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We extend the phenomenology of loop quantum cosmology (LQC) to second order in perturbations. Our
motivation is twofold. On the one hand, since LQC predicts a cosmic bounce that takes place at the Planck
scale, the second-order contributions could be large enough to jeopardize the validity of the perturbative
expansion on which previous results rest. On the other hand, the upper bounds on primordial non-
Gaussianity obtained by the Planck Collaboration are expected to play a significant role on explorations of
the LQC phenomenology. We find that the bounce in LQC produces an enhancement of non-Gaussianity of
several orders of magnitude, on length scales that were larger than the curvature radius at the bounce.
Nonetheless, we find that one can still rely on the perturbative expansion to make predictions about
primordial perturbations. We discuss the consequences of our results for LQC and its predictions for the
cosmic microwave background.
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I. INTRODUCTION

The origin of the large scale cosmic structure can be
traced back to quantum vacuum fluctuations in the early
Universe, which were amplified by a dynamical gravita-
tional field. The inflationary paradigm provides a theoreti-
cal framework to materialize this idea and to make concrete
predictions that can be confronted with observations
(see [1,2] for a recent debate about the pros and cons
of inflation). But despite the many interesting aspects of
the inflationary scenario, the picture of the early Universe
that it provides remains incomplete (for a list of open
questions, see, e.g., [3]). Among the most important open
issues is the fact that inflationary models suffer from the
initial big bang singularity [4], that makes us uncertain
about the way inflation begins and about the initial state
of the Universe at the onset of inflation. This point is
particularly relevant, since the predictions for the cosmic
microwave background (CMB) and large scale structure
depend on what the initial state was. It would be more
satisfactory to have a scenario in which inflation arises in
a well-defined manner, free of singularities, and in which
the dynamics of the preinflationary Universe could be
incorporated.
The idea that the Universe did not begin with a big bang

but rather it bounced, transitioning from a contracting

phase to an expanding one, is an attractive possibility.
Bouncing models have been considered since the early
days of relativistic cosmology, e.g., by de Sitter in 1931 [5],
and more recently this idea has emerged in more precise
terms within different scenarios, including loop quantum
cosmology (LQC) [6–9], string theory-related models [10],
higher-derivative scalar-tensor theories [11,12], etc. In this
paper, we focus on cosmological bounces as predicted by
loop quantum cosmology, although some of our results
shall apply to other models as well.
In LQC (see [13–25] for review articles), the cosmic

bounce is caused by quantum gravitational effects. This
scenario has been used to provide a detailed quantum
gravity extension of the inflationary scenario [26,27] in
which trans-Planckian issues of the inflationary paradigm
are addressed from first principles. After the bounce, as the
value of matter energy density and curvature invariants
become smaller than the Planck scale, quantum gravita-
tional effects quickly become irrelevant. In the presence of
a scalar field ϕ and an appropriate potential VðϕÞ, the
matter content of the Universe becomes dominated by this
potential soon after the bounce, and the Universe generi-
cally enters an inflationary phase [28–30]. In this scenario,
scalar and tensor cosmological perturbations begin their
evolution in the quantum vacuum at early times, and then
evolve across the bounce, until the onset of inflation, and
beyond. One then can use this evolution to compute the
state of perturbations at the onset of inflation, and to obtain
predictions for the CMB. The propagation across the
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bounce leaves an imprint in scalar and tensor perturbations.
If the state of perturbations at the onset of inflation happens
to be completely different from the Bunch-Davies initial
conditions normally postulated in standard inflation,
existing observational constraints would jeopardize the
viability of the LQC proposal for the preinflationary
Universe [31]. On the other hand, if the resulting state is
close enough to the Bunch-Davies vacuum at the onset of
slow-roll, but still contains some differences, new effects
would be predicted for the CMB temperature distribution.
In the last few years, a research program has been

dedicated to quantitatively analyze these possibilities (see
[14–25,32–34], and references therein). More concretely,
the primordial power spectra of perturbations have been
analyzed in detail by different groups, following different
strategies. The main conclusions are that the bounce can
leave an imprint on the largest scales probed by CMB,
while still being compatible with current observational
constraints. Concrete predictions have been obtained for
the amplitude of the scalar and tensor power spectrum,
spectral indices, and tensor-to-scalar ratio.
In this paper we argue that the analyses done so far for

the primordial power spectrum provides only a first step
towards a complete comparison of the predictions of LQC
with observations. In order to declare the viability of the
theoretical framework and the compatibility of its predic-
tions with observations, one has to go to the next order in
the perturbative expansion and show, first, that the next-to-
leading order contribution introduces only small correc-
tions, in such a way that the perturbative expansion on
which the computation rests is meaningful. But this is not
enough, since these corrections, although small enough to
maintain the validity of perturbation theory, could still give
rise to large non-Gaussianity and violate observational
upper bounds [35]. Such analysis was done for the standard
theory of inflation in [36], and it was shown that higher
order corrections and non-Gaussianity generated during the
slow-roll era are indeed small, consistent with CMB data.
But the situation could be different in the presence of a
cosmic bounce that takes place at a higher curvature. Non-
Gaussianity arises from self-interactions between pertur-
bations, and these are mediated by gravity. One expects,
from general arguments, that these interactions would
become “stronger” at higher curvatures. Since the bounce
in LQC takes place at the Planck scale, there exists the
possibility that the resulting non-Gaussianity is too large.
Here we extend the analysis of scalar perturbations in LQC
to second order and investigate the non-Gaussianity gen-
erated by the LQC bounce. This goes in three main steps.
Firstly, since LQC is based on a canonical approach to
quantization, we rewrite perturbation theory of cosmologi-
cal perturbations at second order in a purely phase space or
Hamiltonian language. Secondly, we extend the existing
theoretical framework to quantize cosmological perturba-
tions in LQC, the so-called dressed metric approach, to

second order in perturbations. Finally, as the approximations
that are available during inflation and that make the compu-
tationofnon-Gaussianity tractable.1 are simply not applicable
in the preinflationary era, we have developed a numerical
code to compute non-Gaussianity in an arbitrary spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime.
Our code is dubbed class_lqc and is available in an
online repository2 It uses the numerical infrastructure of
CLASS [37,38].
We show that the non-Gaussianity generated by the

bounce in LQC are several orders of magnitude larger than
those generate by inflation alone, for length scales that were
larger than the (spacetime) curvature radius at the bounce.
However, we show that these higher order correlations do not
invalidate the perturbative expansion. We compare our
results with observations and reevaluate the range of values
of the parameter of the theory that make both, the power
spectrum and the non-Gaussianity compatible with obser-
vations. These results open new possibilities for observa-
tional signatures in the CMB and large scale structure arising
from the bounce.
The rest of the paper is organized as follows. In Sec. II,

we develop the classical Hamiltonian theory of cosmo-
logical perturbations at next-to-leading order in perturba-
tions and devote Sec. III to their quantization within the
dressed metric approach in LQC. In Sec. IV we show the
numerical evaluation of the three-point correlation func-
tion, and describe the “shape” of the resulting scalar non-
Gaussianity. In Sec. IV, we also explore the dependence of
our results on different freedoms in the theory, namely the
“initial” value of the scalar field, the value of the energy
density (or equivalently, the Ricci curvature) at the bounce,
the scalar field potential VðϕÞ, and the initial state for
perturbations, respectively. We complement this numerical
analysis with an analytical justification of the main features
of the non-Gaussianty in Sec. V. In Sec. VI, we calculate
the leading order corrections to the power spectrum and
discuss the validity of perturbation theory. Finally, in
Sec. XII, we conclude with a summary of the results
and their implications in the light of observational data.
Although the effects of non-Gaussianity in the CMB

arising from LQC have been discussed in previous analyses
[39,40], these works do not incorporate the non-
Gaussianity generated during the bounce. Rather, they
focus on contributions to non-Gaussianity originated dur-
ing inflation, as a consequence of the fact that perturbations
reach the onset of inflation in an excited state. Since these
excitations were generated by the LQC-bounce, the non-
Gaussianity they induce during inflation is a by-product of
LQC. Here we provide the framework, the numerical tools,
and the computation of the full non-Gaussianity in LQC.

1Namely, the slow-roll approximation and the availability of
analytical approximation for the evolution of perturbations based
on the quasi-de Sitter symmetry of the inflationary spacetime.

2website: https://github.com/borisbolliet/class_lqc_public.
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Throughout this paper we use reduced Planck units, in
which energy and time are measured in units of the reduced
Planck mass MPl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ/ð8πGÞp
and reduced Planck time

TPl ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ

p
. However, we will keep explicitly ℏ and G

in our analytical expressions, in order to make the physical
origin of our results more transparent.

II. HAMILTONIAN FORMULATION OF
SECOND-ORDER PERTURBATION THEORY

AROUND SPATIALLY FLAT FLRW
BACKGROUNDS

Let us consider general relativity minimally coupled to a
scalar field Φ on a spacetime manifold M ¼ R × Σ. In this
paper we are interested in Σ having the R3 topology,
although the extension to other choices is straightforward.
In the Arnowitt-Deser-Misner, or Hamiltonian formulation,
the phase space Γ is made of quadruples of fields defined
on Σ, i.e., ½Φðx⃗Þ; PΦðx⃗Þ; qijðx⃗Þ; πijðx⃗Þ�, where qijðx⃗Þ is a
Riemannian metric that describes the intrinsic geometry
of Σ, and πijðx⃗Þ, its conjugate momentum, describes the
extrinsic geometry of Σ. (Latin indices i, j run from 1 to 3.)
The only nonzero Poisson brackets between these canonical
variables are

fΦðx⃗Þ; PΦðx⃗0Þg ¼ δð3Þðx⃗ − x⃗0Þ;
fqijðx⃗Þ; πklðx⃗0Þg ¼ δkðiδ

l
jÞδ

ð3Þðx⃗ − x⃗0Þ; ð2:1Þ

where δkðiδ
l
jÞ ≡ 1

2
ðδki δlj þ δkjδ

l
iÞ is the symmetrizedKronecker

delta. Additionally, this phase space Γ carries the four
constraints of general relativity, the so-called scalar and
vector (or diffeomorphism) constraints

Sðx⃗Þ ¼ 2κffiffiffi
q

p
�
πijπij −

1

2
π2
�
−

ffiffiffi
q

p
2κ

ð3ÞRþ 1

2
ffiffiffi
q

p P2
Φ

þ ffiffiffi
q

p
VðΦÞ þ

ffiffiffi
q

p
2

DiΦDiΦ ≈ 0; ð2:2Þ

V iðx⃗Þ ¼ −2
ffiffiffi
q

p
qijDkðq−1/2πkjÞ þ PΦDiΦ ≈ 0; ð2:3Þ

where κ ¼ 8πG and VðΦÞ is a potential for the field Φ. In
these expressions, q, ð3ÞR, and Di are the determinant, the
Ricci scalar, and the covariant derivative associated with qij,
respectively.3

The Hamiltonian that generates time evolution in Γ is a
combination of constraints

H ¼
Z

d3x½Nðx⃗ÞSðx⃗Þ þ Niðx⃗ÞV iðx⃗Þ�; ð2:4Þ

where the Lagrange multipliers Nðx⃗Þ and Niðx⃗Þ are the so-
called lapse and shift. They can be chosen to depend on the
phase space variables. We now apply this formalism to the
early Universe.
One of the main assumptions in cosmology is that the

primordial Universe is described by a solution to Einstein’s
equations that is very close to a FLRW geometry. In the
Hamiltonian language, this means that we want to focus on
a sector of the phase space Γ of general relativity,
consisting of a small neighborhood around the homo-
geneous and isotropic subspace, ΓFLRW ∈ Γ. In this neigh-
borhood, the canonical variables can be written as

Φðx⃗Þ ¼ ϕþ δϕðx⃗Þ;
PΦðx⃗Þ ¼ pϕ þ δpϕðx⃗Þ;
qijðx⃗Þ ¼ q

∘
ij þ δqijðx⃗Þ;

πijðx⃗Þ ¼ π
∘ ij þ δπijðx⃗Þ; ð2:5Þ

where δϕðx⃗Þ; δpϕðx⃗Þ; δqijðx⃗Þ; δπijðx⃗Þ describe small per-
turbations around the homogenous and isotropic back-

ground variables ϕ; pϕ; q
∘
ij; π

∘ ij.

A. Background

The variables ϕ; pϕ; q
∘
ij; π

∘ ij are chosen to describe a
spatially flat FLRW universe. This implies the following.
First of all, because we are dealing here with homogenous
fields and Σ has the noncompact R3 topology, the spatial
integrals involved in the definition of the Hamiltonian and
the symplectic form, diverge. But this is a spurious infrared
divergence, which can be eliminated by restricting the
integrals to some finite, although arbitrarily large cubical
coordinate volume V0. This infrared regulator will appear
only in intermediate expressions, and physical predictions
will not depend on it, therefore allowing us to take V0 → ∞
at the end of the calculation. Secondly, the basic Poisson
brackets of these background variables are

fϕ; pϕg ¼ 1

V0

; fq∘ ij; π∘ klg ¼ 1

V0

δkðiδ
l
jÞ: ð2:6Þ

The rest of Poisson brackets between background variables,
as well as the “mixed” brackets involving both background
and perturbation fields, all vanish. Thirdly, homogeneity
and isotropy allow us to choose a gauge in which the metric
variables take the manifestly homogeneous and isotropic
form

q
∘
ij ¼ a2δij; π

∘ ij ¼ πa
6a

δij; ð2:7Þ

where δij is the Euclidean metric on Σ and δij its inverse, and
numerical factors have been chosen to make a and πa
canonically conjugated variables, fa;πag¼ 1

V0
. Furthermore,

homogeneitymakes the vector constraint to vanish identically,

3In terms of the ordinary derivative associated with a reference
frame, the components of vector constraint read V iðx⃗Þ ¼
−2∂kðqijπjkÞ þ πjk∂iqjk þ PΦ∂iΦ ≈ 0.

NON-GAUSSIANITY IN LOOP QUANTUM COSMOLOGY PHYS. REV. D 97, 066021 (2018)

066021-3



since the spatial derivatives of background variables are all
zero. Therefore, the background degrees of freedom are
subject only to the scalar constraint (2.2), which takes the form

Sð0Þ ¼ −
κπ2a
12a

þ p2
ϕ

2a3
þ a3VðϕÞ ≈ 0: ð2:8Þ

This is the familiar Friedmann constraint. And finally,
dynamics is generated by the Hamiltonian

HFLRW ¼
Z

d3xNSð0Þ ¼ V0N

�
−
κπ2a
12a

þ p2
ϕ

2a3
þ a3VðϕÞ

�
:

ð2:9Þ

Only uniform lapses N contribute to the right-hand side of
(2.9). Commonly used choices are (i) N ¼ 1, which corre-
sponds to using proper—or cosmic—time t, (ii) N ¼ a that
corresponds to conformal time η, (iii) or N ¼ a3 associated
with the so-called harmonic time τ. Friedmann equations are
easily obtained fromHamilton’s equations ofmotionwhich, in
cosmic time, read

ȧ ¼ fa;HFLRWg ¼ −κ
πa
6a

;

π̇a ¼ fπa;HFLRWg ¼ −
�

κ

12a2
π2a −

3

2

1

a4
p2
ϕ þ 3a2VðϕÞ

�
;

ð2:10Þ

ϕ̇ ¼ fϕ;HFLRWg ¼ pϕ

a3
;

ṗϕ ¼ fpϕ;HFLRWg ¼ −a3
dVðϕÞ
dϕ

: ð2:11Þ

These equations can be combined into themore familiar set of
second-order differential equations

ϕ̈þ3
ȧ
a
ϕ̇þdVðϕÞ

dϕ
¼ 0;

ä
a
¼−

κ

2

�
1

3
ρþP

�
; ð2:12Þ

where ρ≡ 1
2
ϕ̇2 þ VðϕÞ and P≡ 1

2
ϕ̇2 − VðϕÞ are the energy

and pressure density of ϕ, respectively.
By solving (2.12) one directly obtains the spacetime

background metric ds2¼−dt2þq
∘
ijðtÞdxidxj¼−dt2þ

aðtÞ2dx⃗ 2 and the scalar fieldϕðtÞ. These are the background
fields upon which perturbations propagate.
Remark: From now on, we choose to raise and lower

all indices with the FLRW background metric q
∘
ij and its

inverse q
∘ ij.

