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We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit
Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development.
We present a new representation of ghost fields that combines desirable self-adjointness properties with
canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to
characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing
together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is
verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum
version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of
matter are discussed in detail.
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I. INTRODUCTION

BRST quantization is a pivotal tool in developing
theories of the fundamental interactions, where the acro-
nym BRST refers to Becchi, Rouet, Stora [1] and Tyutin
[2]. This method for handling constraints in the quantiza-
tion of field theories usually requires a broad viewpoint
because it covers a number of important aspects. The
constraints are related to gauge symmetry, which suggests
that a Lagrangian approach is preferable, in particular,
as also Lorentz symmetry needs to be incorporated. By
Noether’s theorem, symmetries come with conserved
quantities, which suggest to focus on time evolution and
hence to favor the Hamiltonian approach. Practical calcu-
lations, for example in perturbation theory, are most
conveniently done in terms of the path-integral formulation
and hence on the Lagrangian side. The identification of
physical states, which requires gauge fixing as an addi-
tional aspect of introducing constraints, is most naturally
done on Hilbert space (as the space of all states). The issue
of signed inner products, to be considered simultaneously
with canonical inner products, requires particular attention
in constructing the physical states and should clearly
benefit from a simple and intuitive approach to BRST
quantization.

The purpose of this paper is to show in the context of
Yang-Mills theories how all the above facets can be
handled entirely within the Hamiltonian approach, where
explicit constructions on a suitable Fock space allow for a
maximum of intuition. The focus on Fock space implies
a (quantum) particle interpretation rather than a field
idealization. The signed and canonical inner products are
particularly transparent on Fock space. By including
temporal and longitudinal in addition to transverse gauge
bosons (we typically think of photons or gluons), Lorentz
symmetry is enabled at the early stage of constructing the
underlying Fock space. All symmetry arguments are based
on the BRST charge, the construction of which relies on its
role as the generator of BRST transformations, the quantum
version of gauge transformations. Of course, the BRST
charge has to respect also Lorentz symmetry.
In this paper, we present a new way of introducing ghost

particles. Whereas one usually has to make the choice
between natural anticommutation relations for the ghost
creation and annihilation operators on the one hand (see,
e.g., [3]) and self-adjointness of the BRST charge on the
other hand (see, e.g., [4]), we here propose a representation
of ghost particles that combines both properties. This is a
crucial advantage because “In the non-Abelian case, the
removal of unphysical gauge boson polarizations is more
subtle [than in the Abelian case], and we have seen that it
involves the ghosts in an essential way” (see p. 520 of [5]).
We simultaneously have a well-defined Fock space and the
powerful tools required to select the physical states of a
gauge theory in the BRST approach.
After constructing a number of simple BRST invariant

operators, these operators can be used to build up the
BRST invariant Hamiltonian. By piecing together invariant
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operators to reproduce the proper Hamiltonian of the free
theory for vanishing interaction strength, one obtains the
Hamiltonian of Yang-Mills theory as a minimal BRST
invariant extension of the free theory. The validity of the
Hamiltonian can be verified by comparing the time
evolution implied by this Hamiltonian to the classical
evolution equations. Matter can be included into the
Hamiltonian approach with the help of the current algebra.

II. CLASSICAL YANG-MILLS THEORY

Yang-Mills theory introduces antisymmetric fields Fa
μν

that are defined in terms of four-vector potentials Aa
μ,

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν; ð1Þ

where the superscripts a, b, c label the generators of the
underlying symmetry group and the indices μ, ν label the
space-time components; the parameter g is the strength of
the interaction and the set of numbers fabc are the structure
constants of the underlying Lie group. The field equations
are given by

∂μFa
μν − gfabcAbμFc

μν ¼ −Jaν ; ð2Þ

where the four-vector Jaν is an external current. The
parameter g usually occurs with the opposite sign because
we here choose the signature ð−;þ;þ;þÞ for the
Minkowski metric, contrary to the more common con-
vention ðþ;−;−;−Þ; the four-vectors ∂μ and Aaμ are
independent of the signature of the Minkowski metric.
The term J̃aν ¼ −gfabcAbμFc

μν may be interpreted as the
current carried by the gauge bosons. The structure con-
stants can be assumed to be completely antisymmetric in
the indices a, b, c (see Sec. 15.4 of [5]). They moreover
satisfy the Jacobi identity

fadsfbcs þ fbdsfcas þ fcdsfabs ¼ 0: ð3Þ

This identity is repeatedly needed in analyzing the gauge
transformation behavior of the classical and quantum Yang-
Mills equations.
Let us consider gauge transformations, which are given

by (see, e.g., pp. 490f of [5] or Sec. 15.1 of [6])

Aa
μ → Aa

μ þ ∂μΛa − gfabcAb
μΛc: ð4Þ

Unlike for the Abelian case, the resulting transformation

Fa
μν → Fa

μν − gfabcFb
μνΛc þOðΛ2Þ; ð5Þ

implies that the fields are not gauge invariant for non-
Abelian Yang-Mills theories. However, by considering the
combined transformation law

∂μFa
μν − gfabcAbμFc

μν → ∂μFa
μν − gfabcAbμFc

μν

− gfabcð∂μFb
μν − gfbdeAdμFe

μνÞΛc þOðΛ2Þ; ð6Þ

we realize that the field equations (2) in the absence of
external currents are gauge invariant. Moreover, the gauge
transformation behavior of external currents required to
obtain gauge invariant field equations becomes evident,

Jaμ → Jaμ − gfabcJbμΛc: ð7Þ

For the gauge bosons, we here impose the covariant Lorenz
gauge condition

∂μAaμ ¼ 0: ð8Þ

We finally rewrite the Yang-Mills equations in a par-
ticular inertial system in the Maxwellian form which, in
contrast to all the above equations, is no longer manifestly
Lorentz covariant. Such a reformulation is a straightfor-
ward exercise (see, e.g., [7,8] with some deviations in the
choice of signs).
The counterparts of electric and magnetic fields are

obtained by the convention

ðFa
μνÞ ¼

0
BBB@

0 −Ea
1 −Ea

2 −Ea
3

Ea
1 0 Ba

3 −Ba
2

Ea
2 −Ba

3 0 Ba
1

Ea
3 Ba

2 −Ba
1 0

1
CCCA: ð9Þ

As pointed out before, for the non-Abelian case, these
fields are not gauge invariant,

Ba → Ba − gfabcBbΛc þOðΛ2Þ; ð10Þ

and

Ea → Ea − gfabcEbΛc þOðΛ2Þ: ð11Þ

For convenience, we define the additional component

Ea
0 ¼ ∂μAaμ; ð12Þ

so that the Lorenz gauge condition (8) can be expressed
as Ea

0 ¼ 0.
The gauge-dependent field definitions (1) become

Ba ¼ ∇ × Aa −
1

2
gfabcAb × Ac; ð13Þ

Ea ¼ ∇Aa
0 −

∂Aa

∂t − gfabcAbAc
0; ð14Þ

and the field equations (2) can be written as
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∇ · Ea − gfabcAb · Ec ¼ −Ja0 ¼ Ja0; ð15Þ

