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We give an estimate of Ξþþ
cc production rate and transverse momentum spectra in relativistic heavy ion

collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and
diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are
calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by
Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0–10% centrality, the number of Ξþþ

cc

produced in the transverse momentum range 0–5 GeV and rapidity from −1 to 1 is roughly 0.02 per
collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be
formed. The number of Ξþþ

cc produced in the same kinematic region is about 0.0125 per collision. We
discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a
gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly
heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.
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Recently the LHCb Collaboration reported the observa-
tion of a doubly charmed baryon carrying two units of
positive charge, Ξþþ

cc , with a massmðΞccÞ ≈ 3621 MeV [1].
Though it is still unclear why the observed mass differs
from the previous SELEX result [2], the existence of such
doubly charmed baryons is now on a more solid ground.
The particle is stable under strong interactions and only
decays weakly. The structure of Ξþþ

cc can be thought of as
an up quark bound around a deeply bound state (diquark) of
two charm quarks [3]. Just as a pair of heavy quark and
heavy antiquark attract each other and can form a bound
state in the color singlet channel, a pair of two heavy quarks
also attract and can form a bound state, a heavy diquark, in
the antitriplet representation.
The peculiar properties of Ξþþ

cc have stimulated new
theoretical and experimental research. Here we consider the
production of Ξþþ

cc in high energy heavy ion collisions,
where a hot nuclear environment, the quark-gluon plasma
(QGP), is produced. Previous work was based on quark
coalescence at hadronization and assumed that heavy
quarks are thermally distributed [4,5]. Here we pursue
out a more dynamical approach considering the formation
of bound heavy diquarks within the quark-gluon plasma

and the incomplete equilibration of the heavy quark
spectrum.
In hadron-hadron collisions, it is difficult to produce a

pair of heavy quarks in the color antitriplet at leading order
in a fragmentation process. On the other hand, the coa-
lescence process involving two independently produced
charm quarks is sensitive to the relative momentum
between the heavy quark pair. In proton-proton collisions,
the relative momentum is uncontrolled and likely large,
suppressing the coalescence. Heavy ion collisions have two
advantages for Ξþþ

cc production: First, the rapidity density
of charm quarks produced in a single collision is higher.
Second, the deconfined QGP medium lasts roughly
10 fm=c, during which time the charm quarks can diffuse
in the QGP via interactions with light quarks and gluons.
This is confirmed by recent measurements from the STAR
Collaboration, which shows that charm quarks participate
in the collective flow of the QGP [6]. As a result, the
relative momentum of a charm quark pair can be on the
order of the QGP temperature. The coalescence probability
into a charm diquark bound state is thus enhanced if the
temperature of the QGP is not too high.
After its formation the charm diquark also diffuses in the

QGP because it carries color charge. At the same time, the
charm diquark may dissociate by absorbing a real or virtual
gluon. So the whole process is a dynamical in-medium
evolution involving charm diquark formation, diffusion and
dissociation. This is similar to the in-medium evolution of
heavy quarkonia, such as the J=ψ , except that the heavy
diquarks carry color while the quarkonia are color neutral.
At the transition from the deconfined QGP phase to the
hadronic phase, the charm diquarks hadronize into doubly
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charmed baryons by absorbing an up or down quark from
the medium.
We will describe the in-medium dynamical evolution of

charm quarks and diquarks by a set of coupled Boltzmann
equations analogous to the transport equations for in-
medium heavy quarks and quarkonia [7]. By connecting
the transport equations with the initial production of charm
quarks from the hard collision and the hydrodynamical
background, we obtain an estimate of the yield and pT-
spectrum of Ξþþ

cc in Pb-Pb collisions at 2.76 TeV. Finally,
we study the static screening effect of the QGP on the
production process.
The set of coupled Boltzmann transport equations for the

