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In the present paper we consider the so-called effective cross section, a quantity which encodes the
experimental knowledge on double parton scattering in hadronic collisions that has been accumulated so
far. We show that the effective cross section, under some assumptions close to those adopted in its
experimental extractions, can be used to obtain a range of mean transverse distance between an interacting
parton pair in double parton scattering. Therefore, we have proved that the effective cross section offers a
way to access information on the hadronic structure.

DOI: 10.1103/PhysRevD.97.071501

I. INTRODUCTION

A proper description of the event structure in hadronic
collisions requires the inclusion of so-called multiple
parton interactions (MPI), which affect both the multiplic-
ity and topology of the hadronic final state [1,2]. The large
hadron collider operation renewed the interest in MPI given
the continuous demand for an increasingly detailed descrip-
tion of the hadronic final state, which is crucial in many
new physics searches. In this rapidly evolving context,
these types of studies have received attention for their own
sake: they might be sensitive to partonic correlations in the
colliding hadrons. The simplest MPI process is double
parton scattering (DPS). In such a case, a large momentum
transfer is involved in both scatterings and perturbative
techniques can be applied to calculate the corresponding
cross section. The latter depends on a two-body non-
perturbative quantity, the so-called double parton distribu-
tion functions (dPDFs). These distributions are interpreted
as number densities of parton pairs with a given transverse
distance, b⊥, in coordinate space and carrying longitudinal
momentum fractions (x1, x2) of the parent proton [3].
Double PDFs are not calculable from first principles, a
feature shared with ordinary PDFs and other nonperturba-
tive quantities in QCD. However, due to their dependence
upon the partonic interdistance [4], they contain informa-
tion on the hadronic structure complementary to those
obtained from one-body distributions such as generalized
parton distribution functions (GPDs) and transverse

momentum dependent PDFs. Unfortunately, since the
DPS cross section depends on an integral over b⊥, there
are no experimental observables which may give direct
access to such a dependence [1].
In this scenario, calculations of dPDFs via hadronic

models have been used to obtain basic information and to
gauge the impact of longitudinal and transverse correlations
[5–9]. Despite this wealth of information possibly encoded
in dPDFs, the experimental knowledge on DPS cross
section has been accumulated, up to now, into the so-
called effective cross section, σeff . The latter is defined
through the ratio of the product of two single parton
scattering cross sections to the DPS cross section with
the same final states. The effective cross section has been
extracted, although in a model dependent way, in several
experiments; see recent results in Refs. [10–15]. The
purpose of the present paper is to demonstrate that, by
exploiting the maximum information encoded in σeff and
by using almost the same assumptions used in its exper-
imental extraction, a range of mean distances, character-
izing the interacting parton pair, can be derived. Thanks to
this result, one can access information on the hadronic
structure, encoded in the dPDFs b⊥ dependence, in a quite
rather easy way without any detailed knowledge on such a
dependence in transverse space. Therefore, the present
analysis represents an attempt to generalize historical
studies on the proton radius in exclusive processes to the
relative partonic distance between two interacting partons
in DPS processes in hadronic collisions.
This paper is organized as follows. In Sec. II, we show

how, in principle, novel information on the proton structure
can be achieved by means of dPDFs and a new “form
factor” is introduced. In Sec. III, we elaborate a general
relation between σeff and the mean distance of two
interacting partons. In Secs. III A and III B, we derive a
couple of inequalities suitable to extract information on the
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mean partonic distance from experimental values of σeff .
In Sec. IV, we discuss numerical results. We collect our
conclusions in Sec. V.

