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We use light-front holography to estimate the valence quark and the meson cloud contributions to the
nucleon axial form factor. The free couplings of the holographic model are determined by the empirical
data and by the information extracted from lattice QCD. The holographic model provides a good
description of the empirical data when we consider a meson cloud mixture of about 30% in the physical
nucleon state. The estimate of the valence quark contribution to the nucleon axial form factor compares
well with the lattice QCD data for small pion masses. Our estimate of the meson cloud contribution to the
nucleon axial form factor has a slower falloff with the square momentum transfer compared to typical
estimates from quark models with meson cloud dressing.
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I. INTRODUCTION

In recent years, it was found that the combination of the
5D gravitational anti-de Sitter (AdS) space and conformal
field theories (CFT) can be used to study QCD in the
confining regime [1–4]. Using this formalism one can relate
the results from AdS=CFT with the results from light-front
dynamics based on a Hamiltonian that include the confin-
ing mechanism of QCD (AdS/QCD) [4]. In the limit of
massless quarks, one can relate the AdS holographic
variable z with the impact separation ζ, which measures
the distance of constituent partons inside the hadrons [4–6].
This correspondence (duality) between the two formalisms
is known as light-front holography or holographic QCD.
Over the last few years light-front holography has

been used to study several proprieties of the hadrons.
The soft-wall formulation of the light-front holography
introduces a holographic mass scale κ, which is funda-
mental for the description of the hadron spectrum (mesons
and baryons) and hadron wave functions [4,7–11]. This
scale can be estimated from the holographic expression
for the ρ mass mρ ≃ 2κ [4,8]. Examples of applications of
light-front holography are in the calculation of parton
distribution functions, hadron structure form factors among
others [4,5,12–22].

In the light-front formalism one can represent the wave
functions of the hadrons using an expansion of Fock states
with a well defined number of partons [4]. In the case of
baryons, the first term corresponds to the three-quark state
(qqq). The following terms are excitations associated with
a gluon, ðqqqÞg, with a quark-antiquark pair, ðqqqÞqq̄, and
higher order terms. Those states can be labeled in terms of
the number of partons τ ¼ 3; 4; 5;…, respectively. The
calculation of structure form factors between baryon states
can then be performed using the light-front wave functions
and the interaction vertices associated with the respective
transition [13,16,19]. The form factors can also be expanded
in contributions from the valence quarks and in contributions
from the meson cloud [4,16,17]. Examples of calculations of
the nucleon and the nucleon to Roper electromagnetic form
factors can be found in Refs. [4,12–20].
In principle the leading twist approximation, associated

with the three-quark state, is sufficient to explain the
dominant contribution of the form factors related to the
electromagnetic transitions between baryon states, particu-
larly at large momentum transfer. In the case of the nucleon
and the Roper, the electromagnetic form factors can be
described in a good approximation by the valence quark
effects (leading twist approximation) [4,12,15,19]. There is,
however a rising interest in checking if the holography can
be used to estimate higher order corrections to the transition
form factors, particularly, in the corrections associated with
the meson cloud excitations, related in the light-front
formalism to the state ðqqqÞqq̄, of order τ ¼ 5 [16–18].
The question of whether the light-front meson cloud

contribution is important or not is pertinent, because in
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principle the corrections associated with the meson cloud
should be expressed in terms of parameters related to the
microscopic structure, such as meson-baryon couplings and
the photon-meson couplings [23–25]. As discussed later, in
the case of a holographic model, the estimates of the
transition form factors depend only on the couplings
associated with quarks without explicit reference to the
substructure associated with the meson cloud.
In this work we study the axial structure of the nucleon

using a holographic model based on a soft-wall confining
potential. The weak structure of the nucleon is character-
ized by the axial form factor, GA, and the induced
pseudoscalar form factor, GP. The study of the nucleon
axial structure is important because it provides comple-
mentary information on the well known electromagnetic
structure and also because involves both strong and weak
interactions [26]. The nucleon axial form factors can be
measured in quasielastic neutrino/antineutrino scattering
with proton targets, by charged pion electroproduction on
nucleons and also in the process of muon capture by
protons [27–29]. The value of the axial form factor at
Q2 ¼ 0 is determined with great accuracy by neutron β
decay [27,30].
The nucleon axial form factor has been calculated using

different frameworks [26,31–51]. Recently, also lattice
QCD simulations of the nucleon axial form factors
became available for several pion masses (mπ), in the
range mπ ¼ 0.2–0.6 GeV [52–69].
In the present work our goal is to study the role of the

valence quarks (leading twist approximation) and the role
of the meson cloud (τ ¼ 5) in the nucleon axial form factor
GA. We consider in particular the holographic model from
Ref. [16], neglecting the gluon effects. We assume that the
gluon effects are included effectively in the quark structure
through the gluon dressing. In that case the next leading
order correction is associated with the quark-antiquark
excitations of the three valence quark core. In this context
the bare and the meson cloud contribution to the nucleon
axial form factor are both expressed in terms of two
independent parameters: g0A and ηA, associated with the
quark axial and quark induced pseudoscalar couplings [16].
To calculate the contributions associated with the

nucleon bare core and the meson cloud we use the available
experimental data and the results from lattice QCD, which
help to constrain the contributions from the pure valence
quark degrees of freedom, and therefore fix also the
contributions of the meson cloud component. In the lattice
QCD simulations with large pion masses the meson cloud
effects are very small, and the physics associated with the
valence quarks can be better calibrated.
The results from lattice QCD cannot be directly related to

the valence quark contributions to the axial form factor,
because the lattice calculations are not performed at the
physical limit (physical quark masses). The results from
lattice can, however, be extrapolated to the physical case

with the assistance of quark models that include a dynamic
dependence on the quark mass.
Once fixed the parameters of the holographic model by