charm quark and diquark distribution functions fðx; p; tÞ is
given by

� ∂
∂tþ _x ·∇x

�
fcðx; p; tÞ ¼ Cc − Cþc þ C−c

� ∂
∂tþ _x ·∇x

�
fccðx; p; tÞ ¼ Ccc þ Cþcc − C−cc; ð1Þ

where all the collision terms C, C� depend on x, p, t.
Here we will focus on the ground charm diquark state
ccð1SÞ because excited states are loosely bound and
cannot survive at high temperature. In the following, by
charm diquark we mean the ccð1SÞ state. The collision
terms Cc and Ccc describe their scattering with thermal
constituents of QGP. This process has been described as
two-body scattering in the framework of the linearized
Boltzmann equation [8–10]. Here we use the elastic scatter-
ing rate calculated and implemented in Ref. [11] to describe
the in-medium diffusion. The diquark gain term Cþcc is from
the combination of a charm quark pair by gluon emission
and the loss term C−cc is from dissociation by gluon
absorption. The formation and dissociation of diquarks also
change the charm quark distribution function, which are
represented by C�c .
We calculate the diquark formation and dissociation rates

in QGP to the lowest order in potential non-relativistic
QCD (pNRQCD) for the diquark sector [12,13]. The
pNRQCD for the quarkonium sector has been used to
study quarkonia dissociation rates inside QGP [14]. The
effective field theory can be derived from QCD under the
hierarchy of scales M ≫ Mv ≫ Mv2; T;mD where M ¼
1.3 GeV is the charm quark mass, v ∼ 0.4 is the relative
velocity of cc inside the diquark, T is the QGP temperature,
and mD is the Debye screening mass. If T or mD scales as
Mv, the Debye static screening of the color attraction is so
strong that no diquark bound states can be formed inside
QGP. So the above hierarchy of scales is relevant to the
diquark formation. The pNRQCD is a systematic expan-
sion in v or 1=M (NR expansion) and r, the relative
distance between the charm quark pair inside the diquark
(multipole expansion). Its Lagrangian is given by:

LpNRQCD ¼
Z

d3rTrfT†ðiD0 −HTÞ T

þ Σ†ðiD0 −HΣÞΣþ T†r · gEΣ

þ Σ†r · gETg þ � � � ; ð2Þ

where higher order interaction terms in 1=M and r are
omitted. The Lagrangian of light quarks and gluons is just
QCD with momenta k≲Mv. The degrees of freedom are
the antitriplet TðR; r; tÞ and sextet ΣðR; r; tÞ where R
denotes the center-of-mass (c.m.) position and r the relative
coordinate. They are defined as

T ¼ tlTl Σ ¼ σνΣν; ð3Þ
where Tl and Σν are the antitriplet and sextet fields while tl

and σν are the generators of the corresponding representa-
tions. They are given by

tlij ¼
1ffiffiffi
2

p ϵijl ð4Þ

σ111 ¼ σ422 ¼ σ633 ¼ 1 ð5Þ

σ212 ¼ σ221 ¼ σ313 ¼ σ331 ¼ σ523 ¼ σ532 ¼
1ffiffiffi
2

p : ð6Þ

The equations of motion of the antitriplet and sextet are
Schrödinger equations with the Hamiltonians expanded in
powers of 1=M

HT;Σ ¼ −
D2

R

4M
−
∇2

r

M
þ Vð0Þ

T;Σ þ
Vð1Þ
T;Σ

M
þ Vð2Þ

T;Σ

M2
þ � � � ; ð7Þ

where DR is the covariant derivative associated with the
c.m. position.
By the virial theorem,−∇2

r=M ∼ Vð0Þ
T;Σ. So the order of the

relative kinetic term is accounted as 1=M0, not suppressed.
The c.m. kinetic term is suppressed because momenta k ∼
Mv have been integrated out in the construction and then
DR ≪ Mv. Higher-order terms of the potentials are also
suppressed by 1=M which include relativistic corrections,
spin-orbital and spin-spin interactions. We only work to
order 1=M0 since the charm quark mass is large. At this
order, theHamiltonians only contain the relative kinetic term

and Vð0Þ
T;Σ. Inside the deconfined QGP, the potential is

flattened and can be approximated by Coulomb interactions

Vð0Þ
T ¼ −

2

3

αs
r

Vð0Þ
Σ ¼ 1

3

αs
r
: ð8Þ

Since we keep track of the evolution of both the bound
diquarks and unbound charm quarks in the Boltzmann
equations, the potentials have no imaginary parts.
The interaction between the antitriplet diquarks and the