II. HADRON STRUCTURE VIA DPS

Similarly to the case of GPDs, whose first moment is
related to standard Dirac and Pauli form factors, we may
introduce the first moment of dPDFs with respect to x1
and x2,

fijðk⊥Þ ¼
1

Nij

Z
dx1dx2Fijðx1; x2; k⊥Þ; ð1Þ

where i and j are parton indices and we address fijðk⊥Þ
as the “effective form factor” [16]. The functions
Fijðx1; x2; k⊥Þ are the Fourier transform of dPDFs
F̃ijðx1; x2; b⊥Þ. According to Ref. [17], the Nij factors in
Eq. (1) represent the dPDF normalizations evaluated at
k⊥ ¼ 0, e.g., for valence quarks Nuvdv ¼ Nuvuv ¼ 2. At
variance with the GPD case, here k⊥ does not represent a
momentum transfer between the proton initial and final
state but rather a transverse momentum imbalance between
two partons in the amplitude and its conjugate [18].
Therefore, in momentum space Fijðx1; x2; k⊥Þ does not
admit a probabilistic interpretation, which holds instead in
b⊥ space. The effective form factor can be defined in a
more fundamental manner in terms of the proton wave
function. In fact, in the nonrelativistic limit, it is given by

fijðk⊥Þ ¼
Z

dk⃗1dk⃗2Ψ†ðk⃗1 þ k⃗⊥; k⃗2Þ

× τiτjΨðk⃗1; k⃗2 þ k⃗⊥Þ; ð2Þ

with Ψðk⃗1; k⃗2Þ being the canonical proton wave function in
the intrinsic frame depending on the parton momentum k⃗i
and τi the usual flavor projector, see, e.g., Ref. [6]. The
effective form factor can be related to the two-body density
of partons, f̃ijðb⊥Þ, with b⊥ being the relative distance
between two partons, defined by means of the Fourier
transform of the proton wave function with respect to
k⃗⊥, i.e.,

fijðk⊥Þ ¼
Z

db⃗⊥eik⃗⊥·b⃗⊥ f̃ijðb⊥Þ: ð3Þ

Equations (2) and (3) are similar to those used to define the
standard electromagnetic proton form factor in terms of the
same hadron wave function Ψðk⃗1; k⃗2Þ. Analogously to this
standard case, one can define the mean value of the distance
between two partons in the transverse plane through the
effective form factor,

hb2iij ≃ −4
dfijðk⊥Þ
dk2⊥

����
k⊥¼0

: ð4Þ

The knowledge of fijðk⊥Þ gives access to new information,
generalizing the results on the proton mean radius, obtained
from electromagnetic proton form factors in elastic proc-
esses. Despite the richness of information encoded in the
effective form factor, this quantity is actually poorly known
from the theoretical and experimental points of view. In
fact, in DPS processes, only information on the integral of
dPDFs with respect to k⊥ is available [1]. In order to
overcome this problem, in the next sections we present a
procedure which relates the mean partonic distance
between two partons directly to the experimentally
extracted σeff .

III. σeff AND PARTONIC DISTANCES

The differential DPS cross section, assuming that the two
hard scattering processes can be factorized [3,18–21],
involves dPDFs through an integral over k⊥ and reads [18]

dσAþB
DPS ¼ m

2

Z
d2k⊥
ð2πÞ2 dσ̂

A
ikdσ̂

B
jl·

· Fijðx1; x2; k⊥ÞFklðx3; x4;−k⊥Þ: ð5Þ

It represents the Fourier-transformed version of the DPS
cross section formula in b⊥ space presented in Ref. [1]. In
Eq. (5), dσ̂ are the differential partonic cross sections for
processes A and B, respectively, and the symmetry factor
m ¼ 1 if A ¼ B, and m ¼ 2 otherwise. Given the limited
knowledge regarding dPDFs, a fully factorized ansatz is
frequently assumed,

