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Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended
nature of strings. Here we propose a definition for bosonic open strings using the framework of string field
theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen
inside a Cauchy surface in the “space of open string configurations.” We first present a simple calculation
of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the
factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of
view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations
of the string, and further show that the full string theory regulates ultraviolet divergences in the
entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the
covariant phase-space associated with a subregion in Witten’s covariant string field theory. We show that
the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut.
Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge
modes localized at the entanglement cut.
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I. INTRODUCTION

In this paper, we consider the following question: how
does one define entanglement entropy for spatial sub-
regions of the target space in string theory? In ordinary
quantum field theory, the entanglement entropy of a
subregion inside a spatial slice is defined as the von
Neumann entropy of the reduced density matrix on the
subregion. However, this definition exploits the inherent
locality in the Hilbert space of a “standard” quantum field
theory, namely the fact that we can (at least in some lattice
approximation) associate independent physical d.o.f. to
different points on a given Cauchy surface in spacetime.1;
On the other hand, string theory describes fundamentally
extended objects, and thus spacetime locality in the sense
described above cannot be expected (except in an effec-
tive, low-energy sense). This tension between the non-
locality of strings and the requirement of locality for a

conventional definition of entanglement entropy for spa-
tial subregions is the fundamental obstacle which forbids a
straightforward definition. Previous attempts at comput-
ing entanglement entropy in string theory have focussed
on using the replica trick as a prescription [1–6], and the
resulting quantity is often referred to as the conical
entropy. This is not entirely satisfactory because it
involves studying the perturbative string partition function
on an off-shell background involving a conical singularity
at the entanglement cut. Nevertheless, these calculations
have yielded interesting insights; for instance, [1] argued
in the context of black hole entropy in closed string theory
that the sphere diagram straddling the horizon gives the
“classical” Bekenstein-Hawking entropy. The authors
further interpreted this diagram as counting the states
of open strings ending on the horizon, thus leading to a
microscopic picture for the classical black hole entropy in
terms of open strings ending on the horizon. This picture
was recently explored further in the context of the string
theory dual to large N 2d Yang-Mills in [7]. In a separate
recent development, [4–6] computed the one-loop entan-
glement entropy across a Rindler horizon and argued for
the UV finiteness of the entropy in closed superstring
theory:

SEE ¼ s
A⊥
α04

þ � � � ; ð1Þ
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1More precisely, by locality here we mean that the total Hilbert
space can be expressed as a tensor product HΣ ¼⊗x∈Σ Hx of
Hilbert spaces associated with individual points x in a Cauchy
surface Σ.
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where s is a dimensionless, Oð1Þ constant. However, it
would be nice to have an independent definition of
entanglement entropy in string theory not relying on
the replica trick.
Before moving to strings, let us briefly revisit the

setup for studying entanglement in conventional theories
of point particles. In this case, it is convenient to use the
quantum field theory description instead of the “first-
quantized” worldline description. That is, instead of using
the worldline variables (the position and intrinsic metric
XμðτÞ; gττðτÞ), one switches over the to the quantum field
operator

ΦðXμÞ;

which is an operator-valued function on the target space-
timeM. One then picks a Cauchy surface Σ inM, which for
simplicity we can choose to be X0 ¼ 0. Since operators
separated along Σ commute, one can think of the operators
at each point on Σ as independent. In studying the spatial
entanglement structure of a state, one then partitions Σ into
two (or more) regions, and computes the reduced density
matrix on a given subregion, which corresponds to tracing
out all the operators outside the region of interest.
Now we wish to follow the same line of thought for

string theory. For simplicity, we will consider bosonic open
string theory on Minkowski spacetime M ¼ R1;25, but we
expect that our setup can straightforwardly be generalized
to superstrings, and even to closed strings at some level.
Following the logic outlined above, we wish to pass from
the world sheet description to a “field theory” description.
Naturally, since string theory describes strings as opposed
to point particles, the corresponding string field operatorΦ
is an operator-valued function not on the target spacetime
M, but on “the space of all open strings in spacetime”

Φ½XμðσÞ�;

where as mentioned above, Xμ∶½0; π� → M is an open string
configuration inM.Wewill call this “space of all open strings
in spacetime” Mopen. (If we were considering closed string
theory, then Mclosed would be the loop space of M.) More
precisely, the string fields also depend on ghost-configura-
tions, but since wewill not be interested in entanglement cuts
along anticommuting directions, we suppress them for now.
We can be a little more explicit about Mopen by mode-
expanding the open-string configuration

XμðσÞ ¼ Xμ
0 þ

X∞
n¼1

2Xμ
n cosðnσÞ; ð2Þ

and treating the coefficientsXμ
n as coordinates onMopen. The

next step is to pick a Cauchy surface S insideMopen. We can
choose S, for instance, to be the surface consisting of open
strings with the time component of the center of mass

coordinate X0
0 fixed, or somewhat more generally tμX

μ
0 fixed,

where tμ is a timelike vector.2 The phase space of the theory
can then be established by constructing a symplectic form on
S [9]. From standard reasoning, string-fields at different
points on S commute

½Φ½XμðσÞ�;Φ½YμðσÞ�� ¼ 0; Xμ; Yμ ∈ S: ð3Þ

Equivalently, we can think of string field operators at different
points on S as being independent d.o.f. In order to study the
entanglement properties of the vacuum in this theory, we can
partition the surface S into subregions. Note that this is very
different from the situation in ordinary field theory—here we
are required to partition not a Cauchy surface Σ in the target
spacetime M, but instead an infinite-dimensional surface S
in the space of open string configurationsMopen. A partition
of Σ of course does not extend to a partition of S in a unique
way—indeed given a subregion R ⊂ Σ, there are many ways
to extend this to a subregion R ⊂ S, and the results of our
computations will depend on the choice of extension. One
natural choice from the spacetime point of view is to extend
the subregion as follows (see Fig. 1):

R ¼ fXμðσÞ ∈ SjXμ
0 ∈ Rg: ð4Þ

R consists of all strings with their center-of-mass inside the
spacetime regionR; this does notmean that the entire string is
contained in R. In particular, R includes strings which
straddle the entanglement cut ∂R from a spacetime point
of view. (Of course, another interestingpossibility is to choose

FIG. 1. (Left) From a spacetime point of view, we’re interested
in the d.o.f. inside a subregion R of the Cauchy Surface S.
However, in string theory we can have strings which either lie in
R (blue), or straddle the cut ∂R (violet), or lie outside R (red).
(Right) In string field theory, we get around this issue by
considering a subregion R inside the space of open string
configurations. One natural choice of the subregion is the trivial
extension of R along the stringy directions Xμ

n>0; the open string
configurations from the left panel are displayed as points.