medium can be decomposed into two parts: a part that only
changes the c.m. motion and leaves the bound state intact
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and the other part that only modifies the relative motion and
can destroy the bound state. The decomposition is explicit
in the pNRQCD Lagrangian by the multipole expansion. At
the order we are working, the c.m. motion part is fully
described by the gauged kinetic term of the antitriplet field,
in the same way as the interaction between heavy quarks
and the medium. The changes of the c.m. motions of
diquarks are treated as diffusion in the Boltzmann equation,
in the same way as the heavy quark diffusion [see Cc and
Ccc in expression (1)]. The change of the relative motion is
described by terms of at least linear order in r. For example,
the antitriplet can interact with the sextet via a color dipole
interaction where the chromoelectric field is given by

E ¼ taFE
a; ð9Þ

and taF is the generator of the fundamental representation.
At leading order in r, the transition between unbound

charm quark pairs and bound diquarks can only occur
between an unbound sextet and a bound antitriplet. The
Feynman diagram of the transition via gluon absorption or
emission is shown in Fig. 1. For simplicity, we only
consider the interaction with on-shell gluons in the QGP.
Transitions caused by virtual gluons (inelastic scattering
with medium constitutes) are at next order in αs and
neglected here. The scattering amplitude in Coulomb gauge
is given by

T νla
λ ¼ ð2πÞ4δ3ðk1 þ q − k2ÞδðΔEÞMνla

λ ð10Þ

Mνla
λ ¼ −igqTrðσνtaFtlÞðϵ�λÞihψ1SjrijΨpreli ð11Þ

ΔE ¼ k21
4M

þ E1S þ q −
k22
4M

−
p2
rel

M
; ð12Þ

where k1;2 are the c.m. momenta, prel is the relative
momentum between the unbound quark pair and q ¼ jqj
is the gluon energy. In the matrix element, jψ1Si is the
hydrogen-like 1Swave function for the bound diquark in the
antitriplet, and jΨpreli is the Coulomb wave function for
the unbound sextet. The 1S binding energy is given by
E1S ¼ −α2sM=9. According to the power counting explained
above, the c.m. kinetic energies will be neglected.
Throughout this paper we set αs ¼ g2=ð4πÞ ¼ 0.4.
To calculate rates, we need to average and sum over

certain quantum numbers. For convenience, we define

jMj2 ≡X8
a¼1

X3
l¼1

X6
ν¼1

X
λ¼�

jMνla
λ j2 ¼ 2g2q2jhΨprel jrjψ1Sij2 ð13Þ

Fþ ≡ 1

2
gþ

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3k1
ð2πÞ3

d3q
ð2πÞ32q ð1þ nðqÞB Þfcðx; p1; tÞfcðx; p2; tÞð2πÞ4δ3ðk1 þ q − k2ÞδðΔEÞjMj2 ð14Þ

F− ≡ 1

2
g−

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3

d3prel

ð2πÞ3
d3q

ð2πÞ32q n
ðqÞ
B fccðx; k1; tÞð2πÞ4δ3ðk1 þ q − k2ÞδðΔEÞjMj2; ð15Þ

where prel and k2 are the relative and c.m. momenta of the
unbound charm quark pair with momenta p1 and p2. The
prefactor 1

2
avoids double counting in the phase space of

two charm quarks. The g-factors are given by

gþ ¼ 2J þ 1

ð2sþ 1Þ2
d6
N2

c

1

d6
¼ 1

12
ð16Þ

g− ¼ 1

d3̄
¼ 1

3
; ð17Þ

where J ¼ 1 is the diquark spin, s ¼ 1
2
is the heavy quark

spin, Nc ¼ 3 is the number of colors, d6 ¼ 6 is the sextet

multiplicity and d3̄ ¼ 3 is the antitriplet multiplicity. For
the formation process, one needs to average over the initial
sextet multiplicity and only a fraction d6=N2

c of unbound
charm quark pairs are in the sextet, which can form a
diquark by radiating out a gluon at the order of r and
ð1=MÞ0. The formed 1S diquark is a color antitriplet and
thus has to be in the spin triplet because of the antisym-
metric nature of fermions. So another spin factor 2Jþ1

