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We have calculated the W-loop contribution to the amplitude of the decay H → Z þ γ in two different
methods: (1) in the Rξ-gauge using dimensional regularization (DimReg), and (2) in the unitary gauge
through the dispersion method. Using the dispersion method we have followed two approaches: (i) without
subtraction and (ii) with subtraction, the subtraction constant being determined adopting the Goldstone
boson equivalence theorem (GBET) at the limit MW → 0. The results of the calculations in Rξ-gauge with
DimReg and the dispersion method with the GBET completely coincide, which shows that DimReg is
compatible with the dispersion method obeying the GBET.
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I. INTRODUCTION

The calculation of the Higgs decay rate into two photons
through the W-loop has become the subject of a contro-
versy. After extracting the transverse factor

Pμν ¼ k2μk1ν − ðk1 · k2Þgμν; ð1Þ

which takes current conservation into account, the invariant
amplitude is finite. Since however this amplitude is the sum
of individually divergent Feynman diagrams most authors
use dimensional regularization (DimReg) for its evaluation.
Surprisingly, the DimReg result [1,2]1 differs (by a real
additive constant) from the outcome of a direct computa-
tion that works with the physical unitary gauge [5,6].
Responding to a criticism, [7], which points out that

the delicate cancellation of divergences is ambiguous and
thus one needs a regularization, the result of [5] was
confirmed in [8] by applying unsubtracted dispersion
relations in a calculation that deals only with absolutely
convergent integrals. Nevertheless, this calculation was

also subsequently criticized in [3]. The origin of the
controversy stems from the fact that perturbative ampli-
tudes may be ambiguous even if the corresponding
momentum space integrals are convergent: the Feynman
rules need to be supplemented by conditions like gauge
invariance, or the associatedWard identities, alongside with
locality (or causality [9]) which yields the analytic proper-
ties in momentum space. The argument for an unsubtracted
dispersion relation follows directly from the fact that the
only constants that may appear in perturbative calculations
should be the coupling constants and masses that are part of
the full renormalizable Lagrangian. Thus, the absence of
Hγγ-coupling in the SM Lagrangian, implies a zero
subtraction in the dispersion integrals for the H → γ þ γ
amplitude. The same argument holds for the H → Z þ γ
amplitude, as well.
However, since the SM is a spontaneously broken theory

and masses are generated through the Higgs mechanism, it
was argued that the considered amplitude should obey the
boundary condition defined by the Goldstone boson
equivalence theorem (GBET) [10,11]. In [12] the amplitude
of H → γ þ γ was calculated in the unitary gauge staying
strictly in four dimensions but fulfilling the Goldstone
boson equivalence theorem. Their result is the same as in
[1]. In [13] it was shown how the amplitude for the decay
H → γ þ γ, calculated in the Rξ gauge and in the unitary
gauge, may lead to different results.
These controversial results in the calculations of the

amplitude for H → γ þ γ motivated us to consider the
decay H → Z þ γ. These two processes are similar in a
sense that at tree level they are both zero and induced by
loop corrections only, the W-loops giving the main
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1These are two among many such calculations. The authors of
[3] list 13 papers to which one may add still another one, [4], that
also concurs with the majority result.
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contribution. At MZ ¼ 0 the process H → Z þ γ should
reproduce the results for H → γ þ γ.
In this paper we calculate the one-loop W-contributions

to H → Z þ γ in two approaches: First we calculate the
amplitude using the dispersion relation approach. We
consider two cases: (1) we assume the unsubtracted
dispersion relation, and (2) we assume a nonzero sub-
traction constant adopting the GBET in the limit MW → 0.
Next we calculate the same amplitude in the commonly
used Rξ-gauge using the conventional dimensional regu-
larization (DimReg).
The goal of these calculations is to compare the two

results: from the dispersion-relation approach, in which we
deal with finite quantities only—with and without sub-
traction, to the result in Rξ-gauge with DimReg. The
dispersion-relation approach can, in fact, be viewed as a
general tool for resolving the ambiguities in the regulari-
zation scheme in quantum field theory. We show that with
the dispersion-relation approach, where no regularization is
necessary, and with subtraction determined by the GBET,
we get exactly the same result as in Rξ-gauge with DimReg.
Previously the decay H → Z þ γ was calculated using

DimReg and Rξ-gauge by Cahn et al. [14], and later a
complete analytic expression was obtained by other authors
[15,16]. Recently in [17] this calculation was done in the
unitary gauge, with the help of dimensional regularization.
We completely agree with their results.
Before we go into the details it shall be mentioned that in

this study we have used a couple of helpful Mathematica
packages, [18–23].

II. THE FEYNMAN DIAGRAMS

We consider the contribution of the W-bosons loop-
induced amplitude of the decayH → Z þ γ. Wework in the
unitary gauge, when only the physical particles contribute.
There are two types of diagrams. In Fig. 1 the threeW-loop
diagrams that contribute to the absorptive part of the
amplitude are shown. These are the same diagrams as in
the process H → γ þ γ [5,8], in which one of the final
photons is replaced by Z. In the same figure also the unitary
cuts, needed for obtaining the absorptive parts of the
amplitude are shown.
In Fig. 2 the two additional diagrams that contribute

to H → Z þ γ are shown. These are H → Z þ Z� with
the subsequent transition Z� → γ with WþW− and Wþ in
the loops. Clearly, kinematically their contribution to the
absorptive part is zero and we do not consider them further.
The amplitude for the process M is

M ¼ Mμνðk1; k2Þζμ1ζν2; ð2Þ

where k1 and k2 are the momenta of the Z-boson and the
photon, ζ1, ζ2 are their polarizations, orthogonal to k1 and
k2, respectively:

k21 ¼ M2
Z; k22 ¼ 0; k1μζ

μ
1 ¼ 0; k2νζν2 ¼ 0 ð3Þ

The contribution to Mμν of the three diagrams on Fig. 1 is

Mμν ¼ M1μν þM2μν þM3μν; with ð4Þ

FIG. 1. Feynman diagrams for the W-loop contribution to the decay H → Z þ γ. The inclined lines indicate the cuts.