2Another natural choice in Witten’s cubic string field theory
[8] is to consider the space of all open strings with the midpoint
time coordinate fixed, i.e., tμXμðπ=2Þ ¼ 0. More on this in later
sections.
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R such that the entire string is contained insideR, but wewill
not attempt this here; wewill briefly return to this point in the
Discussion.) In any case, oncewe choose the subregionR, the
reduced density matrix over R, and subsequently the entan-
glement entropy, can be defined and computed in the standard
way, much like in conventional quantum field theory. So
string field theory provides a potentially feasible and well-
defined way to study the entanglement structure of the
vacuum in string theory. In this paper, we wish to take the
first steps in this direction.
The rest of the paper is organized as follows. In Sec. II, we

will compute the entanglement entropy (following the
definition explained above) in free string field theory
(gs → 0) in the light-cone gauge. In this computation we
will ignore subtleties associated with the factorization of the
Hilbert space. This will serve mainly as a sanity check on our
proposed definition, as we will show that the entanglement
entropy agrees with the expected answer from a spacetime
effective field theory point of view. Then, in Sec. III, we will
recall that string field theory has a gauge symmetry which
interferes with factorization of the Hilbert space on
S ⊂ Mopen. We will address this issue by analyzing the
covariant phase space corresponding to a subregion in
covariant string field theory (again in the free limit),
following the framework of Donnelly and Friedel [10].
We will show that BRST exact modes in string field theory
become dynamical at the entanglement cut, much like in
conventional gauge field theories where edge modes appear
in the computation of entanglement entropy.

II. ENTANGLEMENT ENTROPY
IN LIGHT-CONE GAUGE

In this section, we will consider free bsosonic, open
string field theory (OSFT) in D ¼ 26 spacetime dimen-
sions. We will use the light-cone gauge for OSFT following
[11–15] in our analysis; see also [16] which studies
covariant string field theory in Rindler space.3 We will
consider a half-space R in spacetime, and the correspond-
ing extension R (as in equation (4) to the space of all open
strings. The computation in this section is a simplified
version of the full story, because it ignores the lack of
factorization of the OSFT Hilbert space, an issue that we
will address in the next section.
We choose light-cone coordinates:

X� ¼ X0 � XD−1 ð5Þ
in terms of which the metric of Minkowski spacetime is

ds2 ¼ −dXþdX− þ dX⃗idX⃗i: ð6Þ

In the light cone gauge, we fix Xþ to be σ-independent:

XþðσÞ ¼ xþ ð7Þ
X−ðσÞ ¼ x−0 þ � � � ð8Þ

X⃗iðσÞ ¼ xi0 þ
X∞
l¼1

2xil cosðlσÞ: ð9Þ

where the � � � denote oscillator modes along the− direction,
which get fixed in terms of the remaining modes by
the constraint that the world sheet stress tensor vanishes.
The string field takes the form Φ½xþ; x−0 ; X⃗iðσÞ�, with an
equation of motion

−2
∂2Φ

∂xþ∂x−0 ¼
Z

π

0

dσ

�
−

δ2

δX⃗2ðσÞ þ ∂σX⃗
2ðσÞ

�
Φ: ð10Þ

where we have set α0 ¼ 1. We can write equivalently this in
terms of the following action

S0 ¼
1

2

Z
dxþdx−0

Z
½dX⃗ðσÞ�

�
2Φ

∂2

∂xþ∂x−0 Φ

þΦ
Z

π

0

dσ

�
−

δ2

δX⃗2ðσÞ þ ∂σX⃗
2ðσÞ

�
Φ
�
: ð11Þ

It seems natural to quantize this system on the xþ ¼ 0
surface, i.e. by treating xþ as time. However, light-front
quantization is fairly subtle, because if we want to regard
xþ as time, then the Lagrangian is first order in ∂þΦ [17].
Consequently, it is not consistent to think of Φ and Π ∼
∂−Φ as independent operators. In other words, light-front
quantization amounts to quantizing a constrained system,
and one has to use Dirac brackets. In order to avoid these
complications, we will follow a different approach and
define new coordinates

x− → x−; xþ → xþ þ 1

2
εx− ð12Þ

In terms of these coordinates, the action becomes

S0¼
1

2

Z
dxþdx−0

Z
½dX⃗ðσÞ�

�
Φ
�
2

∂2

∂xþ∂x−0 þε
∂2

∂xþ∂xþ
�
Φ

þΦ
Z

π

0

dσ

�
−

δ2

δX⃗2ðσÞþ∂σX⃗
2ðσÞ

�
Φ
�
: ð13Þ

Now the action is quadratic in ∂þΦ (after integration by
parts), and we can quantize this system canonically. The
conjugate momentum is

Π ¼ ∂−Φþ ε∂þΦ: ð14Þ

We can expand the string field operator in terms of
solutions to the equation of motion derived from the above
action. This gives

3The approach in [16] is similar in spirit to our calculations in
Sec. II. We thank Thomas Mertens for bringing [16] to our
attention, after the first version of our paper was uploaded to the
arXiv.
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Φ½xþ; x−0 ; X⃗ðσÞ� ¼
Z

dD−2p⃗
ð2πÞD−2

Z
∞

−∞

dpþ

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpþ þ εp−Þp X

fn⃗lg

�
apþ;p⃗;fn⃗lge

−iðpþx−
0
þp−xþ−p⃗·x⃗0Þ

Y∞
l¼1

fn⃗lðx⃗lÞ þ H:c:

�
; ð15Þ

where in the oscillator directions we have the simple-
harmonic oscillator wave functions

fn⃗lðx⃗lÞ ¼
YD−2

i¼1

Hnil
ðxilÞe−lðx

i
lÞ2 ; ð16Þ

and there is a dispersion relation

p− þ pþ

ε
¼
�
pþ2

ε2
þ p⃗2 þP∞

l¼1 l
P

D−2
i¼1 nil

ε

�
1=2

: ð17Þ

Further, a†pþ;p⃗;fn⃗lg and apþ;p⃗;fn⃗lg are operators which create

and annihilate strings with the specified mode occupation
numbers.4 They satisfy the commutation relations

½apþ;p⃗;fn⃗lg; a
†
pþ0;p⃗0;fn⃗0lg�

¼ ð2πÞD−2δD−2ðp⃗ − p⃗0Þ2πδðpþ − pþ0Þδfn⃗lg;fn⃗0lg: ð18Þ

The normalization for the oscillators is chosen such that

½Φðxþ; x−0 ; X⃗ðσÞÞ;Πðxþ; y−0 ; Y⃗ðσ0ÞÞ�
¼ −iδðx−0 − y−0 ÞδðX⃗ðσÞ − Y⃗ðσ0ÞÞ: ð19Þ

The vacuum j0i of string field theory satisfies

apþ;p⃗;fn⃗lgj0i ¼ 0: ð20Þ

Of course, in bosonic string theory this vacuum is unstable
as indicated by the presence of a tachyon in the spectrum,
but we will continue to work with this state here.
In order to compute the entanglement entropy, we will

need the various equal-time two-point functions of the
string field Φ and its momentum. The Φ −Φ correlator is