ð2sþ1Þ2 ¼ 3
4

is inserted. For the dissociation process, one needs to
average over the initial antitriplet multiplicity. The phase
space measure is relativistic for gluons and nonrelativistic
for charm quarks and diquarks, which is consistent with our

FIG. 1. Transition between a bound charm diquark in the
antitriplet and an unbound charm quark pair in the sextet by
absorbing or emitting an on-shell gluon. Narrow double lines
indicate the diquark while widely open double lines represent the
unbound pair.
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field definitions. Formation from unbound antitriplet pairs
only happens at higher orders in r and 1=M.
The gain and loss collision terms in the Boltzmann

transport equations can be written as

C�c ¼ δF�

δp1

����
p1¼p

þ δF�

δp2

����
p2¼p

ð18Þ

C�cc ¼
δF�

δk1

����
k1¼p

; ð19Þ

where the “δ-derivative” symbol is defined as

δ

δpi

Z Yn
j¼1

d3pj

ð2πÞ3hðp1;p2;…;pnÞjpi¼p

≡ δ

δaðpÞ
Z Yn

j¼1

d3pj

ð2πÞ3hðp1;p2;…;pnÞaðpiÞ

¼
Z Yn

j¼1;j≠i

d3pj

ð2πÞ3hðp1;p2;…;pi−1;p;piþ1;…;pnÞ; ð20Þ

where the δ in the second line denotes the standard
functional variation and hðp1; p2;…; pnÞ and aðpiÞ are
arbitrary independent functions. In C�c two such
“δ-derivatives” are involved because the initial or final
states contain two charm quarks.
The rate of charm quarks combining Γf and the

dissociation rate of a diquark Γd can be defined as

Cþc ≡ Γfðx; p; tÞfcðx; p; tÞ ð21Þ

C−cc ≡ Γdðx; p; tÞfccðx; p; tÞ: ð22Þ

The scattering amplitude and the rate are calculated in
the rest frame of the diquark for dissociation and that of the
unbound quark pair for formation, where the pNRQCD is
valid. The Bose distribution of medium gluons nðqÞB is
boosted into the rest frames, respectively. The two frames
are not equivalent but since the gluon energy is small
compared to M (T ≪ M), the difference is suppressed by
T=M. We test the implementation of the formation and
dissociation rates in a static QGP box with a constant
temperature. After evolving for a sufficiently long period,
the system of charm quarks and diquarks reaches thermal
equilibrium. The equilibrium test is similar to that for heavy
quarks and quarkonia [7].
To solve the transport equations, an initial condition is

needed. Due to the large mass, the charm quark can be
thought of being produced from the initial hard scattering in
heavy ion collisions, before the QGP is formed. The initial
transverse momentum and rapidity distribution from the
hard scattering is calculated from FONLL [15] with the
nuclear parton distribution function (PDF) EPS09 [16].
The nuclear PDF contains a modification of the proton PDF

due to nuclear many-body effects. The FONLL calculation
is done with the renormalization and factorization scale
mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

T

p
. The number of charm quarks produced

in one collision event is determined by σTAA, the product of
the cross section σ per binary collision calculated in
FONLL, and the nuclear thickness function TAA derived
from binary collision models. Here we will focus on
collisions with 0–10% centrality, which corresponds to
impact parameters from 0 to 5 fm roughly and TAA ≈
23 mb [17].
The initial position of the charm quark produced is

sampled using the Trento model [18], a binary collision
model. The model assumes the heavy ion collision is a
superposition of a number of nucleon-nucleon collisions
and calculates the spatial probability distribution where two
nucleons from the approaching nuclei scatter. The charm
quark production is a short-distance process, implying that
its initial position is roughly the same as the location where
the two parent nucleons scatter.
Each binary collision also deposits a certain amount of

energy and entropy into the system. The Trento model also
gives the initial energy and entropy densities. These are
then fed into a 2þ 1 dimensional viscous hydrodynamical
simulator VISHNew [19,20], which numerically solves the
hydrodynamical equations