FIG. 2. Feynman diagrams with an intermediate Z�-boson for the decay H → Z þ γ. Their contribution to the absorptive part of the
amplitude is kinematically forbidden.
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M1μν ¼
−ieg2 cos θWM

ð2πÞ4
Z

d4k
Vμρβð−k1;−P2; P1ÞVνγσð−k2;−P3; P2Þ

D1D2D3

×

�
gβα −

P1αP
β
1

M2

��
gρσ −

Pρ
2P

σ
2

M2

��
gαγ −

Pα
3P

γ
3

M2

�
; ð5Þ

M3μν ¼ M1μνðμ ↔ ν; k1 ↔ k2Þ

¼ −ieg2 cos θWM
ð2πÞ4

Z
d4k

Vνρβð−k2;−P̃2; P1ÞVμγσð−k1;−P3; P̃2Þ
D1D̃2D3

×

�
gβα −

P1αP
β
1

M2

��
gρσ −

P̃ρ
2P̃

σ
2

M2

��
gαγ −

Pα
3P

γ
3

M2

�
; ð6Þ

M2μν ¼
ieg2 cos θWM

ð2πÞ4
Z

d4k
Vγβμν

D1D3

�
gβα −

P1αP
β
1

M2

��
gαγ −

Pα
3P

γ
3

M2

�
: ð7Þ

Here, θW is the Weinberg (weak mixing) angle and
M ¼ MW is the mass of the W-boson.
The WWγ and WWZ vertices are denoted by Vαβγ, the

WWZγ vertex is denoted by Vαβμν, they are given in
Appendix A, where all Feynman rules in the unitary gauge
are recalled.
We have also used the following brief notations:

P1 ¼ kþ p
2
; P2 ¼ k −

v
2
; P3 ¼ k −

p
2
; ð8Þ

Di ¼ P2
i −M2 þ iϵ; ði ¼ 1; 2; 3Þ; ð9Þ

P̃2 ¼ kþ v
2
; D̃2 ¼ P̃2

2 −M2 þ iϵ ð10Þ

p ¼ k1 þ k2; v ¼ k1 − k2· ð11Þ

Taking into account the transformation properties under the
reflection k → −k of the loop momentum,

P̃2ðk → −kÞ ¼ −P2; D̃2ðk → −kÞ ¼ D2: ð12Þ

We relateM3μν andM1μν, thus simplifying our calculation:

M3μνðk → −kÞ ¼ M1μν: ð13Þ

III. ABSORPTIVE PART OF THE AMPLITUDE

We obtain the absorptive part through the Cutkosky rules
which set the momenta of the W’s on-shell [24]:

1

p2 −M2
→ ð2πiÞθð�p0Þδðp2 −M2Þ: ð14Þ

The imaginary part is obtained via the cut diagrams,MC
iμν:

ℑmMμν ¼ −
i
2
ð2MC

1μν þMC
2μνÞ: ð15Þ

Obviously, here we have taken into account Eq. (13).
Further we define the invariant absorptive part A of the

amplitude through the imaginary part of the amplitude:

ℑmMμν ¼
eg2 cos θW

8πM
AðτÞPμν; τ ¼ p2

4M2
; ð16Þ

where Pμν is the transverse-momentum (gauge invariant),
given by Eq. (1),

kμ1Pμν ¼ kν2Pμν ¼ 0: ð17Þ

Then A is obtained via the expression:

AðτÞPμν ¼
M2

π

Z
d4kIμνθðP10Þθð−P30ÞδðD1ÞδðD3Þ;

ð18Þ

where Iμν is determined by the Feynman diagrams on
Fig. 1. The two delta functions δðD1Þ and δðD3Þ in Eq. (18)
reduce the one-loop integral to a phase-space integral. In
the next section as the second step we will calculate from
the absorptive part the real part of the amplitude by
applying the dispersion integral technique. One can also
inverse the step of computing the absorptive part. Instead of
cutting the one-loop amplitude, one can sew appropriate
tree-level amplitudes together to form the one-loop ampli-
tude which turns the cutting step around, avoiding the
explicit construction of one-loop Feynman diagrams. But
then one can rely on evaluating Feynman integrals to do the
second step [25]. These are the so-called unitarity cut
methods based on [26], see also, e.g., [27,28].
The tensor Iμν is obtained via straightforward, but rather

tedious calculations starting from the expressions (5)–(7).
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Also we make use of the following identities, that hold for
both the WWγ and WWZ vertices:

Vαβγðp1; p2; p3Þ ¼ −Vβαγðp2; p1; p3Þ ¼ Vγαβðp3; p1; p2Þ;
ð19Þ

and

pα
1Vαμγðp1;−k1; p3Þ ¼ p2

3gμγ − p3μp3γ −M2
Zgμγ; ð20Þ

pα
1Vανγðp1;−k2; p3Þ ¼ p2

3gνγ − p3νp3γ; ð21Þ

pα
1p

γ
3Vαμγðp1;−k1; p3Þ ¼ −M2

ZP3μ; ð22Þ

pα
1p

γ
3Vανγðp1;−k2; p3Þ ¼ 0: ð23Þ

After rather cumbersome calculations we end up with the
following expression for Iμν:

Iμν ¼
8M2

Z

M4D2

k2
�
kμkν þ

k2μkν
2

−
kμk1ν
2

−
k2μk1ν
4

�
þ −2M2

Z

M4
k2gμν

þ 8M2
Z

M2D2

�
−kμkν −

k2μkν
2

þ kμk1ν
2

−
k2μk1ν
8

þ 1

4
gμνk1 · k2 −

1

8
gμνk · ðk1 − k2Þ

�
þM2

Z

M2
gμν

þ 2

M2D2

½4k1 · k2kμkν þ 2k2k2μk1ν − 4k · k1k2μkν − 4k · k2kμk1ν

þ gμνð4k · k1k · k2 − 2k2k1 · k2Þ�

þ 2

D2

��
−3k2 þ 3k · k1 − 3k · k2 −

9

2
k1 · k2 þ 3M2 −

3

4
M2

Z

�
gμν

þ 12kμkν þ 3k1νk2μ − 6kμk1ν þ 6k2μkν

�
: ð24Þ

Now we have to do the integration in (18). We perform it
in the rest frame of the decaying Higgs boson, with the z-
axis pointing along k1:

pα ¼ kα1 þ kα2 ¼ ðp; 0Þ; p≡ p0 ¼ 2M
ffiffiffi
τ

p
; ð25Þ

kα1 ¼
p
2τ

ðτ þ a; 0; 0; τ − aÞ; kα2 ¼
p
2τ

ðτ − a; 0; 0; a − τÞ;

a ¼ M2
Z

4M2
¼ 1

4cos2θW
; ð26Þ

vα ¼ kα1 − kα2 ¼
p
τ
ða; 0; 0; τ − aÞ;

v2 ¼ 4M2ð2a − τÞ; ðp · vÞ ¼ M2
Z: ð27Þ

The two δ-functions: δðD1Þ ¼ δ½ðkþ p=2Þ2 −M2� and
δðD3Þ ¼ δ½ðk − p=2Þ2 −M2� immediately determine k0
and jkj:

kα ¼ ðk0; kÞ ⇒ k0 ¼ 0; jkj2 ¼ M2ðτ − 1Þ ¼ p2

4
β2;

ð28Þ

where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ−1

p
: ð29Þ

Thus, we are left only with the 2-dimensional integral over
the direction of k ¼ jkjðsin θ cosϕ; sin θ sinϕÞ. For D2 we
obtain:

D2 ¼ −2M2ðτ − aÞð1 − β cos θÞ: ð30Þ

The absorptive part of the amplitude is nonzero at τ > 1
and it reads:

AðτÞ ¼ a
τ − a

��
1þ 1

τ − a

�
3

2
− 2aτ

��
β

−
�
1 −

1

2ðτ − aÞ
�
2a −

3

2τ

�
−

3

2a

�
1 −

1

2τ

��

× ln
�
1þ β

1 − β

��
;

τ > 1: ð31Þ

The details of the calculations are presented in Appendix B.

IV. REAL PART OF THE AMPLITUDE

The full invariant amplitude F ðτ; aÞ is defined by

Mμν ¼ −
eg2 cos θW

8πM
F ðτ; aÞPμν; ð32Þ

where Pμν is the transverse-momentum factor (1).
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The vanishing of the absorptive part of the amplitude at
τ < 1 tells us that the invariant amplitudeF at τ < 1, which
is the physically interested region, is only real. Following
the analytic properties of the amplitude, we define the
invariant unsubtracted amplitude F unðτ; aÞ in this region,
τ < 1, through the convergent dispersion integral:

F unðτ; aÞ ¼
1

π

Z
∞

1

AðyÞ
y − τ

dy; τ < 1: ð33Þ

From the explicit expression for A and its behavior at
τ → ∞we obtain that this integral is absolutely convergent.
This however does not imply that there are no subtractions
in (33): the dispersion integral (33) determines the full
amplitude F ðτ; aÞ up to an additive constant CðaÞ:

2πF ðτ; aÞ ¼ 2πF unðτ; aÞ þ CðaÞ· ð34Þ
In order to determine CðaÞ we need some additional

information about the amplitude—some boundary condi-
tion or a physical measurable quantity at some fixed value
of τ. In our calculations we fix CðaÞ through the Goldstone
Boson equivalence theorem (GBET) [10], which fixes the
behavior of the amplitude at τ → ∞.
In accordance with this we calculate the amplitude

F ðτ; aÞ in two steps:
(1) First we calculate F unðτ; aÞ using the dispersion

relation Eq. (33).
(2) We calculate CðaÞ using the GBET.