GΦ;Φð0; x−0 ; X⃗j0; y−0 ; Y⃗Þ
¼ h0jΦð0; x−0 ; X⃗ðσÞÞΦð0; y−0 ; Y⃗ðσ0ÞÞj0i ð21Þ

is given by

GΦ;Φð0; x−0 ; X⃗j0; y−0 ; Y⃗Þ

¼
Z

dD−2p⃗
ð2πÞD−2

Z
∞

−∞

dpþ

2π

X
fn⃗lg

1

2ω
eip

þ ffiffiεp ðy−
0
−x−

0
Þ−ip⃗·ðy⃗0−x⃗0Þ

×
Y∞
l¼1

fn⃗lðx⃗lÞf�n⃗lðy⃗lÞ ð22Þ

where we have defined

ω ¼
 
pþ2 þ p⃗2 þ

X∞
l¼1

l
XD−2

i¼1

nil

!
1=2

: ð23Þ

Similarly, the other two-point functions are given by

GΦ;Πð0; x−0 ; X⃗j0; y−0 ; Y⃗Þ ¼ −
i
2
δðx−0 − y−0 ÞδðX⃗ðσÞ − Y⃗ðσ0ÞÞ;

ð24Þ

GΠ;Πð0; x−0 ; X⃗j0; y−0 ; Y⃗Þ

¼ −
Z

dD−2p⃗
ð2πÞD−2

Z
∞

−∞

dpþ

2π

X
fn⃗lg

εω

2
eip

þ ffiffiεp ðy−
0
−x−

0
Þ−ip⃗·ðy⃗0−x⃗0Þ

×
Y∞
l¼1

fn⃗lðx⃗lÞf�n⃗lðy⃗lÞ: ð25Þ

In order to compute the entanglement entropy, we
will use the algebraic definition in terms of correlation
functions [18,19]. Let us consider the half-space x− > 0 on
the spacetime Cauchy surface xþ ¼ 0.5 As discussed in the
introduction, we wish to extend this to a subregionR in the
space of open strings. This extension is not unique, but we
use the simplest one,

R ¼ fx−0 ; X⃗ðσÞjx−0 > 0g; ð26Þ

which is the analog of Fig. 1 for a half-space. The basic idea
in the algebraic method [18,19] is that for bosonic Gaussian
systems, the reduced density matrix is the exponential of a
bilocal operator of the form:

ρ ∼ e−
P

ij
ðAijΦiΦjþBijΦiΠjþCijΠiΠjÞ; ð27Þ

4Not to be confused with the usual first-quantized string
oscillators αμn which create modes on a given string.

5Our general conclusions do not depend on this particular
choice of half-space (i.e., we could have equally well picked other
regions), although of course the specific expression will do so.
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where the indices i; j… denote spatial coordinates
restricted to the region R for ordinary quantum fields on
a lattice. In the continuum the sums on indices become
integrals, and in the present case they become integrals on
the string coordinates restricted to R. By definition, the
reduced density matrix should reproduce the correct cor-
relation functions for operators insideR, so the matrices A,
B and C can be recovered from the knowledge of two-point
functions of Φ and Π restricted to R.
We will not go through the details of this calculation

here, but we merely state the result. Let us define the matrix

C2ðx−0 ; X⃗ðσÞjy−0 ; Y⃗ðσÞÞ

¼ −
Z

∞

0

dz−0

Z
½dZ⃗ðσÞ�GΦ;Φðx−0 ; X⃗jz−0 ; Z⃗Þ

×GΠ;Πðz−0 ; Z⃗jy−0 ; Y⃗Þ ð28Þ

where the ðz−0 ; Z⃗ðσÞÞ integral is restricted to the subregion
R. In terms of the matrix C, the entanglement entropy is
formally given by6

SEEðRÞ ¼ TrððCþ 1=2Þ lnðCþ 1=2Þ
− ðC − 1=2Þ lnðC − 1=2ÞÞ: ð29Þ

Since we know the two-point functions of the string
fields, we can easily compute C2:

C2ðx−0 ; X⃗jy−0 ; Y⃗Þ ¼
X
fn⃗lg

Γfn⃗lgðx−0 ; x⃗0; y−0 ; y⃗0Þ

×
Y∞
l¼1

fn⃗lðx⃗lÞf�n⃗lðy⃗lÞ; ð30Þ

where

Γfn⃗lg ¼
i
ffiffiffi
ε

p
4

Z
dD−2p⃗
ð2πÞD−2e

ip⃗·ðx⃗0−y⃗0Þ
Z

∞

−∞

dpþ

2π

×
Z

∞

−∞

dqþ

2π

e−i
ffiffi
ε

p ðpþx−
0
−qþy−

0
Þ

pþ−qþ

�qþ2þþp⃗2þμ2fn⃗lg
pþ2þ p⃗2þμ2fn⃗lg

�1=2

;

ð31Þ

μ2p⃗;fn⃗lg ¼
X∞
l¼1

l
XD−2

i¼1

nil: ð32Þ

The reader can check that Γ is identical to the correspond-
ing matrix −Gϕϕ · Gππ for a real scalar field of mass μ2

(restricted to the half space).

It is clear from Eq. (30) that the matrix C2 is block-
diagonal in terms of the oscillator excitations of the open
string, namely j0i; αi−1j0i; αi−1αj−1j0i; � � �; namely Eq. (30)
has single sum over n⃗l. This is essentially a direct
consequence of the fact that the subregion R is a direct
product of the spacetime subregion R and the oscillator
directions Xμ

n>0. Therefore, the entanglement entropy takes
the form

SEE ¼
X
fn⃗lg

SEEðμ2fn⃗lgÞ; ð33Þ

where SEEðμ2fn⃗lgÞ is the entanglement entropy for a scalar of

mass μfn⃗lg, as should be clear from the above interpretation
of the structure of Γ. In other words, every excitation in the
list j0i; αi−1j0i;αi−1αj−1j0i; � � � adds one scalar degree of
freedom worth of entropy, with the appropriate mass. This
result makes sense physically, because in the free limit, the
various oscillator modes of the string are entirely decoupled,
and should contribute independently to the entanglement.
Equivalently, we may group the various oscillator excitations
in terms of representations of the Poincaré group according
to mass and spin, and as a result, equation (33) can be
thought of as summing over the entanglement entropies
corresponding to the various fields in the open-string
spectrum, i.e., the tachyon j0i, the photon αi−1j0i, the
massive, symmetric-traceless spin-2 field αi−1α

j
−1j0i ⊕

αi−2j0i etc., where the tachyon contributes one scalar degree
of freedom, the photon contributes 24 d.o.f., the spin-2 field
contributes 324 d.o.f. etc. Note that since we are computing
the entanglement entropy algebraically, we do not encounter
the additional “contact terms” which appear in the conical
entropy [4,20]; we will come back to this in the next section.
In order to obtain an explicit expression for SEE we

would ordinarily have to diagonalize the matrix Γfn⃗lg.
However, this is unnecessary in the present case; the half-
space entropy of a massive scalar field in d-dimensions is
already well known (see [4], for instance)

SEEðm2Þ ¼ 1

6
A⊥
Z

∞

ε2

ds
2s

1

ð4πsÞd=2−1 e
−sm2

; ð34Þ

where A⊥ is the area of the entanglement cut, and ε is an
ultraviolet cutoff. This integral is UV divergent, and takes
the form

SEEðm2Þ¼ 1

12

A⊥
ð4πÞnn!

