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In a recent paper [Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95, 103504 (2017)] it was argued
that, due to the fluctuations around its mean value, vacuum energy gravitates differently from what was
previously assumed. As a consequence, the Universe would accelerate with a small Hubble expansion rate,
solving the cosmological constant and dark energy problems. We point out here that the results depend on
the type of cutoff used to evaluate the vacuum energy. In particular, they are not valid when one uses a
covariant cutoff such that the zero-point energy density is positive definite.
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In the traditional formulation of the cosmological con-
stant problem, it is argued that the zero-point energy
density hρi associated to a quantum field is proportional
to Λ4, where Λ is an ultraviolet cutoff, of the order of the
Planck energy EPlanck. Assuming that the mean value of the
stress tensor of the quantum field is covariantly regularized,
one has hTμνi ¼ −hρigμν, which corresponds to a cosmo-
logical constant of order E4

Planck, about 120 orders of
magnitude larger than the observed one.
In Ref. [1] it was pointed out that the energy-momentum

tensor associated to a quantum massless field ϕ has very
large fluctuations around its mean value. Therefore, it is not
correct to use hTμνi as a source of the Einstein equations.
When properly taken into account, these fluctuations lead
to modified Einstein equations with a stochastic compo-
nent. More concretely, for a metric of the form

ds2 ¼ −dt2 þ a2ðt;xÞðdx2 þ dy2 þ dz2Þ ð1Þ

the evolution equation for the scale factor aðt; xÞ is that of a
harmonic oscillator,

äþ Ω2ðt;xÞa ¼ 0;

Ω2ðt;xÞ ¼ 4πG
3

�
ρþ

X3
i¼1

Pi

�
¼ 8πG

3
_ϕ2; ð2Þ

where ρ ¼ T00 and Pi ¼ Tii=a2. The quantity Ω2 is
assumed to have a positive mean value hΩ2i, of order
Λ4, and to have quasiperiodic stochastic fluctuations on a
time scale of order 1=Λ. Thus, due to parametric resonance,
the scale factor has an exponential growth with a Hubble
rate H which is exponentially small in the limit Λ → ∞,
solving the cosmological constant problem.

In this Comment we would like to stress the following
point: if the theory is regulated by a Lorentz-invariant
cutoff in flat spacetime, then one has hpi ¼ −hρi, and
therefore hΩ2i ¼ −8πGhρi=3. Moreover, if the cutoff is
such that hρi > 0, as usually assumed, then hΩ2i < 0 and
the whole picture of parametric resonance breaks down.
Let us be more explicit. Wang et al. first computed hΩ2i in

Minkowski spacetime using a noninvariant cutoffΛ such that
jp⃗j < Λ, where p⃗ denotes the 3-momentum of the modes of
the scalar field. In this case, both hρi and hpi are positive de-
finite and proportional toΛ4.Note, however, that for this parti-
cular cutoff one has hpi ¼ hρi=3, breaking the Lorentz
invariance of hTμνi. This was noticed long ago in Ref. [2]: a
noncovariant cutoff cannot beused to estimate thevacuumcon-
tribution to the cosmological constant (see also Refs. [3,4]).
If, in spite of this, one accepts the use of this cutoff, and
assumes that the regularized quantities have physical mean-
ing, then the conclusions of Ref. [1] look correct, although
the initial problem is different: hTμνi does not describe a
cosmological constant, but rather a radiation fluid.
Wang et al. also computed hΩ2i using a Lorentz-invariant

procedure inspired by Pauli-Villars method. The particular
implementation of this method used in Ref. [1] may give
hΩ2i > 0. [This is not completely clear from Eq. (195) in
Ref. [1].] Once more, if this were the case, the analysis of the
dynamical equation for the scale factor in Ref. [1] would be
correct, but at the price of regularizing the theory in such a
way that hρi < 0. Clearly, the use of this particular Lorentz-
invariant cutoff would not be equivalent to the use of a cutoff
in 3-momentum space, since it produces a vacuum energy
density with a different sign.
But the situation is even worse: the Pauli-Villars method

produces ambiguous results for the polynomial divergences
[5–7]. Only the logarithmic divergences are univocally
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determined by the method. We illustrate this fact with an
example discussed in Ref. [5]. The regularized energy-
momentum tensor in Minkowski spacetime, using the
Pauli-Villars method, is given by

hTμνi ¼ −
gμν
4

XN
i¼0

CiM4
i log

M2
i

μ2
; ð3Þ

where the masses Mi, i ¼ 1; 2;…N are the regulators,
M0 ¼ m is the mass of the field, μ is an arbitrary mass
scale, C0 ¼ 1, and the constants Ci, i ¼ 1; 2;…N satisfy

XN
i¼0

CiðM2
i Þp ¼ 0; ð4Þ

for p ¼ 0, 1, 2. Due to these conditions, the result is
independent of the scale μ. In principle, one can add an
arbitrary number N of regulator fields, with the minimum
being N ¼ 3 to satisfy the above constraints. It has been
shown that, for N ¼ 3, the regularized version of the stress
tensor produces a negative energy density. In the particular
case Mi ¼ Λ, one has

hTμνi ¼ −
gμν

128π2

�
−Λ4 þ 4m2Λ2 −m4

�
3þ 2 log

Λ2

m2

��
:

ð5Þ
This particular approach gives hρi < 0 and hΩ2i > 0.
However, when including additional regulator fields, there
is a freedom in the choice of the constants Ci that can be
used to fix the value of the quartic divergence at an arbitrary
value—even zero. The introduction of additional regulator
fields (which are needed in curved spacetimes) also gives
arbitrary values for the polynomial divergences [7]. Other
Lorentz-invariant approaches, like inserting powers of

Λ2=ðΛ2 − k2 − iϵÞ in the divergent integrals, give only a
quadratic divergence proportional to m2Λ2, and no quartic
divergence [5].
In summary, if one regularizes the theory with the Pauli-

Villars method, hΩ2i is not positive definite, and becomes
negative when one imposes the “physical” criterium that
the vacuum energy density should be positive definite. In
this case, it is not true that the fluctuations of the stress
tensor around its mean value lead to a solution of the
cosmological constant problem, based on the parametric
resonance mechanism proposed in Ref. [1]. But most
importantly, in light of the fact that different cutoffs
produce ambiguous results for the sign of hΩ2i and of
the vacuum energy, the physical meaning of the regularized
quantities in this context is doubtful.
One could wonder whether the fluctuations around a

negative hΩ2i could stabilize the upside-down harmonic
oscillator in Eq. (2), through parametric stabilization [8],
softening the effect of the cosmological constant. This
seems difficult in the present model, given that the (quasi)
frequency of the fluctuations is much smaller than
ð−hΩ2iÞ1=2. Moreover, this mechanism would suffer from
the same ambiguities pointed out in this comment, that is, it
would depend on the particular implementation of the
regularization method. It would be interesting to analyze
the eventual suppression of the cosmological constant by
parametric stabilization in the context of semiclassical
stochastic gravity [9], by studying the effect of noise in
the renormalized Einstein-Langevin equation.
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