∂Ea

∂t − ∇ × Ba − gfabcðAb
0E

c − Ab × BcÞ ¼ −Ja: ð16Þ

Equations (13)–(16) correspond to Eqs. (3.15), (4.2c),
(4.2a) and (4.2b) of [7]. In Eqs. (15) and (16), we recognize
the temporal and spatial components of the current
−gfabcAbμFc

μν associated with the fields,

J̃a0 ¼ gfabcAb · Ec; ð17Þ

J̃a ¼ −gfabcðAb
0E

c − Ab × BcÞ: ð18Þ

Equation (13) can be used to eliminate Ba and Bc from
Eq. (16). After eliminating B from the picture, we have the
evolution equations

∂Aa

∂t ¼ −Ea þ ∇Aa
0 − gfabcAbAc

0; ð19Þ

and

∂Ea

∂t ¼ −Ja −∇2Aa þ ∇∇ · Aa þ gfabcAb
0E

c

þ gfabc½2Ab · ∇Ac − Ab∇ · Ac þ ð∇AbÞ · Ac�
− g2fabsfcdsAb · AcAd; ð20Þ

together with the relation (15). These equations define
classical Yang-Mills theories in a formulation that does not
manifestly exhibit Lorentz or gauge symmetry. These
equations imply a conservation law with source term,

∂J̃a0
∂t þ ∇ · J̃a ¼ −gfabcAb

μJcμ: ð21Þ

A wave equation for Aa is obtained by subtracting
Eq. (16) from the time derivative of Eq. (14). Similarly,
a the wave equation for Aa0 is obtained by subtracting
Eq. (15) from the divergence of Eq. (14). We thus find the
wave equations

� ∂2

∂t2 −∇2

�
Aa
0 ¼ Ja0 þ gfabcAbμð∂0Ac

μ − 2∂μAc
0Þ

þ g2fabsfcdsAb · AcAd
0

− ðδac∂0 − gfabcAb
0Þ∂μAcμ; ð22Þ

and

� ∂2

∂t2 −∇2

�
Aa ¼ Ja þ gfabcAbμð∇Ac

μ − 2∂μAcÞ

þ g2fabsfcdsAbμAc
μAd

− ðδac∇ − gfabcAbÞ∂μAcμ; ð23Þ
in each of which the last term disappears for the Lorenz
gauge (8) (cf. Appendix of [8]). A closer look at Eqs. (22)
and (23) reveals that one recovers Lorentz covariance in
these wave equations.

III. FOCK SPACE

We introduce a Fock space together with a collection of
adjoint operators aaα†q and aaαq creating and annihilating
field quanta, such as photons or gluons, with momentum
q ∈ K̄3

× and polarization state α ∈ f0; 1; 2; 3g. The space of
momentum vectors is given by the simple cubic lattice

K̄3
× ¼ fq ¼ KLðz1; z2; z3Þjz1; z2; z3 ∈ Zg; ð24Þ

whereKL is a lattice constant in momentum space, which is
assumed to be small because it is given by the inverse
system size. The additional label a is associated with the
infinitesimal generators of an underlying Lie group [assum-
ing 3 values for SUð2Þ corresponding to the Wþ, W−, and
Z0 bosons mediating weak interactions, 8 values for SUð3Þ
corresponding to the gluon “color octet” mediating strong
interactions, and N2 − 1 values for general SUðNÞ]. For
simplicity, we occasionally refer to the gauge or vector
bosons associated with the Yang-Mills field as gluons, for
which a labels eight different “color” states. The gluon
creation and annihilation operators satisfy canonical com-
mutation relations.
Details on the construction of Fock spaces can be found,

e.g., in Secs. 1 and 2 of [9], in Secs. 12.1 and 12.2 of [10], or
in Sec. 1.2.1 of [11]. We assume that the collection of the
states created bymultiple application of all the above creation
operators on a ground state, which is annihilated by all the
corresponding annihilation operators, is complete.
In the following, we repeatedly need the properties of the

polarization states. We hence give our explicit representa-
tions. The temporal unit four-vector,

ðn̄0μqÞ ¼

0
BBB@

1

0

0

0

1
CCCA; ð25Þ

is actually independent of q. The three orthonormal spatial
polarization vectors are chosen as

ðn̄1μqÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q21 þ q22
p

0
BBB@

0

q2
−q1
0

1
CCCA; ð26Þ
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ðn̄2μqÞ ¼
1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

p
0
BBB@

0

q1q3
q2q3

−q21 − q22

1
CCCA; ð27Þ

and

ðn̄3μqÞ ¼
1

q

0
BBB@

0

q1
q2
q3

1
CCCA; ð28Þ

where q ¼ jqj. The polarization vectors n̄1q and n̄2q corre-
spond to transverse gluons, n̄3q corresponds to longitudinal
gluons. Note the symmetry property

n̄α−q ¼ ð−1Þαn̄αq: ð29Þ

In the BRST approach, one introduces the additional
pairs Ba†

q , Ba
q and Da†

q , Da
q of creation and annihilation

operators associated with ghost particles and their anti-
particles. They are assumed to satisfy canonical anticom-
mutation relations.
Fock spaces come with canonical inner products, scan.

The superscript † on the creation operators can actually be
interpreted as the adjoint with respect to the canonical inner
product. In gauge theories, the canonical inner product is
not the physical one. We need an additional signed inner
product, ssign, for which states with negative norm exist (so
that it is not an inner product in a strict sense). In both inner
products, the natural base vectors of a Fock space, which
are characterized by the occupation numbers of the various
particles in the system, are orthogonal. If the canonical
norm of a Fock base vector is one, the signed norm of that
vector is obtained by introducing a factor −1 for every
temporal gauge boson and for every ghost particle created
by Ba†

q . The adjoint of an operator with respect to the signed
inner product is indicated by the superscript ‡. The
commutation and signed product properties of all particles
are compiled in Table I.

IV. BASICS OF BRST APPROACH

A brief discussion of BRST quantization in terms of
creation and annihilation operators can be found on

pp. 239–240 of [3]. For quantum electrodynamics, all
the details have been elaborated in Sec. 3.2.5 of [11].
We here generalize these ideas to non-Abelian gauge
theories.