�
e−m

2ε2

ε2n
Xn−1
k¼0

ð−1Þkðn−k−1Þ!ðmεÞ2k

− ð−1Þnð2 lnðmεÞþ γÞþOðmεÞ
�

ð35Þ

where n ¼ d
2
− 1. However, string theory softens these

divergences to a great extent. In order to see this, we first

6In order to make these manipulations concrete (i.e., to make
sense of the infinite-dimensional integrals), we can discretize the
string and pick a lattice in the target space.
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perform the sum in Eq. (33) before carrying out the
s-integral (restoring α0):

SEE ¼ A⊥
6

Z
∞

ε2

ds
2s

1

ð4πsÞd=2−1
X∞
N¼0

degNe
−sðN−1Þ

α0 ; ð36Þ

where degN is the number of states at mass m2 ¼ N−1
α0 .

Defining q ¼ e−s=α
0
and writing N ¼Pμ;nnNμ;n, we can

perform the sum in the standard way [21]:

X∞
N¼0

degNe
−sðN−1Þ

α0 ¼ q−1
Y24
μ¼1

Y∞
n¼1

� X∞
Nμ;n¼0

qnNμ;n

�

¼ 1

q

�Y∞
n¼1

1

ð1 − qnÞ
�

24

¼ ηðis=2πα0Þ−24; ð37Þ

where the Dedekind eta function is defined as

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ e2πiτ: ð38Þ

So we have the final result

SEE ¼ 1

6

A⊥
ð8π2α0Þd=2−1

Z
∞

ε2
0

dt
2t

1

td=2−1
ηðitÞ−24; ε20 ¼

ε2

2πα0
:

ð39Þ

Note that the entropy is proportional to the area of the
entangling surface. As usual, this means that the entropy
comes from the short-distance entanglement across the cut.
Crucially, the prefactor is proportional to α0−d−2

2 , as opposed
to the corresponding power of the UV cutoff (see below for
further justification) which is typical of standard quantum
field theories. This indicates that in string theory, the
entanglement comes from string-scale correlations across
the cut, and is another manifestation of the UV finiteness of
string theory.
Let us now analyze the divergences in the entanglement

entropy. As is familiar from standard considerations in
string theory, there are two types of divergences in the
above integral: t → 0 (UV divergence) and t → ∞ (IR
divergence). We can analyze the t → ∞ divergence by
expanding the eta function:

ηðitÞ−24 ¼ e2πt þ 24þOðe−2πtÞ ð40Þ

where the various terms in this expansion should be thought
of, similar to the left hand side of equation (37), as
corresponding to on-shell states of different m2. The first
term (which is due to the tachyon) gives a divergence in the
t → ∞ limit, but this is unphysical anyway because the

tachyon will be projected out in the superstring. The
remaining terms do not give any divergences as t → ∞.
Now consider the t → 0 (UV) limit. Here, we can switch to
s ¼ 1=t and use the property

ηði=tÞ ¼ t1=2ηðitÞ; ð41Þ

to rewrite the entropy as

SEE ¼ 1

6

A⊥
ð8π2α0Þd=2−1

Z
1=ε2

0

0

ds
2s

ηðisÞ−24: ð42Þ

Now we again expand in the large s limit using ηðisÞ−24 ¼
e2πs þ 24þOðe−2πsÞ. Once again we see that we encoun-
ter a tachyonic divergence in this “closed-string” channel
(which would not appear in the superstring, but can be
regulated here using analytic continuation). In addition we
have a logarithmic divergence from the zero modes which
is of the form

Z
1=ε2

0

1

ds
s
∼ ln

�
2πα0

ε2

�
: ð43Þ

The massive modes do not give any divergences in this
limit. This story entirely parallels the standard divergence
structure of the one-loop (cylinder) diagram in open string
theory. In that case, the above divergence coming from zero
modes in the closed-string channel is cancelled out in the
full unoriented, open plus closed string theory, provided we
choose the right gauge group (SOð32Þ in the superstring).
We expect a similar cancellation to occur in the case of
entanglement entropy, but this calculation will require a
careful analysis of the entropy for closed strings.
In this section, we have demonstrated that in the free

limit (gs → 0), the entanglement entropy computed using
open string field theory is consistent with expectations from
the effective field theory of the open-string excitations.
Namely, the answer we obtained was essentially the half-
space entanglement entropy in a theory with an infinite
number of free particles with the required masses and spins
(minus degrees freedom removed by gauge symmetry).
However, for finite gs and certainly in closed string theory,
we expect this not to be generically true and the effective
field theory approach should break down.7 For this reason,
it is important to have an intrinsically stringy definition of

7For instance, the one-loop diagram in closed string theory
does not have UV divergences because of the restricted region of
integration in the modular parameter τ of the torus, while a naive
sum over the one-loop contributions from the particle excitations
is UV divergent [22]. Similarly, we expect that in computing
entanglement entropy for closed strings, one must carefully
account for the correct region of integration for the modular
parameter, something which is nontrivial in closed string field
theory [23–25].
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the entanglement entropy, such as the one we have
advocated using string field theory.

III. COVARIANT PHASE SPACE FOR
SUBREGIONS

In the previous section, we neglected the gauge sym-
metry of open string field theory and the associated failure
of factorization of the Hilbert space. In this section we
will address this issue from the point of view of Witten’s
covariant open string field theory [8,9] (see the Appendix
for a lightning review). We will follow the method outlined
by Donnelly and Freidel in [10] to analyze the phase space
of string field theory on a subregion of the space of open
string configurations. This will lead us to an extended
Hilbert space picture, with stringy edge modes localized at
the entanglement cut.