B. Perturbations

Perturbation fields are defined by Eqs. (2.5). The Poisson
brackets of the physical fields (2.1) together with those of
the background variables (2.6), imply

fδϕðx⃗Þ; δpϕðx⃗0Þg ¼ δð3Þðx⃗ − x⃗0Þ − 1

V0

;

fδqijðx⃗Þ; δπklðx⃗0Þg ¼ δkðiδ
l
jÞ

�
δð3Þðx⃗ − x⃗0Þ − 1

V0

�
: ð2:13Þ

The distribution appearing in the right-hand side,
δð3Þðx⃗ − x⃗0Þ − 1

V0
, is simply the Dirac delta on the space

of purely inhomogeneous fields.4

We have a total of 7 degrees of freedom (per point of
space) in configuration variables—6 in δqijðx⃗Þ (gravity)
and one in δϕðx⃗Þ (matter)—and 7 more in the conjugate
momenta. But perturbations are subject to the 4 constraints
(2.2), hence leaving a total of 3 physical degrees of freedom
in configuration variables, and a total of 6 in the phase
space of perturbations—recall that each first class con-
straint actually removes two degrees of freedom in phase
space. In order to isolate these physical fields, it is
convenient to first decompose δqijðx⃗Þ and δπijðx⃗Þ in a
way that is adapted to the symmetries of the background

metric q
∘
ij. This leads to the well-known scalar-vector-

tensor decomposition of metric perturbations. This decom-
position can be achieved either in position or Fourier space.
We choose to do it in Fourier space (see, e.g., [41,42] for
earlier references), with the aim of complementing the
more extended analysis in position space (see, e.g., [43,44]
for a recent study of non-Gaussianity in position space, also
in the canonical framework). We start by expanding the
metric perturbations in Fourier modes

δqijðx⃗Þ ¼
1

V0

X
k⃗

δq̃ijðk⃗Þeik⃗·x⃗;

δπijðx⃗Þ ¼ 1

V0

X
k⃗

δπ̃ijðk⃗Þeik⃗·x⃗: ð2:14Þ

Since the perturbation fields in position space are real, one
has δq̃⋆ijðk⃗Þ ¼ δq̃ijð−k⃗Þ, and similarly for δπ̃ijðk⃗Þ, where
the star indicates complex conjugation.

4This can be checked by smearing the left-hand side of (2.13)
with arbitrary functions fðx⃗Þ and gðx⃗Þ, and noticing that the
presence of the term−1/V0 removes the homogeneous components
of those functions. Thus, only the inhomogeneous components of
fðx⃗Þ and gðx⃗Þ, defined as finhðx⃗Þ≡ fðx⃗Þ − 1/V0

R
dx3fð⃗xÞ and

similarly for gðx⃗0Þ, contribute to the right-hand side of (2.13). Note
also that at second order, the equations of motion for perturbations
are nonlinear. This implies that perturbation will pick a homog-
enous contribution throughout the evolution, even if the initial data
is purely inhomogeneous. Therefore, strictly speaking, perturba-
tions cannot be assumed to be purely inhomogeneous at this order
in perturbations. However, the Poisson brackets (2.13) imply that
the homogenous part of the perturbations will Poisson-commute
with its conjugate momentum, and hencewill have no dynamics in
our formulation. This is equivalent to saying that, in perturbation
theory, this homogenous mode is neglected, since it is assumed to
always be much smaller that the background fields. This is the
reason why, in practice, one can treat perturbations as purely
inhomogeneous even at second order.
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The Poisson brackets (2.13) translate to

fδq̃ijðk⃗Þ; δπ̃klðk⃗0Þg ¼ V0δ
k
ðiδ

l
jÞδk⃗;−k⃗0 ; ð2:15Þ

for any nonzero k⃗ and k⃗0.
The matrices δq̃ijðk⃗Þ belong to the vector space of 3 × 3

symmetric matrices. The scalar-vector-tensor decomposi-
tion is obtained by writing δq̃ijðk⃗Þ in a convenient basis in
this space, namely

Að1Þ
ij ¼ q

∘
ijffiffiffi
3

p Að2Þ
ij ¼

ffiffiffi
3

2

r �
k̂ik̂j −

q
∘
ij

3

�

Að3Þ
ij ¼ 1ffiffiffi

2
p ðk̂ix̂j þ k̂jx̂iÞ Að4Þ

ij ¼ 1ffiffiffi
2

p ðk̂iŷj þ k̂jŷiÞ

Að5Þ
ij ¼ 1ffiffiffi

2
p ðx̂iŷj þ x̂jŷiÞ Að6Þ

ij ¼ 1ffiffiffi
2

p ðx̂ix̂j − ŷiŷjÞ;

where k̂ is the unit vector in the direction of k⃗, and k̂; x̂; ŷ

form an orthonormal set of unit vectors (with respect to q
∘
ij).

These six matrices form an orthonormal basis, with respect

to the inner product A⋆ðnÞ
ij Aij

ðmÞ ¼ δnm. Now, we expand the

perturbation fields in this basis,

δq̃ijðk⃗Þ ¼
X6
n¼1

γ̃nðk⃗ÞAðnÞ
ij ðk⃗Þ;

δπ̃ijðk⃗Þ ¼
X6
n¼1

π̃nðk⃗ÞAij
ðnÞðk⃗Þ: ð2:16Þ

These equations can be seen as the definition of γ̃nðk⃗Þ≡
Aij
ðnÞδq̃ijðk⃗Þ and π̃nðk⃗Þ≡ AðnÞ

ij δπ̃ijðk⃗Þ. Consider the group of
rotations around the direction k̂, i.e., the SOð2Þ subgroup
that leaves k̂ invariant—but rotates x̂ and ŷ. It is evident

from their definition that Að1Þ
ij and Að2Þ

ij are unaffected by

these rotations, Að3Þ
ij and Að4Þ

ij transform as vectors, and Að5Þ
ij

and Að6Þ
ij as two-covariant tensors. For this reason γ̃n and π̃n

are called scalar modes for n ¼ 1, 2, vector modes for
n ¼ 3, 4, and tensor modes for n ¼ 5, 6. The canonical
Poisson brackets (2.15) are equivalent to

fγ̃nðk⃗Þ; π̃mðk⃗0Þg¼Aij
ðnÞA

ðmÞ
rs ×fδq̃ijðk⃗Þ;δπ̃rsðk⃗0Þg

¼V0δnmδk⃗;−k⃗0 ;

fγ̃nðk⃗Þ; γ̃mðk⃗0Þg¼ 0;

fπ̃nðk⃗Þ; π̃mðk⃗0Þg¼ 0: ð2:17Þ

Note that the conjugate variable of γ̃nðk⃗Þ is π̃mð−k⃗Þ ¼
π̃⋆mðk⃗Þ.

C. Physical degrees of freedom

There are two common strategies to isolate physical
degrees of freedom in perturbations from pure gauge ones,
namely gauge fixing or working with the so-called gauge
invariant variables. Gauge invariant variables are combi-
nations of δϕ̃ and γ̃n’s that are invariant under the
Hamiltonian flow generated by some of the constraints.
More precisely, when working at linear order in perturba-
tions, gauge invariant variables are defined to be invariant
under the flow generated by the terms in the constraints
(2.2) that are linear in perturbations, and these variables are
commonly used in the literature (see, e.g., [41], and
Sec. III. C of [42]). However, finding gauge invariant
perturbations at second order is more tedious [44], since
one must involve second-order constraints in their defi-
nition. The gauge fixing strategy is more efficient, and
more common in the literature (see, e.g., [36]), and we shall
follow it in this paper.
Recall also that in making predictions for primordial

perturbations, the important point is to write the answer in
terms of the comoving curvature perturbationsR (see, e.g.,
[36] for its definition at higher order in perturbations). This
is because Fourier modes of R remain constant from the
time they exit the Hubble radius during inflation until they
reenter towards the end of the radiation era. This property
ofR is crucial, since it allows us to connect the inflationary
predictions with observables in the late time Universe, even
if we are uncertain about the evolution of the Universe
immediately after inflation. Therefore, irrespective of what
strategy one decides to follow—gauge invariant variables
or gauge fixed ones—the important point is to write the
answer in terms of R at the end of inflation.
However, performing all computations using R presents

somedifficulties.When theUniverse is dominatedby a scalar
field ϕ, the variable R is ill-defined whenever ϕ̇ vanishes.
During inflation this situation does not occur, because the
evolution of the scalar field during this period is monotonic,
rolling down the potential, as long as the slow-roll conditions
are satisfied. In the scenario under consideration in this paper,
ϕ̇ vanishes just before the onset of inflation, thus making the
variable R unsuitable for our purposes (see [27,45] for
further details). Therefore, in our analysis below we work
with the scalar perturbations δϕ in the spatially flat gauge and
rewrite the answers in terms of comoving curvature pertur-
bationR at the end of the inflation, when allmodes of interest
are in super-Hubble scales.
The spatially flat gauge is defined as the gauge in which

the scalar and vector modes of metric perturbations vanish,
i.e., γ̃i ¼ 0 for i ¼ 1, 2, 3, 4. The physical degrees of
freedom are therefore encoded in the scalar perturbations
δ̃ϕ and the tensor modes γ̃5 and γ̃6. This strategy com-
pletely fixes the gauge freedom.
We are now ready to write the Hamiltonian that generates

dynamics, including terms up to third order in perturbations.
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This will produce equations of motion that incorporate terms
up to second order.

D. Third-order Hamiltonian

This paper focuses on non-Gaussianity of scalar pertur-
bations. Therefore,we will not write terms containing tensor
modes in this section. Including them, however, does not add
any conceptual difficulty (for a treatment of tensor modes in
the context of inflation, see for instance, [36,46,47]),
although the expressions below become significantly longer.
The third order Hamiltonian for scalar perturbations in the
spatially flat gauge is obtained as follows:

(i) Expand the constraints (2.2) in perturbations

Sðx⃗Þ ¼ Sð0Þ þ Sð1Þðx⃗Þ þ Sð2Þðx⃗Þ þ Sð3Þðx⃗Þ þ � � � ;
Vðx⃗Þ ¼ V ð0Þ þ V ð1Þðx⃗Þ þ V ð2Þðx⃗Þ þ V ð3Þðx⃗Þ þ � � � ;

ð2:18Þ

where the superscript (0) denotes the terms that
are independent of perturbations, (1) the linear
terms, (2) and (3) the second- and third-order terms,
respectively. Expressions for each of these terms can
be obtained directly from (2.2) and (3), and are
reported in Appendix A.
Expand also the lapse and shift as N þ δN and

Ni þ δNi, where N and Ni are the homogenous
lapse and shift. For consistency with the FLRW
gauge fixing [Eq. (2.7)], we take Ni ¼ 0. On the
other hand, δNðx⃗Þ and δNiðx⃗Þ are the inhomo-
geneous part of the lapse and shift, which may
depend on perturbations.

(ii) Impose the gauge conditions γ̃1 ¼ 0, γ̃2 ¼ 0 in the
constraints (2.2).5 (Since we are interested in terms
involving only scalar perturbations, the gauge con-
ditions γ̃3 ¼ 0, γ̃4 ¼ 0 are not needed.)

(iii) Find the lapse δÑ and shift δÑi associated with this
gauge fixing by demanding that the gauge condi-
tions are preserved upon evolution; i.e., use the
equations

˙̃γ1 ¼ fγ̃1;Hg ¼ 0; ˙̃γ2 ¼ fγ̃2;Hg ¼ 0; ð2:19Þ

to obtain δÑ and δÑi in terms of π̃1, π̃2, δϕ̃, and δp̃ϕ.
To write the third order Hamiltonian it is sufficient to
keep terms in δÑ and δÑi up to first order in
perturbations.

(iv) Impose the first order constraints, Sð1Þðx⃗Þ ¼ 0,

V ð1Þ
i ðx⃗Þ ¼ 0 to eliminate the conjugated variables

π̃1, π̃2 in favor of δϕ̃ and δp̃ϕ, i.e., to find the
relations π̃1 ¼ π̃1ðδϕ̃; δp̃ϕÞ, π̃2 ¼ π̃2ðδϕ̃; δp̃ϕÞ.

(v) Plug these results in the Hamiltonian (2.4) and keep
terms up to third order in perturbations.

We performed these calculations using the MATHEMATICA

package xAct6 [48]. The result is

δÑ ¼ −
2N
aπa

ð
ffiffiffi
3

p
π̃1 þ

ffiffiffi
6

p
π̃2Þ;

δÑi ¼ ikiχ̃; where χ̃ ¼ N

ffiffiffi
6

p
κ

k2a
π̃2;

π̃1 ¼
ffiffiffi
3

p
a5Vϕ

κπa
δϕ̃þ

ffiffiffi
3

p
pϕ

κaπa
δp̃ϕ;

π̃2 ¼
ffiffiffi
3

2

r ��
pϕ

2
−
a5Vϕ

κπa

�
δϕ̃ −

pϕ

κaπa
δp̃ϕ

�
; ð2:20Þ

where k2 ≡ kikjδij ¼ a2kiki is the so-called comovingwave
number.
Moving back to position space, we obtain the expression

for the Hamiltonian up to third order for scalar perturbations
Hpert ¼ Hð2Þ þHð3Þ. The second-order Hamiltonian is7

Hð2Þ ¼
Z

d3xNSð2Þðx⃗Þ ¼ N
1

2

Z
d3x

�
1

a3
δp2

ϕ þ a3ð∂⃗δϕÞ2 þ a3Aδϕ2

�
; ð2:21Þ

with the potential A given by

A ¼ −9
p4
ϕ

a8π2a
þ 3

2
κ
p2
ϕ

a6
−
6pϕ

aπa
Vϕ þ Vϕϕþ6

pϕṗϕ

a4πa
− 3

p2
ϕπ̇a

a4π2a
− 3

ȧp2
ϕ

a5πa
: ð2:22Þ

The “dot” on background variables must be understood as ẋ≡ fx;HFLRWg, and each subscript ϕ for the potential V means a
derivative with respect to ϕ.