the empirical and lattice QCD data, the holographic model
can be used to estimate the fraction of the meson cloud
contribution to the nucleon axial form factor. This estimate
can be compared to other estimates from quark models with
meson cloud dressing.
We conclude at the end that the holographic model

considered in the present work describes accurately the
experimental data for the nucleon axial form factor, and that
the lattice QCD data with small pion masses can be well
approximated by the estimate of the valence quark con-
tributions, in all ranges of Q2. We also conclude that the
meson cloud contribution falls off very slowly with the
square momentum transfer Q2, much slower than estimates
based on quark models.
This article is organized as follows. In Sec. II, we discuss

the formalism associated with the study of the axial
structure of the nucleon, including the axial current, para-
metrizations of the data, results from lattice QCD, as well
as theoretical models based on a valence quark core with
meson cloud dressing. In Sec. III, we present the holo-
graphic model for nucleon axial form factor considered in
the present work. The numerical results of the nucleon axial
form factor and for the estimate of the meson cloud
contributions based on the holographic model appear in
Sec. IV. The outlook and the conclusions are presented
in Sec. V.

II. BACKGROUND

We now discuss the background associated with the
study of the nucleon axial form factor. We start with the
representation of the axial current and the definition of
the axial form factors. Next, we summarize the exper-
imental status of the nucleon axial form factor GA. Later,
we explain how the experimental data can be described
within a quark model for the bare core, combined with a
meson cloud dressing of the core. Finally, we discuss the
results from lattice QCD and how those results can be
related with the function GA in the physical limit.

A. Axial current

The weak-axial transition between two nucleon states
with initial momentum p, final momentum p0, and tran-
sition momentum q ¼ p0 − p, is characterized by the
weak-axial current [27,28]

ðJμ5Þa¼ ūðp0Þ
�
GAðQ2ÞγμþGPðQ2Þ q

μ

2M

�
γ5uðpÞ

τa
2
; ð2:1Þ

where M is the nucleon mass, Q2 ¼ −q2, τa (a ¼ 1, 2, 3)
are Pauli isospin operators and uðpÞ, uðp0Þ are the
Dirac spinors associated with the initial and final states,
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respectively. The functions GA and GP define, respectively,
the axial-vector and the induced pseudoscalar form factors.
In the present work we restrict the analysis to the axial-
vector form factor, refereed to hereafter, simply as the axial
form factor. The leading order contribution for GP can be
estimated considering the meson pole contribution,
GP ¼ 4M2

m2
πþQ2 GA, derived from the partial conservation of

the axial current [26–29,35,57].
Using the spherical representation (a ¼ 0;�) we can

interpret ðJμ5Þ0 as the current associated with the neutral
transitions, p → p and n → n (Z0 production), and the
current associated with a ¼ � with the W� production
(n → p and p → n transitions).

B. Experimental status

The function GA can be measured by neutrino
scattering and pion electroproduction off nucleons.
Both experiments suggest a dipole dependence GAðQ2Þ ¼
GAð0Þ=ð1þQ2=M2

AÞ2,where thevalues ofMA varybetween
1.03 and 1.07 GeV depending on the method [27,28].
To represent the experimental data in a general form we

consider the interval between the two functions, Gexp−
A and

Gexpþ
A , given by [26]

Gexp�
A ðQ2Þ ¼ G0

Að1� δÞ
ð1þ Q2

M2
A�
Þ2
; ð2:2Þ

where G0
A ¼ 1.2723 is the experimental value of GAð0Þ

[30], δ ¼ 0.03 is a parameter that expresses the precision
of the data, andMA− ¼ 1.0 GeV andMAþ ¼ 1.1 GeV are,
respectively, the lower and upper limits from MA extracted
experimentally. The central value of the parametrization
(2.2) can be approximated by a dipole withMA≃1.05GeV.
Most of the data analysis are restricted to the region

Q2 < 1 GeV2 [27]. The range of the variation associated
with the parametrization of GA represented by Eq. (2.2) is
shown in Fig. 1 by the red band. The short-dashed-line
represents the central value of the parametrization.
Recently the nucleon axial form factor was determined in

the range Q2 ¼ 2–4 GeV2 at CLAS/Jlab [70]. The new
data are consistent with the parametrization (2.2).
We discuss next, how the axial form factor can be

estimated in the context of a quark model with meson cloud
dressing of the valence quark core.

C. Theory

In a quark model with meson cloud dressing we can
represent the physical nucleon state in the form [26]

jNi ¼
ffiffiffiffiffiffi
ZN

p
½j3qi þ bN jMCi�; ð2:3Þ

where j3qi is the three-quark state and bN jMCi is the
meson cloud state. The coefficient bN is determined by the

normalization ZNð1þ b2NÞ ¼ 1, assuming that jMCi is
normalized.
In this representation ZN ¼ ffiffiffiffiffiffi

ZN
p ffiffiffiffiffiffi

ZN
p

measures the
probability of finding the qqq state in the physical nucleon
state. Consequently, 1 − ZN measures the probability of the
meson cloud component in the physical nucleon state.
In Eq. (2.3), we include only the first correction for

the meson cloud, associated with the baryon-meson states.
In principle, we should also include corrections associated
with baryon-meson-meson states. In the case of the
nucleon, however, where the meson cloud is dominated
by the pion cloud, the correction of the state jNπi provides
a good approximation to the physical nucleon state. In the
case of 1−ZN ≃0.3 the correction associated with the two-
pion correction is attenuated by the factor ð1−ZNÞ2≃0.09.
In the calculation of the axial form factors, in order to

take into account the contribution of the meson cloud in the
form factors at the physical limit, one needs to correct
the function GB

A by the factor ZN, which quantifies the
contribution of the bare core to GA [26]. The effective
contribution from GB

A to the physical GA becomes then
ZNGB

A. More generically, we can write

GA ¼ ZNGB
A þ ð1 − ZNÞGMC

A ; ð2:4Þ

where the second term accounts for the contribution from
the meson cloud. The function GMC