A. The unsubtracted amplitude F unðτ;aÞ
The unsubtracted amplitude F unðτ; aÞ is determined by

the convergent dispersion integral Eq. (33). The integrals in
Eq. (33) are taken analytically—they are given in
Appendix C, and we obtain:

2πF unðτ; aÞ ¼
3 − 4a2

τ − a
þ
�
6 − 4a −

3 − 4a2

τ − a

�
Fðτ; aÞ

− 2a

�
2þ 3 − 4aτ

τ − a

�
Gðτ; aÞ; ð35Þ

Fðτ; aÞ ¼ fðτÞ − fðaÞ
τ − a

; ð36Þ

Gðτ; aÞ ¼ gðτÞ − gðaÞ
τ − a

; ð37Þ

fðxÞ ¼
8<
:

arcsin2ð ffiffiffi
x

p Þ for x ≤ 1;

− 1
4

	
ln 1þ

ffiffiffiffiffiffiffiffiffi
1−x−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−x−1

p − iπ


2

for x > 1;
ð38Þ

gðxÞ ¼

8>><
>>:

ffiffiffiffiffiffi
1−x
x

q
arcsinð ffiffiffi

x
p Þ for x ≤ 1;

1
2

ffiffiffiffiffiffi
x−1
x

q 	
ln 1þ

ffiffiffiffiffiffiffiffiffi
1−x−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−x−1

p − iπ



for x > 1:
ð39Þ

The result for τ > 1 in the above formula is obtained via
analytic continuation. (The same result may be found if we
had set τ > 1 in the integrand and taken the iϵ prescription
in D2 into account.)
There are several important physical consequences for

this amplitude.
(1) The amplitude at threshold, τ ¼ a, is finite. We have:

lim
τ→a

2πF unðτ; aÞ

¼ 1

2a

�
3 − 4aþ 4a2 −

ð3 − 16aþ 12a2Þ
1 − a

gðaÞ
�
:

ð40Þ

The absence of singularities in the amplitude is in
accordance with the required analytic properties
of F unðτ; aÞ, necessary for the validity of the
dispersion relations.

(2) In the asymptotic limit τ → ∞, which implies
M2

H ≫ M2 at fixed a, we obtain:

lim
τ→∞

F unðτ; aÞ ¼ 0: ð41Þ

(3) In the limit of a → 0, we have to recover the
corresponding invariant amplitude F γγðτÞ for the
H → γ þ γ process:

Mγγ
μν ¼ −e2g

8πM
PμνF γγðτÞ; ð42Þ

where Pμν is the same transverse bilinear combina-
tion as Eq. (1) with the (on shell) photon momenta
k1, k2. We obtain:

lim
a→0

2πF unðτ; aÞ ¼ 3τ−1½1þ ð2 − τ−1ÞfðτÞ�; ð43Þ

which is exactly the result for Fγγ
unðτÞ, obtained in the

unitary gauge, both, with direct calculations without
renormalization in [5], and using the dispersive
relations approach without subtraction in [8].

(4) We calculated also the amplitude of the process in
the commonly used Rξ-gauge using DimReg. The
calculation was done with the help of the automatic
tools FEYNARTS [18] and FORMCALC [19]. There
are 20 Feynman triangle vertex graphs, 6 Feynman
vertex graphs with a four-point interaction and 10
graphs with self-energies from Z� − γ transition.
It is checked that the result is UV finite and
independent of ξ and it coincides with the one,
obtained earlier in [15]. However, the result for the
amplitude FDimRegðτÞ, obtained using dimensional
regularization, differs by a real additive constant
from our result for F unðτÞ:
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2πFDimRegðτ; aÞ ¼ 2πF unðτ; aÞ þ 2ð1 − 2aÞ; ð44Þ

which leads to a nonvanishing asymptotic behavior
at τ → ∞.

B. The charged ghost contribution
and the constant CðaÞ

We determine the constant CðaÞ through the charged
ghost contribution adopting the GBET, which implies that
at MW → 0, i.e. at τ → ∞, the SUð2Þ ×Uð1Þ symmetry
of the SM is restored and the longitudinal components
of the physical W�-bosons are replaced by the physical
Goldstone bosons ϕ�. In the following Mϕ

μν denotes the
amplitude of H → Z þ γ in which the W� are replaced by
their Goldstone bosons ϕ�. The GBET implies [10]:

lim
τ→∞

Mμνðτ; aÞ ¼ lim
τ→∞

Mϕ
μνðτ; aÞ: ð45Þ

We calculate the charged ghost contribution in two
different ways: through direct calculations and via the
dispersion integral. Both calculations lead to the same
result.

(i) There are 3 vertex graphs and 2 self-energy graphs,
shown in Figs. 3 and 4, that possibly can contribute.
We denote the contribution from the vertex diagrams
by Mϕ

1þ2þ3;μν. Following the Feynmann rules for
the ϕ�-vertices, given in Appendix A, with direct
calculations using DimReg we learn that the self-
energy graphs do not contribute, the result is finite
and gauge invariant, as expected:

lim
τ→∞

Mϕ
μν ¼ lim

τ→∞
Mϕ

1þ2þ3;μν

¼ lim
τ→∞

eg2 cos θW
8πM

1

2π

4aτ − 2τ

τ − a
Pμν

¼ −
eg2 cos θW

8πM
1

2π
2ð1 − 2aÞPμν: ð46Þ

Following the GBET, Eq. (45), Eqs. (34), (41) and
(46) determine the constant CðaÞ:

CðaÞ ¼ 2ð1 − 2aÞ: ð47Þ

The details of the calculations are given in
Appendix D.

Thus, our result for the invariant amplitude F ,
Eqs. (34), (35) and ([47]), completely coincides with
the result for the same amplitude FDimReg obtained
in Rξ-gauge with DimReg, Eq. (44).

(ii) However, as the goal of our approach with the
dispersion integrals is to obtain the amplitude using
only finite quantities, we shall obtain the Goldstone-
boson contribution by using the dispersion method.