Fijðx1; x2; k⊥Þ ∼ qiðx1Þqjðx2Þfðk⊥Þ; ð6Þ

where qiðxÞ are ordinary PDFs. Usually, in such a sim-
plified approach, the transverse form factor, fðk⊥Þ,
depends neither on parton flavors nor on its fractional
momenta [22]. It is worth mentioning that dPDF calcu-
lations within hadronic models show, in general, a breaking
of the factorized ansatz, Eq. (6), in a specific region of
phase space, where sizable longitudinal and mixed longi-
tudinal-transverse partonic correlations do appear [5–9].
Nevertheless, in this paper we still the use the approxima-
tion in Eq. (6) in order to make contact with experimental
extractions of σeff . We remark, however, that in the present
work, no assumptions on the detailed functional form of
fðk⊥Þ are used. In such a case, the DPS cross section
simplifies to the form [4]

dσ AþB
DPS ¼ m

2

dσ A
SPSdσ

B
SPS

σeff
; ð7Þ
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with dσASPSðBÞ being the single parton scattering cross
section with final state AðBÞ. In this scenario, σeff is simply
given in k⊥ space by

σ−1eff ¼
Z

d2k⊥
ð2πÞ2 fðk⊥Þ

2¼
Z

dk⊥
2π

k⊥fðk⊥Þ2; ð8Þ

where the last expression follows from rotational invariance
since we are interested in scattering processes whose final
states are integrated over angles. Equation (7) shows that
σeff enters the DPS cross section formula as an overall
normalization factor. Starting from Eq. (8), we show in this
section how such an integral can be related to the mean
distance of the two partons involved in the scattering
process. For this purpose, we use two properties granted
from the general structure of the hadronic wave function in
Eq. (2), i.e.,

fðk⊥ ¼ 0Þ ¼ 1 and fðk⊥ → ∞Þ ¼ 0: ð9Þ

Thanks to the latter conditions, two identities are immedi-
ately obtained,

Z
∞

0

dk⊥km⊥fðk⊥Þ2 ¼ −2
Z

∞

0

dk⊥
kmþ1⊥
mþ 1

fðk⊥Þ
d

dk⊥
fðk⊥Þ;

ð10Þ

with m ≥ 0 and

Z
∞

0

dk⊥fðk⊥Þs−1
d

dk⊥
fðk⊥Þ ¼ −

fð0Þs
s

¼ −
1

s
; ð11Þ

which will be frequently used in the following.
Furthermore, with k⃗⊥ being defined on the transverse
plane, in two dimensions, fðk⊥Þ can be defined as

fðk⊥Þ ¼
Z

d2b⊥eik⃗⊥·b⃗⊥ f̃ðb⊥Þ

¼ 2π

Z
dbf̃ðbÞJ0ðk⊥bÞ; ð12Þ

with f̃ðbÞ being the probability density of finding two
partons with a relative transverse distance b ¼ jb⃗⊥j, f̃ðbÞ
being a radial function of b. By expanding in series the
Bessel function J0ðk⊥bÞ, we find the following useful
representation:

fðk⊥Þ ¼
X∞
n¼0

k2n⊥ hb2ni ð−1Þn
4nðn!Þ2 ¼

X∞
n¼0

k2n⊥ hb2niPJ0
n ; ð13Þ

where the PJ0
n are the coefficients of the Bessel expansion

and hb2ni are the 2n moments of f̃ðbÞ and contain all
dynamical unknown information on partonic proton

structure. At this point, we arrange Eq. (8) in a form more
suitable for our purposes. We consider Eq. (11) for s ¼ 3
and, by using the expansion in Eq. (13) with the n ¼ 0 and
n ¼ 1 terms kept explicit, we get

−
1

3
¼
Z

∞

0

dk⊥fðk⊥Þ2f0ðk⊥Þ

¼
Z

∞

0

dk⊥fðk⊥Þf0ðk⊥Þ
�
1−

k2⊥hb2i
4

þ
X
n¼2

PJ0
n k2n⊥ hb2ni

�
:

ð14Þ

The terms in square brackets are then evaluated as follows.
The first one is simplified by using Eq. (11) with s ¼ 2, the
second one by using Eq. (10) with m ¼ 1, and the last term
by using Eq. (10) with m ¼ 2n − 1. Collecting results and
dividing by hb2i=4, we find