5From the phase space viewpoint, this is equivalent to introducing two new (second class) constraints.
6http://www.xact.es.
7We have, in addition, performed the canonical transformation ðδϕ; δpϕÞ → ðδϕ; δp̄ϕ ¼ δpϕ −

3p2
ϕ

aπa
δϕÞ to eliminate a term

proportional to δpϕδϕ in the second-order Hamiltonian. From now on we will work with δp̄ϕ, but we will drop the bar to simplify
the notation.
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The third order Hamiltonian is

Hð3Þ ¼
Z

d3xðδNSð2Þðx⃗Þ þ δNiV ð2Þðx⃗Þ þ NSð3Þðx⃗ÞÞ

¼ N
Z

d3x

��
9κp3

ϕ

4a4πa
−

27p5
ϕ

2a6π3a
−
3a2pϕVϕϕ

2πa
þ a3Vϕϕϕ

6

�
δϕ3 −

3pϕ

2a4πa
δp2

ϕδϕ −
9p3

ϕ

a5π2a
δpϕδϕ

2 −
3a2pϕ

2πa
δϕð∂⃗δϕÞ2

þ 3p2
ϕ

Naπa
δϕ2∂2χ þ 3

2

a2pϕ

N2κπa
δϕ∂2χ∂2χ þ 3

p2
ϕ

Naπa
δϕ∂iχ∂iδϕþ 1

N
δpϕ∂iδϕ∂iχ −

3

2

a2pϕ

N2κπa
δϕ∂i∂jχ∂i∂jχ

�
: ð2:23Þ

By performing a Legendre transformation, it can be
checked that these expressions agree with the third-order
Lagrangian derived in [36] (recall that, unlike [36], we use
the physical background metric q

∘
ij ¼ a2δij and its inverse,

to lower and raise indices). Note that we have not used the
Friedmann constraint (2.8) to derive, or simplify, the
second- and third-order Hamiltonians.
The second-order Hamiltonian Hð2Þ provides the free

evolution of perturbations, i.e., it leads to the linear
equations of motion

δ̇ϕ ¼ fδϕ;Hð2Þg;
˙δpϕ ¼ fδpϕ;Hð2Þg → ð□ −AðtÞÞδϕðx⃗; tÞ ¼ 0; ð2:24Þ

where □ is the d’Alembertian of the FLRW background
metric.
The third order piece of the Hamiltonian,Hð3Þ, is the so-

called interaction Hamiltonian, which provides self-inter-
actions between perturbations (quadratic terms in the
equations of motion). Some of these interactions are
generated by the scalar field’s potential VðϕÞ, but note
that most terms in Hð3Þ are independent of VðϕÞ, and
therefore would be present even if VðϕÞ ¼ 0. These are
self-interaction mediated by gravity.
Finally, the relation between δϕ to the comoving

curvature perturbations R, needed to write our results in
terms of R at the end of inflation, is given by [36]

Rðx⃗; tÞ ¼ −
a
z
δϕþ

�
−
3

2
þ 3

Vϕa5

κpϕπa
þ κ

4

z2

a2

��
a
z
δϕ

�
2

−
3a2

κπa

d
dt

�
a
z
δϕ

�
2

− 9
a4

κ2π2a

a2

z2
ð∂⃗δϕÞ2

þ 9
a4

κ2π2a

a2

z2
∂−2∂i∂jð∂iδϕ∂jδϕÞ

þ 3
a4

κπa

a
z
∂iχ∂iδϕ − 3

a4

κπa

a
z
∂−2∂i∂j½∂iχ∂jδϕ�;

ð2:25Þ

where z≡ − 6
κ
pϕ

πa
. Although this relation looks complicated,

we will only need to use it at the end of the inflation, and at

that time the terms in the second, third, and fourth lines
become negligible compared to those in the first line. The
reason for this is that perturbations that can affect our CMB
have wavelengths much larger than the Hubble radius at the
end of inflation. As previously mentioned, these super-
Hubble modes of R become time independent. These two
facts—super-Hubble wavelength and time independence—
make both the spatial and time derivatives appearing in the
second, third, and fourth lines negligibly small.

III. EXTENSION OF THE DRESSED METRIC
APPROACH TO SECOND ORDER

In this section we obtain the equations that describe
the propagation of scalar perturbations in the Planck
era of the Universe, using LQC. We use the so-called
dressed metric approach, introduced in [49], and further
developed in [27,42] (see also the review articles [14,17,21]).
Here we extend the existing formalism to second order in
perturbations.
In semiclassical cosmology, to account for the CMB

temperature fluctuations it has sufficed to consider just the
first-order perturbations around a FLRW solution, ignoring
their backreaction. In the Planck era of the Universe, to
begin with, one has a quantum gravitational field instead of
a smooth metric. The question is whether we can find
solutions in loop quantum cosmology that deviate from a
quantum FLRW configuration only by small perturbations,
and whose effect on the background quantum geometry can
be neglected. Such solutions exist [27,42,49] and can be
calculated, and they can be used to build a self-consistent
quantum gravity extension of the inflationary scenario
[26,27]. We first summarize how these solutions are
obtained and then extend previous analyses by including
terms up to second order in perturbations.
Our goal is to find the quantum theory of the classical

midisuperspace made of spatially flat FLRW geometries
sourced by a scalar fieldϕ, together with scalar perturbations
δϕðx⃗Þ propagating thereon. In LQC, dynamics is extracted
from the constraint equation (the analog of the Wheeler-
deWitt equation) ĤΨ ¼ 0, where Ĥ ¼ ĤFLRW þ Ĥpert is the
operator associated with the Hamiltonian obtained in the
previous section, andΨ is the total wave function describing
both the background degrees of freedom, a and ϕ, as well as
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scalar perturbations δϕ. In LQC it is convenient to trade the
scale factora for the “volume”v, defined asv≡ a3V04/κ and
use the lapse Nτ ≡ a3 (see [50], and references therein, for
additional details). The constraint equation ĤΨðv;ϕ; δϕÞ ¼
0 takes the form

−ℏ2∂2
ϕΨðv;ϕ;δϕÞ¼ ðĤ2

0− Ĥ2
1−2V0Ĥpert½Nτ�ÞΨðv;ϕ;δϕÞ;

ð3:1Þ

where Ĥ2
1 ≡ 1

8
κ2v̂2V̂ðϕÞ, and Ĥ2

0 is a difference operator,
whose explicit form is not important for our discussion (it can
be found, e.g., in Eq. (2.2) of [50]; see also the original
references [6–9,51]). Both Ĥ0 and Ĥ1 act only on back-
ground degrees of freedom, while Ĥpert acts on both, back-
ground and perturbations. We are interested in solutions
to this equation of the form Ψðv;ϕ; δϕÞ ¼ Ψ0ðv;ϕÞ ⊗
δΨðv;ϕ; δϕÞ, with Ψ0ðv;ϕÞ representing a quantum
FLRW gravitational field, and δΨðv;ϕ; δϕÞ describing
inhomogeneous scalar perturbations.

A. Background

The states Ψ0ðv;ϕÞ are chosen to be a normalized
solution, with respect to a suitably defined inner product
[14], of (3.1) with Ĥpert ¼ 0. They describe a quantum
FLRW geometry. The Hilbert space HFLRW to which the
states Ψ0ðv;ϕÞ belong to, was studied in detail in [6,9,14]
in absence of a potential VðϕÞ, i.e., with Ĥ1 ¼ 0.
Adding a potential introduces additional subtleties

related to the definition of the inner product on the
Hilbert space. This issue has been discussed in [50], and
the reader is referred there for details. In this paper, we will
focus only on bounces that are “kinetic dominated”, since
this is the regime of phenomenological interest for us (see
Sec. VII). For such bounces, one can check that hĤ2

0i ≫
hĤ2

1i during the Planck era [50].8 This makes the term
proportional to Ĥ1 in our quantum equations to produce
negligible effects on physical observables (e.g., the pri-
mordial power spectrum), several orders of magnitude
smaller than observational error bars. Hence, although
the mathematical subtleties that appear in the inclusion
of Ĥ1 are important from the conceptual and mathematical
viewpoint, they are not of direct relevance for phenom-
enological considerations. Therefore, in this paper we will
work with states Ψ0ðv;ϕÞ obtained by neglecting Ĥ1 in the
Planck era.
The Hilbert space of the states for the background

geometries that we are interested in, HFLRW ∋ Ψ0ðv;ϕÞ,
is then made of solutions to the “Schrödinger-like” equation

−iℏ∂ϕΨ0ðv;ϕÞ ¼ Ĥ0Ψ0ðv;ϕÞ; ð3:2Þ

with a finite norm jjΨ0jj2 ≡P
vjΨ0ðv;ϕÞj2 < ∞. This

equation is simply the positive “square root” of (3.1) with
Ĥ1 ¼ 0 and Ĥpert ¼ 0. HFLRW is the analog of the space of
states of the more familiar example of a scalar field in
Minkowski spacetime, that is made of positive frequency
solutions to the Klein-Gordon equation. It is useful—
although not essential—to think of ϕ in Ψ0ðv;ϕÞ as a
relational time variable with respect to which the wave
function “evolves”.
As shown in [9], states in (a dense subspace of)HFLRW are

free of curvature singularities, in the sense that curvature
invariants are all bounded. The eigenvalues of the matter
energy density and pressure have also an absolute supremum
on HFLRW, given by a fraction of the Planck scale.
Furthermore, every state Ψ0ðv;ϕÞ experiences precisely
one “instant” ϕB at which the expectation value of the
volume of the fiducial box, or of any other finite region of
space, attains its minimum, while energy density and
curvature reach their maximum. In other words, in this
theory a cosmic bounce replaces the big bang singularity of
classical general relativity.

1. Effective theory

Togain physical intuition, consider statesΨ0ðv;ϕÞ that are
sharply peaked in the volume v, i.e., stateswith small relative
dispersion in v (or equivalently, in the scale factor a) during
the entire “evolution”. Such solutions to (3.2) exist and have
been studied in detail [7,8,52,53]. For these states, it has been
shown [14,54] that the expectation value of the scale factor,
ā≡ hâi, and the rest of background quantities, can be
obtained very accurately from an effective theory. This
effective theory takes the form of a classical theory whose
equations of motion incorporate the leading quantum cor-
rections. The phase space is four dimensional, made of
quadruples ðā; π̄a; ϕ̄; p̄ϕÞ, and dynamics on it is generated by
the effective Hamiltonian constraint9

HðeffÞ
FLRW½N�¼V0N

�
1

2ā3
p̄2
ϕ−

3a3

κ

1

l2
0

sin2
�
l0

κ

6

π̄a
ā2

�
þā3Vðϕ̄Þ

�
;

ð3:3Þ

where l2
0 ≡ Δ3

0

48π2
l2
Pl, andΔ0 is area gap in LQC—the lowest

nonzero eigenvalue of the area operator. This Hamiltonian
depends on ℏ through l0. In the limit l0 → 0, it reduces
to the classical FLRWHamiltonian given in (2.9). In terms of
the energy density ρ≡ 1

2
p̄2
ϕā

−6 þ Vðϕ̄Þ, the equation

HðeffÞ
FLRW ¼ 0 becomes

8This epoch is defined as the period for which the quantum
gravity corrections to the dynamics are larger than a 0.1%.

9We have included the potential Vðϕ̄Þ because, as emphasized
before, it plays an important role at late times, out of the Planck
era. However, within the Planck era it is completely subdominant
in all solutions of interest for this article. Hence, the way we use
this effective Hamiltonian is consistent with the previous dis-
cussion, where the potential V was neglected in deriving the wave
function Ψ0 in the Planck era.
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1

l2
0

sin2
�
l0

κ

6

π̄a
ā2

�
¼ κ

3
ρ: ð3:4Þ

The trigonometric function on the left-hand side reveals that
the energy density is bounded above by ρsup ¼ 3

κl2
0

. Some

analyses of black hole entropy in loop quantum gravity
[55–57] suggest the valueΔ0 ¼ 5.17 for the area gap, that in
turnmakes ρsup ¼ 0.4092ρPl (see, e.g., [58] for an alternative
view). In this paperwe treatΔ0 as a free parameter and derive
results for the CMB for different values of Δ0.
The equations of motion (using cosmic time) for the

canonical variables ā, π̄a, ϕ̄, and p̄ϕ that describe the
effective geometry, read

˙̄a ¼ fā;HðeffÞ
FLRWg

⇒ H̄ ≡ ˙̄a
ā
¼ −

1

2l0

sin

�
2l0

κ

6

π̄a
ā2

�
;

˙̄πa ¼ fπ̄a;HðeffÞ
FLRWg ¼ 3

2

p̄2
ϕ

ā4
þ 9

a2

κ

1

l2
0

sin2
�
l0

κ

6

π̄a
ā2

�

−
π̄a
l0

sin

�
2l0

κ

6

π̄a
ā2

�
− 3ā2Vðϕ̄Þ;

˙̄ϕ ¼ fϕ̄;HðeffÞ
FLRWg ¼ p̄ϕ/ā3;

˙̄pϕ ¼ fp̄ϕ;H
ðeffÞ
FLRWg ¼ −ā3

dVðϕ̄Þ
dϕ̄

: ð3:5Þ

These equations reproduce the classical FRLW dynamics
(2.10)–(2.11) in the limit l0 → 0. Equation (3.5) implies,
due the presence of the trigonometric function, that the
Hubble rate of the effective geometry is also bounded from
above, by jH̄supj ¼ 1

2l0
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

κ
12
ρsup

p
.

Now, a relation between energy density and Hubble rate,
that generalizes the classical Friedmann constraint, can be
obtained by combining (3.4) and (3.5). More precisely,
using the identity sin2ð2xÞ ¼ 4sin2xð1 − sin2xÞ, together
with (3.4), Eq. (3.5) takes the form

H̄2 ¼ κ

3
ρ

�
1 −

ρ

ρsup

�
: ð3:6Þ

The term in parenthesis breaks the linearity between the
Hubble parameter H̄2 and the energy density κ

3
ρ that holds

in general relativity. Moreover, H̄ vanishes when ρ reaches
its maximum value ρsup; such an instant corresponds to a
smooth transition between a contracting and an expanding
universe, i.e., a cosmic bounce. When ρ is small compared
to ρsup, the classical relation H̄2 ¼ κ

3
ρ is recovered.

The set of equations (3.5)–(3.6) can be recast as a system
of two second-order differential equations

̈ā
ā
¼ −

κ

6
ρ

�
1 − 4

ρ

ρsup

�
−
κ

2
P

�
1 − 2

ρ

ρsup

�
;

̈ϕ̄þ 3H̄ ˙̄ϕþVϕ̄ ¼ 0; ð3:7Þ

where P≡ 1
2
˙̄ϕ − Vðϕ̄Þ is the pressure density of the scalar

field, and the dot indicates derivative with respect to cosmic
time t.10 These are the so-called effective equations of LQC.
The solutions to these equations provide an effective
FLRW metric ḡab around which the quantum geometry
Ψ0ðv;ϕÞ is sharply peaked.
It is important to notice that solutions of the effective

equations are characterized by two parameters, which can be
chosen to be the value of the scalar field at the time of the
bounce ϕ̄ðtBÞ≡ ϕB and its energy density at that same time,
ρðtBÞ≡ ρB ¼ ρsup. To understand why we only need two
numbers to characterize a solution, even though the phase
space we are working with is four dimensional, consider the
following. Note first that in a spatially flat FLRW geometry,
the scale factor a can be rescaled freely without altering the
physics.We choose āB ¼ 1. On the other hand, at the bounce
˙̄a ¼ 0 in all solutions. Additionally, because the energy

density equals ρsup at the bounce, ϕB determines ˙̄ϕðtBÞ.
Therefore, from the apparently four initial data required to
solve the system (3.5)–(3.6), the value of ϕB and ρsup
(together with the convention āB ¼ 1), suffices to uniquely
characterize a solution.