Analogously to Eq. (32), we single out the coupling
constants (see the Feynman rules in Appendix A) and
define the invariant part Fϕ of the decay amplitudeMϕ

μν in
the Higgs-Goldstone boson scalar theory:

Mϕ
μνðτ; aÞ ¼ −

eg2 cos θW
8πM

M2
H

4M2
Fϕðτ; aÞPμν: ð48Þ

We shall apply the dispersive approach (without sub-
traction) to the function Fϕðτ; aÞ. In order to obtain the
form factor τFϕðτ; aÞ that enters the amplitude Mϕ

μν,

FIG. 3. The vertex Feynman diagrams for the charged Higgs ghost contribution to the decay H → Z þ γ. The Cutkosky cuts are
analagous to those shown in Fig. 1.

FIG. 4. The self-energy Feynman diagrams for the charged Higgs ghost contribution with an intermediate Z-boson (in the unitary
gauge) for the decay H → Z þ γ. Their contribution to the absorptive part of the amplitude is zero, being kinematically forbidden.
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Eq. (48), we must multiply the result for Fϕðτ; aÞ by τ.
(The same strategy was elaborated for the H → γ þ γ
process in [3].)
In general, a constant term can, of course, be always

added and in order to fix the subtraction constant some
additional physical boundary conditions are required. In
contrast to the SM, where the GBET is a boundary
condition that fixes the subtraction constant, in the
Higgs-Goldstone scalar theory there are no asymptotic
theorems one could refer to.
However, the GBET allows to define a boundary con-

dition for Fϕðτ; aÞ, as well. According to the GBET, the
constant CðaÞ is obtained as the large-τ limit, Eq. (45),
which in terms of the form factors reads:

lim
τ→∞

2πF ðτ; aÞ ¼ lim
τ→∞

2π½τFϕðτ; aÞ� ¼ CðaÞ: ð49Þ

Since CðaÞ is a finite quantity, the structure of Eq. (48) and
more precisely the presence of the factor M2

H in the
coupling, implies that the large-τ behavior of the function
Fϕðτ; aÞ is of the form Fϕðτ; aÞ ∼Oðτ−xÞ, with x ≥ 1.
Therefore, the value of the integral ð1=πÞ RARC dyFϕðy; aÞ=
ðy − τÞ over the infinite arc in the complex τ-plane, is zero.
This, and the fact that the dispersion integral [see Eq. (51)
bellow] is convergent, implies that the dispersion relation
applied for Fϕðτ; aÞ does not need a subtraction.
The absorptive part Aϕðτ; aÞ of the function Fϕðτ; aÞ is

obtained via the Cutkosky rules from the cut diagrams in
Fig. 3. Evidently the self-energy graphs, see Fig. 4, have no
absorptive parts. We obtain (see Appendix D):

ℑmMϕ
μνðτ; aÞ ¼ −

eg2 cos θW
8πM

M2
H

4M2
Aϕðτ; aÞPμν; ð50Þ

with

Aϕðτ; aÞ ¼ ð1 − 2aÞ
2αβ − ln 1þβ

1−β

2ðτ − aÞ2 :

The expression for the function Fϕðτ; aÞ, valid in the
whole τ-interval, is obtained via the dispersion integral:

Fϕðτ; aÞ ¼ 1

π

Z
Aϕðy; aÞ
y − τ

dy

¼ 1 − 2a
2π

ð4aI2ðτ; aÞ − 2J2ðτ; aÞÞ; ð51Þ

where I2ðτ; aÞ and J2ðτ; aÞ are convergent and given in
Appendix C.
In the limit τ → ∞ (M → 0) we have I2ðτ; aÞ →

1=ð2aðτ − aÞÞ and J2ðτ; aÞ → ∞, and we obtain:

lim
τ→∞

Fϕðτ; aÞ ¼ 2ð1 − 2aÞ
2πðτ − aÞ : ð52Þ

Thus, our final result in the limit M → 0 (τ → ∞) is

lim
τ→∞

Mϕ
μν ¼ lim

τ→∞

eg2 cos θW
8πM

4aτ − 2τ

2πðτ − aÞPμν

¼ −
eg2 cos θW

8πM
2ð1 − 2aÞ

2π
Pμν; ð53Þ

which completely coincides with Eq. (46).

V. THE DECAY WIDTH OF H → Z+ γ

A good approximation for the total width of the Higgs
decay into Z þ γ is given by the contributions of the
W-boson and the top-quark loops (cf. [15]):

ΓðH → Z þ γÞ ¼ M3
H

32π

�
1 −

M2
Z

M2
H

�
3
�

eg2

ð4πÞ2M
�
2

×

���� − cos θW ½2πFWðτÞ�

þ 2ð3 − 8sin2θWÞ
3 cos θW

½2πF tðτtÞ�
����
2

; ð54Þ

where F tðτtÞ stands for the sum of the t-quark one-loop
diagrams:

2πF tðτtÞ ¼
1

2ðτt − atÞ
× ½1 − ð1 − τt þ atÞFðτt; atÞ þ 2atGðτt; atÞ�;

ð55Þ

τt ¼
M2

H

4m2
t
; at ¼

M2
Z

4m2
t
; ð56Þ

and FWðτÞ stands for the sum of the W-boson one-loop
diagrams.
Further, we identify FWðτÞ with the amplitude obtained

with the dispersion integral, Eq. (34), in which the
unsubtracted part is given in (35) and CðaÞ in (47):
FWðτÞ ¼ F ðτ; aÞ. This implies that at the measured value
for the Higgs mass MH ¼ 125.09 GeV, using mt ¼
172.44 GeV for the mass of the top-quark, we obtain
the following value for the expected decay width:

ΓðH → Z þ γÞ ¼ 8.1 KeV: ð57Þ

If, however, FWðτÞ was identified to the unsubtracted
amplitude FWðτÞ ¼ F unðτ; aÞ, Eq. (35), the value for the
decay width of H → Z þ γ would be about 20% smaller
which, as we showed, is not the correct result.