A. Symplectic structure

Witten’s covariant open string field theory is constructed
in terms of the string field

A½XμðσÞ; b��ðσÞ; c�ðσÞ�

which is an element of the one-string Hilbert space which
we will callB here. Here Xμ are coordinates in target space
and b and c are auxiliary ghost fields. It is possible to define
a non-commutative star product � on this space, together
with the notion of “integration”

R
, in terms of which the

action takes the Chern-Simons form

S ¼ 1

g2s

Z �
A �QAþ 2

3
A �A �A

�
; ð44Þ

where Q is the BRST operator (Appendix contains a brief
review of the requisite background material, together with
explicit expressions for �, Q etc.). The equation of motion
is given by

QAþA �A ¼ 0: ð45Þ

Further, this action has the gauge symmetry

δA ¼ QεþA � ε − ε �A: ð46Þ

Linearized about A ¼ 0, Eqs. (45) and (46) imply the
statement that physical (on-shell) states are in the BRST
cohomology. We will focus on this free limit in our
discussion below.
The important object for our discussion is the symplectic

2-form for OSFT constructed by Witten in [9] using the
covariant phase space approach (see also [26]). In this
formalism, we identify the space of solutions of the
equations of motion as the phase space P; this is because
the space of solutions is in one-to-one correspondence with

the space of initial conditions. In quantum field theory,
since these initial conditions are functions of a Cauchy
surface Σ in spacetime, the symplectic 2-form can be
written as an integral of a density on Σ:

ω ¼
Z
Σ
J; with d⋆J ¼ 0: ð47Þ

The density J must be conserved, because conservation
ensures that the symplectic structure does not depend on the
choice of Σ. Now we wish to construct such a symplectic
2-form for OSFT, which in the present case will be
localized on a Cauchy surface S ⊂ Mopen. For this pur-
pose, let us first pick a Cauchy surface Σ in the target
spacetime, and let θ be defined as the following function of
the string center of mass:

θðΣÞ ¼
�
1 Xμ

0 > Σ
0 Xμ

0 < Σ;
ð48Þ

with the notation Xμ
0 > Σ (Xμ

0 < Σ) meaning that the point
Xμ
0 lies to the future (past) of Σ. Further, let us define δ

to be the exterior derivative on the phase space P, namely
the space of solutions to the equation of motion
QAþA �A ¼ 0. Then, for instance, δA is a 1-form on
the phase space, satisfying the linearized equation of
motion around A. The symplectic 2-form on P is then
given by

ω ¼
Z

δA � ½Q; θðΣÞ�δA; ð49Þ

where we have left the wedge product between differential
forms on P implicit. Firstly, note that ω is a 2-form on P.
The BRST charge Q has derivatives with respect to the
string coordinates, and so the commutator ½Q; θðΣÞ� is
proportional to a delta function for the center of mass lying
on Σ; in other words the symplectic 2-form is localized on
the Cauchy surface S ⊂ Mopen. Finally, ω is independent
of the choice of Σ because given two surfaces Σ1 and Σ2:

ωΣ1
− ωΣ2

¼
Z

QðδA � fðΣ1;Σ2ÞδAÞ ¼ 0; ð50Þ

where the right-hand side vanishes because the function
fðΣ1;Σ2Þ ¼ θðΣ1Þ − θðΣ2Þ vanishes at infinity, and soR
Qð� � �Þ ¼ 0.
In [9] Witten used the string midpoint (instead of the

center of mass) in the above construction. The choice of the
midpoint is of course very natural in Witten’s OSFT, but on
the other hand from the point of view of the constituent
fields, it seems more natural to use the center of mass of the
string. We expect that at least in the free theory (gs → 0)
which is the case we are focussing on, both the choices
should be equivalent. At any rate, the symplectic form
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ω ¼
Z

δ �AD0δA ¼ hδAjD0δAi; ð51Þ

where D0 ¼ ½Q; θðΣÞ� is defined in terms of the center of
mass, has all the necessary properties, as explained above.8

For simplicity, let us take the surface Σ to be at tμX
μ
0 ¼ 0,

where we can take tμ ¼ ð1; 0;…; 0Þ or a more general
timelike vector. Using Eq. (A3), we can compute the
commutator D0:

D0 ¼ −
i
2
c0ðt · α0δðtμXμ

0Þ þ δðtμXμ
0Þtμαμ0Þ

− iδðtμXμ
0Þ
X
n≠0

c−ntμα
μ
n: ð52Þ

To check for gauge invariance of the symplectic form at
the level of the string fields, we must verify that it vanishes
when evaluated on a pure gauge mode

ωðQε;ΨÞ ¼ 0; ð53Þ

for any physical mode Ψ satisfying QΨ ¼ 0. This is the
physical requirement that pure gauge modes are not
dynamical. By explicit calculation, we obtain

ωðQε;ΨÞ ¼
Z

ðQε �D0Ψ − Ψ �D0QεÞ

¼
Z

Qðε �D0Ψ − Ψ �D0εÞ

¼ 0: ð54Þ

In the last line, we have used the fact that
R
Qχ ¼ 0, which

is true as long as χ vanishes at infinity. We have therefore
demonstrated that the pure gauge modes in the string field
do not have any symplectic structure associated with them,
and that ω simply pulls-back to the moduli space of string
fields modulo gauge transformations. This is generically
true in the situation where Σ has no boundaries, or the string
field variations vanish at infinity. However, one has to be

careful with such “total derivative” terms when we deal
with the symplectic structure associated with subregions.
Indeed, when we consider the phase space for subregions,
this gives rise to nontrivial d.o.f. at the boundary of the
subregions.

B. Symplectic structure for subregions

Let us now consider the symplectic structure correspond-
ing to a subregion R ⊂ Σ. For simplicity, we can take R to
be a half-space X1 > 0. However, recall that by a subregion
here we should mean a subregion in the Cauchy surface S
inside the space of open strings Mopen. As before, we pick
the simplest extension9:

R ¼ fXμðσÞ ∈ SjX1
0 > 0g:

The symplectic two-form restricted to the region R is then
given by

ωR ¼
Z

δA � θðRÞD0δA ¼ hδAjθðRÞD0δAi; ð55Þ

where by θðRÞ we mean

θðRÞ ¼
�
1 XμðσÞ ∈ R

0 XμðσÞ ∉ R:
ð56Þ

We now revisit the issue of gauge-invariance. In order to be
more systematic, let us choose coordinates A ¼ ða; εÞ on
the space of string fields satisfying the equations of motion,
where a corresponds to the moduli-space of string fields
modulo gauge transformations, and ε denotes the pure
gauge directions:

A ¼ aþQε: ð57Þ
The one-form δA then becomes

δA ¼ δaþQδε; ð58Þ
where we could think of δε as the linearized Maurer-Cartan
form for the gauge group. Substituting this in Eq. (55), we
find

ωR¼
Z

δa�θðRÞD0δa

þ
Z

ðδa�D1D0δε−δε�D1D0δa−δε�D1D0QδεÞ:

ð59Þ

The first term above is the standard symplectic form pulled
back on to the moduli-space of string fields (modulo gauge
transformations), and has support over the entire region R.