2. Generalized effective equations

What about states Ψ0ðv;ϕÞ that are not sharply peaked?
They, of course, are not accurately described by the
effective equations. In particular, the geometry they
describe cannot be approximated in any reasonable sense
by a smooth metric tensor. For those states, quantum
fluctuations play an important role. Nevertheless, it has
been proven in [59] that the expectation value of the scale
factor ā ¼ hΨ0jâjΨ0i is still accurately described by
equations (3.7), with the only difference that ρsup must
be replaced by the actual value of the energy density at the
bounce, ρB, which satisfies ρB ≤ ρsup. That is, ā bounces at
an energy density ρB smaller than or equal to ρsup for states
Ψ0ðv;ϕÞ with large dispersion. It turns out that ρB
decreases when the relative quantum dispersion in volume
Δv/v increases. (The authors of [59] also derive an
analytical relation between ρB and Δv/v, valid for
Gaussian states.) This behavior is sensible: since ρsup is

10Recall that in LQC evolution has been defined, at the
fundamental level, in a relational manner. In other words we have
studied how the gravitational degree of freedom a evolves with
respect to the matter degree of freedom ϕ. In this sense, the “time”
variable t in this effective theory arises just as a parameter that
changes monotonically with ϕ̄, that allows us to “separate” the
relation aðϕÞ into aðtÞ and ϕðtÞ. This is the way the ordinary time
we use in general relativity “emerges” in loop quantum cosmology.
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a supremum, only infinitely sharply peaked states reach
ρB ¼ ρsup, while quantum fluctuation can only decrease
ρB. However, it is remarkable that, even in presence of large
quantum fluctuations, the mean values of Ψ0ðv;ϕÞ are still
very well approximated by “generalized effective equa-
tions” which are identical to the equations (3.7) with ρsup
replaced by ρB.

B. Perturbations

Recall that we are interested in solutions of (3.1) of the
form Ψðv;ϕ; δϕÞ ¼ Ψ0ðv;ϕÞ ⊗ δΨðv;ϕ; δϕÞ, where
Ψ0ðv;ϕÞ is one of the quantum FLRW states described
above, and δΨ is a small perturbation around it. Intuition
tells us that states of this type exist, as long as δΨðv;ϕ; δϕÞ
remains a small perturbation throughout the evolution—
i.e., as long as the test field approximation is valid. As we
will see below, this is in fact the case.
The states we are looking for are the “positive fre-

quency” solutions to the constraint equation (3.1), i.e.,
states satisfying [49]

−iℏ∂ϕΨðv;ϕ; δϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĥ2

0½Nτ�− 2V0Ĥpert½Nτ�
q

Ψðv;ϕ; δϕÞ:
ð3:8Þ

Here Ĥ0 represents the Hamiltonian of the “heavy” degree
of freedom (background), and Ĥpert½Nτ� ¼ Ĥð2Þ½Nτ� þ
Ĥð3Þ½Nτ� the Hamiltonian of “light” ones (perturbations).
Recall, Nτ ¼ a3 is the lapse associated with harmonic time.
We can now expand out the square root and keep only terms
linear in Ĥpert

− iℏ∂ϕΨðv;ϕ; δϕÞ
≈ ½Ĥ0 − V0ððĤ0Þ−1/2Ĥpert½Nτ�ðĤ0Þ−1/2Þ�Ψðv;ϕ; δϕÞ;

ð3:9Þ

where we have chosen a symmetric order to write the
operators in the right-hand side. Note that the factors that
multiply Ĥpert are physically consistent, since in the
classical theory Nϕ ¼ V0H−1

0 Nτ is precisely the lapse
associated with the relational time ϕ. Hence
V0ðĤ0Þ−1/2Ĥpert½Nτ�ðĤ0Þ−1/2 is a specific quantization
of Hpert½Nϕ�.
Now, introducing our ansatz Ψðv;ϕ; δϕÞ ¼ Ψ0ðv;ϕÞ ⊗

δΨðv;ϕ; δϕÞ and using that Ψ0 satisfies the background
equation (3.2), we obtain from (3.9) the equation of motion
for δΨ

Ψ0 ⊗ ½iℏ∂ϕδΨ� ¼ Ĥpert½Nϕ�ðΨ0 ⊗ δΨÞ: ð3:10Þ

The test field approximation has been crucial to derive this
equation, but no other simplification has been used. Also,

recall that Ĥpert½Nϕ� acts on both Ψ0 and δΨ. However, the
presence of Ψ0 in the left-hand side indicates that we can
take the inner product with Ψ0 without loosing any
information and obtain

iℏ∂ϕδΨ ¼ hΨ0jĤpert½Nϕ�jΨ0iδΨ; ð3:11Þ

where we have used that Ψ0 is normalized. This equation
tells us that the information regarding the background
FLRW geometry that influences the evolution of perturba-
tions under the test field approximation is simply the
expectation value of the background operators that appear
in Ĥpert½Nϕ�; no other “moment” of Ψ0 contributes to the
dynamics.
Equation (3.11) is a Schrödinger equation for δΨ, with

evolution Hamiltonian hĤipert ≡ hΨ0jĤpert½Nϕ�jΨ0i, where
the hat reminds us that this expectation value is only on the
background state, and therefore this quantity is still an
operator when acting on perturbations. To solve this
dynamics and compute physical observables, we will
follow techniques that are standard in quantum field theory
in curved spacetimes. That is, states of perturbations belong
to a Fock space Hpert, on which dynamics is dictated by
hĤipert in the standard way. (The total Hilbert space is
thereforeHFLRW ⊗ Hpert; this is the quantum analog of the
classical phase space ΓFLRW × Γpert of FLRW metrics plus
perturbations propagating thereon.)
Now, we shall describe the dynamics of perturbations in

more detail. As seen in Sec. II B, at the next-to-leading
order in perturbations the Hamiltonian has a quadratic and a
cubic piece hĤipert ¼ hĤð2Þi þ hĤð3Þi, where hĤð2Þi and
hĤð3Þi are the quantum operators associated with the
classical expressions (2.21) and (2.23), respectively. The
quadratic Hamiltonian hĤð2Þi provides the free evolution,
and hĤð3Þi describes self-interactions between perturba-
tions, which will be introduced perturbatively.

1. Free evolution of perturbation: The power spectrum

The free evolution,which is obtained from (3.11) by using
hĤð2Þi as the evolutionHamiltonian, can be now rewritten in
a more familiar form. Moving to the Heisenberg picture,
dynamics is given by the Heisenberg equations

∂ϕδ̂ϕ ¼ iℏ−1½δ̂ϕ; hĤð2Þ½Nϕ�i�;
∂ϕ

ˆδpϕ ¼ iℏ−1½δ̂pϕ; hĤð2Þ½Nϕ�i�: ð3:12Þ
Now, by simple algebraic manipulations, these equations
can be written as the second-order differential equation [49]

ð□̃ − ÃÞδ̂ϕðx⃗; η̃Þ ¼ 0: ð3:13Þ

This equation has the same form as in semiclassical
cosmology. The difference is that the differential operator
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□̃≡ g̃ab∇̃a∇̃b and the potential Ã are now constructed
using the state Ψ0ðv;ϕÞ chosen to describe the quantum
FLRW geometry. More precisely, □̃ is the d’Alembertian
associated with a smooth FLRW metric tensor

g̃abdxadxb ¼ ã2ðη̃Þð−dη̃2 þ dx⃗2Þ; ð3:14Þ

where ã is given by

ã4 ¼ hĤ−1/2
0 â4Ĥ−1/2

0 i
hĤ−1

0 i ; ð3:15Þ

and the conformal time η̃ is defined in terms of the internal
time ϕ of LQC via

dη̃ ¼ V0ðhĤ−1
0 iÞ1/2ðhĤ−1/2

0 â4Ĥ−1/2
0 iÞ1/2dϕ: ð3:16Þ

The tensor g̃ab is known as the effective dressed metric.
Furthermore, the dressed potential Ãðη̃Þ is defined by

Ã ¼ hĤ−1
2

0 â2Ââ2Ĥ
−1
2

0 i
hĤ−1

2

0 â4Ĥ
−1
2

0 i
; ð3:17Þ

where Â is the operator associated with the classical
potential A defined in (2.22). All expectation values are
evaluated in the state Ψ0ðv;ϕÞ. Recall, Ĥ0 is the
Hamiltonian used in the evolution of Ψ0ðv;ϕÞ and â is
the operator associated with the scale factor. Hence, under
the test field approximation, the evolution of δϕ at leading
order in perturbations is mathematically equivalent to a
quantum field theory of δϕ on a curved FLRW spacetime
described by g̃ab. ([27] has analyzed the validity of the test
field approximation by studying the energy-momentum
tensor of perturbations.)
Now, if Ψ0ðv;ϕÞ is taken to be one of the sharply peaked

states, then □̃ becomes the d’Alembertian associated with
the LQC effective metric obtained by integration of (3.7),
and the potential Ã is obtained from the classical expres-
sion (2.22) by just replacing the background variables a,
πa, ϕ and pϕ by the solution of (3.7). Hence, for sharply
peaked states Ψ0, the evolution of perturbation proceeds in
the same mathematical manner as in semiclassical cosmol-
ogy, with the difference that the background FLRW metric
is not a solution to Einstein equations, but a solution to the
LQC effective dynamics (3.7).
For other states Ψ0ðv;ϕÞ containing a large dispersion in

v, the differential operator □̃ and the potential Ã are
sensitive not only to the mean values of the scale factor and
other simple operators, but also about a few specific
“moments” of Ψ0ðv;ϕÞ, precisely those appearing in
Eqs. (3.15), (3.16), and (3.17). These moments, although
nontrivial in appearance, can be computed numerically, and
the result can be used to predict observable effects in the

CMB anisotropies. Such analysis has been carried out in
[50] using states Ψ0ðv;ϕÞ with relative dispersion Δv/v as
large as 168% in the Planck regime. Interestingly, these
computations show that, among all the effects that a large
dispersion produces on the power spectrum, the only one
that becomes significant compared to observational error
bars is a direct consequence of ρB being smaller than ρsup
[see discussion below Eq. (3.7)]. This means that, in order
to compute the primordial power spectrum in LQC for
states Ψ0ðv;ϕÞ with a large dispersion, we can simply use
the solution to the effective equations (3.7) after replacing
ρsup by the actual value of the energy at the bounce (i.e., use
the generalized effective equations). This is an accurate and
simple recipe to extend the phenomenology in LQC to
states Ψ0ðv;ϕÞ that are not sharply peaked [50].11

Remark: To simplify the notation, from now on we will
drop the “tilde” on the conformal time of the dressed
metric, and the “bar” on solutions to the effective and
generalized effective equations.
Once we have the dressed metric gab and the dressed

potential A, the computation of observable quantities
follow the standard procedure.12 First, expand the field
operator in terms of creation and annihilation operators

δ̂ϕðx⃗; ηÞ ¼
Z

d3k
ð2πÞ3 δ̂ϕk⃗ðηÞeik⃗·x⃗

¼
Z

d3k
ð2πÞ3 ðÂk⃗φkðηÞ þ Â†

−k⃗
φ�
kðηÞÞeik⃗·x⃗; ð3:18Þ

where ½Âk⃗;Â
†
k⃗0
�¼ℏð2πÞ3δð3Þðk⃗þk⃗0Þ, ½Âk⃗;Âk⃗0 �¼0¼½Â†

k⃗
;Â†

k⃗0
�,

and the set of mode functionsφkðηÞ form a basis of solutions
to the equation

φ00
k þ 2

a0

a
φ0
k þ ðk2 þ a2ÃÞφk ¼ 0; ð3:19Þ

with normalization

φkφ
0�
k − φ�

kφ
0
k ¼

i
a2

; ð3:20Þ

where k2 ≡ kikjδij is the comoving wave number, and the
prime indicates the derivativewith respect to conformal time.
The scalar power spectrum of δ̂ϕ is extracted from the two-
point function in momentum space via

11In [50] wave functions Ψ0ðv;ϕÞ with different “shapes” in
the v variable and having large relative dispersion in v, although
not arbitrarily large, were explored. However, the Hilbert space is
infinite dimensional, and one could find states for which the
conclusions of [50] do not apply.

12Note that, since we have already solved for the background
dynamics, we can take the volume of the fiducial cell to infinity,
V0 → ∞, in this section. Not taking this limit would only
introduce a discretization of the wave numbers k⃗, and the
integrals in k⃗ below would have to be replaced by sums.
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h0jδ̂ϕk⃗ðηÞδ̂ϕk⃗0 ðηÞj0i≡ ð2πÞ3δð3Þðk⃗þ k⃗0Þ 2π
2

k3
Pδϕðk; ηÞ;

ð3:21Þ

where j0i is the vacuum annihilated by the operators
Âk⃗ for all k⃗. In terms of mode functions, we have
Pδϕðk; ηÞ ¼ ðℏk3/2π2ÞjφkðηÞj2. The power spectrum of
comoving curvature perturbations at the end of inflation,
is obtained fromPδϕ by using the relation between δϕ andR,
written in (2.25), truncated at linear order

PRðkÞ≡
�
aðηendÞ
zðηendÞ

�
2

Pδϕðk; ηendÞ

¼
�
aðηendÞ
zðηendÞ

�
2 ℏk3

2π2
jφkðηendÞj2; ð3:22Þ

where z ¼ − 6
κ
pϕ

πa
.

Remark: An ambiguity appears in the analysis pre-
sented in this section, and it deserves some comments. Note
that the potential A that appears in the classical
Hamiltonian of scalar perturbations [Eq. (2.22)] contains
powers of πa, the momentum conjugated to the scale factor
a. In the quantum theory one finds the problem that, in loop
quantum cosmology, there is no operator associated with
πa; only complex exponentials of πa—i.e., holonomies of
the connection—are defined as operators. This fact is
intrinsic to the quantization strategy used in loop quantum
gravity/cosmology, and it is a consequence of diffeomor-
phism invariance.
There are several strategies that one can follow in order

to compute the dressed potential in (3.17). We spell here
three of them, which have been chosen based on the criteria
of simplicity.

(i) Use the classical Friedmann constraint (2.8) to trade
πa for a, ϕ and pϕ. There is no loss of generality in
using the classical constraint; it is an identity in the
classical theory, which is the departing point for
quantization.

(ii) At a more practical level, when working with
sharply peaked states, we can simply replace the
expectation values of πa by the solution π̄aðtÞ to the
effective equations of LQC.

(iii) Again, at the level of effective equations, replace
factors 1/πa in the classical Hamiltonian by
−H/ð2a2ρÞ, where ρ is the energy density in the
background. This equation holds in general relativ-
ity. In loop quantum cosmology, such a relation is
also valid after taking advantage of the freedom in
the quantization strategy (see, e.g., [60], and refer-
ences therein for discussions on quantization ambi-
guities in LQC).

In view of the existing freedom, we have compared the
results for the power spectrum and non-Gaussianity by

using all three strategies, in order to understand how
sensitive observables are to these quantization ambiguities.
Our results (see Sec. IVG) show that the results of this
paper remain the same regardless of the choice we make for
πa, out of the three strategies explained above. For the sake
of simplicity, we will use strategy (ii) in the main
calculations presented in the next section.