∂μTμν ¼ 0 ð23Þ

with the energy-momentum tensor

Tμν ¼ euμuν − ðpþ ΠÞðgμν − uμuνÞ þ πμν; ð24Þ

Π ¼ −ζ∇ · u; ð25Þ

πμν ¼ 2η∇hμuνi ð26Þ

for given initial conditions. Here e andp are the local energy
density and pressure, and uμ is the local four-velocity of the
QGP.Π is the bulk stress with the bulk viscosity ζ, and πμν is
the shear stress tensor with the shear viscosity η. Here the
angle bracket means traceless symmetrization.
With the initial condition and hydrodynamical background

given, we solve the transport equations by test particles
Monte Carlo simulations. The hydrodynamical simulation is
assumed to start at the co-moving time τ ¼ 0.6 fm=c. Before
this, we assume the charm quarks are just free-streaming
without interactions. After τ ¼ 0.6 fm=c, we consider three
types of processes at each time step Δt ¼ 0.04 fm=c in the
laboratory frame: diffusion, formation and dissociation.
First, for each charm quark and diquark, we determine

their thermal scattering rate with medium constituents. The
product of the rate and time step Δt gives the scattering
probability. Then we use random numbers to determine
whether a certain process occurs. If so, we sample the
momenta of the incoming medium constituent from a
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thermal distribution and obtain the momenta of outgoing
particles by energy-momentum conservation. Finally, we
update both particles’ momenta and positions after one
time step.
Second, for each diquark, we calculate its dissociation

rate and probability within a time step as above. If the
diquark is determined to dissociate, we replace it by two
unbound charm quarks whose momenta are determined
from energy-momentum conservation and whose positions
are given by that of the diquark just before the dissociation.
Finally, for each charm quark with position yi and

momentum p̃i, whose neighboring charm quarks have
positions yj and momenta p̃j, we need to determine the
diquark formation rate by using expressions (14), (18),
(21). A problem appears, because the two quark distribu-
tions should be evaluated at the same position, but the
product of two delta functions is ill-defined. We introduce a
position dependence of the combination probability by
means of a Gaussian function with a width chosen as the
diquark Bohr radius aB ¼ αsM=3. This ensures that the
combination rate for a widely separated charm quark pair
vanishes. The product of the local distributions in (14) is
thus replaced with

fcðx;p1; tÞfcðx;p2; tÞ

→
X
i;j

e−ðyi−yjÞ2=2a2B

ð2πa2BÞ3=2
δ3
�
x−

yiþ yj
2

�
δ3ðp1 − p̃iÞδ3ðp2− p̃jÞ;

ð27Þ

where the sum runs over all unbound charm quark pairs.
For each charm quark i, the diquark formation rate in
expression (21) involves a sum over j. If a diquark is
formed, we replace the unbound charm quark pair by a
diquark whose momentum is determined by momentum
conservation and whose position is given by the center-of-
mass position of the quark pair as indicated in (27).
When particles reach the hadronization hyper-

surface determined by the local transition temperature
Tc≈154MeV, each diquark combines with a thermal up or
down quark to form a doubly charmed baryon. Herewe use
a simple hadronizationmodel: amassless up or down quark
is sampled from a Fermi-Dirac distribution with the
temperature Tc, and its momentum is added to the diquark
momentum to determine the baryon momentum. The
baryon energy is fixed by the momentum and vacuum
massmðΞccÞ. We assume all diquarks end up as the ground
Ξcc states because excited states decay to the ground state
much faster than the weak decay of the ground state
[21,22]. In this way, roughly half the diquarks end up as
Ξþþ
cc . A more realistic hadronization model would include

the effect of the baryon wave function on the coalescence
probability.
We have simulated 40,000 nuclear collision events. In

each event, the initial charm quark momentum is sampled

over the range pT ∈ ½0; 30� GeV and y ∈ ½−8; 8�. At the
end of each calculation, we accept Ξþþ