8To see that this agrees with the standard symplectic structure
for component fields, let us consider the photon field which
appears at level one. Using (A20), we can compute the symplectic
2-form:

ω ¼ 1

2

Z
ddxδðx0ÞðδAμð∂0δAμÞ − ð∂0δAμÞδAμ

− 2δA0δf þ 2δfδA0Þ;

which upon using the equations of motion 2δf ¼ ∂μδAμ gives the
standard symplectic form for the U(1) gauge field, up to boundary
terms (at spatial infinity):

ω ¼ 1

2

Z
ddxδðx0ÞδAμδF0μ:

9We are suppressing the dependence on ghosts here because
the subregion includes the entire space of ghost configurations,
i.e. we do not partition along the anticommuting directions.
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The remaining terms indicate that the pure gauge modes do
not entirely decouple in the presence of the entanglement
cut. Note that the operator D1 ¼ ½Q; θðRÞ� is given by

D1 ¼ −
i
2
c0ðrμαμ0δðrμXμ

0Þ þ δðrμXμ
0Þrμαμ0Þ

− i
X
n≠0

δðrμXμ
0Þc−nrμαμn; ð60Þ

where rμ ¼ ð0; 1; 0;…; 0Þ is the spacelike normal vector to
the boundary∂R. The delta functions inD1 clearly imply that
these gauge-dependent terms are localized on the boundary
of the subregion. In other words, the pure gauge modes
become dynamical at the entanglement cut, giving rise to
stringy edge modes. The fact that the symplectic 2-form for a
subregion is not gauge-invariant is a standard feature of
gauge theories [10,27]. It indicates that theHilbert space does
not factorize between subregions. Our discussion above
shows that a similar situation arises in string field theory,
and therefore care must be taken in defining the entropy of a
subregion. The power of string field theory is that we need
not revisit string quantization again in the presence of the
entanglement cut to deduce these edge modes—we can
simply use gauge invariance in string field theory.
One approach to deal with nonfactorization of Hilbert

spaces in gauge theories is the extended Hilbert space
formalism [10,27–32]. In this formalism, one embeds the
physical Hilbert space as a subspace inside an extended
Hilbert space:

Hext ¼ HRb
⊗ Hedge ⊗ Hedge ⊗ HRb

: ð61Þ

where HRb
and HRb

are the Hilbert spaces in the bulk of
the region R and its complement. The extended Hilbert
space includes two copies of edge modes (corresponding
to ∂R and ∂R̄) and involves many nonphysical states, but
has the virtue that it factorizes naturally. Once the physical
state of interest can be identified inside the extended
Hilbert space, one can trace out the complement and define
entanglement entropy in the standard way.
In order to proceed, we need to understand how to

construct Hedge. To that end, it is useful to characterize
the edge modes by making explicit the global symmetries
acting on them. Note, for instance, that the symplectic form
is invariant under the “left-action”10

δLa ¼ 0; δLε ¼ −α; ð62Þ

because ωR depends only on δε and not on ε, where the
former is invariant under this left-action because α is a
constant with respect to the string phase space coordinates
ða; εÞ. We can easily write down the generators of these
boundary symmetries—recall from Hamiltonian mechanics
(written in terms of symplectic geometry) that this amounts
to constructing charges J½α� such that

IVα
ωR ¼ δJ½α�; ð63Þ

where IX is the interior product on differential forms
on P (given some vector field X on P). For instance,
IXω ¼ ωðX; ·Þ. The vector field Vα above generates the left
action on phase space, and therefore satisfies IVα

δε ¼ −α.
Now, a simple computation shows that

IVα
ωR ¼

Z
ðδa �D1D0αþ α �D1D0δa

þ α �D1D0Qδε − δε �D1D0QαÞ; ð64Þ

and so we can read off the currents from here

J½α� ¼
Z

ða �D1D0αþ α �D1D0aþ α �D1D0Qε

− ε �D1D0QαÞ: ð65Þ

A further simple calculation shows that these currents
satisfy the following current algebra:

fJ½α�;J½β�gP:B¼
Z

ðα�D1D0Qβ−β�D1D0QαÞ: ð66Þ

Therefore, the Hilbert space of the edge modes Hedge

should furnish a representation of this current algebra
(in the gs → 0 limit).
The next question is how to identify physical states (let

us say the vacuum) inside the extended Hilbert space. The
physical subspace of states is carved out by the “quantum
gluing” condition:

ðJ½α� þ J̄½α�Þjψphysi ¼ 0; ð67Þ

where J and J̄ are the currents corresponding to the
boundary of R and R̄ respectively. The quantum gluing
condition is simply the statement that the global sym-
metries acting of the edge modes should not be visible in
physical states. However, in bosonic string theory (similar
to the situation in Maxwell theory [30]), this condition has
many solutions—we can think of the various solutions of
the quantum gluing condition as corresponding to boun-
dary conditions at the entanglement cut. So one has to give
some further dynamical input in order to identify the
required physical state in the extended Hilbert space, thus
complicating the calculation considerably. More precisely,
any physical state corresponds to a probability distribution

10One can also define a “right-action”

δRa ¼ −Qβ; δRε ¼ β

which is a mere redundancy of our parametrization (57). The
notation left and right is ambiguous in free string field theory, but
becomes meaningful in the full nonlinear version.
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over the boundary conditions. For example, in the case of
the vacuum state in Maxwell theory, the probability
distribution can be fixed by appealing to Euclidean path-
integral arguments [30]. In order to repeat a similar analysis
in string field theory would require a careful treatment of
Euclidean path-integral methods in OSFT. It would be
interesting to try to push this calculation to completion,
because we expect that the contribution to the entanglement
entropy coming from edge modes should reproduce the
contact terms typically found in computations of the
conical entropy [4,20]. In the case of closed string theory,
these contributions might even be related to the gravita-
tional Bekenstein-Hawking entropy. In this case, it is an
interesting question to relate the edge modes we have
discussed above to the open strings on the horizon which
appeared in the work of Susskind and Uglum [1]. In the rest
of this paper, we will merely demonstrate how the above
computation of entropy using the extended Hilbert space
works in a simpler example, instead of bosonic strings,
leaving the latter case for future work.
The simple model in question, which fits within the

algebraic framework of Witten’s string field theory
described above, is ordinary Uð1Þ Chern-Simons theory.
In this case, we replace B with the space of differential
forms on some 3-manifold X, the BRST charge Q with the
exterior derivative d, the product � with the wedge product
on differential forms, and

R
with k

4π times integration on X,
with k some positive integer. Indeed, this is no accident—
Chern-Simons theory on S3 can be realized as the effective
field theory of zero-modes on the worldvolume of A-branes
in the A-type topological string theory on T�S3 [33] (and
under some conditions outlined in [33], this description is
exact). Importantly, the above extended Hilbert space
formalism can be pushed to its logical conclusion in this
simple toy model, as we will now review following [34]
(see also [35,36]). For simplicity, let us consider the spatial
slice Σ to be a 2-sphere S2, and let the subregion R be a disc.
In this case, the current algebra in equation (66) becomes
(upon making the replacement f; gP:B → i½; �)

½J½α�; J½β�� ¼ ik
4π

I
∂R

dθðα∂θβ − β∂θαÞ; ð68Þ

where the above integral is only over the boundary of the
subregion (because D0 ¼ ½Q; θðx0Þ� ¼ δðx0Þdx0 and sim-
ilarly for the spacelike direction orthogonal to the cut).
Switching to momentum modes on the circle, we identify
this as the Uð1Þk chiral Wess-Zumino-Witten current
algebra:

½Jm; Jn� ¼
k
2
nδnþm;0: ð69Þ

The quantum-gluing condition (67), ðJnþ J̄−nÞjψphysi¼0,
is solved by the Ishibashi states:

jq⟫ ¼
X∞
N¼0

X
z∈Z

XdN
l¼1

jq; z; N;li ⊗ jq; z; N;li; ð70Þ

where q ¼ 0; 1; 2 � � � ; k − 1 is the charge corresponding to
an integrable representation, and z; N;l label the descend-
ants. The choice of q determines which state we are
considering in the Chern-Simons theory. For q ¼ 0, we
obtain the vacuum state. For nontrivial q, we obtain a state
with Wilson lines with charges q and −q piercing through
R and R̄ respectively. We can now compute a well-defined
entanglement entropy between R and R̄. This is essentially
the computation of left-right entanglement entropy in
Ishibashi states carried out in [37–39] (see also [40–43]).
These papers showed by explicit computation that the
left-right entanglement entropy in the Ishibashi state jq⟫
exactly reproduces the topological entanglement entropy
of the corresponding state in Chern-Simons theory on S2

bi-partitioned into two discs (which has also previously
been computed by other methods in [44–46]).