2. Interaction Hamiltonian: The bispectrum

The self-interaction of perturbations are described, at the
lowest order, by the interaction Hamiltonian Ĥint≡
hΨ0jĤð3Þ½Nϕ�jΨ0i, where the classical expression for
Hð3Þ was given in (2.23). As for the linear evolution, we
are not free of factor ordering ambiguities, and we choose a
symmetric ordering. At second order, therefore, the evo-
lution of perturbations is sensitive to other moments of the
state Ψ0ðv;ϕÞ chosen to describe the quantum FLRW
geometry, in addition to the three already involved in the
free evolution, written in (3.15), (3.16), and (3.17). The
new moments follow straightforwardly from (2.23)—
keeping in mind the expression for Nϕ and the symmetric
ordering—and we do not explicitly write them here.
To begin with, in the computation of the three-point

function of scalar perturbations, we restrict ourselves to
sharply peaked states Ψ0 for the background geometry. As
discussed above, at the practical level this is equivalent to
replacing expectation values of background quantities by
solutions to the effective equations (3.7). Furthermore, as
described at the end of Sec. III A 1, the leading effects
introduced by using more generic states can be accounted
for by varying the value of the mean energy density at the
bounce ρB. We postpone such analysis to Sec. IV D.
The equal-time n-point correlation functions of scalar

perturbations δϕ, can be now computed at second order in
perturbations by using the standard time-dependent per-
turbation theory,

h0jδ̂ϕðx⃗1;ηÞδ̂ϕðx⃗2;ηÞ���δ̂ϕðx⃗n;ηÞj0i
¼h0jU†ðη;η0Þδ̂ϕIðx⃗1;ηÞδ̂ϕIðx⃗2;ηÞ���δ̂ϕIðx⃗n;ηÞUðη;η0Þj0i;

ð3:23Þ

where the superscript I denotes operators in the interaction
picture, and

Uðη;η0Þ¼T exp

�
−i/ℏ

Z
η

η0

dη0ĤI
intðη0Þ

�
;

is the time evolution operator relative to ĤI
int.

The observable quantity we are interested in is the
bispectrum BRðk1; k2; k3Þ of comoving curvature pertur-
bations evaluated at the end of inflation. It is defined
from the three-point correlation function of R in Fourier
space, via
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h0jR̂k⃗1
R̂k⃗2

R̂k⃗3
j0i≡ ð2πÞ3δð3Þðk⃗1 þ k⃗2 þ k⃗3ÞBRðk1; k2; k3Þ:

ð3:24Þ

The bispectrum BRðk1; k2; k3Þ has dimensions of ðlengthÞ6.
The presence of the Dirac-delta distribution is a conse-
quence of the homogeneity of the background FLRW
metric. This delta distribution implies that only triads
ðk⃗1; k⃗2; k⃗3Þ that form a triangle may have a nonzero
bispectrum. Additionally, isotropy makes the orientation
of this triangle irrelevant. These two facts combined are the
reason why BR depends on the wave numbers ðk⃗1; k⃗2; k⃗3Þ
only via three real parameters. Common choices are
ðk1; k2; k3Þ with k3 ≤ k1 þ k2, or ðk1; k2; μ≡ k̂1 · k̂2Þ.
It is common, and convenient, to quantify the amplitude

of the bispectrum in terms of the dimensionless function
fNLðk1; k2; k3Þ, defined as

BRðk1; k2; k3Þ≡ −
6

5
fNLðk1; k2; k3Þ

× ðΔk1Δk2 þ Δk1Δk3 þ Δk2Δk3Þ; ð3:25Þ

or, equivalently, by

fNLðk1; k2; k3Þ≡ −
5

6
BRðk1; k2; k3Þ

× ðΔk1Δk2 þ Δk1Δk3 þ Δk2Δk3Þ−1;
ð3:26Þ

whereΔk ≡ 2π2

k3 PRðkÞ is the dimensionful power spectrum.
(See [61] for the origin of the convention leading to the
numerical factor −5/6, and see Appendix A of [62] for a
summary of different conventions for the sign). Looking at
expression (3.26), we can intuitively think about fNL as the
amount of correlations in “units” of Δ2

k.
Now, in order to compute the bispectrum BRðk1; k2; k3Þ

in terms of δϕ, we use the relation between both variables
given in Sec. II D

Rðx⃗; ηÞ ¼ −
a
z
δϕðx⃗; ηÞ þ

�
−
3

2
þ 3

Vϕa5

κpϕπa
þ κ

4

z2

z2

�

×

�
a
z
δϕðx⃗; ηÞ

�
2

þ � � � ; ð3:27Þ

where, the dots represent terms producing subdominant
contributions to correlation functions at the end of inflation
for the wave numbers k⃗ that we can observe today [see
Eq. (2.25) and the discussion after it]. With this, we have

h0jR̂k⃗1
R̂k⃗2

R̂k⃗3
j0i ¼

�
−
a
z

�
3

h0jδ̂ϕk⃗1
δ̂ϕk⃗2

δ̂ϕk⃗3
j0i

þ
�
−
3

2
þ 3

Vϕa5

κpϕπa
þ κ

4

z2

a2

��
−
a
z

�
4

×

�Z
d3p
ð2πÞ3 h0jδ̂ϕk⃗1

δ̂ϕk⃗2
δ̂ϕp⃗δ̂ϕk⃗3−p⃗

j0i

þ ðk⃗1 ↔ k⃗3Þ þ ðk⃗2 ↔ k⃗3Þ

þ � � �
�
: ð3:28Þ

In this equation, ðk⃗i ↔ k⃗jÞ indicates terms obtained from

the first term in the second line after interchanging k⃗i and
k⃗j, and the dots indicate subdominant contributions. To
obtain the scalar bispectrum BR and fNL at leading order
we need to compute the three- and four-point correlation
functions of δ̂ϕk⃗.
Let us begin with the three-point function, appearing in

the first line in (3.28). At leading order in the interaction
Hamiltonian, it is given by

h0jδ̂ϕk⃗1
ðηÞδ̂ϕk⃗2

ðηÞδ̂ϕk⃗3
ðηÞj0i

¼ h0jδ̂ϕI
k⃗1
ðηÞδ̂ϕI

k⃗2
ðηÞδ̂ϕI

k⃗3
ðηÞj0i

− i/ℏ
Z

dη0h0j½δ̂ϕI
k⃗1
ðηÞδ̂ϕI

k⃗2
ðηÞδ̂ϕI

k⃗3
ðηÞ; ĤI

intðη0Þ�j0i

þOðH2
intÞ: ð3:29Þ

The first term in the right-hand side vanishes,
h0jδ̂ϕI

k⃗1
δ̂ϕI

k⃗2
δ̂ϕI

k⃗3
j0i ¼ 0, since δ̂ϕI

k⃗
in the interaction picture

is a Gaussian field. Hence, the term in the second line gives
the leading order contribution. By using the mode expan-
sion (3.18), we find

h0jδ̂ϕk⃗1
ðηÞδ̂ϕk⃗2

ðηÞδ̂ϕk⃗3
ðηÞj0i

¼ ð2πÞ3δð3Þðk⃗1 þ k⃗2 þ k⃗3ÞBδϕðk1; k2; k3Þ; ð3:30Þ

where

Bδϕðk1; k2; k3Þ ¼ 2ℏ2Im

�
φk⃗1

ðηÞφk⃗2
ðηÞφk⃗3

ðηÞ

×
Z

η

η0

dη0ðf1ðη0Þφ⋆
k1
ðη0Þφ⋆

k2
ðη0Þφ⋆

k3
ðη0Þ

þ f2ðη0Þφ⋆
k1
ðη0Þφ⋆

k2
ðη0Þφ0⋆

k3
ðη0Þ

þ f3ðη0Þφ⋆
k1
ðη0Þφ0⋆

k2
ðη0Þφ0⋆

k3
ðη0Þ

þ k⃗1 ↔ k⃗3Þ þ ðk⃗2 ↔ k⃗3ÞÞ
�
þOðH2

intÞ;

ð3:31Þ
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where the functions f1ðηÞ, f2ðηÞ and f3ðηÞ are combina-
tions of background functions, given in Appendix B.
The terms in the second line of (3.28) involve the four-

point correlation function of δ̂ϕI
k⃗
. Applying again time-

dependent perturbation theory, we get

h0jδ̂ϕk⃗1
ðηÞδ̂ϕk⃗2

ðηÞδ̂ϕp⃗ðηÞδ̂ϕk⃗3−p⃗
ðηÞj0i

¼ h0jδ̂ϕI
k⃗1
ðηÞδ̂ϕI

k⃗2
ðηÞδ̂ϕI

p⃗ðηÞδ̂ϕI
k⃗3−p⃗

ðηÞj0i þOðHintÞ:
ð3:32Þ

In this case, the first term does not vanish and provides the
leading order contribution. There is no need to compute
higher order terms, since they are subdominant. The first
term, furthermore, does not involve any time integral of the
interaction Hamiltonian, and its expression in terms of the
mode functions φk reads

Z
d3p
ð2πÞ3 h0jδ̂ϕk⃗1

δ̂ϕk⃗2
δ̂ϕp⃗δ̂ϕk⃗3−p⃗

j0i

¼ ð2πÞ3δð3Þðk⃗1 þ k⃗2 þ k⃗3Þ2ℏ2jφk1 j2jφk2 j2: ð3:33Þ

Substituting these results in (3.28) we obtain the desired
expression for BR

BRðk1; k2; k3Þ ¼
�
−
a
z

�
3

Bδϕðk1; k2; k3Þ

þ
�
−
3

2
þ 3

Vϕa2

κpϕπa
þ

ffiffiffi
κ

p
4

z2

a2

�

×

�
a
z

�
4

2ℏ2ðjφk1 j2jφk2 j2

þ jφk1 j2jφk2 j2 þ jφk2 j2jφk3 j2Þ; ð3:34Þ

where all quantities are evaluated at the end of inflation.

IV. NUMERICAL EVALUATION OF THE
THREE-POINT CORRELATION FUNCTION

The main goal of this section is to evaluate the bispectrum
BRðk1; k2; k3Þ, written in (3.34), at the end of inflation, for
different values of the three momenta k1, k2, and k3, and to
compute the function fNLðk1; k2; k3Þ from it. This section
shows the results of numerical computations, while in Sec. V
we present analytical arguments that will help us to better
understand their physical origin.
Scalar perturbations are evolved starting at an early time,

to be specified below, across the bounce, and until the
modes of interest become super-Hubble during the infla-
tionary phase. The power spectrum and bispectrum will be
computed at that time. In order to perform these calcu-
lations we need to:
(1) Specify a potential VðϕÞ for the scalar field.

(2) Specify a solution (aðηÞ, πaðηÞ, ϕðηÞ, pϕðηÞ) to the
effective equations (3.5)–(3.6) of LQC. As discussed
in the last two paragraphs of Sec. III A 1, these
solutions are uniquely characterized by specifying
the value of ϕ and its energy density at the time of
bounce.

(3) Specify the quantum state of scalar perturbations at
some initial time η0.

These are the freedoms that we have in our calculation. In
this section we choose:
(1) The quadratic potential VðϕÞ ¼ 1

2
m2ϕ2, with the

value of m that is obtained from the Planck nor-
malization [63], m ¼ 6.4 × 10−6MPl.

(2) A background effective geometry with ϕB ¼
7.62MPl and ρB ¼ 1M4

Pl.
(3) A Minkowski-like vacuum for perturbations, speci-

fied at an early enough time before the bounce such
that all Fourier modes of interest are in an adiabatic
regime. More precisely, we choose φkðη0Þ ¼ 1

aðη0Þ
ffiffiffiffi
2k

p

and φ0
kðη0Þ ¼ ½−ikþ a0ðη0Þ

aðη0Þ �φkðη0Þ as initial data for

the modes, for η0 ¼ −2.8 × 103TPl (the bounce
takes place at η0 ¼ 0).

In Secs. IV C, IV D, IV E, IV F we analyze the way the
results vary for other choices.
To carry out the calculation we use the numerical

infrastructure of CLASS [37], a standard Einstein-
Boltzmann solver for cosmological perturbations, written
in C. First, we solve the background dynamics, and then we
use the result to solve the dynamics of perturbations. We
compute the time integrals in (3.31) by writing it as a first
order differential equation for the integrands, and we solve
them simultaneously with the equation of motion (3.19) for
each Fourier mode. This ensures that the time step of the
numerical integrator is adapted to achieve the desired
accuracy for the bispectrum. For solving the differential
equations, we have used the Runge Kutta evolver provided
by CLASS.
There are other codes aimed at computing primordial

non-Gaussianity (e.g., BINGO [64], PyTransport and
CppTransport [65], and a code to compute three-point
functions involving tensor perturbations [46]). But they are
mostly oriented towards computations during the infla-
tionary epoch, and they cannot be used for our purposes.
Before computing the bispectrum, we first summarize

our results for the power spectrum.

A. The power spectrum

The mathematical and physical aspects of the primordial
power spectrumPRðkÞ in LQC have been discussed in detail
in [42,45,66,67], sowewill be brief here. To computePRðkÞ,
weneed to solve the second-order differential equation (3.19)
for the set of wave numbers of interest for observations. The
values of k that we can probe in the CMB, range approx-
imately from kmin ¼ k�/10, to kmax ¼ 1000k�, where k� is a
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pivot, or reference wave number whose physical value at
present is k�/aðttodayÞ ¼ 0.002 Mpc−1. We will, however,
compute PRðkÞ for values of k smaller than kmin, because
these modes, although not directly observable in the CMB,
may indirectly affect the observable power spectrum once
non-Gaussianity are taken into account [39].
In order to better understand the form of the power

spectrum, it is convenient to define the rescaled mode
functions vkðηÞ≡ aðηÞφkðηÞ. The wave equation (3.19),
when written in terms of vk, takes the form

v00kðηÞ þ ðk2 þ fðηÞÞvkðηÞ ¼ 0; ð4:1Þ

where fðηÞ≡ aðηÞ2AðηÞ − a00
a ðηÞ ¼ a2ðA − R

6
Þ, and RðηÞ is

the Ricci scalar of the effective spacetime geometry. The
potential A was defined in (2.22). It is clear from this
equation that whenever k2 ≫ jfðηÞj, the solutions are
simple oscillatory functions with time independent fre-
quency equal to k. On the contrary, vkðηÞ will have a more
complicated behavior when k2 ≲ jfðηÞj. In particular, when
the function fðηÞ becomes negative, the oscillatory behav-
ior of these modes changes to an exponentially varying
amplitude, that results in a modulation of the amplitude of
vkðηÞ and consequently of the power spectrum.
During the inflationary era, fðηÞ remains approximately

constant and is proportional to the Ricci scalar R, or the
square of the Hubble radius. This value sets up the wave
number scale for which amplification of perturbations takes
place. Similarly, the amplification of perturbations around
the time of bounce can be characterized in terms of the
physical scale associated with the bounce. This scale is
given by the value of the function fðηÞ at the bounce, which
is approximately equal to a2 R

6
evaluated at that time

[see the definition of fðηÞ above, and take into account
that A is of the same order as R/6 around the bounce].
Therefore, we define the bounce scale kLQC as kLQC≡
aðηBÞ

ffiffiffiffiffiffiffiffiffiffi
RB/6

p
≈ aðηBÞ ffiffiffiffiffiffiffiffi

κρB
p

, where the subscript B indi-
cates quantities evaluated at the bounce. Qualitatively, we
expect the power spectrum to be significantly affected by
the bounce for modes with k≲ kLQC. On the other hand, the
bounce is expected to have little effect on k ≫ kLQC, since
these modes are “too ultraviolet to feel the bounce”.
In Fig. 1 we show the LQC power spectrum PRðkÞ for

scalar perturbations computed using the settings specified
at the beginning of this section. The scale invariant infla-
tionary prediction is recovered for k ≫ kLQC. In contrast,
for k≲ kLQC there is an extra contribution coming from the
propagation of perturbations across the bounce. This
contribution breaks scale invariance, and makes PRðkÞ
to grow significantly for small wave numbers. As discussed
in Sec. IV F, all other choices of initial data for perturba-
tions explored in this paper produce a power spectrum that
grows for k≲ kLQC. Note, however, that there exist other
choices in the literature for which the spectrum is

suppressed, rather than enhanced, on these scales
[68–70]. We do not consider such states in the analysis
presented here.