A. Ghost particle operators

In the usual interpretation, the operators Ba†
q and Da†

q in
Table I create massless ghost particles and their antipar-
ticles. The Fourier modes of the corresponding fields are
hence given by

caq ¼
1ffiffiffiffiffiffi
2q

p ðDa†
q − Ba

−qÞ; c̄aq ¼
1ffiffiffiffiffiffi
2q

p ðBa†
q þDa

−qÞ:

ð30Þ

If we further define the fields

_caq ¼ i

ffiffiffi
q
2

r
ðDa†

q þ Ba
−qÞ; _̄caq ¼ i

ffiffiffi
q
2

r
ðBa†

q −Da
−qÞ;

ð31Þ

the only nonvanishing anticommutation relations among
the operators introduced in Eqs. (30) and (31) are given by

fcaq; _̄cbq0g ¼ −iδabδqþq0;0; fc̄aq; _cbq0 g ¼ iδabδqþq0;0:

ð32Þ

Further note the adjointness properties with respect to the
signed inner product,

ca‡q ¼ c̄a−q; _ca‡q ¼ _̄ca−q; ð33Þ

and the simple transformation rule for the energy of
noninteracting massless ghosts (neglecting an irrelevant
constant to achieve normal ordering),

X
q∈K̄3

×

qðBa†
q Ba

q þDa†
q Da

qÞ ¼
X
q∈K̄3

×

ð_caq _̄ca−q þ q2caq c̄a−qÞ: ð34Þ

At this point a comment on notation should be useful.
One might be tempted to interpret the dots in the symbols
_caq , _̄caq introduced in Eq. (31) as time derivatives. However,
this interpretation works only for massless free ghost
particles. For quantum electrodynamics, this interpretation
would actually be justified. For non-Abelian gauge theo-
ries, however, the ghost particles are no longer free and
_caq , _̄caq should be recognized as nothing but the operators
defined in Eq. (31); they do not coincide with time
derivatives that could be defined in terms of the full
Hamiltonian.

TABLE I. Properties associated with the various creation
operators used for constructing the Fock space.

Commuting Anticommuting

−metric þmetric −metric þmetric

aa0†q aaj†q Ba†
q Da†

q
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B. Alternative representation of ghosts

It has been pointed out by Kugo and Ojima [4] that the
lack of self-adjointness of the ghost operators expressed in
Eq. (33) is a serious disadvantage in constructing the
physical states. In non-Abelian Yang-Mills theories, it
moreover keeps the Hamiltonian from being self-adjoint.
Those authors hence recommend an alternative represen-
tation of ghosts that, however, requires noncanonical
anticommutation relations for the creation and annihilation
operators Ba†

q , Ba
q andD

a†
q ,Da

q. A nonstandard construction
of a Fock space based on such noncanonical anticommu-
tation relations has been developed in [12]. Serious efforts
need to be made in order to introduce a proper vacuum state
and a well-defined ghost number.
In order to base our development on a well-defined

standard Fock space, we strongly prefer to keep canonical
anticommutation relations. Well-defined Fock spaces are
essential also for numerical calculations [13]. We therefore
propose a new representation of the ghost fields in terms of
two creation and two annihilation operators,

caq ¼
1

2
ffiffiffi
q

p ðBa†
q þDa†

q − Ba
−q þDa

−qÞ; ð35Þ

c̄aq ¼
1

2
ffiffiffi
q

p ðBa†
q −Da†

q þ Ba
−q þDa

−qÞ; ð36Þ

_caq ¼
i

ffiffiffi
q

p
2

ðBa†
q þDa†

q þ Ba
−q −Da

−qÞ; ð37Þ

and

_̄caq ¼
i

ffiffiffi
q

p
2

ðBa†
q −Da†

q − Ba
−q −Da

−qÞ: ð38Þ

A straightforward calculation shows that the resulting
anticommutation relations for the operators defined in
Eqs. (35)–(38) are identical to the previously found ones,
where the only nontrivial anticommutators are given in
Eq. (32). Therefore, also most of the subsequent calcu-
lations for the two ways of introducing ghost fields are
identical. Moreover, Eq. (34) remains valid.
The big advantage of the new definitions are the self-

adjointness properties

ca‡q ¼ ca−q; _ca‡q ¼ _ca−q; c̄a‡q ¼ −c̄a−q; _̄ca‡q ¼ − _̄ca−q:

ð39Þ

These properties imply the self-adjointness of products
such as

ðcaqc̄bq0 Þ‡ ¼ ca−qc̄b−q0 : ð40Þ

The systematic occurrence of cc̄ pairs is attractive also from
another viewpoint: We obtain a symmetry under rescaling c

and c̄ by inverse factors and hence an additional conserved
quantity in the ghost domain (see Sec. VI C for details). In
view of Eqs. (33) and (39), we refer to the two options for
introducing ghost operators as “cross-adjointness” (option
1) and “self-adjointness” (option 2), respectively. We once
more emphasize that both options are realized on exactly
the same Fock space.

C. BRST charge and transformations

To keep track of sums and differences of photon creation
and annihilation operators, to evaluate commutators and
anticommutators in an efficient manner, and to facilitate
the comparison with the classical theory, we introduce the
operators

αaq ¼
1ffiffiffiffiffiffi
2q

p ½n̄0qðaa0†q − aa0−qÞ þ n̄1qðaa1†q − aa1−qÞ

þ n̄2qðaa2†q þ aa2−qÞ þ n̄3qðaa3†q − aa3−qÞ�; ð41Þ
and

εaq ¼ −i
ffiffiffi
q
2

r
½n̄0qðaa0†q þ aa0−q þ aa3†q − aa3−qÞ

þ n̄1qðaa1†q þ aa1−qÞ þ n̄2qðaa2†q − aa2−qÞ
þ n̄3qðaa3†q þ aa3−q þ aa0†q − aa0−qÞ�: ð42Þ

According to Eqs. (3.73) and (3.81) of [11], αaq corresponds
to the four-vector potential and εaq to the electric field
[augmented by the time component introduced in Eq. (12)].
These four-vectors satisfy canonical commutation relations

½εaμp ; αbνq � ¼ iημνδabδpþq;0; ð43Þ
½αaμp ; αbνq � ¼ ½εaμp ; εbνq � ¼ 0; ð44Þ

where ημν represents the Minkowski metric, and possess the
following self-adjointness properties with respect to the
signed inner product,

αa‡q ¼ αa−q; εa‡q ¼ εa−q: ð45Þ
The energy of temporal and longitudinal noninteracting

vector bosons can be written asX
q∈K̄3

×

qðaa0†q aa0q þ aa3†q aa3q Þ

¼
X
q∈K̄3

×

iqjðεajq αa0−q þ αajq εa0−qÞ

þ 1

2

X
q∈K̄3

×

�
qjqk
q2

εajq εak−q − εa0q εa0−q

�
: ð46Þ

In the following, we use the notation

ðABÞq ¼
1ffiffiffiffi
V

p
X

q0;q00∈K̄3
×

δq0þq00;qAq0Bq00 ; ð47Þ
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for any two q dependent operators A and B. This notation
for convolutions allows us to obtain more compact equa-
tions, where working on the infinite lattice K̄3

× (that is, in
the thermodynamic limit) is crucial for obtaining the usual
properties of convolutions (the relevance of high momenta
for a symmetry involving derivatives has been pointed
out on p. 169 of [11]; on a finite lattice, rigorous BRST
symmetry cannot be expected).
The following expression for the BRST charge is

inspired, for example, by Eq. (5.10) of [3] or Eq. (2.22)
of [14], but the proper formulation in the present setting is
not entirely straightforward,