Z
∞

0

dk⊥k⊥fðk⊥Þ2

¼ 2

3hb2i þ 4
X
n¼2

hb2niPJ0
n n

hb2i
Z

∞

0

dk⊥k2n−1⊥ fðk⊥Þ2: ð15Þ

Although Eq. (15) shows a formal relation between σeff and
hb2i, the latter is obscured by the last term, which requires
the explicit knowledge of fðk⊥Þ. In the next two sub-
sections, we show how this problem can actually be
circumvented, providing an easy-to-evaluate relation
between σeff and hb2i. We mention here for later conven-
ience that by a repeated use of the Cauchy-Schwarz
inequality and the property of the variance, hb2i ≥ hbi2,
it can be easily shown that

hbni ≥ hbin; ð16Þ

which represents a generalization of the property of the
variance for n ≥ 2.

A. A minimum for the allowed partonic distance

In this subsection, we show how, given a known value for
σeff , a minimum value for the mean partonic distance can be
derived by using Eq. (15). For this purpose, generalizing
Eq. (4), we introduce the function

d2ðk⊥Þ ¼ −2f0ðk⊥Þ=k⊥: ð17Þ

By using the expansion for fðk⊥Þ in Eq. (13), one finds

d2ðk⊥Þ ¼ −4
X
n¼1

k2n−2⊥ hb2niPJ0
n n ¼ hb2i þOðk2⊥Þ; ð18Þ

which immediately gives d2ðk⊥ ¼ 0Þ ¼ hb2i. At this point,
one may notice that the formal definition of fðk⊥Þ,
Eq. (2), is rather similar to the one of the electromagnetic
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proton form factor, except that in the present case k⊥ is a
transverse momentum imbalance in a two-body distribu-
tion. Since electromagnetic proton form factors are, in
general, decreasing functions of k⊥, we may expect a
similar behavior in fðk⊥Þ. This observation implies that
d2ðk⊥Þ ≥ 0 via Eq. (17). Additionally, one may notice that

d
k⊥dk⊥

d2ðk⊥Þ
����
k⊥¼0

¼ −8PJ0
2 < 0; ð19Þ

implying that d2ð0Þ is a maximum for d2ðk⊥Þ. At this point,
one may consider the identity in Eq. (11) with s ¼ 3,

Z
∞

0

dk⊥k⊥fðk⊥Þ2d2ðk⊥Þ ¼ 2=3: ð20Þ

Since d2ð0Þ is a maximum for d2ðk⊥Þ, we deduce from
Eq. (20) that

Z
∞

0

dk⊥k⊥fðk⊥Þ2 ≥
2

3hb2i ; ð21Þ

a result which can be rewritten in terms of the effective
cross section as hb2i ≥ σeff=ð3πÞ. We remark that the same
result can be obtained starting directly from Eq. (15). In
fact, thanks to the variance property in Eq. (16) and the
formal definition of PJ0

n , one can analytically prove that the
second term on the right-hand side of Eq. (15) is positive,
therefore leading to the same final result, Eq. (21).

B. A maximum for the allowed partonic distance

In this subsection, we investigate whether σeff determines
a maximum value for the mean interpartonic distance. We
note that the properties of fðk⊥Þ used up to now will not be
sufficient for our purpose, and we will introduce additional
reasonable assumptions which we will discuss during
the proof.
From the definition of σeff in Eq. (8), we note that the

integral is positive definite; thus, we can introduce an
integer Ñ such that

2π

σeff
¼

Z
∞

0

dk⊥k⊥fðk⊥Þ2 ¼
1

Ñhb2i : ð22Þ

Therefore, for any N ≤ Ñ,

Z
∞

0

dk⊥k⊥fðk⊥Þ2Nhb2i ≤ 1: ð23Þ

Trivially, N ¼ 0 is a solution of this equation, which is of
no interest. However, given the result in Eq. (21), our
problem reduces to the search of a nonzero value ofN in the
range 0 < N < 3=2. For this purpose, we subtract from
Eq. (23) the identity in Eq. (11) with s ¼ 2, obtaining