B. The bispectrum

The numerical evaluation of the bispectrum requires
more effort than what is needed to compute non-
Gaussianity during inflation. The first reason is that,
in the inflationary era, only the terms in the third order
Hamiltonian (2.23) that are leading order in the slow-roll
parameters need to be considered. This provides a
significant simplification of the Hamiltonian, which,
after integration by parts, reduces to a single term
[36]. The second reason is that the background geometry
during slow-roll inflation is very close to be described by
de Sitter geometry. This makes an analytical approxima-
tion for the modes φkðηÞ available, which in turn allows
for an analytical calculation of the bispectrum. All these
simplifications cannot be used in our case because, first
of all, before inflation the slow-roll approximation is no
longer valid. And secondly, in our problem the spacetime
goes through a contracting phase, followed by a bounce,
a preinflationary phase on which the kinetic energy of the
scalar field is converted to potential energy, and finally
an inflationary phase. In each of these phases the scale
factor behaves in a quite different manner and, as a

FIG. 1. Power spectrum for comoving curvature perturbations
for ϕB ¼ 7.62MPl, and ρB ¼ 1M4

Pl. Gray dots indicate the
numerical value of PR for individual values of k. The black
curve denotes the average of the gray points. As expected, the
spectrum is scale invariant for k ≫ kLQC. The effects from the
bounce appear for k ≲ kLQC. For the value of ϕB used in this plot,
the number of e-folds between the bounce and horizon exit for the
pivot scale k⋆, is, NB⋆ ¼ 12.3. This number is large enough to
make the effects created by the bounce to be redshifted to super-
Hubble scales at the present time (recall that the observable
window is approximately k ∈ ½k�/10; 1000k��Þ. Sections IV C
and IV D contain plots of PR for other values of ϕB and ρB for
which the enhancement of the power spectrum occurs for
observable scales (see also [66]).
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consequence, it is difficult to arrive at an analytical
approximation for φkðηÞ valid during the entire
evolution.13

We present our results for non-Gaussianity in terms
of the function fNLðk1; k2; k3Þ, defined in (3.26). We
evaluate fNLðk; α1k; α2kÞ as a function of k, for different
values of α1 and α2. Following standard terminology, we
will refer to triads ðk; α1k; α2kÞ for which ðα1 ¼ α2 ¼ 1Þ as
equilateral configurations of wave numbers. Similarly,
ðα1 ≈ 1; α2 ≪ α1Þ and ðα2 ≈ 1 − α1Þ are known as
squeezed and flattened configurations, respectively.
These names are motivated by the shape of the triangles
formed by k⃗1, k⃗2, and k⃗3.
In Fig. 2 we show fNL in the equilateral configuration as

a function of k/k�. In the regime k≳ kLQC the result agrees
with the inflationary prediction, i.e., fNL ∼ ϵ where ϵ is the
slow-roll parameter evaluated at horizon exit. For scales
that were larger than the curvature radius at the bounce, i.e.,
k≲ kLQC, fNL oscillates between positive and negative
values with an amplitude of order 103. In Fig. 3 we show
the absolute value of fNL in the equilateral configuration in
order to analyze the scale dependence of fNL more

carefully. In Fig. 4 we show fNL in a few different
configurations. In Fig. 5 we present two-dimensional plots
for fNL containing all configurations, by fixing k1 to three
different values.
These results can be summarized as follows:
(1) fNLðk1; k2; k3Þ is highly oscillatory. This is a con-

sequence of the oscillatory behavior of the mode
functions around the bounce.

(2) As expected, in the regime k≳ kLQC, fNLðk1; k2; k3Þ
reduces to standard inflationary prediction
(fNL ∼ 10−2Þ. This is similar to the large-k behavior
of the power spectrum (see Fig. 1). The fact that we
recover the inflationary result for large wave num-
bers is a good consistency test of our numerical
computations.

(3) The amplitude of fNLðk1; k2; k3Þ is strongly scale
dependent. A scale invariant fNL would not change
under simultaneous re-scaling of k1, k2, and k3. The
bounce breaks the scale invariance and makes the
amplitude of fNLðk1; k2; k3Þ to grow for wave
numbers comparable or smaller than kLQC. This is
a key feature that may allow us to contrast this
framework with observational data.

(4) By comparing Figs. 1 and 2, we can see that, while
the power spectrum deviates from scale invariance
for k ≤ kLQC, fNL does it for k ≤ 10kLQC. This is
consistent with the fact that non-Gaussianity gen-
erally provides a better probe of new physics than
the power spectrum [74].

(5) Consider, without loss of generality, that
k1 ≥ k2 ≥ k3. Now, on the one hand, Fig. 5 tells
that, for fixed k1, the amplitude of fNL, although
quite uniform when we change k2 and k3, attains its
maximum value in the upper left region of the
triangle. These are configurations for which k3 ≪
k2 ≈ k1, and k3 þ k2 ≈ k1, i.e., squeezed-flattened

FIG. 2. Equilateral configurations. Plot of fNLðk; k; kÞ versus
k. We have used here the same parameter as in the plot of the
power spectrum, Fig. 1, namely ϕB ¼ 7.62MPl, and ρB ¼ 1M4

Pl,
and Minkowski-like initial data for perturbations at η0 ¼
−2.8103TPl (or equivalently, t0 ¼ −105TPl in cosmic time).
The plot shows that fNLðk; k; kÞ is highly oscillatory, and its
amplitude is strongly scale dependent. For the value of the ϕB,
and ρB chosen in this plot, fNL grows only for the most infrared
scales that we can observe in the CMB, which correspond to
angular multipoles l ≲ 30.

FIG. 3. Equilateral configurations. Plot of jfNLðk; k; kÞj versus
k. We have used the same values of the parameter as in the
previous plot.

13There exist efforts to compute non-Gaussianity in more
complicated inflationary scenarios involving deviations from
slow-roll, both analytically (see, e.g., [71,72]) and numerically
[64,73]. However, the preinflationary evolution that we are
interested in is more complicated than the scenarios previously
considered.

IVAN AGULLO, BORIS BOLLIET, and V. SREENATH PHYS. REV. D 97, 066021 (2018)

066021-16



configurations. But note that fNL becomes small
again when k3 → 0 (upper-left corner), that corre-
sponds to very squeezed configurations. Hence,
fNL is maximum in the squeezed-flattened, but not
too squeezed configurations. A shape of this type
was anticipated in more general terms in [75,76],

and the physical model discussed in this paper
provides a concrete example of a single field model
in which non-Gaussianity is enhanced in squeezed
configurations.

C. Dependence of fNL on the value of the
scalar field at the bounce

The value of ϕB determines the number of e-folds of
expansion between the bounce and the onset of the

FIG. 4. Plots of jfNLðk; k; k/2Þj (top), jfNLðk; k; k/10Þj (middle)
and jfNLðk; k; k/100Þj (bottom) versus k. We have used the same
values of the parameter as in the previous plot.

FIG. 5. Plots of fNLðk1; k2; k3Þ versus x2 ≡ k2/k1 and
x3 ≡ k3/k1, for k1 ¼ 0.5k⋆ (top panel), k1 ¼ k⋆ (middle panel)
and k1 ¼ 3k⋆ (bottom panel). The figure shows configurations
allowed by the triangle condition k⃗1 þ k⃗2 þ k⃗3 ¼ 0. Choosing,
without loss of generality, k1 ≥ k2 ≥ k3, the triangle condition is
equivalent to 1 ≥ x2 ≥ 1/2, 1 − x2 ≥ x3 ≥ x2. By comparing the
values of fNL among the three plots, we see again its scale
dependent character. These three plots also show the oscillatory
behavior of fNL, although this feature is more clearly displayed in
Figs. 2–4. Furthermore, the plots reveal that the amplitude of fNL
is quite uniform when k2 and k3 are varied while k1 is kept fixed,
except for a small change that makes fNL maximum in the upper
left region of the triangle, corresponding to “squeezed-flattened”
(although not too squeezed) configurations.
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observable phase of inflation, dubbed NB⋆ [27,30,50,66].14

We are interested in effective trajectories for which
NB⋆ ≈ 12. For this value the effects created by the bounce
on the power spectrum and non-Gaussianity would appear
only in the smallest wave numbers—or equivalently, the
lowest multipoles l—that we can observe in the CMB. For
larger values of NB⋆, scales affected by the bounce are
redshifted outside our observable Universe, and these effects
become unobservable. On the contrary, ifNB⋆ is smaller than
12, the effects of the bouncewould appear on all scales in the
CMB, and our predictions would be a strongly scale
dependent power spectrum with large non-Gaussianity, in
clear tension with observations. NB⋆ ≈ 12 corresponds to
ϕB ≈ 7.6MPl. This small value of the field makes the kinetic
energy to dominate over the potential energy at the bounce.15

What effect should we expect on the observable quan-
tities if we change ϕB? Since a change in ϕB modifies the
amount of expansion NB⋆, we expect that changing ϕB will
shift PRðkÞ and fNL with respect to the set of wave
numbers that we can directly observe. However, the shape
of PRðkÞ and fNL is not expected to change, since the
bounce itself is not modified by changing ϕB.

16

Figure 6 shows the power spectrum and fNL in the
equilateral configuration for different values of ϕB, and
for ρB ¼ 1M4

Pl. The results are qualitatively the same for
other configurations. As expected, the only effect of chang-
ing ϕB is a shift of PRðkÞ and fNL relative to k�. We see, for
instance, that for ϕB ¼ 8.02MPl both the power spectrum
and fNL are indistinguishable from the standard results
of slow-roll inflation for observable modes k ∈ ½k�/10;
1000k��. All the effects from the bounce are redshifted to
super-Hubble scales for this value ofϕB. On the contrary, for
ϕB ¼ 7.42MPl the bounce affects both the power spectrum
and non-Gaussianity, although only for infrared scales in
the CMB.
In summary, the scalar field at the bounce ϕB determines

the amount of cosmic expansion accumulated after the
bounce, and changing it produces a shift of the power
spectrum and non-Gaussianity with respect to the scales
that are directly observable in the CMB, without modifying
their shape.

D. Dependence of fNL on the energy
density at the bounce

Changing the energy density at the bounce also changes
the amount of expansion from the bounce to the onset of
inflation. This is because larger the value of ρB, larger
would be the expansion needed for the energy density to
decrease and reach the inflationary value. Therefore, we
expect fNL, as well as the power spectrum, to shift its
position in relation to observables scales, in a way similar to
the effect of changing ϕB.
There two different factors that could change the energy

density at the bounce: (i) a change in the value of the are
gap Δ0, (ii) a change in the quantum state Ψðv;ϕÞ that
describes the background quantum geometry. The analysis
of this section is, therefore, well-motivated.
Figure 7 shows the power spectrum and fNL in the

equilateral configuration (the result is similar for other

FIG. 6. Power spectrum (upper panel), and jfNLj in the equi-
lateral configuration (bottom panel) for ρB ¼ 1M4

Pl, for different
values of ϕB. The horizontal axis shows wave number relative to
the reference scale k� that today corresponds to 0.002 Mpc−1.
Hence the window of observable modes is approximately
k ∈ ½k�/10; 1000k��. The plot shows that different values of ϕB
give rise to power spectra and fNL with exactly the same shape,
with the only difference that they are shifted from each other.

14By “onset” of inflation we refer in this paper to the time
η ¼ η� at which the reference scale k� that today has a physical
value k�/atoday ¼ 0.002M−1

Pc , exits the Hubble radius during
inflation. Since inflation lasts approximately 61 additional e-
folds after η�, the number of e-folds from the bounce to the end of
inflation is NB⋆ þ 61.

15This is the reason why in this paper, as well as in previous
analyses [27,50,66], one focuses on kinetic dominated bounces.
In the subsequent evolution, the ratio of the potential energy to
the total energy of ϕ grows and, at time η ¼ η⋆ when slow roll
inflation begins, the potential energy dominates over kinetic.

16The bounce is dominated by quantum gravity effects, rather
than by matter, and therefore a small change on ϕB does not
modify the spacetime geometry around the time of the bounce in
any significant amount.
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configurations) for different values of ρB, with ϕB ¼
7.62MPl. As expected, both PR and fNL are redshifted
towards infrared scales for larger values of ρB. We also
observe that PR and fNL are more enhanced for large
values of ρB. For the power spectrum, the change in the
amplitude produced by changing ρB is very small, and
therefore the dominant effect is simply a shift relative to k�.
Therefore, regarding PRðkÞ, changing ρB and ϕB produces
the same results. This fact was analyzed in [50], and it was
pointed out that, if one restricts to observable scales and
takes into account observational error bars, the effect
produced by a change in ρB in the power spectrum
PRðkÞ can be compensated by a change in ϕB. Hence,
observations of the power spectrum alone can only provide
information about a combination of ϕB and ρB, and not
about their individual values. We find that this does not
happen for fNL. Hence the degeneracy between the
observable effects of ϕB and ρB disappears for non-
Gaussianity. Consequently, an observation of the power
spectrum and non-Gaussianity generated by the bounce

would provide information about the energy (or curvature)
scale of the bounce.
The results of this section can be interpreted in more

general terms. Recall that, as discussed in [59,50] and
summarized in Sec. III A 1, a change in the quantum state
Ψ0ðv;ϕÞ that describes the background geometry has
effects on observable quantities that, with great accuracy,
can be mimicked by a change in ρB. Therefore, the content
of this section can be also understood as an investigation of
the sensitivity of observable quantities to the choice
of Ψ0ðv;ϕÞ.

E. Influence of the scalar field’s potential

In this section, we investigate the sensitivity of the
results for non-Gaussianity in LQC under a change
of the scalar field’s potential. In LQC the bounce is
generated by quantum gravity effects, and the contribution
of VðϕÞ is subdominant. Therefore, we expect that the
results for fNLðk1; k2; k3Þ obtained in the previous sections
by using the quadratic potential will remain largely
unaltered for other choices of VðϕÞ. We compute
fNLðk1; k2; k3Þ in this section for the so-called
Starobinsky potential [77–80],

VðϕÞ ¼ 3M2

4κ
ð1 − e−

ffiffiffi
2κ
3

p
ϕÞ2: ð4:2Þ

The power spectrum in LQC has been analyzed in detail in
[81,82], and the results are qualitatively similar to the
quadratic potential.
We compute fNLðk1; k2; k3Þ by using (4.2) for the value of

M obtained from the Planck normalization, M ¼
2.51 × 10−6MPl. Figure 8 shows the results for two different
configurations, and for ϕB ¼ −4.88MPl and ρB ¼ 1M4

Pl.
The initial state of perturbations has been chosen to be the
Minkowski-like vacuum at η0 ¼ −281.5TPl (equivalently,
t0 ¼ −2.32 × 105TPl). At this time all modes of interest are
in the adiabatic regime. Our analysis indicate that the
conclusion reached in all previous section remain true, as
expected, since most of these features are due to the bounce.
At the quantitative level, the results also agree, although

some small difference appear both for large and small wave
numbers. The value of jfNLðk1; k2; k3Þj for large ki is
proportional to the slow-roll parameter ϵ evaluated at the
horizon exit during inflation. This parameter is smaller for
the Starobinsky potential (grey squares) than for the
quadratic potential (black circles) and explains the small
difference in amplitude in Fig. 8. The differences in the
bottom panel of Fig. 8 are larger, and they originate from
the discrepancies in the background dynamics at early and
late times, far from the bounce. These differences can be
reduced by adjusting appropriately the value of the free
parameters ϕB and ρB.