A is the unnormalized
meson cloud contribution, estimated when we drop the
valence quark contribution.
Hereafter, we use the expression bare contribution to

refer the first term of Eq. (2.4) and meson cloud contri-
bution to refer the second term of Eq. (2.4).
An alternative representation of the meson cloud term is

ð1 − ZNÞGMC
A ¼ ZNG̃

MC
A [26]. To convert to GMC

A , one uses
GMC

A ¼ G̃MC
A =ð1=ZN − 1Þ. The function G̃MC

A can be
extracted from the data, as discussed in Ref. [26].
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FIG. 1. Experimental parametrization of the data Gexp
A accord-

ing to Eq. (2.2), at red, combined with the estimate of the
contribution ZNGB

A extracted from the lattice QCD data, at blue.
The short-dashed-line indicates the central value of Eq. (2.2).
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D. Information from lattice QCD

Another source of information about the axial structure
of the nucleon are the lattice QCD simulations. In lattice
QCD, one can simulate the dynamic of QCD in a discrete
space-time. Since simulations with very small grids and
large volumes are very costly, most of the simulations are
performed for large values of the pion mass, and the
obtained results correspond to quark masses larger than
the physical quark masses. For those reasons, some care is
necessary in the interpretation of the lattice QCD results,
and in the extrapolations, to the continuous limit, to the
infinite volume limit, and to the physical limit (physical
masses) [65,66].
Nevertheless, lattice QCD can be used to make a

connection with results from quark models. In those
conditions, lattice QCD can help us to understand the role
of the valence quarks in the structure form factors. Since in
lattice QCD simulations with large pion masses the effect
of the meson cloud dressing is significantly reduced, those
simulations can be used to estimate the contribution of the
form factors that are the direct consequence of the valence
quark effects. Contrary to the lattice QCD calculations of
the electromagnetic form factors, the nucleon axial form
factor, due to its isovector character, has no contributions
associated with the disconnected diagrams in the continu-
ous limit [26,60,61,64], and can therefore be directly
compared to the experimental data.
The axial form factor and the induced pseudoscalar form

factor have been calculated in lattice QCD simulations for
several values of the pion mass at Q2 ¼ 0 [52–56], and for
finiteQ2 [57–62]. Simulations with large volumes and pion
masses in the range 0.25–0.5 GeV suggest that the values of
GA nearQ2 ¼ 0 are generally restricted toGAð0Þ¼ 1.1–1.2.
Those results indicate that based only on the contributions
of the valence quarks it is not possible to reach the
experimental value GAð0Þ ≃ 1.27. This underestimation
can be inferred as a sign that the meson cloud contribution
to GA is positive.
Estimates of GAð0Þ near the physical point can be found

in Refs. [63–69]. Lattice QCD simulations with smaller
pion masses may include some meson cloud effects and
may also be affected by significant finite volume effects,
which tend to underestimate the value of GAð0Þ compared
to the infinite volume limit [54,58].
The study of the valence quark effects in the nucleon

axial form factor can also be performed considering a
constituent quark model where the parameters associated
with the properties of the quarks are adjusted in order to
describe the results from lattice QCD. In this case the
decisive parameter is the variable that regulates the quark
mass which can be converted into the mass of the pion
associated with the lattice QCD regime.
One can then extrapolate the valence quark contribution

of GA in the physical limit from the lattice QCD results,
using a quark model, if the parameters of the model are

defined in terms of the pion mass. It is worth noticing,
however, that the function GA extrapolated to the case
mπ → mphys

π (mphys
π represent the physical pion mass),

which may be interpreted as GB
A (bare contribution), does

not represent in fact the bare contribution to the physical
form factor. This happens, because in the physical limit,
one needs to take into account the effect of the meson cloud
dressing and its impact in the physical nucleon wave
function, as shown in Eq. (2.4). The effective contribution
to the physical GA is then ZNGB

A, where GB
A is the

contribution from the valence quark component, estimated
from lattice QCD, and extrapolated to the physical case. An
example of a quark model with proprieties mentioned
above is the model from Ref. [26].
In Ref. [26], the covariant spectator quark model is

applied to the study of the axial structure of the nucleon in
the lattice QCD regime, and in the physical regime. In the
covariant spectator quark model, hereinafter referred to
simply as the spectator model, the nucleon is described as a
three valence quark system and the radial wave functions
are expressed in terms of momentum scale parameters
determined in the study of the nucleon electromagnetic
structure [71]. The nucleon valence quark wave function
is represented by a mixture of two states: the dominant
S-wave and a small P-wave, as in other quark models
[26,35]. The quark substructure is parametrized by quark
electromagnetic and axial form factors, which simulate
effectively the internal structure of the constituent quarks,
resulting from the interactions with quark-antiquark pairs
and from the quark-gluon dressing [71,72]. The parameters
of the spectator model associated with the valence quark
structure are first fixed by the lattice QCD data and the
results are later extended to the physical limit.
We can summarize the method used in Ref. [26] by the

following steps:
(i) Calibration of the parameters associated with the

valence quark structure (quark form factors and
fraction of P-state mixture) using lattice QCD data.

(ii) Extend the result ofGAðQ2; mπÞ to the physical limit
(mπ → mphys

π ) defining the function GB
AðQ2Þ.

(iii) Use experimental data to determine the factor ZN
associated with the normalization of the physical
nucleon state, according to

Gexp
A ðQ2Þ ≃ ZNGB

AðQ2Þ; ð2:5Þ

in the region Q2 > 1 GeV2, where the meson cloud
effects are expected to be small. This procedure
establishes the proportion of meson cloud in the
physical nucleon state.