cc in the kinematic
range pT ∈ ½0; 5� GeV and y ∈ ½−1; 1�. The pT spectra
integrated over this rapidity range are shown in Fig. 2. The
yield within this kinematic range is NðΞþþ

cc Þ ≈ 0.02 per
collision.
So far, we have assumed that the diquark can be formed

at any temperature. This cannot be true due to the Debye
screening of the attractive color force inside the QGP. To
understand the influence of Debye screening on Ξþþ

cc
production, we repeat the calculation but assume a melting
temperature Tm ¼ 250 MeV above which the charm
diquark cannot be formed inside the QGP. The yield in
the same kinematic range is then reduced to NðΞþþ

cc Þ ≈
0.0125 per collision.
Themelting temperature of heavy diquarks can be studied

from their free energies, in a similar way as quarkonia
melting temperatures [23]. The free energy of a heavy quark
pair could be studied on a lattice by calculating the
correlations of two Polyakov loops at different lattice
locations, where each Polyakov loop corresponds to a static
thermal heavy quark [24]. The free energy projected onto the
color antitriplet state can be used to study the binding
energies and spectral functions of diquarks, from which one
can obtain themelting temperature. The projections onto the
antitriplet and sextet states were first studied in Ref. [25]. In
the Appendix, we explain how to project onto the antitriplet
in a gauge invariant but path dependent way. We also show
that under a weak coupling expansion, the free energy of a
pair of heavy quarks in the antitriplet is the sum of the free
energies of two individual heavy quarks and their attractive
potential energy. A previous gauge dependent lattice study
can be found in Ref. [26].
The calculation presented here can be improved in several

ways. First, one can include higher-order corrections to the
in-medium processes. The in-medium potentials of the
diquark can also be made temperature-dependent by per-
forming matching calculations between lattice results of
Wilson loops and pNRQCD. Furthermore, one can usemore

FIG. 2. pT spectra of emitted Ξþþ
cc integrated over the rapidity

window −1 ≤ y ≤ 1. The normalization is arbitrary.
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realistic hadronization models. Finally, effects of the initial
charm quarkmomentumdistributionmodifications from the
preequilibrium effects could be studied.
The calculation can be extended to the production of

other doubly heavy baryons, such as Ξbb and Ξbc, and
doubly heavy tetraquarks, among which the bbū d̄ ground
state with JP ¼ 1þ is predicted to be stable [27–31]. The
stability of heavy tetraquarks has been investigated previ-
ously in Ref. [32]. For Ξbb, the only difference is that fewer
bottomquarks are produced than charmquarks. This implies
that the probability of having two bottom quarks come close
and form a bottom diquark is much smaller. Thus, one
expects a correspondingly smaller yield of Ξbb. For Ξbc,
there exist extra dipole terms in the pNRQCD Lagrangian
for transitions among antitriplets (or sextets) [12], which
means that an unbound pair of bottom and charm quarks in
the antitriplet channel can form a bound bc diquark via a
dipole transition.
For tetraquarks, the in-medium evolution of heavy

quarks and diquarks proceeds in the same way, but the
antitriplet diquark hadronizes by coalescing with two light
antiquarks. This process is analogous to the formation of an
antibaryon containing a single heavy antiquark, while the
formation of a doubly heavy baryon is analogous to the
creation of a heavy meson. Heavy baryon (Λc) emission is
known to be enhanced relative to heavy meson (D0)
emission in relativistic heavy ion collisions [33] as a
consequence of quark recombination from the thermal
quark-gluon plasma [34], compared with proton-proton
collisions. A similar enhancement of the production of
doubly heavy tetraquarks, relative to the production of
doubly heavy (anti)baryons, can be expected. The mea-
sured ratio Λc=D0 ≈ 1 in Auþ Au collisions at RHIC
suggests that the yield of doubly heavy baryons and
tetraquarks should also be approximately equal.
Finally, we discuss the feasibility of experimental mea-

surements. The crucial factor is the yield-to-background
ratio. Based on our calculations, the number of Ξþþ

