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We study the time evolution of the early Universe, which is developed by a cosmological constant Λ4

and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker space-time. The
renormalized vacuum expectation value of the energy-momentum tensor of the SYM theory is obtained
in a holographic way. It includes a radiation of the SYM field, parametrized as C. The evolution is
controlled by this radiation C and the cosmological constant Λ4. For positive Λ4, an inflationary solution is
obtained at late time. When C is added, the quantum mechanical situation at early time is fairly changed.
Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt
equation and (ii) Lorentzian path integral with the Picard-Lefschetz method by introducing an effective
action. The results of two methods are compared.
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I. INTRODUCTION

The holographic approach has been extended to
supersymmetric Yang-Mills (SYM) theory in Friedmann-
Robertson-Walker (FRW) space-time in Refs. [1–3]. There,
the vacuum expectation value of the energy-momentum
tenser of the SYM fields, hTSYM

μν i, has been obtained, and it
has been used to study the dynamical properties of the
SYM theory in FRW space-time. On the other hand,
quantum and classical cosmology with a CFT has been
studied in terms of this hTSYM

μν i [4–9].
Here, we develop the quantum cosmology in the system

with hTSYM
μν i. In both quantum approaches via the path

integration and via the Wheeler-DeWitt (WDW) equation,
we start from an action of the theory. In the FRW space-
time, holographically obtained hTSYM

μν i is composed of the
loop corrections of the SYM theory and the so-called dark
radiation1 parametrized by C, which is interpreted as the
radiation of SYM fields [5]. This stress tensor cannot be
derived from a general coordinate transformation invariant
action.

Therefore, in performing quantum cosmology with a
CFT, we need an effective action that can lead to the
Einstein equation including the hTSYM

μν i. Up to now, an
example of such effective action has been given for the
minisuperspace of FRW space-time in Refs. [4,7,8]. In
these, however, it is difficult to find the WDW equation or
to perform the path integral due to the high nonlinearity.
Here we propose a new and simple effective action, which
reserves the essential property of the original theory. Then,
it becomes possible to construct the WDW equation and
also to perform a Lorentzian path integral to study the
propagation of the Universe [14–16].
We consider here the Einstein gravity with a cosmo-

logical constant Λ4 and SYM theory (or CFT). The
effective action given here is written in the same form of
the starting action without the SYM theory. Namely, after
integrating out SYM fields, its effect is reduced to the
modification of Λ4 to Λeff

4 , which depends on the scale
factor a0 and C. The dark radiation C coming from SYM
plays an important role in this effective action at small a0 of
the FRW metric.
The validity of the Lorentzian path integral has been

shown in [14] for the gravity with Λ4. A relevant path in the
complex plane of the lapse field could provide a correct
propagator of the Universe. This propagator implies an
appropriate boundary condition in solving the tunneling
amplitude via the WDWequation. When the dark radiation
is absent, Λeff

4 is a constant although it is smaller than the
original Λ4. So there is no qualitative change in this case
even if we consider CFT. As a result, it is also possible to
estimate the wave function of the Universe, which is
created from nothing with no boundary condition, by the
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Lorentzian path integral via a different path as shown
in [17].
On the other hand, when the dark radiation exists, Λeff

4 is
written as a function of a0. Then, the dynamical situation at
early time is drastically changed. In this case, the scenario
is changed as follows: First, the Universe is generated as a
small sized sphere of the radiation of SYM fields, and
secondly it reappears as an inflationary universe after the
tunneling process.
Our purpose is to investigate this tunneling behavior by

the two methods. At first, we study by using the WDW
equation, which is derived from our effective action, by
imposing an appropriate boundary condition by hand. In
the second, we execute the Lorentzian path-integral based
on the Picard-Lefschetz theory to obtain the propagator, as
given in [14].
As shown in [14] for the case of the model without SYM

theory, namely, for C ¼ 0, we find that this method
provides the semiclassical tunneling factor that is equiv-
alent with the one obtained by the WDWequation method.
In the case of C > 0, since Λeff

4 becomes complicated, we
consider a simplified model to assure this point. Then we
find the validity of the Lorentzian path-integral method.
It could give the tunneling amplitude, which is also
obtained by solving the WDWequation with an appropriate
boundary condition. Other interesting points found in this
path-integral method are discussed and some speculations
are given.
The outline of this paper is as follows. In the next

section, a gravitational model with SYM theory is given
and the Einstein equations in the FRW space-time are
given. They are solved at large a0ðtÞ, and why quantum
cosmology is necessary at small a0ðtÞ is explained for small
C. In Sec. III, a tractable effective action corrected by SYM
theory is proposed. By using this action, quantum cosmo-
logical solutions at small a0ðtÞ are shown through the
WDWequation in Sec. IVand through the Lorentzian path-
integral method in Sec. V. Summary and discussions are
given in the final section.

II. COSMOLOGY DRIVEN BY CFT

Here we consider a model where the matter part is
dominated by the N ¼ 4 SYM field with the gauge group
SUðNÞ. The four-dimensional action is given as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ24
ðR4 − 2Λ4Þ

�
þ SSYM; ð2:1Þ

where κ24 ≡ 8πG4 and Λ4 denote the four-dimensional
gravitational constant and cosmological constant, respec-
tively. SSYM is the action for the N ¼ 4 SYM theory. After
integrating out all SYM fields under the FRW metric [with
a scale parameter a0ðtÞ], the equation of motion for a0ðtÞ is
obtained by the Einstein equation

Rμν −
1

2
Rgμν þ Λ4gμν ¼ κ24hTSYM

μν i; ð2:2Þ

where hTSYM
μν i represents the vacuum expectation value of

the energy momentum tensor for the SYM field under a
given background metric.
Here, Eq. (2.2) is solved with respect to a0ðtÞ under the

FRW background

ds2ð4Þ ¼ −dt2 þ a0ðtÞ2γijdxidxj; ð2:3Þ

where the three-dimensional metric γij is defined as
follows:

γijðxÞ ¼ δijγ
2ðxÞ; γðxÞ ¼ 1

1þ k r̄2

4r̄02
; r̄2 ¼

X3
i¼1

ðxiÞ2:

ð2:4Þ

Then two independent equations are obtained such that

λ≡
�
_a0
a0

�
2

þ k
a20

¼ Λ4

3
þ κ24

3
hTSYM

00 i; ð2:5Þ

2
ä0
a0

þ
�
_a0
a0

�
2

þ k
a20

¼ Λ4 − κ24hTSYM
ii i: ð2:6Þ

Equation (2.5) is nothing but the tt component of the
Einstein equation, i.e., the Friedmann equation.
From (2.5) and (2.6), we obtain the following continuity

equation for density ρ and pressure p of the SYM fields
[18–21]:

_ρþ 3Hðρþ pÞ ¼ 0; H ≡ _a0
a0

; ð2:7Þ

where the averaged energy-momentum tensor is written in
terms of ρ and p as

hTSYM
μν i ¼ diagðρ; pg0ijÞ; ð2:8Þ

with g0ij ¼ a0ðtÞ2γij [18], and

ρ¼ 3α

�
C
4a40

þ λ2

16

�
; p¼ α

�
C
4a40

−3
λ2

16

�
1þ2_λ

3λ

a0
_a0

��
;

ð2:9Þ

where C denotes the dark radiation density and α is a
certain coupling parameter related to the CFT.
Note here that solving (2.5) and (2.6) is equivalent to

solving (2.5) and (2.7) since (2.7) is derived from (2.5)
and (2.6). On the other hand, (2.7) is satisfied for hTSYM

μν i.
Therefore, it is enough to solve Eq. (2.5) to obtain a0ðtÞ.
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Here, Eq. (2.5) is written by using λ as

λ ¼ Λ4

3
þ α̃2

�
4C
a40

þ λ2
�
; ð2:10Þ

where

α̃2 ¼ κ24
16

α: ð2:11Þ

Then (2.10) is solved with respect to λ as

λ ¼ λ�; ð2:12Þ

where

λ� ≡
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2

�
Λ4

3
þ 4α̃2C

a4
0

�r
2α̃2

: ð2:13Þ

The explicit form of (2.12) is given as2

�
_a0
a0

�
2

þ k
a20

¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2

�
Λ4

3
þ 4α̃2C

a4
0

�r
2α̃2

: ð2:14Þ

When we solve (2.14), we must notice the following
points. At first for finite C, from the reality of this equation,
we find that there is a minimum value of a0 such as

a0 ≥ amin
0 ¼ α̃

�
16C

Λ̃4

�
1=4

; Λ̃4 ¼ 1 − 4α̃2
Λ4

3
: ð2:15Þ

For the case with a0 < amin
0 , we need some improvement of

the gravitational theory. This point remains as an open
problem here. While the solutions a0ðtÞ for λþ and λ− can
be connected at a0 ¼ amin

0 [6], we consider here only the
case with λ−. The reason for this choice is as follows: In the
limit α̃ → 0, it would be natural that λ → Λ4=3. While λþ
diverges, λ− approaches to Λ4=3 in this limit.
It is easy to find a classical solution corresponding to λ−.

From (2.14), the equation to be solved is given by

_a20 ¼ −kþ a20

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2

�
Λ4

3
þ 4α̃2C

a4
0

�r
2α̃2

ð≡ − 2Vða0ÞÞ:
ð2:16Þ

Here we consider the case of Λ4 > 0 and k ¼ 1 (closed
universe). At large a0, we always find the inflationary
solution, i.e.,

a0ðtÞ ∼ exp ðγtÞ; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2 Λ4

3

q
2α̃2

vuut
: ð2:17Þ

Note that the expansion rate or the effective cosmological
constant is suppressed by the quantum effect of the SYM
theory. For small α̃ or for small number of SYM fields, the
factor γ approaches

ffiffiffiffiffiffiffiffiffiffiffi
Λ4=3

p
as expected.

On the other hand, in the small a0 region, we should be
careful of the potential Vða0Þ defined in (2.16). Let us
classify this situation into the following three types.
(a) For 0 ≤ C ≤ 1

4
k2ð1 − 4α̃2 Λ4

3
Þ, the classical solution is

restricted to the region aþ0 < a0, where Vðaþ0 Þ ¼ 0.
Such a behavior is seen for the parameter region 0 ≤
C ≤ 0.24 in Fig. 1.

(b) For 1
4
k2ð1 − 4α̃2 Λ4

3
Þ ≤ C ≤ 16α̃2Λ4

3
k2ð1 − 4α̃2 Λ4

3
Þ, there

appears the potential barrier in the region a0− ≤ a0 ≤
a0þ (see the left panel of Fig. 2). In this region, no
classical solutions are allowed.
In the region amin

0 < a0 < a0− (see the left panel of
Fig. 2 again), there is a classical solution, but the
solution does not provide the inflationary one. On
the other hand, in the region a0 > a0þ, we obtain the
inflationary solution. These two solutions are not
connected to each other at the classical level. But
they can be connected at the quantum level through the
tunneling effect. See the right-hand figure of Fig. 2. In
[7], a new hilltop inflation scenario has been studied
by using the Euclidean time solution (instanton) for
this region.

(c) For C ≥ 16α̃2Λ4

3
k2ð1 − 4α̃2 Λ4

3
Þ, there is no potential

barrier and the classical inflationary solution is ob-
tained for amin

0 < a0.
In the following sections, we consider the time

evolution of the Universe in the small a0 region by
using quantum cosmological approaches.

FIG. 1. Effective potential for Λ4=3 ¼ 1.0, k ¼ 1, α̃2 ¼ 0.01.

