gfp2;p2gfp3;p4gfp4;p1g
þ fp1;p2gfp2;p4gfp3;p3gfp4;p1g þ fp1;p4gfp2;p1gfp3;p3gfp4;p2g
þ fp1;p2gfp2;p3gfp3;p1gfp4;p4g þ fp1;p3gfp2;p1gfp3;p2gfp4;p4g: ðB3Þ
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