(iv) The contribution from the meson cloud to GA can
then be estimated by the difference: Gexp

A − ZNGB
A

for small Q2 (Q2 < 1 GeV2).
The connection between the spectator model and the

lattice regime is performed using wave functions dependent
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of the mass of the nucleon (physical mass replaced by
lattice mass), and quark form factors parametrized in terms
of the vector dominance mechanism [26]. In the lattice
QCD regime, the vector meson physical masses are
replaced by the masses of vector mesons in lattice.
Except for the masses (baryons and vector mesons) all
the parameters of the wave functions and quark form
factors are determined by fits to the lattice QCD data.
Check Ref. [26] for more details about the parametrization
of the quark axial structure. More details about the
extension of the spectator model to the lattice QCD regime
can be found in Refs. [25,72–76].
The function GB

A extrapolated from lattice QCD using
the spectator model based on the previous procedure is
presented in Fig. 1, by the blue band. The P-state mixture
is 25% [26]. The accuracy of the parametrization for GB

A is
then limited by the precision of the lattice data. Since the
lattice data can be very accurate for small Q2 (∼1%) and
have large errorbars for Q2 ¼ 2–4 GeV2 (∼10%), we
consider an average error of 5%.
For future reference, we mention that the parametrization

of the meson cloud contribution in the spectator model can
be represented by [26]

GMC
A ðQ2Þ ¼ GMC0

A

ð1þ Q2

Λ2Þ4
; ð2:6Þ

where GMC0
A ¼ 1.68 and Λ ¼ 1.05 GeV. Here, Λ is the

average of the two cutoffs used in the parametrization (2.2).
We recall that the effective contribution ofGMC

A toGA is the
result of the product ð1 − ZNÞGMC

A .

III. HOLOGRAPHIC MODEL

Different holographic models have been applied to the
systems ruled by QCD. Those models can be classified into
two main categories: the bottom-up approach and the top-
down approach. The top-down approach is related to
supersymmetric strings and it has the base of the D-brane
physics [77–81]. The bottom-up approach is more phe-
nomenological and derive the QCD proprieties in the con-
fining regime using 5D-fields in AdS space [4–7,16,17].
In the present work we consider a bottom-up approach

where the confinement is included through a potential
UFðzÞ (soft-wall approximation). We consider in particular
the holographic soft-wall model from Ref. [16] for the
nucleon axial form factor.
In holographic QCD the particle fields Ψ and the source

fields (electromagnetic and axial) are represented in terms
of the coordinates ðx; zÞ, where x belongs to the usual 4D
space and z is the holographic variable. To describe the
structure of the baryons we define fermion fields Ψðx; zÞ,
which encode the proprieties of the baryons. Those fermion
fields can be decomposed into different modes Ψn

(n ¼ 0; 1; 2;…) which are the holographic analogous of
the baryon wave functions [13,16,17].
For the description of the nucleon structure we start by

constructing the fermion fieldsΨ�ðx; zÞ associated with the
spin J ¼ 1=2, where� are the left- and right-handed (L=R)
components of the nucleon radial excitations doublets. The
axial structure is introduced by the 5D axial field Âiðx; zÞ,
where i ¼ �. Following Ref. [16], we represent the axial
structure in the form

Âiðx; zÞ ¼ Âð1Þ
i ðx; zÞ þ Âð2Þ

i ðx; zÞ þ Âð3Þ
i ðx; zÞ: ð3:1Þ

The different terms describe the possible structures asso-
ciated with the axial interaction in 5D.
The first term is the minimal axial-vector coupling

Âð1Þ
i ðx; zÞ ¼ g0AΓMγ5AMðx; zÞ

τ3
2
; ð3:2Þ

where ΓM (M ¼ 0; 1; 2; 3; z) is the 5D gamma matrix,
AMðx; zÞ is the holographic analogous of the axial field and
τ3 ¼ diagð1;−1Þ is the Pauli isospin matrix. The function
AMðx; zÞ is constrained by the gauge condition Azðx;yÞ¼0
[16]. The second term represents a nonminimal coupling,
the holographic analogous of the induced pseudoscalar
coupling

Âð2Þ
i ðx; zÞ ¼ ηA½ΓM;ΓN �γ5AMNðx; zÞ

τ3
2
; ð3:3Þ

where AMN ¼ ∂MAN − ∂NAM. The final term is an axial-
type coupling proportional to the nucleon isovector charge

Âð3Þ
i ðx; zÞ ¼∓ ΓMAMðx; zÞ

τ3
2
: ð3:4Þ

The fermion fields, mentioned above can be expressed in
the Weyl representation in the form

Ψ�;nðx; zÞ ¼ z2
�

FL=R;nðzÞ
�FR=L;nðzÞ

�
χnðxÞ; ð3:5Þ

where χnðxÞ is a two-component spinor and the func-
tions FL=R;nðzÞ are solutions of Schrödinger-type wave
equations in the variable z [16,17,19]. For simplicity, we
omitted the isospin indices. The nucleon case corresponds
to the first mode (n ¼ 0). More details can be found in
Refs. [4,13,16,17].
The axial transition current is calculated considering the

overlap of the holographic nucleon fields associated with
the initial and final states with the axial field (3.1). From the
axial transition current we can extract the holographic
expressions for the axial form factor GA according with the
number of constituents.
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A. Axial form factor

In Ref. [16], the contributions associated with the
first Fock states are studied in detail, and the effects of
the 3, 4 and 5 parton components are calculated explicitly.
Those contributions are associated, respectively, with the
qqq state (3-quark, index τ ¼ 3), the ðqqqÞg state (3-quark-
gluon, index τ ¼ 4), and the ðqqqÞq̄q state (3-quark-quark-
antiquark, index τ ¼ 5). Neglecting the contributions
associated with the gluon states, we can write the nucleon
axial form factor GA in the form

GAðQ2Þ ¼ c3GB
AðQ2Þ þ c5GMC

A ðQ2Þ; ð3:6Þ

where GB
A is the bare contribution associated with the

qqq state (τ ¼ 3) and GMC
A is the meson contribution

associated with the ðqqqÞqq̄ state (τ ¼ 5). The coefficients
cτ specify the weight of the τ-component of the Fock state,
and are in the present approximation restricted to
c3 þ c5 ¼ 1. According to Ref. [16], the components GB