2We remember that ð _a0a0Þ
2 þ k

a2
0

¼ λ.
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III. QUANTUM COSMOLOGY AND
EFFECTIVE ACTION

There are two quantum mechanical ways to study the
small a0 region, canonical approach, and path-integral
approach. In any case, we need an effective action that
leads to the classical equations of motion (2.2) for an
appropriate coordinate. It would be impossible to find a
general coordinate invariant form since hTSYM

μν i comes from
the conformal anomaly for the CFT.
However, we could find an effective action that provides

the classical equations of motion, (2.5) and (2.6), written
in the FRWmetric. Namely, when the dynamical variable is
restricted to the scale factor with a lapse function as a
multiplier, it becomes possible to extend the analysis to the
quantum cosmology.
Then we restrict ourselves in minisuperspace. Let us

consider the metric

ds2ð4Þ ¼ −N 2ðtÞdt2 þ a0ðtÞ2γijdxidxj; ð3:1Þ

where N ðtÞ denotes the lapse function. According to the
idea of [4,8], the effective action is written as follows3:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ24
ðR4 − 2Λ4Þ þ Leff

SYM

�

¼ V3

Z
dtN a30

�
1

κ24

�
3

a20

�
−

_a20
N 2

þ k

�
−Λ4

�
þ Leff

SYM

�
;

ð3:2Þ

where

Leff
SYM ¼ −

3N2

32π2

�
4C
a40

þ k2

a40
−
2k
a20

_a20
N 2a20

−
1

3N 4

_a40
a40

�
: ð3:3Þ

The Lagrangian Leff
SYM is determined such that we could

find the Friedmann equation (2.5) from the stationary
condition for N with N ¼ 1 gauge. We should notice
that (2.6) is also found from the variational equation of a0.
In this sense, (3.2) with (3.3) leads to a correct form of
equations of motion to obtain our classical solutions. It is
however difficult to develop an effective quantum theory
based upon the action (3.2) due to the term (3.3). The
situation is similar to the case with higher curvature terms.
Then we consider an alternative effective action that

leads to (2.14) instead of (2.5). It is given as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2κ24
ðR4 − 2ΛeffÞ

¼ V3

Z
dtN a30

1

κ24

�
3

a20

�
−

_a20
N 2

þ k

�
− Λeff

�
; ð3:4Þ

where

Λ�
eff ¼ 3λ� ≡ 3

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2

�
Λ4

3
þ α̃2 4C

a4
0

�r
2α̃2

: ð3:5Þ

This action is useful to perform the canonical formulation.
In fact, from this action, it is easy to obtain the WDW
equation (see Appendix A), which is not written here since
we change the variable from a0 to q ¼ a20.

A. Change of variables

According to [14,15], a0 and N are changed as q ¼ a20
and N → N =a0; then we have

S ¼ V3

κ24

Z
dt

�
−
3_q2

4N
þN ð3k − qΛeffÞ

�
; ð3:6Þ

Λeff ¼ 3

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2

�
Λ4

3
þ α̃2 4C

q2

�r
2α̃2

: ð3:7Þ

FIG. 2. Left: Potential barrier of C ¼ 1.0. Right: Two independent classical solutions for a0ðtÞ.

3Here an appropriate boundary term is abbreviated.
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In this formulation, the WDW equation is given as

�
−ℏ2

∂2

∂q2 þ VðqÞ
�
ΨðqÞ ¼ 0; ð3:8Þ

which is also obtained by changing the variable as q ¼ a20
in (A12). The potential VðqÞ is given by

VeffðqÞ≡ VðqÞ=ð3v23Þ ¼ 3k − qΛeffðqÞ: ð3:9Þ

B. VeffðqÞ and tunneling

As shown in Sec. II, we find similar behavior of the
potential VeffðqÞ to the case of Vða0Þ. The typical potentials
are similar to Fig. 1, so they are abbreviated here.
Here we should notice as mentioned in Sec. II that there

is a lower bound of q for C > 0. It corresponds to anin0 given
in the previous section. The bound is given as

qmin ¼ α̃2
�
16C

Λ̃4

�
1=2

; Λ̃4 ¼ 1 −
4α̃2Λ4

3
: ð3:10Þ

For q < qmin, the potential becomes complex. So we cannot
extend our model in this region. Therefore we concentrate
our analysis on the region q > qmin.
In this allowed region, several types of potentials are

seen depending on the value of C. Hereafter we study the
case shown in Fig. 3. This has two turning points, say q−,
and qþð> q−Þ, in the two classical regions. For very small
C, small sized universes may be made but they soon
disappear into the region of q < qmin where Einstein-
Hilbert action is not available. However some of them
go through the mountain of the potential via a quantum
tunneling effect. From the viewpoint of the inflational
scenario, this quantum jump of a small sized universe gives
us a clue to the initial condition of the inflation.

Then, by using this potential, the tunneling birth of our
Universe can be studied.
In principle, it is possible to calculate the propagator,

Gðq1; q0Þ, where the points q0 and q1 are shown in Fig. 3,
according to the path integral as discussed above in order to
see the tunneling effect. However, it is difficult to find a
saddle point in the complex N plane in the present model.
So we perform the same calculation in terms of solving the
WDW equation given as follows.

IV. WDW EQUATION AND TUNNELING

Considering the potential as shown in Fig. 3, we give the
tunneling amplitude for C > 0 by solving the WDW
equation (3.8). Supposing the form of the wave function
ΨðqÞ is as follows,

ΨðqÞ ¼ AðqÞeiϕðqÞ=ℏ; ð4:1Þ

the WDW equation (3.8) leads to the following equations:

ð∂qϕÞ2 þ 12π4Veff ¼
ℏ2

A
∂2
qA; ð4:2Þ

∂qA∂qϕþ 1

2
A∂2

qϕ ¼ 0: ð4:3Þ

They are solved by expanding ϕ with the power of ℏ.
In the regions of q < q− and qþ < q, the wave functions