Q ¼
X
q∈K̄3

×

ðεa0q _ca−q − iqjε
aj
q ca−qÞ

þ gfabc
X
q∈K̄3

×

�
εaμαbμ − _cac̄b þ 1

2
ca _̄cb

�
q
cc−q: ð48Þ

Rearranging the factors in the three-particle collision
terms proportional to g in Eq. (48) is unproblematic
because, whenever a nonzero contribution might arise from
a nontrivial anticommutation relation, the corresponding
structure constant with two equal labels vanishes. In
particular, normal ordering is not an issue in three-particle
collision terms, which is an appealing feature of such
interactions.
The BRST charge (48) implies the following character-

istic BRST transformations for non-Abelian gauge theories,

δαa0q ¼ _caq − gfabcðαb0ccÞq;
δαajq ¼ −iqjcaq − gfabcðαbj ccÞq;
δεaμq ¼ −gfabcðεbμccÞq:

δcaq ¼
1

2
gfabcðcbccÞq;

δ_caq ¼ gfabcð_cbccÞq;
δc̄aq ¼ εa0q þ gfabcðc̄bccÞq;
δ _̄caq ¼ −iqjε

aj
q þ gfabcðεbμαcμ − _cbc̄c þ cb _̄ccÞq; ð49Þ

where δ· ¼ i½Q; ·� for boson and δ· ¼ ifQ; ·g for fermion
operators. The first two lines of Eq. (49) correspond to the
gauge transformation (4), the third line of Eq. (49) corre-
sponds to the transformation (11).
With the BRST charge (48) we have the tool to discuss all

aspects of BRST symmetry. In particular, we can construct a
BRST invariant Hamiltonian and the physical states in the
large Fock space involving ghosts. The compatibility of
BRST invariance with Lorentz symmetry is visible in the
first two lines of Eq. (49), which relates the BRST trans-
formations of the four-vector potential to the time and space
derivatives of the ghost field c. The nilpotency of the
BRST charge (Q2 ¼ 0), which is crucial for the handling of

BRST symmetry, is verified in Appendix A. As a somewhat
simpler alternative, one can verify δQ ¼ 0 by means of the
BRST transformations (49). The first two lines of Eq. (49),
which express the essence of the classical gauge trans-
formations (4), and the nilpotency of Q provide the deeper
reasons for writing the BRST charge in the form given
in Eq. (48).

V. CONSTRUCTION OF BRST
INVARIANT OPERATORS

A simple way of constructing BRST invariant operators
is based on the identity

½Q; ifQ;Xg� ¼ 0; ð50Þ

which, for any operator X, follows trivially from the
nilpotency of Q. In other words, any operator ifQ;Xg is
BRST invariant as it commutes with Q. In practice,
one chooses X to produce a desirable term and one
automatically gets all the additional terms required for
BRST invariance. We illustrate the idea for some simple
choices of X, which consist of an α or ε paired with a c or c̄.
To produce terms of the type _c _̄c, we choose

X1 ¼
X
q∈K̄3

×

αa0q _̄c
a
−q: ð51Þ

Straightforward calculations based on the product rule and
the results in Eq. (49) give

ifQ;X1g ¼
X
q∈K̄3

×

ð_caq _̄ca−q þ iqjε
aj
q αa0−qÞ

þ gfabc
X
q∈K̄3

×

ðεajαbj − _cac̄bÞ−qαc0q: ð52Þ

Similarly, to produce terms of the type cc̄, we choose

X2 ¼
X
q∈K̄3

×

iqjαajqc̄
a
−q; ð53Þ

and we obtain the BRST invariant operator

ifQ;X2g ¼
X
q∈K̄3

×

ðq2caq c̄a−q þ iqjα
aj
q εa0−qÞ

− gfabc
X
q∈K̄3

×

iqjcaqðc̄bαcÞ−q: ð54Þ

Another interesting choice is given by

X3 ¼
X
q∈K̄3

×

εa0qc̄
a
−q: ð55Þ

It leads to the simple BRST invariant operator
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ifQ;X3g ¼ −
X
q∈K̄3

×

εa0q εa0−q: ð56Þ

In summary, we have used bilinear operators X to
produce a number of BRST invariant operators ifQ;Xg.
A comparison with Eqs. (34) and (46) shows that, for
g ¼ 0, all our examples contain contributions from the free
Hamiltonian. This observation is very useful for the
subsequent construction of a BRST invariant Hamiltonian.

VI. YANG-MILLS HAMILTONIAN

We now construct a BRST invariant Hamiltonian and
discuss some implications. The construction is based
entirely on symmetry considerations.

A. Construction of Hamiltonian

We start from the energy of the noninteracting transverse
polarizations of the vector bosons,

X
q∈K̄3

×

qðaa1†q aa1q þ aa2†q aa2q Þ

¼ 1

2

X
q∈K̄3

×

ðn̄1jqn̄1kq þ n̄2jqn̄
2
kqÞðq2αajq αak−q þ εajq εak−qÞ: ð57Þ

A more convenient starting point is actually given by

Φ ¼
X
q∈K̄3

×

qðaa1†q aa1q þ aa2†q aa2q Þ þ 1

2

X
q∈K̄3

×

qjqk
q2

εajq εak−q

¼ 1

2

X
q∈K̄3

×

½ðq2δjk − qjqkÞαajq αak−q þ εajq εaj−q�: ð58Þ

A straightforward calculation yields

i½Q;Φ� ¼ −gfabc
X
q∈K̄3

×

ðq2δjk − qjqkÞαajq ðαbkccÞ−q; ð59Þ

so that Φ is not yet BRST invariant for g ≠ 0. As a
compensating term we consider

Φ0 ¼ gfabcffiffiffiffi
V

p
X

q;q0;q00∈K̄3
×

δqþq0þq00;0ð−iqjÞαakqαbkq0αcjq00 ; ð60Þ

for which we find

i½Q;Φ0� ¼ gfabc
X
q∈K̄3

×

ðq2δjk − qjqkÞαajq ðαbkccÞ−q

þ g2fabsfcds

V

X
q;q0;p;p0∈K̄3

×

δqþq0þpþp0;0

× iqjcaqαbkq0α
c
jpα

d
kp0 : ð61Þ

The term proportional to g indeed cancels the contribution
from Φ in Eq. (59), however, a new second-order term in g
arises. This second-order term has been written in a
compact form by arranging the three contributions resulting
from the product rule in a standard form where, for
rearranging the last contribution, the Jacobi identity is
required. In this compact form we easily find the final
compensating term

Φ00 ¼ g2fabsfcds

4V

X
q;q0;p;p0∈K̄3

×

δqþq0þpþp0;0α
a
jqα

b
kq0α

c
jpα

d
kp0 ; ð62Þ

in which all for spatial gauge boson operators are on an
equal footing. In order to show that no leftover higher-
order terms occur one needs to use the Jacobi identity. The
operator ΦþΦ0 þΦ00 hence is BRST invariant.
The operator Φ contains the energy of the transverse

gauge bosons and, according to Eq. (46), also part of
energy of temporal and longitudinal gauge bosons. The
missing parts are found in the BRST invariant operators
established in Sec. V. Moreover, these BRST invariant
operators contain the energy (34) of noninteracting ghost
particles. By collecting terms, we get the BRST invariant
total Hamiltonian