A

and GMC
A can be represented in terms of a ¼ Q2

4κ2
, as

GB
AðQ2Þ ¼

�
g0A þ a

6
ðg0A − 1Þ

�
G1

þ ηA
12

að2aþ 17ÞG2; ð3:7Þ

GMC
A ðQ2Þ ¼

�
g0A þ a

10
ðg0A − 1Þ

�
G3

þ ηA
30

að4aþ 49ÞG4; ð3:8Þ

where the functions Gi (i ¼ 1, 2, 3, 4) have the following
form

G1 ¼
1

ð1þ aÞð1þ a
2
Þð1þ a

3
Þ ; ð3:9Þ

G2 ¼
1

ð1þ aÞð1þ a
2
Þð1þ a

3
Þð1þ a

4
Þ ; ð3:10Þ

G3 ¼
1

ð1þ aÞð1þ a
2
Þð1þ a

3
Þð1þ a

4
Þð1þ a

5
Þ ; ð3:11Þ

G4 ¼
1

ð1þ aÞð1þ a
2
Þð1þ a

3
Þð1þ a

4
Þð1þ a

5
Þð1þ a

6
Þ : ð3:12Þ

Recall that in the previous equations κ is the holographic
mass scale. In the following, we consider the value
κ ¼ 0.385 GeV, in order reproduce approximately the ρ
mass (mρ ≃ 770 MeV). The holographic estimate of the

nucleon mass is then 2
ffiffiffi
2

p
κ ≃ 1.09 GeV, a bit above the

experimental value.
From Eqs. (3.7)–(3.8) we can conclude that at large Q2:

GB
A ∝ 1=Q4 andGMC

A ∝ 1=Q8. As a consequence, the meson

cloud contribution falls off faster than the bare contribution.
One can then expect that GMC

A become negligible for values
of Q2 larger than a certain scale. One of the goals of the
present study is to estimate that scale.
Concerning the decomposition of the bare and meson

cloud contributions in terms of the pole structure of the
functions Gi, some discussion is in order. The present
representation in terms of the poles on a is a direct
consequence of the calculation of the axial form factors
based on the axial coupling (3.1) and the wave functions
(3.5). The present pole structure of the functions Gi is
expected for the calculation of the electromagnetic
form factors [13,16,17], and can be interpreted in terms
of the vector meson dominance (VMD) mechanism
[1,4,8,77–85]. It differs, however, from other approaches,
which represent the axial form factors in terms of axial-
vector meson poles [34,79,80]. Later on, we discuss para-
metrizations based on the axial-vector meson masses.

IV. ESTIMATIONS OF THE MESON
CLOUD CONTRIBUTIONS

From the holographic parametrizations of the axial
form factors (3.7)–(3.8), one can conclude that at Q2¼0,
the bare contribution is c3g0A, and the meson cloud con-
tribution is ð1 − c3Þg0A. Adding the two terms, one obtains
GAð0Þ ¼ g0A.
From the previous result, we conclude that in a holo-

graphic model, the description of the function GA near
Q2 ¼ 0 may require contributions from the bare and from
the meson cloud components.
Since both components, GB

A and GMC
A , depend on the

couplings g0A and ηA, we may question if a global fit of the
parameters c3, g0A and ηA to the empirical parametrization of
GA given by Eq. (3.6) is sufficient to fix the two components
of GA, without any additional constraints from the physics
associated with the bare core or with the meson cloud.
To test the previous hypothesis, we start performing a

global fit of the parameters c3, g0A and ηA, to the empirical
parametrization of the data (2.2), obtaining a naive esti-
mation of the bare contribution. Later on, we discuss if the
calibration of the components GB

A and GMC
A may be

improved using constraints associated with the function
GB

A, extracted from lattice QCD.
In the following, we consider several parametrizations

of the data in the region Q2 ¼ 0–2 GeV2. In this region,
we expect that both bare and meson cloud components
have relevant contributions, although, we expect also a
significant reduction of the meson cloud contribution for
Q2 > 1 GeV2 (faster falloff). We recall that most of the
available data are in the region Q2 < 1 GeV2.

A. Naive estimations of the bare contribution

An unconstrained fit of the holographic model (3.6) to
the parametrization of the data (2.2), results in an excellent
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description of the central value from Gexp
A . The parameters

obtained from the fit are: g0A ≃ 1.2723 (experimental value),
ηA ≃ 0.45 and c3 ≃ 1.45. The coefficient associated with
the meson cloud term is then c5 ≃ −0.45, which correspond
to a negative contribution of the meson cloud component.
Since, from the lattice QCD studies, we expect positive
contributions to the meson cloud, we discard this solution
as a physical solution. It is worth noticing, however,
that this first fit provides a parametrization very close to
the model originally derived in Ref. [16], where κ ¼
0.383 GeV, ηA ¼ 0.5 and c5 ¼ −0.41. In that model there
is also a small contribution from the ðqqqÞg component
with a weight c4 ¼ 0.16.
The result of the fit is indistinguishable from the central

value from (2.2) represented in Fig. 1, by the short-dashed-
line. Recall that the red band represents the limits of the
experimental parametrization.
In order to constrain the holographic model to positive

contributions for the meson cloud, we refit the function
(3.6) to the data under the condition c5 > 0, which is
equivalent to c3 < 1. The result of the this fit is a solution
with c3 ≃ 1 combined with g0A ≃ 1.27 (experimental value)
and ηA ≃ 0.68. Since c5 ¼ 1 − c3 ≃ 0, this solution corre-
sponds to the caseGAðQ2Þ≡GB

AðQ2Þ. Also, this solution is
at the top of the empirical parametrization (2.2), and it
cannot be distinguished from the previous parametrization
(see Fig. 1).
One then concludes, that without additional constraints

relative to the magnitude of the bare contribution (or meson
cloud), a holographic model with no meson cloud con-
tribution describes well the empirical data for GA.
Another important conclusion is that the experimental

parametrization (2.2) (central value) can be reproduced by a
combination of the functions Gi associated with the poles
4ðnþ 1Þκ2 (n ¼ 0; 1;…; 5). Thus, below 2 GeV2, the
holographic model is numerically equivalent to a dipole
parametrization, whether we include the meson cloud or
not, as discussed above.