Ψ1 and Ψ3 are obtained in the following forms,

Ψ1 ¼
cþffiffiffiffiffiffiffiffiffi
kðqÞp e−iηðq;q−Þ þ c−ffiffiffiffiffiffiffiffiffi

kðqÞp eiηðq;q−Þ; ð4:4Þ

Ψ3 ¼
Dþffiffiffiffiffiffiffiffiffi
kðqÞp e−iηðqþ;qÞ þ D−ffiffiffiffiffiffiffiffiffi

kðqÞp eiηðqþ;qÞ; ð4:5Þ

where both the first terms of Ψ1 and Ψ3 represent the
outgoing (growing) wave, and

kðqÞ ¼
ffiffiffiffiffiffi
jVj

p
=ℏ; ηðq; q−Þ ¼

Z
q−

q
dq0kðq0Þ; ð4:6Þ

where we notice that ηðq; q−Þ ¼ Pðq; q−Þ, which is defined
in the next section to express the Green function Gðq; q−Þ.
We can set various boundary conditions for the solutions

of the wave function Ψq. At first, we concentrate on the
tunneling. In order to see the tunneling amplitude, we
impose the condition D− ¼ 0. Namely, only the outgoing
wave is restricted in the region qþ < q; then we find

Dþ ¼ cþ
.�

1

4
e−ηðq−;qþÞ þ eηðq−;qþÞ

�
: ð4:7Þ

Then we find the tunneling probability

q0 q q q1

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2.0

1.5

1.0

0.5

0.5

1.0

V q

q

FIG. 3. Plots of VeffðqÞ vs q for Λ4 ¼ 3; k ¼ 1; α̃2 ¼ 0.01 and
C ¼ 31.3.

TUNNELING IN QUANTUM COSMOLOGY AND … PHYS. REV. D 97, 066027 (2018)

066027-5



T ≃
				Dþ
cþ

				2 ¼ e−2Pðqþ;q−Þ: ð4:8Þ

We expect that this result could also be found from the
propagator given by the path integral discussed above [14].
In order to understand the role of C, it would be useful to
show the C-dependence of the probability T. It is shown in
the Fig. 4 for three values of Λ4.
On the other hand, for the condition Dþ ¼ −iD−, we

find the relation

cþ ¼ Dþ
2

e−ηðq−;qþÞ: ð4:9Þ
This leads to 				Dþ

cþ

				2 ¼ 4e2Pðqþ;q−Þ: ð4:10Þ

The sign of the exponent of j Dþ
cþ

j2 in this case is opposite to
the tunneling case. This result corresponds to the one
obtained in [17] as the wave function of the WDW
equation.
There are many other conditions, which lead to various

forms of j Dþ
cþ

j2. The point we want to see is how these

solutions of the WDWequation are related to the results of
the path integral. The saddle points given from the effective
action of complex N can be related to the above solutions
of the WDWequation. In order to answer this question, we
consider a simple model that has the properties of the above
holographic model for the C > 0 case.

V. QUANTUM COSMOLOGYWITH LORENTZIAN
PATH INTEGRAL

In the previous section, we considered canonical for-
malism to find the wave function of the Universe by the
WDW equation. In this section, let us consider the path-
integral formalism to get the propagator of the Universe.
The Feynman propagator in minisuperspace is defined

as [14]

Gðq1; q0Þ ¼
Z

∞

0þ
dN

Z
q1

q0

DqeiSðN ;qÞ=ℏ; ð5:1Þ

where q0 ¼ qð0Þ and q1 ¼ qðt1Þ are the initial and final
values of qðtÞ. After integrating over q, we are left with the
integration over N . In order to perform the integration, we
here try to apply the Lefschetz thimble method. In
Appendix C, the detail of this method is shown.
In this method, the original path is extended to the

complex plane,

N ¼ u1 þ iu2; ð5:2Þ
where both u1 ¼ ReðN Þ and u2 ¼ ImðN Þ are real, and the
propagator is evaluated by the saddle-point approximation in
the ℏ → 0 limit. Below we see those examples concretely.

A. The case of C= 0

In this case, the action (3.4) is equivalent to the one with
the Einstein-Hilbert term and a cosmological constant. So,
it has been already studied in [14]. Equation of motion for
qðtÞ and the constraint from (3.6) are

q̈ ¼ 2

3
N 2Λeff ; ð5:3Þ

3_q2

4N 2
þ 3k ¼ qΛeff : ð5:4Þ

The path integral over q becomes Gaussian and is exactly
treated. Then we are left with the integral over N as
follows:

Gðq1; q0Þ ¼
ffiffiffiffiffiffiffi
3πi
2ℏ

r Z
∞

0

dN
N 1=2 e

2π2iSðN Þ; ð5:5Þ

where

SðN Þ¼ 1

36
N 2Λ2

effþ
�
3k−

1

2
ðq0þq1Þ

�
N −

3

4N
ðq1−q0Þ2:

ð5:6Þ

The action (5.6) has four saddle points in the complexN
plane. If we choose, for instance, k ¼ 1;Λeff ¼ 3; q0 ¼ 0,
and q1 ¼ 10, those points lie at ð3; iÞ; ð3;−iÞ; ð−3; iÞ, and
ð−3;−iÞ. Then, by using the thimble decomposition (as
described in Appendix C), it is found that the original
contour is deformed to the Lefschetz thimble J1 so that
only one saddle N 1 ¼ ð3; iÞ contributes to the integral
(see Fig. 5).
Here we notice that the authors of Ref. [14] have shown

that the tunneling probability from q0 to q1 is precisely
obtained by the propagator Gðq1; q0Þ, which could repro-
duce the correct boundary condition of the tunneling.

FIG. 4. The C dependence of the tunneling probability T for
different values of Λ4.
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According to this observation, the propagator obtained in
this way is interpreted as the tunneling probability factor
when the initial value q0 is in the quantum region and the
final point is at the zero point of Veff . It is given by

Gðq1; q0Þ ∝ e−2Pðq1;q0Þ; ð5:7Þ
where

Pðq1; q0Þ ¼
v3
ℏ

Z
q1

q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vð0Þ

eff ðqÞ
q

dq;

Vð0Þ
eff ðqÞ ¼ 3k − qΛðC¼0Þ

eff ðqÞ: ð5:8Þ

Here the oscillating part is abbreviated. This term precisely
denotes the tunneling probability found in the Wentzel-
Kramers-Brillouin approximation of the WDWequation in
the previous section.
Here is a comment. In this case, we find another three

saddle points that do not contribute to the integration.
However, they might affect in some case where the
integration path is defined in a different way [17].
The tunneling factor (5.8) appears whenever either q0 or

q1 is in the quantum region. So the Lefschetz thimble
method is useful to study quantum cosmology and it is
equivalent to solve the WDW equation under appropriate
boundary conditions.