H ¼ Hfree
gb þHcoll

gb ; ð63Þ

consisting of the energy of free massless gauge bosons and
ghost particles

Hfree
gb ¼

X
q∈K̄3

×

qðaaα†q aaαq þ Ba†
q Ba

q þDa†
q Da

qÞ; ð64Þ

and the interaction (confer to Eq. (3) of [15]),

Hcoll
gb ¼ gfabcffiffiffiffi

V
p

X
q;q0;q00∈K̄3

×

δqþq0þq00;0ðεajq αbjq0α
c
0q00

− _caq c̄bq0α
c
0q00 − iqjαakqα

b
kq0α

c
jq00 − iqjcaq c̄bq0α

c
jq00 Þ

þ g2fabsfcds

4V

X
q;q0;p;p0∈K̄3

×

δqþq0þpþp0;0α
a
jqα

b
kq0α

c
jpα

d
kp0 :

ð65Þ

By making sure that all four gauge boson polarizations
occur on an equal footing we have taken into account the
Lorentz invariance of the free theory. The collisional
contribution consists mostly of three-particle interactions,
but the second-order term in g represents a four-particle
collision. Note that, for the construction of self-adjoint
ghost particle operators, the Hamiltonian is self-adjoint
with respect to the signed inner product.
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B. Evolution equations

By recognizing i½H;A� as the time derivative of an
operator A, we can now formulate the evolution equations
for various operators and, in particular, we can compare
them to the classical equations compiled in Sec. II. We
begin with the evolution of the four-vector potential,

i½H; αajq� ¼ −εajq − iqjαa0q − gfabcðαbjαc0Þq; ð66Þ

which reassuringly is the quantum version of the Fourier
transformed classical evolution equation (19). For the
temporal component of the four-vector potential, we find

i½H; αa0q� ¼ i

ffiffiffi
q
2

r
ða0†q þ a0−qÞ ¼ −εa0q − iqjα

aj
q ; ð67Þ

which is the quantum version of the definition (12) of εa0q,
relating εa0q to the time derivative of αa0q.
We next turn to the electric field type operators and find

i½H;εajq�¼q2αajq−qjqkαakq þ iqjεa0qþgfabcðαb0εcjÞq

þ igfabcffiffiffiffi
V

p
X

q0;q00∈K̄3
×

δq0þq00;q½ð2q0kþq00kÞαbjq0−q0jα
b
kq0 �αckq00

−
g2fabsfcds

V

X
p;p0;p00∈K̄3

×

δpþp0þp00;qα
b
kpα

c
kp0α

d
jp00

−
gfabcffiffiffiffi

V
p

X
q0;q00∈K̄3

×

δq0þq00;qiq00j c̄
b
q0c

c
q00 ; ð68Þ

where the same simplification as in Eq. (67) has been used.
Except for the terms involving εa0 and c̄bcc, we recognize
that exactly the same terms as in the classical evolution
equation (20) in the absence of an external current. In view
of Eq. (12), εa0 vanishes in the Lorenz gauge. Also the ghost
term c̄bcc is clearly related to the proper handling of gauge
conditions. The same remarks hold for the temporal
component

i½H; εa0q� ¼ iqjε
aj
q þ gfabcðαbjεcj þ c̄b _ccÞq; ð69Þ

which contains Eq. (15) in the absence of an external
current. The consistency of Eqs. (66)–(69) with the
classical field equations implies that our minimal BRST
invariant extension of the Lorentz covariant free theory
indeed leads to the quantized Yang-Mills field theory.
For completeness, we also look at the evolution equa-

tions for the ghost operators,

i½H; caq� ¼ _caq; ð70Þ

and

i½H; c̄aq� ¼ _̄caq þ gfabcðαb0c̄cÞq: ð71Þ

This last equation clearly shows that the operator _̄caq
introduced in Eq. (31) is not the full time derivative of
c̄aq , as pointed out before. For non-Abelian gauge theories,
interactions between ghost particles and vector bosons
occur. More of these interactions are implied by

i½H; _caq� ¼ −q2caq þ gfabcðαb0 _ccÞq
þ gfabcffiffiffiffi

V
p

X
q0;q00∈K̄3

×

δq0þq00;qiq00jα
bj
q0 c

c
q00 ; ð72Þ

and

i½H; _̄caq� ¼ −q2c̄aq þ
gfabcffiffiffiffi

V
p

X
q0;q00∈K̄3

×

δq0þq00;qiqjα
bj
q0 c̄

c
q00 : ð73Þ

C. Additional conserved charge

It can easily be verified that an operator R possessing the
properties

i½R; caq� ¼ caq; i½R; c̄aq� ¼ −c̄aq; ð74Þ
and

i½R; _caq� ¼ _caq; i½R; _̄caq� ¼ − _̄caq; ð75Þ
as well as vanishing commutators with all gauge boson
operators, commutes with the full Hamiltonian H. Such an
operator R can be interpreted as the generator of the
symmetry associated with the rescaling of ghost operators
with and without bars by reciprocal factors.
As suggested in Eq. (2.17) of [14], we have the following

natural candidate for R,

R ¼
X
q∈K̄3

×

ðcaq _̄ca−q − _caq c̄a−qÞ: ð76Þ

One can easily verify by means of the anticommutation
relations (32) that this operator R indeed leads to the
properties inEqs. (74), (75). The simple formofR (compared
to Eq. (2.17) of [14]) is a consequence of the fact that the dots
don’t indicate full time derivatives but rather the operators
defined in Eq. (31) or Eqs. (37) and (38).
We further find the commutator

i½R;Q� ¼ Q: ð77Þ
On the kernel of Q, the operator R commutes also with the
BRST charge. We can hence restrict the physical states to an
eigenspace of R (most conveniently with eigenvalue zero).

VII. CONSTRUCTION OF PHYSICAL STATES

In Sec. III, we had introduced two inner products, the
canonical and the signed ones, where the latter implies
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negative-norm states and hence is not truly an inner
product. As the signed inner product serves for defining
the physical bra-vectors in terms of ket-vectors, we need to
identify a subspace of the full Fock space on which the
signed product becomes a true inner product.
If the ghost operators are introduced according to

Eqs. (35)–(38), the BRST charge (48) is self-adjoint with
respect to the signed inner product, Q‡ ¼ Q. However, the
BRST charge is not self-adjoint with respect to the canonical
inner product, Q† ≠ Q. We here decompose the Fock space
into three mutually orthogonal spaces (in terms of the
canonical inner product) and discuss the physical implica-
tions (associated with the signed inner product).