cc
produced at the LHC energies may be large enough. But
at the same time, higher collision energies mean higher
levels of background. Though a measurement is currently
difficult, it is promising that the noisy background diffi-
culty will be overcome in the future with detector upgrades
such as the ALICE Inner Tracking System upgrade.
With the high-resolution detectors, one can apply stricter
topological cuts to reduce the level of background and
increase the yield-to-background ratio. Just as the STAR
Collaboration first measured theΛc production in heavy ion
collisions with the newly installed Heavy Flavor Tracker
[33], measurements of doubly heavy baryons and even
bound tetraquarks in heavy ion collisions may become
possible in the future. Experimental measurements rely on
the reconstruction from decay products of Ξþþ

cc . The decay
properties of doubly heavy baryons have been intensely
studied [3,35–42].

In conclusion, we have used Boltzmann transport equa-
tions to describe the in-medium formation, dissociation,
and diffusion of charm diquarks. Based on it, we estimate
the production rate and pT spectra of the doubly charmed
baryon Ξþþ

cc in central Pb-Pb collision at 2.76 TeV. It will be
of great interest if experimental efforts are taken to try to
measure Ξþþ

cc in heavy ion collisions. A measurement of the
production rate would allow us to extract the melting
temperature of the charm diquark in QGP from the above
calculation. Comparison can be made with the melting
temperature calculated from lattice results of the free
energy of the antitriplet. These experimental and lattice
studies would provide valuable information to our under-
standing of QCD at finite temperature and properties
of QGP.
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APPENDIX: FREE ENERGY OF A
HEAVY QUARK PAIR IN THE
ANTITRIPLET AND SEXTET

The antitriplet and sextet states of a heavy quark pair at
different lattice locations can be defined as

jQQ3̄ð0;r;τÞil≡ 1ffiffiffi
2

p ϵiklψ
†
i ð0;τÞψ†

jðr;τÞW†
jkðð0;τÞ;ðr;τÞÞjsi

ðA1Þ

jQQ6ð0;r;τÞiν≡σνikψ
†
i ð0;τÞψ†

jðr;τÞW†
jkðð0;τÞ;ðr;τÞÞjsi;

ðA2Þ

where τ is the Euclidean time and jsi can be any statewith no
heavy quarks. The symbol σνik is defined in the expressions
(5) and (6) and satisfies σνikσ

ν
i0k0 ¼ ðδii0δkk0 þ δik0δi0kÞ=2.

The symbol Wðy; xÞ denotes a Wilson line from lattice
site x to site y. The definitions depend on the spatial path
of the Wilson line. The heavy quark annihilation ψ and
creation ψ† operators satisfy the anticommutation relation
on the lattice

fψ iðr; τÞ;ψ†
jðr0; τÞg ¼ δrr0δij: ðA3Þ

The free energy of a heavy quark pair in the antitriplet
can be defined as
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e−FQQð3̄ÞðrÞ=T ¼ 1

Nc

X
jsi

hQQ3̄ð0;r;0Þjle−βHjQQ3̄ð0;r;0Þil

¼ 1

2Nc
ϵi0k0lϵikl

X
jsi

hsjWk0j0 ðð0;0Þ;ðr;0ÞÞψ j0 ðr;0Þψ i0 ð0;0Þe−βHψ†
i ð0;0Þψ†

jðr;0ÞW†
jkðð0;0Þ;ðr;0ÞÞjsi

¼1

6
ðδii0δkk0 −δik0δi0kÞ

X
jsi

hsje−βHWk0j0 ðð0;βÞ;ðr;βÞÞψ j0 ðr;βÞψ i0 ð0;βÞψ†
i ð0;0Þψ†

jðr;0ÞW†
jkðð0;0Þ;ðr;0ÞÞjsi: ðA4Þ

In the static heavy quark limit [24],

ψ iðr;βÞ¼T ðeig
R

β

0
dτA0ðr;τÞÞijψ jðr;0Þ≡LðrÞijψ jðr;0Þ; ðA5Þ

where T is the time ordering operator. The starting and
ending points of the Wilson line along the Euclidean time
direction are the same due to the periodicity of gauge fields
at finite temperature and is denoted as the Polyakov line
LðrÞ. Then using the anticommutation relation of heavy
quark operators it can be shown

e−FQQð3̄ÞðrÞ=T

¼ 1

6
hTrLð0ÞTrLðrÞiT

−
1

6
hTr½Wðð0;βÞ;ðr;βÞÞLðrÞW†ðð0;0Þ;ðr;0ÞÞLð0Þ�iT;