Z
∞

0

dk⊥k⊥fðk⊥Þ½Nhb2ifðk⊥Þ − d2ðk⊥Þ� ≤ 0: ð24Þ

Finding a solution to Eqs. (23) and (24) is not possible
without detailed knowledge of the functional form of
fðk⊥Þ. Nevertheless, we can study the sign of the term
in square brackets in Eq. (24), i.e.,

Nhb2ifðk⊥Þ ≤ d2ðk⊥Þ: ð25Þ

This inequality represents a sufficient condition for the
validity of Eq. (24). The condition in not necessary because
there might exist regions in k⊥ and values of N for which
such a term is positive but the integral in Eq. (24) is
negative. To further proceed, let us rewrite Eq. (25) by
using the series expansion of fðk⊥Þ and d2ðk⊥Þ, obtaining

Nhb2i
X
n¼0

Pj0
n k2n⊥ hb2ni ≤

X
n¼0

Pj0
n

nþ 1
k2n⊥ hb2nþ2i: ð26Þ

By equating terms of equal powers in k⊥, we get the
following set of solutions:

1

nþ 1
< N <

1

n
; n ¼ odd: ð27Þ

Such solutions, however, do not take into account the
detailed k⊥− dependence of fðk⊥Þ. For example, if
the integral in Eq. (22) is dominated by the low k⊥ region,
the solution to Eqs. (24) and (25) is found in the first
interval, namely 1=2 < N < 1. Since this case corresponds
to an effective form factor falling sufficiently fast at large
k⊥, we take this condition as a working hypothesis and
provide supporting arguments in the following.
In the first place, we wish to quantify the limiting

asymptotics of fðk⊥Þ at large k⊥, which satisfies the
proposed solution. For this purpose, we consider a dipole
test function of the type

fðk⊥Þ ¼
�
1þ k2⊥

m2

�
−r

ð28Þ

in whichm is a mass parameter and the large k⊥ behavior is
controlled by the tunable parameter r. By direct evaluation,
we find that our proposed solution is valid if r > 1 in
Eq. (28). The same result holds for functions that fall even
faster at large k⊥ like Gaussians and exponentials.
Secondly, additional support for the proposed solution is

provided by the following observation [23]: fðk⊥Þ repre-
sents a two-body form factor, k⊥ being a transverse
momentum imbalance between the parton pair. As such,
its asymptotic behavior at large k⊥ should fall more rapidly
than the one in one-body form factors. If one uses for fðk⊥Þ
the results obtained in Refs. [24–26], one finds that the
proposed solution is verified since these functions all have
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dipole forms with r ¼ 2. The same conclusion is reached if
Dirac and Pauli form factors are used, whose behaviors at
large momentum transfer Q are given by 1=Q4 and 1=Q6,
respectively [27]. Finally, we remark that the proposed
solution is found to be valid for model calculations of
fðk⊥Þ, in particular the one evaluated within the Light-
Front approach in Ref. [7] and for the two-gluon form
factor discussed in Ref. [23]. To conclude, we have found
that Eq. (24) is verified for N ¼ 1=2 under the additional
condition that fðk⊥Þ falls off as k−2⊥ or faster. As a
consequence of our derivation we can state that

Z
∞

0

dk⊥k⊥fðk⊥Þ2 ≤
2

hb2i : ð29Þ

Combining this result with Eq. (21) leads to

σeff
3π

≤ hb2i ≤ σeff
π

; ð30Þ

which limits the range of the interpartonic distance and is
the main result of the paper. We wish to close this section
by highlighting the degree of model dependence of this
result. The latter indeed does depend on the approximations
made in Eqs. (5) and (6), in particular on the full
factorization of fðk⊥Þ in the dPDF expression together
with its flavor and energy dependence. Therefore, it
contains the same model dependence assumed in the σeff
extraction. However, our result does depend weakly on the
details of fðk⊥Þ, since just the general conditions in Eq. (9)
and its limiting asymptotics at large k⊥ are assumed,
leaving the detailed shape fðk⊥Þ largely unconstrained.