VI. CONCLUDING REMARKS

We have calculated the W-boson induced corrections to
the decay H → Z þ γ in the Standard Model in the unitary
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gauge using the dispersion-relation approach. This
approach is very attractive as it deals only with finite
quantities and thus does not involve any uncertainties
related to regularization. However, the problem with the
dispersion method is that it determines the amplitude
merely up to an additive subtraction constant.
In accordance with this arbitrariness, we calculate the

amplitude in two approaches: (1) without subtraction and
(2) with subtraction. We use the zero-mass limit atMW → 0
as determined by the GBET, to determine the subtraction
constant. In this latter case we perform the calculations in
two ways: (i) through direct calculations of the amplitude
determined by the GBET, using DimReg, and (ii) via the
dispersion method, starting from the absorptive part of
the amplitude, and thus using only finite quantities. The
two completely different calculations lead us to the same
subtraction constant.
Furthermore, we also calculated the amplitude in the

commonly used Rξ-gauge class using dimensional regu-
larization as regularization scheme and compared the result
to the one obtained via the dispersion method. The Rξ-
gauge result completely coincides with the dispersion
method together with the subtraction term determined by
the GBET.
Thus, we have shown that the dispersion-relation

approach, with a subtraction determined by the GBET,
presents an alternative method for calculating the H →
Z þ γ amplitude (and for H → γ þ γ as also shown in [4])
to the commonly used Rξ-gauge technique. However, the
dispersion method has two important advantages: (1) it
deals only with finite quantities and thus is free of
uncertainties related to the choice of regularization and
(2) it is much simpler—working in the unitary gauge
effectively we deal with only 3 Feynman diagrams, while in
the Rξ-gauge one has to consider more than 20 graphs.
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APPENDIX A: FEYNMAN RULES

The Feynman rules for building Mμν, Eq. (4), are
presented in the subsections A 1, A 2. The Feynman rules
needed for the calculation of the constant CðaÞ, defined by
(34), are presented in the subsections A 2, A 3.
In all vertex Feynman diagrams it is assumed that all

momenta flow into the vertex.

1. Feynman rules involving W-boson in the
unitary gauge

ðA1Þ

ðA2Þ

ðA3Þ

ðA4Þ
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ðA5Þ

2. Feynman vertex rule for the triple
Higgs—Z-boson interaction

ðA6Þ

3. Feynman rules involving the charged Higgs
ghost in the Rξ gauge

ðA7Þ

ðA8Þ

ðA9Þ

ðA10Þ

ðA11Þ

APPENDIX B: INTEGRALS FOR THE
ABSORPTIVE PART AðτÞ

Here we give the integrals involved in computation of the
absorptive part AðτÞ of the amplitude.
The calculations are done in the rest frame of the Higgs

boson, with z-axis taken along k1, the kinematics as given
in Sec. III. We have used also the following relations:

k2 ¼ −jkj2 ¼ −M2ðτ − 1Þ; ðk · pÞ ¼ 0;

ðk · vÞ ¼ −2M2ðτ − aÞβ cos θ: ðB1Þ

The evaluation of AðτÞ is reduced to the following
integrals:

1. ℑm
Z

d4k
ð2πÞ4

i
D1D3

¼ −
β

8π
; ðB2Þ

2. ℑm
Z

d4k
ð2πÞ4

i
D1D2D3

¼ β

32πM2ðτ − aÞ I; ðB3Þ

I ¼
Z þ1

−1

dx
1 − βx

¼ 1

β
ln

�
1þ β

1 − β

�
; ðB4Þ

3. ℑm
Z

d4k
ð2πÞ4

ikμ
D1D2D3

¼ −
β2τ

64πM2ðτ − aÞ2
�
a
τ
pμ − vμ

�
J; ðB5Þ
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J ¼
Z þ1

−1

xdx
1 − βx

¼ 1

β
ðI − 2Þ; ðB6Þ

4. ℑm
Z

d4k
ð2πÞ4

ikμkν
D1D2D3

¼ L1

�
gμν −

pμpν

p2

�
þ L2

�
a
τ
pμ − vμ

��
a
τ
pν − vν

�
;

ðB7Þ

where

L1 ¼ −
β3τ

64πðτ − aÞ ðI − KÞ; ðB8Þ

L2 ¼ −
β3τ2

256πM2ðτ − aÞ3 ðI − 3KÞ; ðB9Þ

K ¼
Z þ1

−1

x2dx
1 − βx

¼ 1

β2
ðI − 2Þ: ðB10Þ

We recall the notation:

D1 ¼
�
kþ p

2

�
2

−M2; D2 ¼
�
k −

v
2

�
2

−M2;

D3 ¼
�
k −

p
2

�
2

−M2: ðB11Þ

APPENDIX C: INTEGRALS FOR THE REAL
PART OF F ðτÞ

The invariant amplitude F ðτÞ, Eq. (35), is a linear
combination of the dispersion integrals Ii and Ji:

2πF ðτÞ ¼ 4aI1ðτ; aÞ þ 6aI2ðτ; aÞ − 8a2I3ðτ; aÞ
þ 2ð3 − 2aÞJ1ðτ; aÞ þ 4a2J2ðτ; aÞ
− 3J3ðτ; aÞ − 3aJ4ðτ; aÞ; ðC1Þ

which we list below. We distinguish two types of integrals:
(1) Integrals with β:

β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y−1

q
: ðC2Þ

They are expressed in terms of the integral I0ðxÞ, or
equivalently of the elementary function gðxÞ:

I0ðτÞ ¼
1

2

Z
∞

1

β

ðy − τÞy dy ¼ 1

τ
½1 − gðτÞ�; ðC3Þ

where

gðτÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ−1 − 1

p
arcsin

ffiffiffi
τ

p
: ðC4Þ

For the other integrals we have:

I1ðτ; aÞ ¼
1

2

Z
∞

1

β

ðy − τÞðy − aÞ dy

¼ gðaÞ − gðτÞ
τ − a

; ðC5Þ

I2ðτ; aÞ ¼
1

2

Z
∞

1

β

ðy − τÞðy − aÞ2 dy ¼ ∂
∂a I1ðτ; aÞ

¼ 1

τ − a

�
I1ðτ; aÞ −

1

2ð1 − aÞ ½1 − I0ðaÞ�
�
;

ðC6Þ

I3ðτ; aÞ ¼
1

2

Z
∞

1

βy
ðy − τÞðy − aÞ2 dy

¼ I1ðτ; aÞ þ aI2ðτ; aÞ; ðC7Þ
(2) Integrals with the logarithm lβ:

lβ ≡ ln
1þ β

1 − β
: ðC8Þ

They are expressed in terms of the integral J0ðxÞ, or
equivalently of the elementary function fðxÞ:

J0ðτÞ ¼
1

2

Z
∞

1

lβ
ðy − τÞy dy ¼ fðτÞ

τ
; ðC9Þ

where

fðxÞ≡ arcsin2
ffiffiffi
x

p
: ðC10Þ

We have:

J1ðτ; aÞ ¼
1

2

Z
∞

1

lβ
ðy − τÞðy − aÞ dy

¼ fðτÞ − fðaÞ
τ − a

; ðC11Þ

J2ðτ; aÞ ¼
1

2

Z
∞

1

lβ
ðy − τÞðy − aÞ2 dy ¼ ∂

∂a J1ðτ; aÞ

¼ 1

τ − a

�
J1ðτ; aÞ −

gðaÞ
1 − a

�
; ðC12Þ

J3ðτ; aÞ ¼
1

2

Z
∞

1

lβ
ðy − τÞðy − aÞy dy

¼ 1

τ − a
½J0ðτÞ − J0ðaÞ�; ðC13Þ

J4ðτ; aÞ ¼
1

2

Z
∞

1

lβ
ðy − τÞðy − aÞ2y dy ¼ ∂

∂a J3ðτ; aÞ

¼ 1

a
½J2ðτ; aÞ − J3ðτ; aÞ� ðC14Þ
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Below we give the expansions used to determine the
limits at a → 0 and τ → a. At jaj < 1 we have:

fðaÞ ¼ aþ 1

3
a2 þ 8

45
a3 þOða4Þ; ðC15Þ

gðaÞ ¼ 1 −
1

3
a −

2

15
a2 −

8

105
a3 þOða7=2Þ: ðC16Þ

When jτ − aj < 1 for the functions Fða; τÞ and Gða; τÞ,
that enter the amplitude (35), we have:

Fða; τÞ

¼ fðτÞ − fðaÞ
τ − a

¼ 1

1 − a
gðaÞ þ 1

4að1 − aÞ
�
1 −

ð1 − 2aÞ
1 − a

gðaÞ
�
ðτ − aÞ

þ 1

8a2ð1 − aÞ2
�
2a − 1þ ð8a2 − 8aþ 3Þ

3ð1 − aÞ gðaÞ
�
ðτ − aÞ2

þOððτ − aÞ3Þ: ðC17Þ
Gða; τÞ

¼ gðτÞ − gðaÞ
τ − a

¼ 1

2a

�
1 −

1

1 − a
gðaÞ

�

−
1

8a2ð1 − aÞ2 ½2a
2 − 5aþ 3þ ð4a − 3ÞgðaÞ�ðτ − aÞ

þ 1

48ð1 − aÞ3a3 ½−8a
3 þ 34a2 − 41aþ 15

− 3ð8a2 − 12aþ 5ÞgðaÞ�ðτ − aÞ2
þOððτ − aÞ3Þ: ðC18Þ

APPENDIX D: THE CHARGED HIGGS GHOST
CONTRIBUTION TO H → Z+ γ

In Appendix A 3 all involved Feynman rules are given in
the Rξ gauge. Here we calculate the charged Higgs ghosts
ϕ� contribution, according to the GBET. We use the
unitary gauge—the diagrams in Figs. 1 and 2, in which
the virtual W-bosons are replaced by the physical scalars
ϕ�—Figs. 3 and 4. Their propagators are that of a scalar,
with mass of the W-boson, i

p2−M2þiϵ. All couplings in

Appendix A 3 are ξ-independent and therefore we can
take them directly.