B. Using lattice QCD information

A more qualified description of the axial form factor
can be obtained if we use the information relative to the
function GB

A, extracted from the study of the lattice
QCD data.
As discussed in Sec. II C, the function GB

A does not
represent the effective contribution of the quark core to the
form factor GA, because the effect of the meson cloud
component in the physical nucleon state needs to be taken
into account. As a consequence only ZNGB

A contributes to
the physical form factor GA, where ZN gives the probability
associated with the qqq component in the physical nucleon,
according to Eq. (2.4).
One can now correlate the holographic relation (3.6),

with the expression for GA derived from a valence quark
model with meson cloud dressing (2.4), identifying

c3 ≡ ZN . Note, however, that this relation is valid only
when c3 ≤ 1, because ZN is by definition limited to
ZN ≤ 1. The upper limit represents the valence quark limit,
when there is no meson cloud (the coefficient of the meson
cloud term is 1 − ZN ¼ 0).
To take into account the information relative to the bare

component, we include in the fit the function GB
A extrapo-

lated from lattice QCD, with the assistance of the spectator
model, as discussed in Sec. II D. In the numerical fits ofGB

A,
we consider 41 data points in the region Q2 ¼ 0–2 GeV2.
A new class of parametrizations is then obtained when

we adjust the parameters c3, g0A and ηA to the parametriza-
tions GB

A (extracted from lattice) and Gexp
A . As we show

next, the description of GA depends crucially on g0A.
We consider three fits to the functionsGexp

A andGB
A. First,

we consider a free fit using the parametrizations described
below, which fails to describe the lowQ2 region of GA. In a
second fit, we attempt to describe in more detail Gexp

A near
Q2 ¼ 0, imposing GAð0Þ ¼ 1.2723, but overestimate the
GB

A parametrization. Finally, we consider an intermediate fit
which compromises the description of the functions Gexp

A
and GB

A.
In a global fit with no constraints in g0A using the

empirical parametrization (2.2), we obtain g0A ¼ 1.125
[error of 3% for GAð0Þ]. The remaining parameters are
presented in the last row of Table I. Note, in particular, that
in this fit the contribution of the meson cloud in the
physical nucleon state is 26% (c5 ¼ 1 − c3 ≃ 0.26), and
that the fit to the functionGB

A has a chi-square per data point
of 1.65. Since the parametrization gives GAð0Þ ¼ g0A ¼
1.125, we can conclude that this fit underestimates the
experimental data near Q2 ¼ 0 (the experimental value
is 1.2723).
To improve the description of GA near Q2 ¼ 0, one

needs to constrain the values of g0A to values closer to the
experimental value for GAð0Þ. This can be done varying the
values of ηA and c3, and keeping g0A ¼ 1.2723. In this case,
one obtains c3 ¼ 0.702, (first row in Table I), but decreases
the quality of the description of the component GB

A
(chi-square per data point of 2.54).
Finally, we consider a parametrization with an inter-

mediate g0A, using g0A ¼ 1.2. In this case we also obtain a
description of Gexp

A closer to the range of one standard
deviation and also a fair description of the function
GB

A (chi-square per data point of 2.06). The contribution

TABLE I. Parameters of the models and respective value of chi-
square per data point associated with GB

A.

g0A ηA c3 χ2ðGB
AÞ

1.273 1.072 0.702 2.54
1.200 1.083 0.721 2.06
1.125 1.094 0.743 1.65
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of the meson cloud in the physical nucleon is in this case
28% (second row in Table I).
The graphical representation of the last parametrization

is presented in Fig. 2. The functionGA is represented by the
solid-line; the function c3GB

A is represented by the dashed
line, and the meson cloud contribution c5GMC

A is repre-
sented by the dotted-line.
From Fig. 2, one can conclude that the fit associated with

g0A ¼ 1.2 provides the simultaneous description of the
parametrizations Gexp

A and GB
A (red and blue bands, respec-

tively), since the lines associated with GA (solid-line) and
GB

A (dotted-line) are almost always inside the respective
bands (one standard deviation). One can also see, that the
meson cloud contribution (dotted-line) falls off faster than
the bare contribution (dashed-line). This falloff is discussed
in more detail in the following sections.
The parametrization from Fig. 2 corresponds to a meson

cloud admixture coefficient c3 ¼ ZN ¼ 0.72, meaning that
the meson cloud component accounts for 28% of the
physical nucleon state, as mentioned above. This estimate
is very close to the estimates from the spectator model from
Ref. [26] (27%) and also from the cloudy bag model from
Ref. [37] (29%). The estimates from the perturbative chiral
quark model [46,47] are also similar to our results for the
bare and meson cloud contributions to the nucleon axial
form factors, at low Q2.
We can then conclude that our estimate of the amount of

the meson cloud is close to other estimates of the that effect
(around 30%).