IV. NUMERICAL RESULTS

In this section, we discuss a direct application of
Eq. (30). Since the latter is derived with a set of assump-
tions close to the ones used by experimental collaborations
to extract σeff , we are allowed to use a representative
selection of DPS processes with different final states and
rather different kinematics. In particular, we consider the
DPS production of double quarkonia and of high mass final
states, since this final state discrimination appears to be
correlated with the extracted value of σeff . Therefore, we
consider recent LHC analyses in which σeff is extracted in
the double J=Ψ channel by the LHCb [10], ATLAS [14],
and by the authors of Ref. [15] based on CMS data, in the
4-jets channel by ATLAS [11], and in the W þ 2 jets and
same signWW channels analyzed by CMS [12,13]. Results
are presented in Fig. 1, where the range of allowed mean
partonic distance has been calculated according to Eq. (30)
and displayed with inner bars. The theoretical uncertainty
Δ associated with Eq. (30), defined as the difference
between the upper and lower limit of hb2i, parametrizes
the ignorance of the details of fðk⊥Þ. The latter does
depend linearly on σeff so Δ gets smaller as σeff decreases, a

trend which can be observed in Fig. 1. Taking into account
the experimental uncertainties associated with the σeff
extraction and adding them in quadrature to the theoretical
ones, we obtain the outer error bars. We conclude that, by
using the extracted values of σeff and their corresponding
errors, our estimate of the allowed range of hb2i via
Eq. (30) is dominated by the theoretical uncertainty, a
conclusion that comes as no surprise since our result is
obtained without assuming any detailed knowledge of the
shape of fðk⊥Þ. It is worth noticing that the upper limit on
the partonic distance for σeff < 20 mb is substantially
smaller than the electromagnetic radius of the proton.
This is a posteriori confirmation that measured values of
σeff are not compatible with trivial expectations based on
geometrical considerations, and they directly point to
dynamical correlation effects in the proton; see the dis-
cussion in [28].
In particular, we have found a minimum for the distance

in the range 0.2 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2imin

p
< 0.35 fm, which is driven by

σeff extracted from processes involving heavy quarkonia
pairs in the final state. On the other hand, the maximum
varies in the range 0.6 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2imax

p
< 0.95 fm and is

driven by σeff extracted from processes involving electro-
weak bosons and/or jets. We point out that our mathemati-
cal approach works even if σeff is not constant among
different processes since it is sufficient that Eq. (8) holds.
Therefore, DPS measurements with final states whose
production is dominated by distinct flavor species will,
hopefully, allow the investigation of the flavor dependence
of σeff and consequently of the effective form factor.

FIG. 1. The range of allowed mean partonic distance, Eq. (30),
calculated by using σeff extracted values from different exper-
imental analyses [10–15]. Inner error bars represent the theo-
retical uncertainty associated with the range in Eq. (30). The outer
ones represent the propagation of experimental uncertainties,
related to σeff extraction, plus theoretical ones added in quad-
rature. The vertical line represents the proton radius.
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V. CONCLUSIONS

In the present paper we have presented a method which
allows us to convert the information encoded in σeff , a
derived quantity often used in experimental analyses to
characterize the DPS cross section, into information on the
partonic proton structure. The procedure used here makes a
number of assumptions which are close to the ones
frequently used in experimental analyses. Furthermore,
we make no use of the detailed knowledge of the transverse
form factor and only assume its reasonable behavior at very
large k⊥, guided by studies on the standard proton form
factors. In this way, the experimentally extracted σeff can be

directly cast into a range of mean distances characterizing
the interacting parton pair.
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