B. The case of C ≠ 0

It is difficult to perform the path integral for the potential
VeffðqÞ with C ≠ 0 due to a complicated q dependence of
VeffðqÞ. Then let us consider the following action, that is,

S¼ v3

Z
dt

�
−
3_q2

4N
þN ð3k−μðqc−qÞ2−βÞ

�
ðμ> 0Þ:

ð5:9Þ

Here the original VeffðqÞ defined by (3.9) is approximated
by a quadratic form near its maximum point, qc.
By doing this, one can study the model analytically

without losing characteristic properties of the original
model within the approximation mentioned above. Then
we use the following potential Vsim (see Fig. 6),

Vsim ≡ 3k − μðqc − qÞ2 − β; ð5:10Þ

where μ and β are constant parameters. Hereafter we
discuss the case of β ¼ 0.
Equation of motion for q is easily solved as

q ¼ qc þ aþe
N
t0
t þ a−e

−N
t0
t; t0 ≡

ffiffiffiffiffi
3

4μ

s
: ð5:11Þ

The coefficients a� are determined through the boundary
conditions, qð0Þ ¼ q0 and qð1Þ ¼ q1,

aþ ¼ −
q̃0e

−N
t0 − q̃1

2 sinhðNt0 Þ
; ð5:12Þ

a− ¼ q̃0e
N
t0 − q̃1

2 sinhðNt0 Þ
; ð5:13Þ

q̃i ≡ qi − qc: ð5:14Þ

By substituting these coefficients into (5.9), we get

N1

J1

J1

K1

K1

2 4 6 8
u1

2

4

6

8

10

u 2

FIG. 5. Plots of Lefschetz thimble J1 (the steepest descent) and
K1 (the steepest ascent) for the saddle N 1 ¼ ð3; iÞ, where
Λeff ¼ 3, k ¼ 1, q0 ¼ 0, q1 ¼ 10.

q qc q

0.5 1.0 1.5 2.0

4

2

2

V q

q

FIG. 6. Plots of Vsim ¼ VðqÞ, the simplified model (5.10), for
qc ¼ 1, μ ¼ 8, and k ¼ 1. q� denote the zero points of VðqÞ.
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Sð0Þsim¼ v3μt0

�
3kN
μt0

−
ðq̃21þ q̃20ÞcoshðNt0 Þ−2q̃1q̃0

sinhðNt0 Þ

�
: ð5:15Þ

From the stationary condition δSð0Þsim=δN ¼ 0, we find two
saddle points, say N �,

N � ¼ t0cosh−1
�
μ

3k

�
q̃0q̃1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q̃20 −

3k
μ

��
q̃21 −

3k
μ

�s ��
:

ð5:16Þ

In order to solve (5.16), we parametrize N in the polar
coordinate ðr; θÞ,

e
N
t0 ¼ reiθ or N ¼ ðlog rþ iθÞt0: ð5:17Þ

Then (5.16) can be rewritten in terms of r and θ,

cosh

�
N
t0

�
¼ 1

2


�
rþ 1

r

�
cosθþ i

�
r−

1

r

�
sinθ

�

¼Q0Q1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2

0 − 1ÞðQ2
1 − 1Þ

q
≡X�; ð5:18Þ

where

Q0 ¼
q̃0
jq̃�j

; Q1 ¼
q̃1
jq̃�j

; q̃� ¼ �
ffiffiffiffiffi
3k
μ

s
: ð5:19Þ

Note that q̃� denote the 0’s of the potential term Vsim
defined by (5.10).

1. Tunneling

Let us consider a situation in which q0 and q1 are put on
the opposite side of the hill of the potential (see Fig. 7). The

transition from q0 to q1 is realized by the quantum
tunneling.
In this case, since Q0 < −1 andQ1 > 1, X� in (5.18) are

real and satisfy an inequalityX−<Xþ<−1. Then we obtain

X� ¼ −
1

2

�
r� þ 1

r�

�
ð< −1Þ; ð5:20Þ

θ ¼ �ð2nþ 1Þπ; n ¼ 0;�1;�2;… ð5:21Þ

From this,we find twovalues of r, at r�l > 1 and r�s < 1, for
X�. So there are eight saddle points for one jθj in the complex
N plane. In Fig. 8, saddle points forn ¼ 0with some specific
parameters are shown.
We should notice that there are no realN solutions in the

present case. This implies that the path connecting q0 and
q1 represents a quantum process.
For the saddle points with θ ¼ πðn ¼ 0Þ and r ¼ r�s,

the action is evaluated as

Re



2π2

ℏ
iS0

�
¼−

2π2

ℏ
3πt0¼−

3
ffiffiffi
3

p
π3ffiffiffi

μ
p

ℏ

¼−
ffiffiffiffiffi
12

p
π2

ℏ

Z
q̃þ

q̃−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k−μq̃2

q
dq̃¼−Pðq̃þ; q̃−Þ:

ð5:22Þ

Then the factor e−Pðq̃þ;q̃−Þ corresponds to the tunneling
amplitude.
As for the above solution, the propagator has a slightly

different phase from the one of r ¼ r�s. This implies that
this solution corresponds to the propagator traveling a
slightly long path in the classical region 0 < q < q−.
The propagator is calculated by integrating the rhs of

(5.1) over q, and the integration path ofN is deformed to a
curve in the first quadrant of the complex N plane. In the

q0

0.5 1.0 1.5 2.0

4

2

2

q
q1

V q

FIG. 7. Plots of the typical position of q0 and q1 for the
tunneling process are shown with Vsim ¼ VðqÞ, the simplified
model (5.10) shown in Fig. 6.