ðA6Þ

where hÔiT ≡P
jsihsje−βHÔjsi and TrL is the Polyakov

loop. Both the correlation terms in the above expression are
gauge invariant because of the cyclic property of the trace
and the periodicity of gauge fields. Schematic diagrams for
the two correlation terms are shown in Fig. 3.

In a similar way, the sextet free energy can be defined as

e−FQQð6ÞðrÞ=T ¼ 1

6

X
jsi

hQQ6ð0;r;0Þjνe−βHjQQ6ð0;r;0Þiν

ðA7Þ

¼ 1

12
hTrLð0ÞTrLðrÞiT

þ 1

12
hTr½Wðð0; βÞ; ðr; βÞÞLðrÞW†ðð0; 0Þ; ðr; 0ÞÞLð0Þ�iT;

ðA8Þ
which is also gauge invariant. Both definitions depend on
the spatial paths of the Wilson lines.
Under a weak coupling expansion in powers of g, we

obtain in the static gauge _A0 ¼ 0 (where A0 is a constant
matrix)

e−FQQð3̄ÞðrÞ=T ¼ 1þ g2β2

12
δabhAa

0ðrÞAb
0ð0ÞiT

−
g2β2

12
δabhAa

0ð0ÞAb
0ð0ÞiT

−
g2β2

12
δabhAa

0ðrÞAb
0ðrÞiT þOðg3Þ: ðA9Þ

(a) (b)

FIG. 3. Schematic diagrams for the correlation terms in expð−FQQð3̄ÞðrÞ=TÞ. The subplots (a) and (b) correspond to the first and
second terms separately. The three black dashed lines label the same Euclidean time due to the periodicity at finite temperature. The
region from τ ¼ β to τ ¼ 2β is just a duplicate of the region from τ ¼ 0 to τ ¼ β. In (a), the two blue arrows indicate the two Polyakov
loops which are located at r ¼ 0 and r. In (b), the four red arrows indicate the trace in the second term. It consists of a Polyakov line at
r ¼ 0, followed by a Wilson line from r ¼ 0 to r, then another Polyakov line at r and finally a Wilson line from r to r ¼ 0. Though
straight lines are used to denote the Wilson lines, they can be any spatial paths connecting the two ends. Due to the periodicity of gauge
fields, the four red arrows form a loop.
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The last two terms are independent of the positions and are
just the free energies of two individual heavy quarks at
order g2. The free energy of a single heavy quark can be
calculated from

e−FQ=T ¼ 1

3
hTrLiT: ðA10Þ

Therefore,

FQQð3̄ÞðrÞ¼ 2FQ−
g2β
12

δabhAa
0ðrÞAb

0ð0ÞiT þOðg3Þ: ðA11Þ

In the static gauge and under the hard thermal loop
approximation

hAa
0ðrÞAb

0ð0ÞiT ¼ T
X
n

Z
d3q
ð2πÞ3

eiq·r

q2 þm2
D
δn0δ

ab

¼ Tδab
1

4πr
e−mDr: ðA12Þ

So finally,

FQQð3̄ÞðrÞ ¼ 2FQ −
2

3

g2

4πr
e−mDr þOðg3Þ: ðA13Þ

The free energy of an antitriplet heavy quark pair is the sum
of the free energies of two individual heavy quarks and
their color attractive potential energy.
In a similar way,

FQQð6ÞðrÞ ¼ 2FQ þ 1

3

g2

4πr
e−mDr þOðg3Þ: ðA14Þ

The free energy of a sextet is the sum of the free energies of
two individual heavy quarks and their color repulsive
potential energy. Though up to order g2 the antitriplet
and sextet free energies are independent of the Wilson line
paths in the definition, they are generally dependent on the
paths beyond the leading order [43].
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