(i) First we calculate the constant part of this contribu-
tion evaluating the intergrals by using Feynman
parametrization. The occurring UV divergent inte-
grals are regularized with dimensional regularization.
Based on Fig. 3 we get the matrix elements

Mϕ
1μν¼ ieg2xW

M2
H

2M
1

ð2πÞ4
Z

d4k
ðP1þP2ÞμðP2þP3Þν

D1D2D3

ðD1Þ

Mϕ
3μν ¼ ieg2xW

M2
H

2M
1

ð2πÞ4

×
Z

d4k
ðP̃2 þ P3ÞμðP1 þ P̃2Þν

D1D̃2D3

ðD2Þ

Mϕ
2μν ¼ −ieg2xW

M2
H

2M
1

ð2πÞ4
Z

d4k
2gμν
D1D3

: ðD3Þ

Here we use Di ¼ P2
i −M2, P1 ¼ k, P2 ¼ k − k1,

P3 ¼ k − k1 − k2, P̃2 ¼ k − k2. Furthermore, similar
to Eq. (4) we can write the sum of the three vertex
amplitudes as 2Mϕ

1μν þMϕ
2μν, which is

Mϕ
1þ2þ3μν ¼ ieg2xW

M2
H

M
1

ð2πÞ4
Z

d4k
T

D1D2D3

;

ðD4Þ

with

T ¼ ðP1 þ P2ÞμðP2 þ P3Þν − gμνD2

¼ 4kμkν − 4kμk1ν þ ð2k:k1 þM2 −M2
Z − k2Þgμν:

ðD5Þ

Using the formula for Feynman parametrization,

1

D1D2D3

¼ 2

Z
1

0

dx1

Z
1−x1

0

dx2

×
1

ðx1D1 þ x2D2 þ ð1 − x1 − x2ÞD3Þ3
;

ðD6Þ

and by the substitution kμ → lμ þ ð1 − x1Þk1μ þ
ð1 − x1 − x2Þk2μ we get

1

D1D2D3

¼
Z

1

0

dx1

Z
1−x1

0

dx2
2

ðl2 − ΔÞ3 ;

Δ ¼ M2 þ 2k1:k2x1ðx1 þ x2 − 1Þ
þM2

Zx1ðx1 − 1Þ: ðD7Þ

The two necessary integrals over l are

Z
d4l

1

ðl2 − ΔiÞ3
¼ −iπ2

1

2Δi
; ðD8Þ

Z
d4l

l2

ðl2 − ΔiÞ3
¼ iπ2

�
ΔUV −

1

2

�

with ΔUV ¼ 1

ϵ
þ const: ðD9Þ

All odd powers of l vanish due to the symmetric
integration and thus will be dropped. Applying

DISPERSION THEORETIC CALCULATION OF THE … PHYS. REV. D 97, 073008 (2018)

073008-11



lμlν ¼ l2
d with the dimension parameter d ¼ 4 − 2ϵ

we get

T → 4k1νk2μx1ðx1 þ x2 − 1Þ

þ
�
M2 − 2k1:k2x1ðx1 þ x2 − 1Þ

−M2
Zx

2
1 þ ϵ

l2

2

�
gμν: ðD10Þ

Integrating over l and neglecting terms of the order
M2=M2

H and M2
Z=M

2
H we obtain:

−
i
π2

Z
d4k

T
D1D2D3

¼ 1

2
gμν −

Z
1

0

dx1

Z
1−x1

0

dx2

×
−4k1νk2μx1x2 þ ðM2 þ 2k1:k2x1x2 −M2

Zx
2
1Þgμν

M2 − 2k1:k2x1x2 þM2
Zx1ðx1 − 1Þ

¼ −
1

k1:k2
Pμν þ…: ðD11Þ

with Pμν given by Eq. (1). By inserting this result into
Eq. (D4) we receive for the leading term of the vertex
graphs with the charged ghost:

Mϕ
1þ2þ3μν ¼ eg2xW

M2
H

M
π2

ð2πÞ4
Pμν

k1:k2

¼ eg2 cosθW
8πM

1

2π

�
M2

Z

M2
− 2

�
M2

H

M2
H −M2

Z
Pμν

¼ eg2 cosθW
8πM

1

2π

4aτ− 2τ

τ− a
Pμν: ðD12Þ

We have used 2k1:k2¼M2
H−M2

Z, and xW= cos θW ¼
1
2
ðM2

Z
M2 − 2Þ ¼ ð2a − 1Þ after inserting τ ¼ M2

H
4M2 and

a ¼ M2
Z

4M2. Explicit calculations show that the sum of
the two self-energy graphs, given by Fig. 4 vanishes
in the unitary gauge using dimensional regularization.

(ii) Now we derive the imaginary part of the amplitude
Mϕ

μν by applying the Cutkosky cuts to Fig. 3. We
have

ℑmMϕ
μν ¼ −

i
2
ð2MϕC

1μν þMϕC
2μνÞ: ðD13Þ

where “C” denotes the cut diagrams. Then ℑmMϕ
μν

can be written as

ℑmMϕ
μν ¼ eg2xW

M2
H

2M
× ℑm

Z
d4k
ð2πÞ4

× i

�ðP1 þ P2ÞμðP2 þ P3Þν
D1D2D3

−
gμν

D1D3

�
;

ðD14Þ

with the momenta and denominators defined in
Sec. II, with the substitution for D1 and D3 follow-
ing Eq. (14), and

ðP1 þ P2ÞμðP2 þ P3Þν ¼ 4kμkν − 2kμk1ν þ 2kνk2μ

− k1νk2μ: ðD15Þ

By using Appendix B we get the result

ℑmMϕ
μν ¼ eg2xW

M2
H

2M

2aβ þ τðβ2 − 1Þ ln 1þβ
1−β

32πM2ðτ − aÞ2 Pμν:

ðD16Þ

With xW ¼ cos θWð2a − 1Þ and β2 − 1 ¼ −1=τ we
get the result

ℑmMϕ
μν ¼ eg2 cosθW

16πM
M2

H

4M2
ð2a− 1Þ

2aβ− ln 1þβ
1−β

ðτ− aÞ2 Pμν:

ðD17Þ
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