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We reply to Mazzitelli and Trombetta’s comment [1] on our cosmological constant paper [2].
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I. INTRODUCTION

Mazzitelli and Trombetta’s comment [1] on our paper [2]
follows the usual approach of regularization. However, we
are not following the usual approach for multiple reasons.
The usual approach has many problems, and thus it is not
applicable at least to the cosmological constant problem.
This is one of the reasons for us to develop a different
approach. In this Reply, we first clarify some common
misunderstandings (not necessarily those of the authors of
Ref. [1]) about our unconventional approach and then point
out the problems of the usual approach.

II. CLARIFICATION OF OUR APPROACH

(i) We specifically do not couple gravity to expectation
values, but rather to the actual value of the stress-energy
tensor from point to point. What we use is essentially
the stochastic gravity approach: the quantum stress-
energy tensor is taken to be a classical field with
fluctuations dictated by the quantum field fluctuations
[3]. The stress-energy tensor is not Lorentz or Poincaré
invariant on small scales, but it fluctuates wildly with
correlated fluctuations, which lead to our results.

(i) Lorentz invariance: Although neither the stress-
energy tensor nor the metric is Lorentz invariant,
the long-wavelength theory seems to be Lorentz
invariant in the cosmological sense. The result on
longer (physical) time and space scales looks like a
slowly expanding homogeneous universe with a tiny
cosmological constant. The Lorentz invariance
of the large-scale metric is emergent—rather than
assumed—in our approach.

(iii) Q7 is positive: This is a crucial assumption of our
approach. Mode by mode, Q? is positive and we
assume that this feature is preserved for any cutoff
scheme we are using. It is true that the violation of
this assumption will destroy our mechanism. There-
fore, the renormalization schemes that can lead to
negative values of Q” are not allowed unless the
probability of such negative values is so small that
they will not occur in our observable Universe.
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III. PROBLEMS OF THE USUAL APPROACH

The key issue that worries the authors of Ref. [1] is about
the sign of Q2. In our paper [2], we considered the
contribution to Q2 from a massless scalar field ¢ as an
example. In this case, Q> = 8zG¢*/3. From the basic
principles of quantum mechanics, the measured value of
the square of any Hermitian operator on any quantum state
including vacuum must be non-negative. So there should be
no doubt that ¢ is positive. This of course makes sense
only if we keep it finite by introducing a cutoff.

When calculating (¢?), one gets a divergent result
without a cutoff. The traditional way of dealing with this
divergence is to regularize it. This regularization procedure
often does not preserve the sign of ¢°.

One point of confusion arises from the usually assumed
vacuum equation of state for the matter stress-energy
tensor of

<T/4u> = _<p>gﬂ1-/’ (1)

where g,, is the metric for a general curved spacetime.
Following this, one immediately has

_87G(p)

@) = -

<0 (2)
if one requires (p) > 0.

The assumption (1) is based on the argument that vacuum s
Lorentz invariant and thus every inertial observer would see
the same properties for this state. However, there is no well-
defined vacuum state in a general curved spacetime: a
Lorentz-invariant vacuum state simply does not exist. So
the state we used in Ref. [2] is in fact not a Lorentz-invariant
vacuum state, although we have called the state “vacuum” for
convenience. Since it is not Lorentz invariant, it does not need
to satisfy Eq. (1), which is based on the Lorentz-invariant
hypothesis. The huge inhomogeneity and anisotropy of the
stress tensor also makes Lorentz invariance problematic as a
requirement.

The usual approach of regularization presumes that zero-
point fluctuations satisfy the vacuum equation of state (1)
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which looks like a cosmological constant. This approach
gives unphysical results; as pointed out by the authors of
Ref. [1], because “different cutoffs produce ambiguous
results for the sign of (¢2> and of the vacuum energy, the
physical meaning of the regularized quantities in this
context is doubtful”. This is exactly one of the reasons
why we seek a different approach.

In our approach, we take the unregulated stress-energy
tensor seriously. Both p and P; are positive since they are
squares of derivatives of the scalar field and so is Q2. As
pointed out by the authors of Ref. [1], in our approach (7,
does not describe a cosmological constant, but rather a
radiation fluid. This is just our major point: zero-point
energy does not gravitate as a cosmological constant.

We admit that the method we used in Sec. IX A of
Ref. [2] can be problematic. The name “Pauli-Villars” in
that section is confusing. We did not carry out the usual
Pauli-Villars regularization, since we excluded the auxiliary
negative energy fields which contribute to Q>. What we did
in Sec. IX A was a way to evaluate the divergent integral of
¢* by introducing “Pauli-Villars™-type cutoffs. This is why
we obtained (p) > 0 there, while (as indicated by the
authors of Ref. [1]) the Pauli-Villars approach may give
(p) <0.

One important comment is that the cutoff A we used in
Ref. [2] is a physical cutoff, representing the energy scale of

our effective theory. The high-energy cutoff A is not
covariant. Whether a Lorentz-invariant cutoff is possible
for the highly inhomogeneous fluctuations in the energy-
momentum tensor is dubious.

IV. THE PROBLEM WITH FERMION FIELDS

There is another serious problem not mentioned in the
Comment [1]. In principle, Q receives contributions from
all fundamental fields. But negative contributions to Q2
with naive cutoffs would be expected from fermionic fields.
There is even the possibility that the net contribution to 7#¥
is dominantly negative.

One solution is to include a large negative bare cosmo-
logical constant in the FEinstein equations. This would
bias Q? to positive values. While this looks superficially
like another fine-tuning problem, we only need this con-
stant to be large enough to make Q> dominantly positive.
(A very small probability for Q to take negatives values in
this case does not lead to a disaster for the model.)

We are currently studying this extension to our model.
Not only are the concerns in the Comment [1] no longer a
problem, but other problems are also alleviated. Our
original model could also be problematic for positive but
very small values of Q?. We are currently writing up this
new model and hope to publish it soon.

[1] E. D. Mazzitelli and L. G. Trombetta, Comment on “How the
huge energy of quantum vacuum gravitates to drive the slow
accelerating expansion of the Universe”, Phys. Rev. D 95,
068301 (2018).

[2] Q. Wang, Z. Zhu, and W.G. Unruh, How the huge
energy of quantum vacuum gravitates to drive the slow

accelerating expansion of the universe, Phys. Rev. D 95,
103504 (2017).

[3] B.L. Hu and E. Verdaguer, Stochastic gravity: Theory and
applications, Living Rev. Relativity 11, 3 (2008).

068302-2


https://doi.org/10.1103/PhysRevD.95.068301
https://doi.org/10.1103/PhysRevD.95.068301
https://doi.org/10.1103/PhysRevD.95.103504
https://doi.org/10.1103/PhysRevD.95.103504
https://doi.org/10.12942/lrr-2008-3