A. Decomposition of states

A decomposition of Fock space into three mutually
orthogonal subspaces is achieved in terms of the images
and kernels of the BRST operator Q and of the co-BRST
operator Q†. Our discussion is based on Sec. 2.5 of [16].
A toy illustration of the essential features of the subsequent
development is offered in Appendix B.
Relying on the canonical inner product, the full Fock

space F can be expressed as the direct sum of three
mutually orthogonal spaces (the characteristic features of
this decomposition are illustrated in Fig. 1),

F ¼ ðKerQ ∩ KerQ†Þ ⊕ ImQ ⊕ ImQ†: ð78Þ

In view of the nilpotency properties Q2 ¼ ðQ†Þ2 ¼ 0, we
have

ImQ ⊂ KerQ; ImQ† ⊂ KerQ†: ð79Þ

As a next step, we prove the representations

KerQ ¼ ðImQ†Þ⊥; KerQ† ¼ ðImQÞ⊥: ð80Þ

We only prove the first identity in Eq. (80) because the
second one can be shown in exactly the same way.
If jφi∈KerQ, that is Qjφi¼0, we have 0¼scanðQjφi;
jψiÞ¼scanðjφi;Q†jψiÞ for all jψi ∈ F . Conversely, if
jφi ∈ F is such that scanðjφi; Q†jψiÞ ¼ 0 for all
jψi ∈ F , then scanðQjφi; jψiÞ ¼ 0 for all jψi ∈ F , which
implies Qjφi ¼ 0.
Equations (79) and (80) imply that ImQ and ImQ† are

orthogonal spaces and that KerQ ∩ KerQ† is orthogonal to
both images and exhausts the rest of F . We have thus
established Eq. (78) and the situation depicted in Fig. 1.
This equation implies that every state jφi ∈ F can be
written as

jφi ¼ jχi þQjψ1i þQ†jψ2i with Qjχi ¼ Q†jχi ¼ 0;

ð81Þ

where the three contributions to jφi are mutually orthogo-
nal in the canonical inner product.

B. BRST Laplacian

Before we discuss the signed norm of states in the various
subspaces, we elaborate some details of the decomposition
(78). This can be done in terms of the BRST Laplacian

Δ ¼ ðQþQ†Þ2 ¼ QQ† þQ†Q: ð82Þ

AsΔ is the square of a self-adjoint operator, its eigenvalues λ2

must be real and nonnegative. All states in KerQ ∩ KerQ†

are eigenstates of Δ with eigenvalue zero. A nonzero
eigenvalue can only be obtained for vectors from one of
the images, say jψi ∈ ImQ. To obtain Δjψi ≠ 0, jφi ¼
Q†jψi has to lie in ðKerQÞ⊥ ¼ ImQ†. Therefore, eigenstates
of Δ with nonzero eigenvalues can only be obtained by
flipping back and forth between the two images when
applying the two factors in the definition of Δ. By rescaling
jφi, we find the following doublet of states,

Qjφi ¼ λjψi
Q†jψi ¼ λjφi: ð83Þ

For λ ¼ 0 we would end up in the kernel of Δ, so that

KerΔ ¼ KerQ ∩ KerQ†: ð84Þ

According to Eq. (83), both jφi ∈ ImQ† and jψi ∈ ImQ
are eigenstates of Δ with the same eigenvalue λ2.
We further note the property

ðQþQ†Þðjφi � jψiÞ ¼ λðjψi � jφiÞ; ð85Þ

so that jφi � jψi are eigenvectors of QþQ† with eigen-
values �λ. In summary, we have shown that the eigenvec-
tors of Δ with nonzero eigenvalues are nicely organized in
doublets.

FIG. 1. Decomposition of Fock space into three mutually
orthogonal subspaces.
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C. Physical subspace

As a next step, we wish to identify KerΔ ¼ KerQ ∩
KerQ† as the physical subspace of F in which ssign

becomes a valid inner product, to be taken as the physical
inner product. In other words, physical states are charac-
terized by Qjφi ¼ Q†jφi ¼ 0.
In the natural base of our Fock space, the canonical inner

product is represented by the unit matrix, whereas the
signed inner product is represented by a diagonal matrix σ
with diagonal elements �1. If A† and A‡ are the matrices
representing the two adjoints of an operator A in the natural
basis, the definition of these adjoints implies σA† ¼ A‡σ
and, in view of σ2 ¼ 1, also σA‡ ¼ A†σ. In view of the self-
adjointness property Q‡ ¼ Q, we conclude that we can
choose a canonically orthonormal basis of eigenvectors of
QþQ† which all possess signed norm þ1 or −1.
We note that the signed norm of any state from one of

the images of Q or Q† vanishes. For example, ssignðQjφi;
QjφiÞ ¼ ssignðjφi; Q‡QjφiÞ ¼ 0 as Q‡ ¼ Q and Q2 ¼ 0.
By superposition of states from the two images one can
produce states of negative norm. For the eigenvectors of
QþQ† found in Eq. (85), we have

ssignðjφi � jψi; jφi � jψiÞ ¼ �ðhφjψi þ hψ jφiÞ: ð86Þ
This result nicely shows that the (properly scaled) eigen-
vectors of QþQ† come in pairs with signed norms þ1
and −1.
Can we now guarantee that the signed inner product is

positive on KerΔ ¼ ðImQ ⊕ ImQ†Þ⊥? The toy example of
Appendix B shows that the answer is “no.” In the BRST
construction we have to make sure that the number of
negative-norm states matches exactly the pairs in
ImQ ⊕ ImQ†. We need to verify that every negative-norm
state can be written as a linear combination of zero-norm
states from ImQ and ImQ†.
The above construction is usually presented in two steps.

For the physical states, one first imposes the condition
Qjφi ¼ 0. By excluding ImQ† one avoids the above
construction of negative-norm states from the doublets
(83), but zero-norm states clearly still exist in ImQ. In a
second step, one considers equivalence classes of states that
differ only by zero-norm states. Selecting representatives of
the equivalence classes is often referred to as gauge fixing.
Our gauge fixing condition thus is Q†jφi ¼ 0. According
to Eq. (81), the states satisfying the first condition Qjφi ¼
0 possess the representation

jφi ¼ jχi þQjψi with Qjχi ¼ Q†jχi ¼ 0: ð87Þ
We can take jχi as the unique representative of an
equivalence class of states that differ by the zero-norm
states Qjψi for some jψi ∈ F , so that the physical sub-
space indeed is KerΔ. The physical norms are independent
of the choice of the representative. For Hamiltonians

commuting with Q and Q†, the physical subspace KerΔ
is invariant under Hamiltonian dynamics.