FIG. 7. Power spectrum (upper panel), and jfNLj in the equi-
lateral configuration (bottom panel) for ϕB ¼ 7.62MPl, for
different values of ρB. The plot shows that different values of
ρB change the maximum value of fNL. We also see that both, the
power spectrum and fNL are shifted towards more infrared scales
relative to k� for large values of ρB.
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F. Dependence of fNL on the initial state
for perturbations

We explore in this section the sensitivity of non-
Gaussianity to different choices of initial state for the
quantum scalar perturbations. This question is relevant
because in spacetimes with no timelike isometries, such as
the spatially flat FLRW spacetime considered in this paper,
the notion of quantum vacuum for a test field is ambiguous:
there are infinitely many candidates for Fock vacua, and
none are preferred with respect to the other [83] (see [84]
for further discussions). In FLRW, one can narrow the
freedom by restricting to homogenous and isotropic states
that are adiabatic of, at least, fourth order—so that the
energy-momentum tensor is well-defined for these states
[85]—but the mathematical freedom is still large.
Consequently, one could in principle obtain very different
results by appropriately tuning the initial state.
Notice that this freedom is not specific to LQC. It is

common to any cosmological model dealing with quantum

perturbations, including the inflationary framework. Away
to make progress is to add physical principles to select
appropriate initial data for perturbations. For instance, if
evolution begins at a time at which all wavelengths of
interest for observations are small compared to the curva-
ture scale, then the adiabatic analysis [85] provides guid-
ance. This is the strategy that one follows in standard
inflation, and we adopt it here as well. We use three
different proposals for initial state, all based on reasonable
criteria, and compute fNL in each case. A similar explora-
tion using these three different initial states, has been done
for the power spectrum in LQC in [27,66]. The outcome of
these analyses was that the power spectrum is very similar
for observable scales in all three cases considered. Here, we
reach the same conclusions for non-Gaussianity. Therefore,
we argue that the results of this paper do not rely on a fine-
tuned choice of initial conditions for perturbations, and are
therefore generic, within the mathematical limitations
mentioned above.
More precisely, the three types of initial state that we

choose are
(i) Minkowski-like initial state. This state was intro-

duced at the beginning of Sec. IVA. This state is not
a forth-order adiabatic state (it is only of adiabatic
order zero).

(ii) Obvious adiabatic vacuum. This state was intro-
duced in [42]. It is the state obtained by using initial
data for the mode functions given by the first four
terms of the adiabatic expansion of φkðηÞ. This state
is therefore of fourth adiabatic order. This prescrip-
tion, however, cannot be specified for very infrared
modes, since it produces modes with the incorrect
normalization. Nevertheless, the ambiguity will only
modify the most infrared part of our results that
correspond to modes that are not directly observable,
and therefore we use this state for the purpose of this
section.

(iii) Preferred instantaneous vacuum. This state was
introduced in [84], and it is defined as the only
state that has zero expectation value of the adiabati-
cally renormalized energy-momentum tensor at the
initial time η0. In this sense, this is a generalization
of the Minkowski vacuum to cosmological space-
times. It is also a state of fourth adiabatic order.

Figure 9 shows the function fNL for equilateral con-
figurations computed using these three different initial
states, specified at η0 ¼ 2.842 × 103TPl. As anticipated,
the results are essentially the same.
We have also explored the sensitivity of fNL to the time

at which the initial conditions are imposed. We found that
as long as η0 is chosen such that all modes of interest are
ultraviolet compared to the curvature-scale, k2 ≫ a00/a, the
results for fNLðk1; k2; k3Þ are insensitive to the choice of η0.
Another physically motivated instant to specify initial

data is the bounce. At that time, however, the condition
k2 ≫ a00/a is not satisfied for all modes of interest, and

FIG. 8. Comparison of jfNLðk; k; kÞj (upper panel) and
jfNLðk; k; k/5Þj (bottom) evaluated at the end of inflation for
the quadratic and the Starobinsky potential. The figure illustrates
that the spectral shape is very similar regardless of the potential.
The differences, more evident in the bottom panel, arise from
contributions generated far from the bounce.
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therefore the adiabatic condition is not sufficient to choose
an initial state. We found that fNL is very sensitive to the
ambiguity in the choice of initial data for perturbations at
the bounce. Different choices produce results that differ
significantly from each other, and therefore we were unable
to make any generic statement about the value of fNL when
the evolution begins at the bounce. Unless one adds new
principles that enable us to select preferred initial data for
perturbations at the bounce (see [68–70] for interesting
examples within LQC) it seems difficult to reach any
conclusion. In absence of such principles, the far past well
before the bounce appears as the most natural place to
specify the initial state of perturbations.

G. Tests of the numerics

In this section we provide further tests of the numerical
computations, with the goal of increasing our confidence
on the results and rule out potential numerical artifacts.
The main challenge of the numerical evaluation of the

bispectrum is that it involves integrals of highly oscillatory
functions. These integrands include products of three mode
functions φkðηÞ [see Eq. (3.31)]. As discussed in Sec. IVA,
these functions transition from being slowly evolving when

k≲ ffiffiffiffiffiffiffiffiffiffiffiffijfðηÞjp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2ðA − R

6
Þj

q
, to highly oscillatory func-

tions when k ≫
ffiffiffiffiffiffiffiffiffiffiffiffijfðηÞjp

. It is the latter case that produces
numerical instabilities.
However, because the main contribution to the integrals

comes from times when at least one of the modes satisfies
k≲ ffiffiffiffiffiffiffiffiffiffijfðηÞp j, a convenient strategy to reduce numerical
instabilities, and also to reduce the computation time
without affecting the result, is to remove from the integra-
tion time intervals for which all the three modes are highly

oscillatory. This can be easily done by including a damping
factor to the integrand in Eq. (3.31) of the form
exp ½−δðk1 þ k2 þ k3Þ/

ffiffiffiffiffiffiffiffiffiffiffiffijfðηÞjp �, with δ < 1, similar to
the strategy followed in other approaches [36,46,64].
However, because the function fðηÞ has a complicated
behavior close to the bounce, at the practical level it is more
convenient to work with a smoother damping factor of the
form exp ½−δðk1 þ k2 þ k3Þ/ða

ffiffiffiffiffiffiffiffiffi
κρ/3

p Þ�. Figure 10 shows
the result for fNLðk1; k2; k3Þ evaluated at the end of
inflation for different values of the cutoff δ. As expected,
for large values of δ the integral is artificially suppressed,
and the result underestimates the value of fNL. On the
contrary, when δ is very small, numerical instabilities
appear for large wave numbers. Our analysis shows that
there is an optimal value, around δ ¼ 0.02 for which the
numerical calculation is fast and reliable. This is the value
that we have used to produce the figures in Sec. IV B.
The second test that we perform in this section concerns

the ambiguity regarding the value of πa in LQC, discussed
at the end of Sec. III B 1. There, we proposed three different
strategies for evaluating πa and the various powers of it that
appear in the classical Hamiltonian for perturbations. We
will now show that the results obtained for the power
spectrum and non-Gaussianity are very similar in all three
cases. In order to do this, we compare the power spectrum
in Fig. 11, and jfNLj in Fig. 12, obtained by using the three
proposed strategies. Although some small differences
appear, they are either smaller than observational error
bars or they appear for very infrared modes that cannot be
observed in our Hubble patch of the Universe. Note also

FIG. 9. Plot of jfNLðk1; k2; k3Þj in the equilateral configuration
(k1 ¼ k2 ¼ k3) for different choices of initial quantum state for
perturbations. The plot shows that the three choices considered in
this paper produce results that are all very similar. Differences
only appear for the most infrared part of the spectrum, that
corresponds to unobservable scales.

FIG. 10. jfNLðk1; k2; k3Þj at the end of inflation computed by
adding a damping factor exp ½−δðk1 þ k2 þ k3Þ/ða

ffiffiffiffiffiffiffiffiffi
κρ/3

p Þ� to the
numerical integrals. The plot shows the equilateral configuration,
k1 ¼ k2 ¼ k3. For large values of δ (δ ¼ 20, 2, 0.2) the compu-
tation underestimate the real value of fNL. For smaller values of δ,
the actual value of fNL is no longer suppressed, but then
numerical artifacts appear for large k if δ is chosen too small,
as can be seen in the plot for δ ¼ 0.002. These instabilities
originate in the highly oscillatory nature of these modes. This
analysis indicates that the optimal value of δ is around 0.02.
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that the freedom that we have in changing the free
parameters of the theory, and that we have explored in
previous sections, make these differences even less rel-
evant, since, as we saw, a small change in the value of some
of these parameters would compensate the effects in the
power spectrum and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE
EVOLUTION OF NON-GAUSSIANITY

ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced
by the LQC bounce is an enhancement of fNL for wave

numbers comparable to the scale kLQC set by the bounce.
The goal of this section is to complement the previous
numerical analysis with an analytical understating of
the origin of this feature. By doing so we will, on the
one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of
such behavior.
We will use standard techniques from asymptotic analy-

sis of integrals to find approximate expressions for the way
the amplitude of fNL behaves. Although our arguments are
quite simple, the result captures the physics of the problem
remarkably well, both qualitatively and quantitatively.
First of all, we want to isolate the contribution to fNL that

comes exclusively from the bounce. For this, we go back to
the definition of fNL in Sec. III B 2 and find that this
contribution is given by

Iðk1; k2; k3Þ ¼
Z

Δη

−Δη
dηðf1ðηÞφ�

k1
ðηÞφ�

k2
ðηÞφ�

k3
ðηÞ

þ f2ðηÞφ�
k1
ðηÞφ�

k2
ðηÞφ0�

k3
ðηÞ

þ f3ðηÞφk1ðηÞφ0�
k2
ðηÞφ0�

k3
ðηÞ

þ ðk⃗1 ↔ k⃗3Þ þ ðk⃗2 ↔ k⃗3ÞÞ; ð5:1Þ

where f1ðηÞ, f2ðηÞ and f3ðηÞ are background functions,
given in Appendix B. We use Δη ¼ 1000TPl (recall, the
bounce happens at η ¼ 0). For k≳ kLQC the mode function
can be approximated by φk ∼ e−ikη. With this we have

Iðk1; k2; k3Þ ∼
Z

Δη

−Δη
dηgðηÞeiðk1þk2þk3Þη

≈
Z

∞

−∞
dηgðηÞeiktηWðη;ΔηÞ; ð5:2Þ

where kt ≡ k1 þ k2 þ k3; gðηÞ is a combination of the
functions fi’s in (5.1); and Wðη;ΔηÞ is a window function
that is equal to zero for jηj > Δη, equal to one for jηj < Δη,
and smoothly interpolates between both values. The func-
tion Wðη;ΔηÞ allows us to extend the integration limits to
−∞ and þ∞, without modifying the value of the integral,
and its concrete form will be unimportant for our purposes.
Now, Cauchy’s integral theorem tells us that the right-

hand side of (5.2) is equal to 2πi times the sum of the
residues of the poles of gðηÞ with positive imaginary part.
The real part of each pole contributes to the oscillatory
behavior of the integral as a function of kt, while the
imaginary part adds an exponentially decreasing factor.
Hence, the asymptotic behavior of the amplitude of the
integral I as a function of kt is given by the pole of gðηÞ with
the largest imaginary part.
To find this pole, it is sufficient to realize that, out of the

four background functions aðηÞ, πaðηÞ, ϕðηÞ, and pϕðηÞ
that appear in gðηÞ, the scale factor is the only one having a
minimum at the bounce. From this, we know that the pole

FIG. 11. The scalar power spectrum PsðkÞ evaluated at the end
of inflation for the three different strategies for evaluating πa
described at the end of III B 1. The power spectrum is very similar
in the three cases, and important differences appear only for the
very infrared part of the spectrum, that corresponds to wave-
lengths that are several orders of magnitude larger than today’s
Hubble radius.

FIG. 12. jfNLðk; k; kÞj evaluated at the end of inflation for the
three different strategies for evaluating πa described at the end of
III B 1. The results are very similar in all three cases, and the
differences between them are small compared to current obser-
vational error bars.
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we are looking for comes from factors 1
anðηÞ contained in

gðηÞ. To compute this pole, we use an analytical approxi-
mation for the scale factor, valid close to the bounce, that in
cosmic time reads (see, e.g., [67])

aðtÞ ¼ aBð1þ 3κρBt2Þ1/6; ð5:3Þ

where we have chosen the bounce to take place at t ¼ 0.
The pole of aðtÞ−1 is at tp ¼ i/

ffiffiffiffiffiffiffiffiffiffi
3κρB

p
and, in conformal

time, at17

ηp ¼ i
ffiffiffiffiffiffiffi
π/3

p Γ½5/6�
2Γ½4/3�

1

aB
ffiffiffiffiffiffiffiffi
κρB

p ¼ i
α

kLQC
; ð5:4Þ

where Γ½x� is the Gamma function, α ≃ 0.64677, and
we have used kLQC ¼ aB

ffiffiffiffiffiffiffiffi
κρB

p
. Therefore, this argument

tells us that the bounce produces a contribution to
fNLðk1; k2; k3Þ whose amplitude changes with ki according
to e−αðk1þk2þk3Þ/kLQC , when ðk1 þ k2 þ k3Þ≳ kLQC. In
Fig. 13 we compare this analytical approximation with
the numerical result, for three different configurations
finding a good agreement.
To summarize, the analysis of this section confirms that

the scale dependent enhancement of fNL originates from
the bounce, and it is the scale kLQC that dictates how
pronounced this enhancement is. Furthermore, since it is
only the complex pole of the scale factor at the bounce that

accounts for the main features of fNL, it is expected that
bounces in other cosmological models different from LQC
will produce similar non-Gasussianity.