C. Discussion about g0A
We now discuss in more detail the effect of the parameter

g0A in the calculations. As mentioned previously, the holo-
graphic results for GAðQ2Þ are strongly dependent on g0A.
Large values of g0A (g

0
A > 1.3) overestimate the lowQ2 data.

Small values of g0A (g0A < 1.1) underestimate the low Q2

data. The constraints from lattice QCD favors values of g0A
smaller than 1.27. Recall that the results obtained in lattice
QCD simulations for GAð0Þ are in general restricted
to GAð0Þ ¼ 1.1–1.2.
In order to check the range of g0A preferred by the lattice

data, we start by comparing the holographic models
directly with the lattice QCD data. Notice that the holo-
graphic model includes a bare and a meson cloud compo-
nent. Since the Q2-dependence of the lattice data varies
with the pion mass, we select lattice QCD data associated
with the pion masses not to far way from the physical limit.
We consider in particular data associated with mπ ¼ 213,
260 and 262 MeV from Refs. [60,61].
The comparison with the lattice QCD data is presented in

Fig. 3 for the parametrizations from Table I, labeled by
g0A ¼ 1.125, 1.2 and 1.273. In the figure we can observe
a good agreement with the data for the parametrizations
with g0A ¼ 1.125 and 1.2 below Q2 ¼ 0.3 GeV2, and a
systematic deviation for larger values of Q2 for all the
parametrizations.
There are in principle two main reasons for the

deviation between the lattice data and the holographic
estimates. On one hand the holographic model under
discussion is developed for the physical limit. Therefore
the bare and the meson cloud components are estimates
for mπ ¼ mphys

π , and not for higher values of mπ . On the
other hand, it is well known that in lattice QCD simu-
lations with large pion masses, the meson cloud effects
effects are suppressed. In these conditions, although one
may expect that the valence quark component for mπ ≈
300 MeV provide a close estimate for the valence quark
component at the physical limit, for the meson cloud
component one can expect a stronger dependence on the
pion mass due to chiral effects.
To summarize, the deviation between the holographic

parametrizations from the lattice QCD data can be inter-
preted mainly as a consequence of the suppression of the
meson cloud effects in the lattice QCD simulations.
To test if the deviation of the holographic model from

the lattice data is in fact the result of the dominance of
the valence quark contribution in the lattice data, we
compare directly the model parametrizations for the
valence quark contributions with the results of the lattice
QCD simulations.
To help the discussion, we rewrite Eq. (3.6) as

GAðQ2Þ ¼ GB
AðQ2Þ þ ð1 − c3Þ½GMC

A ðQ2Þ −GB
AðQ2Þ�:

ð4:1Þ

In the present form, the second term can be seen as the
alternative representation of the meson cloud contribution,
defined by the difference between GA and GB

A, when all the
normalization factors are taken into account (ZN ¼ c3).
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FIG. 2. Results of the fit of the axial form factor GA using
g0A ¼ 1.2. The solid-line represent the function GA, the dashed-
line represent the bare contribution, c3GB

A, and the dotted-line
meson cloud contribution, c5GMC

M . The red and blue bands have
the same meaning of Fig. 1.
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Notice that the second term in Eq. (4.1) vanishes atQ2 ¼ 0,
as a consequence of the normalization of GB

A and GMC
A

(reduced to g0A when Q2 ¼ 0).
Equation (4.1) provides also a simple illustration of

the limit where the system is completely dominated by the
valence quark component. In that case ZN ≡ c3 → 1, the
second term vanishes, and GA is reduced to GB

A, as
expected.
The direct comparison between the parametrizations of

the valence quark contribution with the lattice QCD data is
presented in Fig. 4. From the figure, we can conclude that
the models with larger g0A overestimates the lattice data
near Q2 ¼ 0. Only the models with the values g0A ¼ 1.125
and 1.2 are closer to the lattice data for Q2 < 0.2 GeV2.
Between those parametrizations, g0A ¼ 1.2 is the one that
gives the best description of the lattice QCD data, as can be
observed in Fig. 4.
Overall, the agreement between the estimate of the

valence quark contributions and the lattice QCD data is
better than the previous case, where we compared the full
result (bare plus meson cloud) with the lattice QCD data.
Notice, in particular the good agreement between the
estimates at large Q2 for the data sets with mπ ¼ 213
and 260 MeV. These results suggest that the second term in
Eq. (4.1), has a small magnitude in the lattice QCD
simulations for pion masses around 0.23 GeV. Notice also
that the term under discussion is negative because GMC

A
has a faster falloff than GB

A. As a consequence, the values
of GA increase, when the term is neglected (compare
Figs. 3 and 4).
Looking in particular for the data associated with the

largest pion mass (mπ ¼ 262 MeV), we can notice that the
function GB

A (estimated for mphys
π ) falls off faster with Q2

than the lattice QCD data. The same effect happens for
simulations with mπ > 300 MeV (not shown here). This
effect has been observed in several lattice QCD studies.
Lattice QCD calculations of form factors associated with

large pion masses have slower falloffs than in the case of
the physical form factors [25,57,58,60,74,76].
The differences between the lattice QCD data associated

with mπ ¼ 260 and 262 MeV (close values), displayed in
Figs. 3 and 4, suggest that the estimation of the valence
quark and meson cloud contributions for GA should not be
performed based on only a few lattice QCD data sets. It is
then preferable to use a significant number of data sets with
different values for the pion masses, or in alternative to
consider an extrapolation of the lattice QCD results based
on several data sets, as discussed in Sec. II D.
The present analysis does not imply that the lattice QCD

simulations with mπ ≈ 0.2 GeV have no meson cloud
contributions, it shows only that those contributions seem
to be small or of the order of the error bars. Those effects
are expected to became more significant when we approach
the physical limit.
The comparison between the bare contribution of the

holographic model with the lattice QCD data, and their
close agreement, justifies the choice of values of g0A smaller
than the experimental value, namely g0A ≃ 1.2. This result
confirms also the need to use constraints in the functionGB

A,
in order to obtain a better description of the physics
associated with the axial form factor GA.
A choice of values of g0A below 1.27 may also be justified

by dynamical effects in the quark structure. Calculations
based on the Dyson-Schwinger framework show a reduc-
tion of the quark axial charge gqA due to the gluon dressing
of the quarks. As a consequence the valence quark
contribution to GA is reduced when compared to calcu-
lations based on undressed quarks [48–50].