Np Nm

2 1 1 2
Re N t0

4

2

2

4

Im N t0

FIG. 8. Plots of the saddle point of N for the simplified model.
Here the case of θ¼π, q̃0 ¼ −q̃þð1þ 0.2Þ, and q̃1 ¼ q̃þð1þ0.5Þ
is shown.

GHOROKU, NAKANO, TACHIBANA, and TOYODA PHYS. REV. D 97, 066027 (2018)

066027-8



method of the Lefschetz thimble, the curved path contains

some steepest descent flows of Re½iSð0ÞminðN Þ�. As shown in
Fig. 9, there are two possible saddle points each of
which connects to the origin N ¼ 0 through a steepest

descent flow (a Lefschetz thimble). One is N ðn¼0Þ
p ¼

ð− cosh−1ð−Q0Þ þ cosh−1Q1 þ iπÞt0 in the N p series

and another is N ðn¼0Þ
m ¼ðcosh−1ð−Q0Þþcosh−1Q1þiπÞt0

in the N m series.
The thimble that passes the former saddle point N ðn¼0Þ

p

connects to the singular point at N ¼ iðπ þ 0Þt0, and is
terminated there. This means that the thimble attached to
this saddle point is irrelevant to the present method. On the
other hand, the thimble that passes the latter saddle point

N ðn¼0Þ
m does not reach any singular point before the next

saddle pointN ðn¼1Þ
m ¼ðcosh−1ð−Q0Þþ cosh−1Q1þ3iπÞt0.

This thimble is shown as the set of JL1 and JR1 in Fig. 9 and
also in the left panel of Fig. 10. Furthermore, its dual
thimble (the steepest ascent flow) intersects the real axis of
the complex N plane. Therefore, the relevant path should

run from the origin toward the saddle point N ðn¼0Þ
m . Now,

the Lefschetz thimbles are obtained as the flow lines
emanating from the saddle points of the N m series, as
shown in the left of Fig. 10.
However, the situation is somewhat complicated because

of the degeneracy between the flow lines Ji and Kiþ1.
4 To

find the appropriate path over the saddle point N ðn¼1Þ
m , one

may try to provide a perturbation term to the original action
(5.15), for example, ΔS0 ¼ iN =100. Actually, ΔS0
removes the degeneracy as depicted by the right panel
of Fig. 10. Finally, setting ΔS0 ¼ 0 again, one finds a
unique path as JL1 → JR1 → KR

2 → JR2 → � � �, where only

the first saddle point N ðn¼0Þ
m dominates the integration.

Tunneling probability via steepest descent method.—The
tunneling probability is estimated by using the propagator
(5.1), and in the simplified model the amplitude is
reduced to

Gðq1; q0Þ ¼
Z

∞

0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3i=2t0

2π sinhðNt0 Þ

s
eiS

ð0Þ
simðN ÞdN ð5:23Þ

after integrating over q.
As mentioned above, Gðq1; q0Þ is approximately evalu-

ated by the main contribution of the saddle point at

N 0 ≡N ðn¼0Þ
m ¼ ðcosh−1ð−Q0Þ þ cosh−1Q1 þ iπÞt0;

ð5:24Þ

which is the joint of JL1 and JR1 . Then, the amplitude (5.23)
is calculated as follows:

Gðq1; q0Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3i=2t0

2π sinhðNt0 Þ

s
eiReS

ð0Þ
simðN 0Þ

Z
JL
1
þJR

1

e−ImSð0ÞsimðN ÞdN ð5:25Þ

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3i=2t0

2π sinhðNt0 Þ

s
eiReS

ð0Þ
simðN 0Þ

Z
∞

−∞
e−ImSð0ÞsimðN 0Þ−1

2
jSð0Þsim

00ðN 0Þjν2eiθ0dν ð5:26Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3i=2t0

2π sinhðNt0 Þ

s
eiðReS

ð0Þ
simðN 0Þþθ0Þe−ImSð0ÞsimðN 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

jSð0Þsim
00ðN 0Þj

s
; ð5:27Þ

O

2π

4π

−2π

Re(N ⁄ t0)

Im(N ⁄ t0)

saddle point
−∞
+∞

Ji

Ki

J1
L

J1
R

FIG. 9. A sketch of the thimbles: Because of the degeneracy
between steepest descent and ascent flows (thimbles and dual
thimbles), it is not possible to classify the flow segments,
definitely. For each saddle point on the relevant integration path,
a neighboring segment of a steepest descent flow is labeled with
Ji and one of a steepest ascent flow is labeled with Ki.

4Here we consider that the suffix is identified with n ¼ i.
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where θ0 is the incident angle of the thimble JL1 into the point N 0 in the complex N plane. The angle θ0 is determined by

tan θ0 ¼
ReSð0Þsim

00ðN 0Þ
jSð0Þsim

00ðN 0Þj þ ImSð0Þsim
00ðN 0Þ

¼ jSð0Þsim
00ðN 0Þj − ImSð0Þsim

00ðN 0Þ
ReSð0Þsim

00ðN 0Þ
: ð5:28Þ

Since it holds that

Sð0Þsim
00ðN Þ ¼ 3v3k

t0
Fð2Þ

�
N
t0

�
ð5:29Þ

with

Fð2Þ
�
N
t0

�
¼



2Q0Q1cosh2ðNt0 Þ − 2ðQ2

0 þQ2
1Þ coshðNt0 Þ þ 2Q0Q1

sinh3ðNt0 Þ

�
; ð5:30Þ

the second order derivative Sð0Þsim
00ðN Þ satisfies that

ReSð0Þsim
00ðN 0Þ > 0; ImSð0Þsim

00ðN 0Þ ¼ 0: ð5:31Þ

Therefore, the angle θ0 is found to be π
4
.