IV. DISCUSSION

In this paper, we used string field theory to define and
compute entanglement entropy between spatial subregions
of the target space in open string theory. We demonstrated
that in the free limit, this entropy is a sum over the one-loop
entropies of particle excitations of the string, and that the
inclusion of the tower of stringy d.o.f. softens the diver-
gences in the entanglement entropy. Finally, we adapted
the formalism of Donnelly and Freidel [10] who studied
entanglement entropy in gauge field theories to study the
covariant phase space of subregions in the string theory
target space and demonstrated the existence of novel
stringy edge modes. We argued that these edge modes
will contribute to entanglement entropy in string theory.

FIG. 2. Consider the simplified setup where we discretize the
string to two points Xμ ¼ ðxμ1; xμ2Þ. In terms of the center of
mass X0 ¼ 1

2
ðx1 þ x2Þ and the separation Y ¼ 1

2
ðx1 − x2Þ, we can

extend the subregion (in blue) from target space to the entire
configuration space in multiple ways. On the left, we count all
strings with center of mass in the blue region, while on the right
we count all strings which are entirely in the blue region. Note
that while the subregion on the left looks non-compact, the string
tension implies that the wave function of physical states of the
string will be exponentially localized around Y ¼ 0.
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In order to compute the entropy in OSFT, we made a
choice for how to extend the entanglement region from the
target spacetime to the full configuration space of open
strings Mopen—namely, we included all strings with their
center of mass inside the subregion. This extension is not
unique, and the specific result of the entanglement entropy
computation will depend of the choice of extension. For
instance, we could have counted all strings which lie
entirely within the subregion (see Fig. 2). However, we
expect that independent of how we extend the subregion,
string theory will soften the UV divergences, and that
stringy edge modes should always exist because of the
gauge symmetry of string field theory. It is desirable to
better understand the dependence of the entanglement
entropy on the choice of extension. It might also be
interesting to understand the connection of ideas presented
in this paper with the studies of causality in string field
theory [14,15,47–50]. Another question of interest is the
finite gs corrections—entanglement entropy in interacting,
non-local theories potentially has an interesting crossover
behavior between area law and volume law depending on
whether the subregion size is larger or small compared to
the scale of non-locality [51–54]. It would be interesting to
check whether open string theory exhibits this phenome-
non, perhaps perturbatively in gs.
The general form of our calculations suggests that in a

full openþ closed super-SFTwith the correct gauge group
the entanglement entropy may be strictly finite. If true that
would be very interesting and useful. This may be related
generally to the idea of the holographic principle and the
idea that the number of d.o.f. in quantum gravity in a finite
region should actually be finite. In particular if we consider
a black hole, it would be very interesting to understand the
entanglement entropy in string theory across the horizon.
This was the focus of early attempts to understand the
origin of black hole thermodynamics in quantum gravity,
but those efforts were carried out in first-quantized string
theory using the replica method and were challenged by the
presence of off-shell conical backgrounds that may not be
well defined [1]. Here we have outlined an approach, albeit
in open string field theory, that may allow a precise
calculation of entanglement across a horizon that does
not face these challenges. For this purpose however, we
need to extend this approach to closed string theory. An
important subtlety in this case is that the definition of a
subregion in a gravitational theory requires an asymptotic
boundary or a horizon, since only diffeomorphism invariant
constructs are meaningful. We expect therefore that the
choice of a subregion in loop space should involve a
careful, diffeomorphism invariant construction. Secondly,
it is also presently unclear how closed string field theory
regulates the ultraviolet divergences in entanglement
entropy. Finally, at a more abstract level, we could take
the point of view that a consistent string theory is a 2d CFT
(with special properties) and that spacetime is a meaningful

concept only in certain special limits. It would be interest-
ing to try to reconcile some of these points with the ideas
presented in this paper.
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APPENDIX: BASIC REVIEW OF COVARIANT
STRING FIELD THEORY

In this Appendix, we will briefly review Witten’s
covariant open string field theory, following [8] (see also
[55–57] and references there-in). This is entirely standard
material, and is included here only for completeness. The
world sheet action is given by

SX ¼ 1

4π

Z
d2σ∂αXμðτ; σÞ∂αXμðτ; σÞ; ðA1Þ

while the ghost action (arising from gauge-fixing the
Diff × Weyl gauge symmetries on the world sheet) is
given by

Sgh ¼
1

π

Z
d2σðc−∂−bþþ þ cþ∂þb−−Þ ðA2Þ

where ∂� ¼ 1ffiffi
2

p ð∂τ � i∂σÞ. Open string boundary condi-

tions are cþ¼c− and bþþ¼b−− at the end points σ ¼ 0, π.
With these boundary conditions, both b and c have
precisely one zero mode. The BRST current can be written
in terms of the world sheet Virasoro generators as:

Q¼ c0ðL0 − 1Þþ
X
n≠0

c−nLn −
1

2

X
n;m

ðn−mÞ∶c−nc−mbnþm∶

ðA3Þ

where recall that the world sheet-Virasoro generators can be
written in terms of the string-oscillator modes as

Ln ¼
1

2

X∞
m¼−∞

∶αn−mαm∶: ðA4Þ

Note also that following standard convention, we have used
the “folding trick” to rewrite the two copies of ghosts
(corresponding to �) in terms of a single copy of the chiral
closed string modes and then Fourier expanded these in
terms of cn and bn.