VIII. INCLUSION OF MATTER

In the terms proportional to g in the BRST charge (48)
we recognize a term that contains the temporal component
(17) of the current four-vector resulting from the gauge
bosons. The simplest way to incorporate matter into the
BRST charge is to add the corresponding term involving
the temporal component of the current four-vector asso-
ciated with matter,

QJ ¼ −
X
q∈K̄3

×

Ja0q ca−q: ð88Þ

This idea is consistent with the expression for the BRST
charge in quantum electrodynamics (see, for example,
Eq. (3.125) of [11]). Nilpotency of the extended BRST
charge QþQJ requires

Q2
J þ fQ;QJg ¼ 0: ð89Þ

Both terms can be calculated under the assumption that Ja0q
commutes with all gauge boson and ghost operators:

fQ;QJg ¼ i
2
gfabc

X
q∈K̄3

×

Jc0q ðcacbÞ−q; ð90Þ

and

Q2
J ¼

1

2

X
q;q0∈K̄3

×

½Ja0q ; Jb0q0 �ca−qcb−q0 : ð91Þ

After using Eq. (47), the nilpotency condition can be
written as

½Ja0q ; Jb0q0 � ¼ −i
gfabcffiffiffiffi

V
p Jc0qþq0 : ð92Þ

With this commutator we obtain the BRST
transformation

δJa0q ¼ −gfabcðJb0ccÞq; ð93Þ
which is exactly what we expect in view of the classical
gauge transformation (7). To recover also the proper
transformation behavior of the spatial components of the
current four-vector, we need to generalize Eq. (92) to

½Ja0q ; Jbμq0 � ¼ −i
gfabcffiffiffiffi

V
p Jcμqþq0 : ð94Þ

Equation (94) is a simple case of a current algebra, in
which neither an axial current nor a Schwinger term is
considered. Additional terms would require a change of the
BRST charge and/or Hamiltonian to make sure that the
BRST approach can still be used to handle the constraints
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associated with gauge theories. For example, the Schwinger
term [17] has been discussed in the context of Yang-Mills
theory in Eq. (3.16) of [18] or Eq. (1.6) of [19]. It is
typically associated with sums that are not absolutely
convergent so that regularization is required. For electro-
magnetic fields and massless fermions in one space
dimension (known as the Schwinger model [20]), the
Schwinger term is finite and well defined. Possible mod-
ifications of the Hamiltonian and BRST charge are dis-
cussed in Sec. 3.3 of [11]. As at least temporal photons
have to acquire mass, the Schwinger term leads to chiral
symmetry breaking.
If we choose the Hamiltonian for the interaction of gauge

bosons and matter as

HJ ¼ −
X
q∈K̄3

×

Jaμ−qαaμq; ð95Þ

we find

i½HJ; εaμq� ¼ −Jaμq; ð96Þ
and hence the proper occurrence of the current in Eqs. (15)
and (16). In order to check whether H þHJ is BRST
invariant with respect to the new BRST chargeQþQJ, we
calculate the commutators

i½Q;HJ� ¼
X
q∈K̄3

×

ðJa0q _ca−q − iqjJajqc
a
−qÞ

− gfabc
X
q∈K̄3

×

ðJbμccÞ−qαaμq; ð97Þ

i½QJ;H� ¼ −
X
q∈K̄3

×

Ja0q _c
a
−q; ð98Þ

and

i½QJ;HJ� ¼ gfabc
X
q∈K̄3

×

ðJbμccÞ−qαaμq: ð99Þ

The incomplete compensation of terms in Eqs. (97)–(99)
implies that H þHJ is not BRST invariant with respect to
the new BRST charge QþQJ. This is not surprising as the
Hamiltonian for noninteracting matter is still missing.
BRST invariance of the full Hamiltonian requires

i½QJ;Hfree
mat� ¼

X
q∈K̄3

×

iqjJajqc
a
−q; ð100Þ

or, by means of Eq. (88),

X
q∈K̄3

×

ði½Hfree
mat; Ja0q � − iqjJ

aj
q Þca−q ¼ 0: ð101Þ

The current four-vector must be defined such that the
operator identity

i½Hfree
mat; Ja0q � − iqjJ

aj
q ¼ 0 ð102Þ

is satisfied (see, e.g., Eq. (3.95) of [11] for quantum
electrodynamics). In other words, the current four-vector
must be constructed such that a continuity equation holds.
However, the condition (102) is not a complete balance
equation, which would require occurrence of the full
Hamiltonian instead of Hfree

mat. An additional contribution

i½HJ; Ja0q � ¼ gfabcðαbμJcμÞq ð103Þ
appears in the complete balance equation. In view of the
classical continuity equation (21) one might assume that
this source term is compensated by including the current of
the field. However, if we define the quantum version of the
current four-vector,

J̃a0q ¼ gfabcðαbj εcjÞq; ð104Þ
and

J̃ajq ¼ −gfabc½ðαb0εcjÞq þ gfcdeðαbkαdjαekÞq�

þ igfabcffiffiffiffi
V

p
X

q0;q00∈K̄3
×

δq0þq00;qðq0jαbkq0 − q0kα
b
jq0 Þαckq00 ; ð105Þ

a lengthy calculation shows that additional gauge terms
appear,

i½H þHJ; J̃a0q � − iqjJ̃
aj
q

¼ −gfabcðαbμJcμÞq
þ gfabcffiffiffiffi

V
p

X
q0;q00∈K̄3

×

δq0þq00;qfi½H; εb
0q0 �αc0q00 − iq0jε

b
0q0α

cj
q00

− gfbde½_cdq0 ðc̄eαc0Þq00 − iq0jc
d
q0 ðc̄eαcjÞq00 �g: ð106Þ

Therefore, a more careful analysis of say color conservation
on the physical space is required.

IX. SUMMARY AND DISCUSSION

We have elaborated all the details of the BRST quan-
tization of Yang-Mills theory in a strictly Hamiltonian
approach. A new representation of ghost-field operators in
terms of canonical creation and annihilation operators has
been introduced in Eqs. (35)–(38). This representation
combines two pivotal advantages: (i) there exists a well-
defined Fock space that serves as the underlying Hilbert
space for carrying out the Hamiltonian approach and (ii) the
BRST charge (48) and the Hamiltonian (63)–(65) turn out
to be self-adjoint operators with respect to the physical
inner product. The Fock space actually carries two inner
products, a canonical and a signed one, where the restric-
tion of the latter to a suitable subspace serves as the
physical inner product. The occurrence of negative-norm
states in the unrestricted space explains why ghost particles
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can combine the anticommutation relations for fermions
with zero spin, in an apparent violation of the spin-statistics
theorem.
The construction of the BRST charge is based on the

following two properties: (i) its role as the generator of the
operator version of classical gauge transformations and
(ii) its nilpotency. Lorentz symmetry is taken into account
in the construction of the Fock space (with four gauge
boson polarizations), in the formulation of the BRST
charge (inherited from classical gauge transformations),
and in the construction of the Hamiltonian as the minimal
BRST invariant extension of the free theory (in which all
four gauge boson polarizations are on an equal footing).
The final Hamiltonian found in Eqs. (63)–(65) reproduces
the field equations of classical Yang-Mills theory.
The interaction with matter has been included in terms of

the current four-vector by adding the contributions (88) and
(95) to the BRST charge and Hamiltonian, respectively. In
order to make the BRST approach work, a current algebra
has to be postulated, where a particularly simple one is
given in Eq. (94). Any change in the current algebra, say by
a Schwinger term, requires modifications of the BRST
charge and the BRST invariant Hamiltonian. We have also
discussed the formulation of the conservation law associ-
ated with BRST symmetry.
Whereas the Hamiltonian approach to BRST quantiza-

tion on Fock space has the educational advantage of
being nicely explicit and transparent, it has serious dis-
advantages in practical calculations. In particular, pertur-
bation theory becomes very cumbersome (see Appendix A
of [11] for some simplifications). Our motivation for
elaborating the Hamiltonian approach stems from the
formulation of dissipative quantum field theory [11,21],
which is based on quantum master equations for evolving
density matrices in time as an irreversible generalization
of Hamiltonian dynamics. Dissipative quantum field
theory, which is based on the idea that the elimination
of degrees of freedom in renormalization procedures leads
to the emergence of irreversibility, adds rigor, robustness
and intuition to the field and hence has the potential to
clarify the foundations of quantum field theory. Dissipation
can easily be introduced in the Hamiltonian approach (see
Sec. 1.2.3.2 of [11]).
Stochastic simulation techniques developed for quan-

tum master equations [22] can then be used to simulate
quantum field theories (see Secs. 1.2.8.6 and 3.4.3.3 of
[11] for details). With the present paper, the simulation
ideas so far applied only in a rudimentary way to
quantum electrodynamics [23], become applicable to
quantum chromodynamics.