Now, the absolute value of the tunneling amplitude is
given by

jGðq1;q0Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2t0

jsinhðNt0 ÞS
ð0Þ
sim

00ðN 0Þj

vuut e−ImSð0ÞsimðN 0Þ ð5:32Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2v3kj sinhðNt0 ÞFð2ÞðNt0 Þj

s
e−ImSð0ÞsimðN 0Þ; ð5:33Þ

in which the factor j sinhðN 0=t0ÞFð2ÞðN 0=t0Þj is a certain
function of Q0 and Q1, and

−ImSð0ÞsimðN 0Þ ¼ −3kv3t0π: ð5:34Þ

Wecan see ImSð0ÞsimðN 0Þ ¼ Pðqþ; q−Þ, wherePðqþ; q−Þ is
defined by (4.6) in Sec. IV when V is replaced by the
simplified potential Vsim used in the present section. This
implies that the result obtained here reproduces the tunneling
probability e−2Pðqþ;q−Þ given in Sec. IV. From Eq. (5.33), it is
found that jGðq1; q0Þj2 depends on t0 such as

jGðq1; q0Þj2 ∝ e−6kv3t0π: ð5:35Þ

J1
R

J1
L K1

R

K1
L

J2
R

J2
L K2

R

K2
L

1 2 3 4

2
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12

J1

J1 K1

K1

1 2 3 4
u1

5
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15

20

25
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u1

FIG. 10. Left: Plots of the Lefschetz thimbles for N m of the simplified model. Here the case of θ ¼ π, q̃0 ¼ −q̃þð1þ 0.2Þ, and
q̃1 ¼ q̃þð1þ 0.5Þ is shown. Right: The thimbles corresponding to the first saddle of N m series or an integral path when a perturbation
ΔS0 ¼ iN =100 is included.
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2. Saddles for periodic Euclidean solution

In the previous subsection, we considered the saddle-
point contribution from the n ¼ 0 sector. Then a natural
question arises: What is the meaning of other infinite series
of the saddle points for n ≥ 1? We could answer the
question by considering the “instanton” [7]. In [7], the
authors have found a periodic Euclidean solution of
the Friedmann equation regarded as an instanton one,
which oscillates between q− and qþ.
In the following, let us estimate the instanton contribu-

tion by using the Euclidean path-integral formalism. In our
simplified model with Vsim, equations of motion for q in the
Euclidean time τ are given by�∂q

∂τ
�

2

¼ −
4

3
μðq − qcÞ2 þ 4k: ð5:36Þ

Then the solution is easily obtained as

qI ¼
ffiffiffi
3

μ

s
sin

� ffiffiffiffiffi
4μ

3

r �
þ q0 ¼ 2t0 sin

�
τ

t0

�
þ q0: ð5:37Þ

The period of the solution, T0, becomes

T0 ¼ 2πt0 ¼ π

ffiffiffi
3

μ

s
: ð5:38Þ

Then we get the Euclidean action for the instanton solution,

SE0 ¼ iv3

Z
T0

0

dτ

�
3

4
_q2 þ 3k − μðq − qcÞ2

�
ð5:39Þ

¼ iv3 × 3T0: ð5:40Þ

Therefore, we find

Re



2π2

ℏ
iSE0

�
¼ −

2π2

ℏ
6πt0 ¼ −

6
ffiffiffi
3

p
π3ffiffiffi

μ
p

ℏ
¼ −2Pðq̃þ; q̃−Þ:

ð5:41Þ

On the other hand, for the saddle-point solutions
corresponding to (5.21), we have

Re



2π2

ℏ
iS0

�
¼ −ð2nþ 1ÞPðq̃þ; q̃−Þ: ð5:42Þ

From this result, we could say that the saddle contribution
with n ≥ 1 represents that from n instantons. They are
exponentially suppressed compared to the leading n ¼ 0
contribution. These saddle points for n ≥ 1, however, do
not contribute as saddles in the integral given above to
evaluate the propagator due to the path that is chosen as the
Lefschetz thimble of the n ¼ 0 saddle point.

VI. SUMMARY AND DISCUSSIONS

In this paper, cosmology driven by SYM theory is
studied in the FRW space-time. Here all the SYM fields
are integrated out and the vacuum expectation value of their
energy-momentum tensor hTSYM

μν i is given by holographic
method. Based on the equations of motion with this
hTSYM

μν i, we introduced a new simple effective action that
could reproduce the equations of motion of the theory.
The SYM theory provides two kinds of terms in the

action, the loop correction term and a radiation term. The
gravitational part includes the four-dimensional cosmo-
logical constant Λ4. The value of Λ4 is restricted to be
positive in order to realize the inflationary universe at large
scale factor a0. In the present case, however, it is not
completely free. When SYM theory is included, Λ4 is
bounded from above, so the expansion rate at large a0 is
modified by the loop correction of the SYM fields.
In the region of small a0, the radiation plays an important

role. Although the magnitude of the radiation is arbitrary,
there appears a lower bound of a0. Further, a small scale
universe with the radiation could be born and appear at
large a0 after a quantum tunneling. Here, this phenomenon
is studied through two quantum cosmological methods for
minisuperspace of gravity.
One is to solve the WDW equation. Here the WDW

equation is easily given by considering our effective action
introduced as mentioned above. In this sense, our effective
action is very useful to study the quantum mechanics of the
theory. The tunneling probability is calculated by imposing
an appropriate boundary condition at large a0 for both cases
of C ¼ 0 and C > 0.
The other is to calculate the same quantity by the

Lorentzian path integral according to the method proposed
by [14]. This method is useful when the radiation is absent.
The result coincides with the solution of theWDWequation.
On the other hand, it is difficult to proceed with the

calculation in terms of the effective action used for the
WDWequation when the radiation exists. So we consider a
simplified model in which the potential in the WDW
equation is approximated by the harmonic form. In this
case, we could show a Lefschetz thimble as the unique path
for the tunneling propagator. The calculation is performed
according to the steepest descent method, and the result
coincides with the solution of the WDW equation with
the same harmonic potential. We should notice that, for the
harmonic potential, we have many saddle points in the
complex lapse N plane. However, the path, which con-
tributes to the Lorentzian path integral, has only one saddle
that corresponds to the tunneling.
Although, here, we concentrated on the tunneling

amplitude, there are other kinds of propagators whose
initial and final values of a0 are different from those of the
tunneling case. The situation also depends on the form of
potential. It is characterized by the radiation and Λ4. We
will discuss in the future such various kinds of propagators.
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APPENDIX A: THE WHEELER-DEWITT
EQUATION