D. Vector meson dominance models

In the literature we can find some models for the axial
form factor based on VMD with axial-vector mass poles
[34,79,80]. The models from Refs. [34,79] are called two-
component models, and include a term associated with the
lowest axial-vector meson state (a1). Those models explore
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The models are labeled with the value of g0A presented in Table I.
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also the possible decompositions between a bare core
component and a component associated with the (axial-
vector) meson cloud. The model estimates are compatible
with the parametrization (2.2) below 1 GeV2. The holo-
graphic model from Ref. [80] considers an expansion in the
axial-vector meson poles. In that case it was shown that the
final expression for GA can also be approximated by a
dipole, at low Q2.

E. Estimate of the meson cloud contribution
from holography

Finally, we discuss the estimate of the meson cloud
contribution associated with the our best holographic
model (g0A ¼ 1.2). The meson cloud contribution to the
axial form factor was already shown in Fig. 2. In that figure
we can see, looking at the meson cloud contribution
(dotted-line) that GMC

A does not fall to zero very fast.
One can also conclude that for large Q2, the holographic
estimate of the bare contribution underestimates the result
of the spectator model from Ref. [26], defined by the
central value of the blue band.
The previous result suggests that the holographic esti-

mate of the meson cloud has a slow falloff compared to the
estimate from the spectator model, determined by Eq. (2.6)
[26]. This effect can be observed in more detail in Fig. 5,
where we plot the ratio between c5GMC

A and GA, estimated
by the respective model, up to Q2 ¼ 4 GeV2. In this
representation the difference between falloffs became clear.
Apart the difference between parametrizations at Q2 ¼ 0,
which are compatible with the uncertainties of the estimates
of Gexp

A and GB
A, it is clear in the graph the difference of

falloffs between the spectator model (fast) and our best
holographic model (slow).
We recall that both estimates of the meson cloud fall off

with 1=Q8 for large Q2 (faster than the valence quark
contributions: 1=Q4). The multiplicative factors associated
with those functions in the holographic and spectator

models are, however, very different. The factor associated
with the holographic model is larger than the one from the
spectator model.
A quantitative measure of the falloff from the meson

cloud contribution may be the value of Q2 for which the
contribution of the meson cloud becomes smaller than 10%
of GAðQ2Þ. From Fig. 5, we can conclude that this value is
about 1 GeV2 for the spectator model, and about 2.8 GeV2

for the holographic model.
The meson cloud estimate from the perturbative chiral

quark model has a falloff even slower than the holographic
model. For Q2 ≃ 1 GeV2 the meson cloud contribution
dominates over the bare contribution [46,47]. According to
Ref. [47] the flat behavior of the meson cloud contribution
(slow falloff) may indicate that the meson cloud distribu-
tion is closer to the origin in the coordinate space, than in
other models. The calculation based on the holographic
model, and the faster falloff of the meson cloud contribu-
tion, suggests a much more peripheral distribution of the
meson cloud.
The difference between the falloffs in holographic models

and quark models may be a consequence of the way the
meson structure is described. In the holographic models the
substructure associated with the qq̄ pair is neglected in first
approximation, meaning that the meson states are regarded
as pointlike particles. In the quark models, the mesons are
extended particles with structure form factors that can be
approximated by multipole functions. Those multipole
functions are parametrized by cutoffs that characterize the
spatial extension of the mesons and are also responsible for
the faster falloff of the meson cloud contribution, compared
to models with pointlike mesons.

V. OUTLOOK AND CONCLUSIONS

In the present work we study the structure of the nucleon
axial form factor using the formalism of the light-front
holography. In a holographic model the substructure
associated with the valence quark degrees of freedom
and the substructure associated with the meson cloud
excitations are both parametrized in terms of two indepen-
dent microscopic couplings: g0A, the quark axial-vector
coupling, and ηA the quark induced pseudoscalar coupling.
Contrary to the case of the quark models with meson cloud
dressing, in the holographic models there is no explicit
connection with the baryon-meson substructure.
We checked if the empirical information associated with

the nucleon axial form factor GA could be used to
determine the fraction of GA associated with the valence
quark components (GB

A) and the fraction associated with the
meson cloud component (GMC

A ), based on a holographic
model. We concluded that this goal can be achieved if we
use the information from lattice QCD simulations to
constraint the bare component, associated with the valence
quark degrees of freedom.
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We realized also that the results from the bare and the
meson cloud components of GA depend crucially on
the coupling g0A. Large values of g0A fail to describe the
magnitude of the function GB

A, extracted from lattice QCD.
Small values of g0A fail to describe the empirical data.
A good compromise in the description of the exper-

imental data and the estimate of GB
A is obtained when we

use g0A ≃ 1.2, ηA ≃ 1.1 and a meson cloud mixture of about
30% in the physical nucleon state. A holographic model
with g0A ≃ 1.2, provides also a parametrization more con-
sistent with the results from lattice QCD. Most of lattice
QCD simulations giveGAð0Þ ¼ 1.1–1.2, in a wide range of
pion masses (mπ ¼ 0.2–0.5 GeV).
To summarize, the holographic model presented here

provides a consistent description of the GA data and from
the estimate of the bare contribution extracted from lattice
QCD. In addition, the holographic model provides a
parametrization for the meson cloud contributions to GA.

The holographic estimate of GMC
A has a very slow falloff

withQ2. The meson cloud contribution is smaller than 10%
of GA only for large values of Q2 (Q2 > 2.8 GeV2). In
other quark models with meson cloud dressing this reduc-
tion happens typically for values of Q2 larger than 1 GeV2.
In the future, it will be very interesting to check if also for

the electromagnetic form factors estimated by holographic
models, the falloff of the meson cloud contribution is very
slow as for the nucleon axial form GA, or if the falloff is
faster, as suggested by some quark models.
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