APPENDIX A: PROOF OF Q2 = 0

In order to prove the nilpotency of the BRST charge
defined in Eq. (48), we write Q ¼ Q0 þQ1 þQ2 þQ3

with

Q0 ¼
X
q∈K̄3

×

ðεa0q _ca−q − iqjε
aj
q ca−qÞ; ðA1Þ

Q1 ¼ gfabc
X
q∈K̄3

×

ðεaμαbμÞqcc−q; ðA2Þ

Q2 ¼ −gfabc
X
q∈K̄3

×

ð_cac̄bÞqcc−q; ðA3Þ

and

Q3 ¼
1

2
gfabc

X
q∈K̄3

×

_̄ca−qðcbccÞq: ðA4Þ

Based on trivial canonical commutation and anticommu-
tation relations, we find

Q2
0 ¼ 0; ðA5Þ

exactly as for Abelian gauge theory. The evaluation of Q2
1

is based on the commutation relations (43) and (44); the
result is

Q2
1 ¼ −ig2fadsfbcs

X
q∈K̄3

×

ðεdμαcμÞ−qðcbcaÞq: ðA6Þ

By means of Eq. (32) we find

Q2
2 ¼ ig2fcdsfabs

X
q∈K̄3

×

ðc̄a _cdÞqðcbccÞ−q: ðA7Þ

To obtain

Q2
3 ¼ 0; ðA8Þ

we need the Jacobi identity (3).
As a consequence of

fQ1; Q2g ¼ 0; ðA9Þ

the nonzero contribution to Q2
1 in Eq. (A6) can only be

compensated by

fQ1; Q3g ¼ −
i
2
g2fcdsfabs

X
q∈K̄3

×

ðεdμαcμÞ−qðcbcaÞq: ðA10Þ

Indeed, the Jacobi identity (3) implies

Q2
1 þ fQ1; Q3g ¼ 0: ðA11Þ

The nonzero contribution to Q2
2 in Eq. (A7) can only be

compensated by
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fQ2; Q3g ¼ i
2
g2fadsfbcs

X
q∈K̄3

×

ðc̄a _cdÞqðcbccÞ−q: ðA12Þ

By once more using the Jacobi identity (3), we find

Q2
2 þ fQ2; Q3g ¼ 0: ðA13Þ

We still need to evaluate the anticommutators of Q0 with
all the other contributions to Q. We first evaluate

fQ0; Q1g ¼ igfabc
X
q∈K̄3

×

εa0qð_cbccÞ−q

þ 1

2
gfabc

X
q∈K̄3

×

qjε
aj
q ðcbccÞ−q: ðA14Þ

The next anticommutator is given by

fQ0; Q2g ¼ −igfabc
X
q∈K̄3

×

εa0qð_cbccÞ−q; ðA15Þ

which cancels the first term on the right-hand side of
Eq. (A14). A final straightforward calculation yields

fQ0; Q3g ¼ −
1

2
gfabc

X
q∈K̄3

×

qjε
aj
q ðcbccÞ−q: ðA16Þ

As fQ0; Q3g cancels the second term on the right-hand side
of Eq. (A14), we obtain

fQ0; Q1g þ fQ0; Q2g þ fQ0; Q3g ¼ 0: ðA17Þ

By summing up Eqs. (A11), (A13), (A17) and using the
results (A5), (A8), (A9), we indeed obtain the desired
nilpotency of the BRST charge defined in Eq. (48),Q2 ¼ 0.

APPENDIX B: CONSTRUCTION OF PHYSICAL
STATES—A TOY VERSION

We here sketch a toy version of the construction of
physical states in the BRST approach. The general idea is
nicely illustrated in a three-dimensional cartoon version of
temporal, longitudinal and transverse gauge bosons (where
physical states do not contain any right bosons, equivalent
physical states differ by left bosons, and unique represent-
atives of equivalence classes do not contain any left photons).
For the linear operators

Q ¼

0
B@

1 −1 0

1 −1 0

0 0 0

1
CA; Q† ¼

0
B@

1 1 0

−1 −1 0

0 0 0

1
CA; ðB1Þ

one easily verifies Q2 ¼ ðQ†Þ2 ¼ 0. The image and kernel
of the operator Q are given by

ImQ ¼
8<
:λ

0
B@

1

1

0

1
CA
������λ ∈ R

9=
;; ðB2Þ

and

KerQ ¼
8<
:λ

0
B@

1

1

0

1
CAþ λ0

0
B@

0

0

1

1
CA
������λ; λ

0 ∈ R

9=
;; ðB3Þ

illustrating the general relation ImQ ⊂ KerQ. We similarly
have

ImQ† ¼
8<
:λ

0
B@

1

−1
0

1
CA
������λ ∈ R

9=
;; ðB4Þ

KerQ† ¼
8<
:λ

0
B@

1

−1
0

1
CAþ λ0

0
B@

0

0

1

1
CA
������λ; λ

0 ∈ R

9=
;; ðB5Þ

and ImQ† ⊂ KerQ†. We also find ImQ† ¼ ðKerQÞ⊥ and
ImQ ¼ ðKerQ†Þ⊥, implying the orthogonality of ImQ and
ImQ†. The kernel of Δ ¼ ðQþQ†Þ2 ¼ QQ† þQ†Q,

Δ ¼

0
B@

4 0 0

0 4 0

0 0 0

1
CA; ðB6Þ

coincides with KerQ ∩ KerQ†, so that KerΔ, ImQ and
ImQ† are three mutually orthogonal spaces. The total space
is the direct sum of these three vector spaces. Any vector
can uniquely be written as the sum of three vectors, one
from each of these spaces.
Introducing a signed inner product by

σ ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA; ðB7Þ

we realize the self-adjointness property Q‡ ¼ σQ†σ ¼ Q.
For this signed inner product, states from ImQ or ImQ†

have zero norm, states from KerΔ have positive norm. Had
we chosen a signed inner product with

σ0 ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA; ðB8Þ

we would still have the self-adjointness property Q‡ ¼ σ0

Q†σ0 ¼ Q. However, we would have introduced too many
states with a negative norm leading to an unphysical inner
product on KerΔ.
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