At first, we give the Wheeler-DeWitt equation used to
obtain the wave function of the Universe. (3.4) is written as

S ¼
Z

dtL; ðA1Þ

L ¼ Na30

�
3

a20

�
−

_a20
N 2

þ k

�
− Λeff

�
v3; v3 ¼

V3

κ24
;

ðA2Þ

where

Λeff ¼ 3λ− ¼ 3
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α̃2ðΛ4

3
þ α̃2 4C

a4
0

Þ
q

2α̃2
; ðA3Þ

pa ¼
∂L
∂ _a0 ¼ −

6

N
a0 _a0v3: ðA4Þ

Then

H ¼ pa _a0 − L ðA5Þ

¼ −
N

12a0v3

�
p2
a þ 12a40v

2
3

�
3

a20
k − Λeff

��
ðA6Þ

¼ N Ĥ; ðA7Þ

where

Ĥ ¼ −
1

12a0v3

�
p2
a þ 12a40v

2
3

�
3

a20
k − Λeff

��
: ðA8Þ

Then we have

S ¼
Z

dtðpa _a0 −N ĤÞ: ðA9Þ

This indicates that the lapse function N is a Lagrange
multiplier providing the constraint

Ĥ ¼ 0: ðA10Þ

This is written as a quantized form by using

pa → −i
∂
∂a0 ðA11Þ

as

�
−

∂2

∂a20 þ 12a20v
2
3ð3k − a20ΛeffÞ

�
Ψða0Þ ¼ 0: ðA12Þ

This equation could be applied to the region where a
classical solution for a0ðtÞ is forbidden. Below, by chang-
ing the variable in this equation, we show some numerical
results for the tunneling process under appropriate boun-
dary conditions.

APPENDIX B: DERIVATION OF EQ. (3.3)

The result (3.3) is obtained as follows by assuming the
form of Leff

SYM as

Leff
SYM ¼ h0ða0Þ þ

_a20
N 2

h2ða0Þ þ
_a40
N 4

h4ða0Þ: ðB1Þ

This form would be supported by the analyticity and
g0i ¼ 0 gauge (3.1). By substituting this into (3.2), we
find from δS=δN ¼ 0,

�
1

κ24

�
3a0

�
_a20
N 2

þ k

�
− a30Λ4

�

þ a30

�
h0 −

_a20
N 2

h2 − 3
_a40
N 4

h4

��
δN ¼ 0: ðB2Þ

This is compared with (2.5) for N ¼ 1 gauge,

λ≡
�
_a0
a0

�
2

þ k
a20

¼ Λ4

3
þ κ24

3
hTSYM

00 i; ðB3Þ

where

TSYM
00 ¼ ρ ¼ 3α

16

�
4C
a40

þ λ2
�
; λ ¼ _a20

a20
þ k
a20

: ðB4Þ

Then we have

h0 ¼ −
3α

16

�
4C
a40

þ k2

a40

�
; ðB5Þ

h2 ¼
3α

8

k
a40

; ðB6Þ

h4 ¼
α

16

1

a40
: ðB7Þ

Plugging this into (B1) we find (3.3), which is expressed
for general N .
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APPENDIX C: PICARD-LEFSCHETZ METHOD

In this appendix, let us introduce the Picard-Lefschetz
method.5 In the path-integral formalism, the partition
function is defined by

Z ¼
Z
M

dΦ exp ðF ðΦÞ=ℏÞ; ðC1Þ

where M is the target space of parameters Φ. Since this
integral is, in general, a multidimensional oscillatory
integral, we need a technique to consider about it. Here
we use the Lefschetz-thimble method [23,24].
The basic idea is to deform the integration contour M

into steepest descent cycles inside its complexified space
MC by using the Cauchy theorem when F is holomorphic.
We denote the holomorphic coordinate of MC as
Φ ¼ ðz1;…; znÞ, and the set of saddle points as

Σ ¼ fzσg ≔
�∂F
∂zi ¼ 0

�
: ðC2Þ

Using the Kähler metric on MC, ds2 ¼ gij̄dz
i ⊗ dzj, we

define the gradient flow by

dzi

dt
¼ gij̄

�∂F̄
∂zj

�
: ðC3Þ

As an important property of this differential equation, we
have

dF
dt

¼ j∂F j2 ≥ 0: ðC4Þ

Therefore, along the flow line, the real part of the free
energy increases while its imaginary part stays constant.
This means that we can define the steepest descent and
ascent cycles associated with each saddle point zσ by this
gradient flow. Using solutions of the gradient flow zðtÞ,
they are defined as

J σ ¼ fzð0ÞjzðtÞ → zσ; t → −∞g;
Kσ ¼ fzð0ÞjzðtÞ → zσ; t → þ∞g: ðC5Þ

These are called Lefschetz thimbles and dual thimbles.
They are dual quantities in terms of the intersection pairing
h·; ·i, i.e., hJ σ;Kτi ¼ δστ, which means that one can
decompose M in terms of J σ asZ
M
dΦexpðF ðΦÞ=ℏÞ¼

X
σ∈Σ

hM;Kσi
Z
J σ

dnzexpðF ðΦÞ=ℏÞ:

ðC6Þ

If all ReðF ðΦσÞÞ are different from each other in the limit
ℏ → 0, we replace the integral by the saddle-point approxi-
mation. Then we obtain at the leading order that

Z ¼
X
σ

hM;Kσi exp ðF ðzσÞ=ℏÞ: ðC7Þ

We can summarize the necessary steps of the mean-field
approximation with the sign problem as follows:
(1) Complexify the target space M to MC, and find

the saddle points zσ by solving the equation ∂F ¼ 0
in MC.

(2) Solve the gradient flow (C3), and construct
Lefschetz thimbles J σ and dual thimbles Kσ .

(3) Pick up the saddle point zσ that has the minimal
free energy ReðF ðzσÞÞ with nonzero intersection
number hM;Kσi.
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