REMARKS ON ENTANGLEMENT ENTROPY IN STRING THEORY PHYS. REV. D 97, 066025 (2018)

066025-11



When D ¼ 26, the BRST charge is nilpotent, i.e.
Q2 ¼ 0. The quantization of a single string in the BRST
formalism is accomplished by requiring the physical
Hilbert space to be in the BRST cohomology

Qjψi ¼ 0; ðA5Þ

with two states ψ and ψ 0 considered equivalent if
jψ 0i ¼ jψi þQjϵi. Additionally, we also require physical
states to be annihilated by all ghost and antighost annihi-
lation operators bn, cm ∀ n;m > 0, and also by b0.
Following standard notation, we will denote the physical
vacuum in the ghost zero-mode sector by j↓i:

b0j↓i ¼ 0: ðA6Þ

and assign it ghost number −1=2.
Witten’s formulation of open-string field theory (OSFT)

is in terms of a noncommutative gauge theory. It is
convenient to bosonize the ghosts ðb; cÞ → ϕ in order to
introduce this version of OSFT, but for our purposes the
details of the ghosts will not be very important, so we do
not give all the details of the bosonization map here (see [8]
for the relevant details). The gauge field of this non-
commutative gauge theory lives in an algebra B, where
the elements ofB are states of the one-string Hilbert space.
Equivalently, one can think of B as consisting of string
fields

Ψ½XμðσÞ;ϕðσÞ� ¼ hXμðσÞ;ϕðσÞjΨi ðA7Þ

on Mopen—the space of open-string configurations on
target space (plus ghost configurations). Recall that
Fourier modes of the string field create and annihilate
single string states in the OSFT Hilbert space. The algebra
B has a Z-grading

B ¼⊕∞
n¼−∞ Bn;

where n ¼ Gþ 3=2 with G being the ghost number.
As explained before, physical states have ghost number
G ¼ −1=2 and therefore live in B1; consequently we may
refer to them as one-forms (more generally n-forms are
elements of Bn). We now describe two operations which
will be central to the construction of the OSFT:

(i) Integration,
R
∶B → C, and

(ii) Product, �∶B ×B → B.
The integration is defined as

Z
Ψ ¼

Z
DXμðσÞDϕðσÞe−3i

2
ϕðπ

2
ÞYπ=2
σ¼0

δ½XμðσÞ − Xμðπ − σÞ�

×
Yπ=2
σ¼0

δ½ϕðσÞ − ϕðπ − σÞ�Ψ½XμðσÞ;ϕðσÞ�; ðA8Þ

namely one simply sews together the two halves of the
string with an insertion of the operator e−

3i
2
ϕðπ

2
Þ at the

midpoint (see Fig. 3). The star product is defined by

ðΨ � χÞ½XμðσÞ;ϕðσÞ� ¼
Z Y2

i¼1

DXiDϕieþ
3i
2
ϕðπ=2ÞΨ½Xμ

1;ϕ1�χ½Xμ
2;ϕ2�

×
Yπ=2
σ¼0

δ½XμðσÞ − Xμ
1ðσÞ�δ½Xμ

1ðπ − σÞ − Xμ
2ðσÞ�δ½Xμ

2ðπ − σÞ − Xμðπ − σÞ�

×
Yπ=2
σ¼0

δ½ϕðσÞ − ϕ1ðσÞ�δ½ϕ1ðπ − σÞ − ϕ2ðσÞ�δ½ϕ2ðπ − σÞ − ϕðπ − σÞ�; ðA9Þ

or in other words we sew the right half of the first string
with the left half of the second string, this time inserting
eþ3i

2
ϕ at the midpoint (see Fig. 3).11 Some important

properties of the noncommutative algebraic structure we
have encountered above are listed here:

QðA � BÞ ¼ ðQAÞ � Bþ ð−1ÞnAA � ðQBÞ; ðA10Þ

A � ðB � CÞ ¼ ðA � BÞ � C; ðA11Þ
11The operator insertions at the midpoint are important to

ensure ghost-number conservation.

FIG. 3. Pictorial representations of the operations
R

and �.
The black dot with � signs indicates an insertion of e�3i

2
ϕ at the

midpoint.
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Z
A � B ¼ ð−1ÞnAnB

Z
B � A; ðA12Þ

for A; B;C ∈ B. Also, explicit calculation shows thatZ
Qf ¼ 0 ðA13Þ

for any f that vanishes at infinity. It is also worth noting that
the operation

R
Ψ � χ is quite simple:Z

Ψ � χ ¼
Z

½DXDϕ�Ψ½Xðπ − σÞ;ϕðπ − σÞ�χ½XðσÞ;ϕðσÞ�:

ðA14Þ

If we further impose the reality condition

Ψ½Xμðπ − σÞ;ϕðπ − σÞ� ¼ Ψ�½XμðσÞ;ϕðσÞ� ðA15Þ

on the string fields, then it becomes clear thatZ
Ψ � χ ¼ hΨjχi: ðA16Þ

Having defined the algebraB and its attendant operations,
Witten wrote down the following action for open string field
theory in terms of the string gauge field A ∈ B1:

SOSFT½A� ¼ 1

g2s

Z �
A �QAþ 2

3
A �A �A

�
: ðA17Þ

The equation of motion corresponding to this action is given
by

QAþA �A ¼ 0: ðA18Þ

String interactions appear in the second term. Further, the
action is naturally gauge invariant under the infinitesimal
gauge transformation

δεA ¼ QεþA � ε − ε �A; ðA19Þ

where ε ∈ B0 is a zero form (i.e., has ghost number −3=2).
Equations (A18) and (A19) linearized around A ¼ 0 give
the BRST cohomology conditions on physical states.
It is helpful to see how the above equation of motion and

gauge symmetry lead to the Maxwell equation and Uð1Þ
gauge symmetry in terms of the string-oscillators at level

one. We will work with the free string field, which satisfies
QA ¼ 0, and only keep track of the photon in our string
field. This amounts to expand the string field up to the
first oscillator level and ignoring the tachyon (the zeroth
oscillator level):

jAi¼
Z

dDk
ð2πÞD ð−iAμðkÞαμ−1þfðkÞc0b−1Þj0;k;↓i; ðA20Þ

where Aμ corresponds to the photon and f is an auxiliary
field (whose origin will become clear below). Using
Eq. (A3), the equation of motion is given by

QjAi ¼
Z

dDk
ð2πÞD

�
1

2
ð−ik2Aμ þ 2kμfÞαμ−1c0

− ðikμAμ − 2fÞc−1
�
j0; k;↓i ¼ 0: ðA21Þ

The equation of motion therefore imposes

□Aμ ¼ 2∂μf; 2f ¼ ∂μAμ;

which together of course constitute Maxwell’s equations.
The Uð1Þ gauge transformation comes from the following
OSFT gauge transformation:

jAi → jAi þQjεi; jεi ¼
Z

dDk
ð2πÞD εðkÞb−1j0; k;↓i;

ðA22Þ

More explicitly, we find

Qjεi ¼
Z

dDk
ð2πÞD εðkÞ

�
1

2
k2c0b−1 þ kμα

μ
−1

�
j0; ki; ðA23Þ

which of course corresponds to shifting

Aμ → Aμ þ ∂με;

as expected. Note that in addition, it also shifts
f → f þ 1

2
□ε. It is clear from the above discussion, that

the field f is an auxiliary field which upon integrating out
leads to the covariant Maxwell theory. We can think of
“fixing” f as a choice of gauge-fixing. For example, fixing
f ¼ 0 is equivalent to the Lorentz gauge.
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