VI. STABILITY OF PERTURBATION THEORY

We found that a cosmic bounce taking place close to the
Planck scale produces large values of fNL, of order 103. This
result is in agreement with the extended intuition that, near
the Planck regime, self-interactions of scalar perturbations
with purely gravitational origin—i.e., described by terms in
the third order interaction Hamiltonian (2.23) that are
independent of the potential VðϕÞ—become strong. This
large value of fNL raises concerns about the validity of the
perturbative expansion, on which the entire analysis rests.
To evaluate thevalidity of the perturbative series,weneed to

compute the corrections that fNL (the three-point functions)
introduces in the power spectrum (the two-point function). If
this correction is similar or larger than the leading order
contribution, then the perturbative expansion would break
down. As we show in this section, this is not the case.
The two-point function of comoving curvature pertur-

bations at the end of inflation at next-to-leading order, is
obtained from the correlation function of δϕ by keeping the
first correction arising from (3.27). We get

h0jR̂k⃗1
R̂k⃗2

j0i¼
�
−
a
z

�
2

h0jδ̂ϕk⃗1
δ̂ϕk⃗2

j0i

þ2

�
−
a
z

�
3
�
−
3

2
þ3

Vϕa5

κpϕπa
þ κ

4

z2

a2

�

×
Z

d3p
ð2πÞ3 h0jδ̂ϕk⃗1

δ̂ϕp⃗δ̂ϕk⃗2−p⃗
j0i

þ
�
−
z
a

�
4
�
−
3

2
þ3

Vϕa5

κpϕπa
þ κ

4

z2

a2

�
2

×
Z

d3p
ð2πÞ3

d3q
ð2πÞ3 h0jδ̂ϕp⃗δ̂ϕk⃗1−p⃗

δ̂ϕq⃗δ̂ϕk⃗2−q⃗
j0i

þ �� � ð6:1Þ
The power spectrum computed in previous sections was
obtained by considering only the first line of this equation
and, additionally, by ignoring corrections from the inter-
action Hamiltonian when computing it. Now, we go to the
next order in perturbations.
For the two-point function in the first line of (6.1), we have

h0jδ̂ϕk⃗1
δ̂ϕk⃗2

j0i¼ h0jδ̂ϕk⃗1
δ̂ϕk⃗2

j0i− i/ℏ

×
Z

η

η0

dη0h0j½δ̂ϕI
k⃗1
δ̂ϕI

k⃗2
;ĤI

intðη0Þ�j0i

þOðH2
intÞ: ð6:2Þ

The first term in the right-hand side was the one computed in
Eq. (3.21). The second term in the right-hand side vanishes,

FIG. 13. Comparison of the numerically computed contribution
from the bounce to fNL (gray points), called ΔfbounceNL in the
figure, and the analytical approximation e−αðk1þk2þk3Þ/kLQC (black
line). The comparison is made for three different configurations
of wave numbers. The agreement is very good for all of them.
ΔfbounceNL is defined as the value of fNL given only by the first term
in Eq. (3.34), and evaluating the integral in (3.31) just before the
onset of inflation.

17The relation between t and η close to the bounce
can be written in terms of a hypergeometric function as
η ¼ R

t
0 aðt0Þ−1dt0 ¼ ta−1B 2F1½16 ; 12 ; 32 ;−3κρBt2�.
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since it involves expectation values of an odd number of
fields in the interaction picture, which are Gaussian.
Therefore, there is no correction linear in the third order
Hamiltonian to this term. Hence, the leading order correction
to the two-point function comes from the second and third
line of (6.1).
The three-point function in the second line contributes

with terms linear in the third order Hamiltonian. In contrast,
the leading order term in the four-point function is
independent of the interaction Hamiltonian. By using
(3.33) and the definition of the bispectrum of δϕ given
in (3.30), we obtain the first perturbative correction to the
power spectrum,

h0jR̂k⃗1
R̂k⃗2

j0i ¼ ð2πÞ3δð3Þðk⃗1 þ k⃗2Þ
2π2

k31
½PRðk1Þ

þ ΔPRðk1Þ�; ð6:3Þ
where

ΔPRðk1Þ ¼
k31
π2

��
−
a
z

�
3
�
−
3

2
þ 3

Vϕa5

κpϕπa
þ κ

4

z2

a2

�

×
Z

d3p
ð2πÞ3 Bδϕðk⃗1; p⃗;−k⃗1 − p⃗Þ

þ ℏ

�
−
a
z

�
4
�
−
3

2
þ 3

Vϕa5

κpϕπa
þ κ

4

z2

a2

�
2

×
Z

d3p
ð2πÞ3 jφpj2jφjk⃗1−p⃗jj2

�
; ð6:4Þ

where all quantities are evaluated at the end of inflation.
Note from this expression that the next-to-leading order
correction to the power spectrum for a wave number k1,
gets contributions from other wave numbers, as a result of
the correlations arising from the three-point function.
An order of magnitude estimate of (6.4) can be obtained

as follows. In the first line, the background function
between square brackets is of order ϵ (ϵ symbolizes here
any of the slow-roll parameters). The bispectrum Bδϕ, is of
order fNLP2

R, and, therefore, the term made of the first two
lines of (6.4) is of order ϵfNLP2

R (ϵ symbolizes a slow-roll
parameter). Similarly, the third and fourth lines of (6.4) is of
order ϵ2P2

R. Since fNL ≲ 104, and ϵ ∼ 10−2, the first two
lines of (6.4) is much larger than the third and fourth ones.
Then, we expect ΔPR/PR ∼ ϵfNLPR ≲ 10−4.
We have numerically evaluated expression (6.4), and the

results appear in Fig. 14. The figure shows that ΔPR/PR is
smaller than 10−4, confirming that the next to leading order
corrections to the power spectrum are indeed negligible.
Therefore, we find that although fNL experiences an
enhancement of several orders of magnitude, the perturba-
tive expansion remains valid. The reason is found in the
smallness of the leading order power spectrum
PRðkÞ ≲ 10−7. From the expressions above, we see that
the leading order correction contains, in addition to fNL, an
additional power of PRðkÞ. The smallness of PR

compensated for the enhancement of fNL. Higher order
corrections contain even higher powers of PRðkÞ. In this
sense, one can intuitively think about PRðkÞ as the small
“parameter” in terms of which the perturbative expansion is
defined.

VII. DISCUSSION AND CONCLUSIONS

The goal of this section is to provide a summary of the
main results of this paper, contrast them with observational
data, and discuss the main consequences. The main take-
home messages from our analysis are the following:
(1) The evolution of scalar perturbations across the LQC

bounce, starting from an adiabatic vacuum state
before the bounce when all the Fourier modes of
interest have wavelengths much smaller than the
(spacetime) curvature radius, produces a state that at
the onset of inflation is both excited and non-
Gaussian, relative to the Bunch-Davies vacuum.
In other words, both the two- and three-point
correlation functions of scalar perturbations deviate
significantly from their Bunch-Davies counter-
parts at the onset of inflation. Consequently, the
predictions for the primordial power spectrum and
non-Gaussianity are modified as a result of the
preinflationary evolution. (See Secs. III and IV.)

(2) The bounce of LQC produces a strong enhancement
of the non-Gaussianity as compared to that generated
by inflation alone, producing values for the function
fNLðk1; k2; k3Þ as large as104 for somewave numbers
and for some choices of the free parameters of the
model. Recall that inflation alone produces fNL of
order of 10−2. (See Sec. IV.)

FIG. 14. Plot of the relative size of the first order correction to
the power spectrum, jΔPR/PRj. The plot shows the numerically
computed value as a function of the wave numbers k. The result
shows that, indeed, jΔPR/PRj ≪ 1, confirming that we are well
inside the perturbative regime. This plot is obtained by using the
same values for the free parameters as in Sec. IV B, and the
conclusions remain unchanged for other choices.
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(3) The large enhancement of non-Gaussianty raises
concerns about the validity of perturbation theory.
We have computed higher order contributions to
correlation functions and found that they are small
compared to the leading order result. Hence, per-
turbation theory remains a valid tool to compute the
primordial power spectrum and bispectrum of cos-
mological perturbations in LQC. (See Sec. VI.)

(4) The non-Gaussianity produced by the LQC bounce
is strongly scale dependent. The bounce introduces a
new scale, determined by the Ricci spacetime
curvature scalar at the bounce,RB. For perturbations,
this new scale can be written as kLQC ≡ aB

ffiffiffiffiffiffiffiffiffiffi
RB/6

p
—

or, equivalently, in terms of the energy density at the
bounce, ρB, as kLQC ≡ aB

ffiffiffiffiffiffiffiffi
κρB

p
. Fourier modes with

comoving wave numbers k ≫ kLQC are not affected
by the bounce, and their primordial non-Gaussianity
originate entirely from the inflationary phase and are
small. On the contrary, for Fourier modes that are
infrared enough to “feel” the bounce, i.e., k≲ kLQC,
the bounce contributes significantly to their non-
Gaussianty. We have provided an analytical argu-
ment to understand the enhancement observed in our
numerical computations, and concluded that it is
given by jfNLðk1; k2; k3Þj ∝ e−αðk1þk2þk3Þ/kLQC, with
α ≈ 0.65. (See Sec. V.)

(5) The non-Gaussianty generated by the LQC bounce
has a very particular “shape”, discussed in Sec. IV B,
that can be used to differentiate the results for LQC
from other models of the early Universe. Namely, in
addition to the scale-dependence mentioned above,
fNLðk1; k2; k3Þ peaks in the flattened-squeezed con-
figurations. (See Sec. IV B).

(6) The function fNLðk1; k2; k3Þ is highly oscillatory
with respect to the wave numbers k1, k2, k3.

(7) Non-Gaussianity ismore sensitive to the bounce than
the power spectrum. For both the power spectrum and
non-Gaussianity, the relative size of themodifications
that the bounce introduces decreases for large
wave numbers k and becomes negligible for
k ≫ kLQC. However, the effects on the power spec-
trum disappear “faster” than on fNL, when we move
towards largerk. As a consequence, there is an interval
of wave numbers, given approximately by k ∈
ð2kLQC; 10kLQCÞ for which the modifications in the
power spectrum are already negligible, but they are
still important in non-Gaussianity.

(8) Impact of different choices of the free parameters in
the model.
(a) A change in the value of the scalar field at the

bounce ϕB increases the number of e-folds of
expansion between the bounce and the beginning
of inflation, and this produces a shift of the
function fNLðk1; k2; k3Þ relative to the interval
of wave numbers that we can directly observe in

the CMB. Increasing ϕB produces a shift of
fNLðk1; k2; k3Þ towards infrared scales with re-
spect to the observable window. This effect was
known to happen for the power spectrum (see,
e.g., [42]), and we have shown that it also occurs
for non-Gaussianty. (See Sec. IV C.)

(b) A change in the value of the energy density of the
scalar field at the bounce, ρB, produces also a shift
on the function fNLðk1; k2; k3Þ, together with a
change in its amplitude. For the power spectrum,
the effects of changing ϕB and ρB compensate
each other (except for extreme infrared scales),
and therefore their consequences cannot be indi-
vidually distinguished. This degeneracy is broken
for the bispectrum. (See Sec. IVD.)

(c) The contribution from the bounce to
fNLðk1; k2; k3Þ is largely insensitive to the choice
of the scalar field’s potential. We have checked
this by comparing the result for fNLðk1; k2; k3Þ
obtained with two commonly used potentials: the
quadratic and the Starobinsky potential. (See
Sec. IV E.)

(d) The predictions for fNLðk1; k2; k3Þ are un-
changed for several different choices of initial
quantum vacuum states for scalar perturbations,
provided this initial state is specified at a time
well before the bounce, when all modes
of interest are in the adiabatic regime (see
Sec. IV F). On the contrary, we find that the
result for fNLðk1; k2; k3Þ is sensitive to the
choice of initial data for perturbations if they
are specified at or close to the bounce. This does
not happen for the power spectrum and shows
again that non-Gaussianity is more sensitive to
the physics of the bounce than the power
spectrum. (See Sec. IV F).

Finally, we discuss the observational perspective of our
analysis in regard of the current and forthcoming con-
straints on primordial non-Gaussianity.
The Planck Collaboration reported results on their search

for non-Gaussianty in the CMB in [35]. They were unable
to confirm any primordial non-Gaussianity and provided
tight constraint on different models of the early Universe.
These constraints are rather strong for models producing
scale-invariant18 non-Gaussianity. They found flocalNL ¼
0.8� 5.0 for the local template, fequilNL ¼ −16� 70 for
the equilateral template, and forthoNL ¼−34�33 for the ortho-
gonal one, at 68% confidence level [35]. These results pro-
vide little information about models with scale-dependent
non-Gaussianity, especially on large angular scales. In
those cases the comparison with observational data must
be done individually for each model. Recall that due to the

18These are models for which fNLðk1; k2; k3Þ does not change
when the three wave numbers are simultaneously rescaled.
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sampling variance observational error bars at low multipole
scale approximately as 1/

ffiffiffi
l

p
, where l is the angular

multipole. Planck observational error bars are smaller for
large multipoles, attaining uncertainties ΔfNL ≈�10 for
l≳ 1000. If fNL is assumed to be scale-invariant, then the
precision at large multipoles suffices to constrain fNL with
great accuracy at all scales. The situation is different for
scale-dependent fNL, as the one we obtained. Nevertheless,
we can still find estimates for the constraints that Planck
data implies for the parameters of our model. We found that
fNL is of order 10−2 for large wave numbers, and then it
increases for small wave numbers, reaching values of order
103. In order to respect observational constraints, the
enhancement of fNL may only occur for the largest scales
probed by the CMB data, for which error bars are large. It is
important to emphasize that, the non-Gaussianity gener-
ated by the bounce has a shape that allows having large
non-Gaussianty at low multipole, while being consistent
with observational constraints at large multipoles of
the CMB.
Taking a conservative viewpoint, we require that the non-

Gaussianty generated by the bounce shall only appear for
multipoles l≲ 50 (which corresponds to k≲ 2k�, for
k� ¼ 0.002 Mpc−1). Recall that the values of ϕB and ρB
control the scales at which the effects from the bouncewould
manifest themselves in the CMB. Therefore, observational
constraints on non-Gaussianity translate into a restriction for
the permissible values of ϕB and ρB; see Table 1.
As mentioned earlier, the enhancement that the bounce

produces in the power spectrum appears for smaller wave
numbers than the enhancement in non-Gaussianty. This
implies that if ϕB is chosen to be equal or larger than
ϕBðminÞ, in such a way that the LQC-effects on non-
Gaussianity appear only for l≲ 50, then the LQC-effects

in the power spectrum would appear only for the first few
multipoles l≲ 5 and would be difficult to observe.
However, one should keep in mind this analysis corre-

sponds to the most conservative application of observa-
tional constraints. It is likely that the oscillatory character of
the non-Gaussianity found in this paper may partially
attenuate some of its effects in the CMB, and such
attenuation would relax the restrictions on ϕB. For this
reason, the numbers given above, and the conclusions
extracted from them, are meant to be taken as “worse-case
scenario”, rather than a strict constraint.
Regarding observational consequences of the non-

Gaussianity generated by the bounce, we point out two
possibilities. On the one hand, although the CMB has been
the main source of information about primordial perturba-
tions, the large scale structure will take this role in the near
future [86]. The characteristic shape of the non-Gaussianity
produced by a bounce obtained in this paper could then be
used as the smoking gun to contrast our findings with future
observations of the large scale structure.
On the other hand, even though error bars for non-

Gaussianity in CMB observations are too large to directly
observe the predictions obtained in this paper, it was
recently emphasized in [39,87] that this non-Gaussianity
can modify the power spectrum at low multipoles, via
higher order effects known as non-Gaussian modulation of
the power spectrum. A detailed analysis shows that these
effects can be large enough to be observable for multipoles
l≲ 30 in the power spectrum, and that they are expected to
produce effects very similar to the anomalous features that
the Planck and WMAP missions have observed at low
angular multipoles in the CMB, and that remain unex-
plained at the present time (see [88,89] for a detailed
account of the observational aspects of these anomalies,
and their statistical significance). The possibility that these
features could originate from a bounce that takes place
before inflation, as the one predicted by LQC, is exciting,
and the quantitative details are worth to be explored.
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Bianchi, Martin Bojowald, Beatrice Bonga, Robert
Brandenberger, Jens Chluba, Brajesh Gupt, Jakub
Mielczarek, Javier Olmedo, Patrick Peter, Jorge Pullin,
Sahil Saini, Parampreet Singh, Siddharth Soni,
Lakshmanan Sriramkumar, and Edward Wilson-Ewing
for discussions. We acknowledge the use of high perfor-
mance computing resources provided by Louisiana State
University (http://www.hpc.lsu.edu), Baton Rouge, U.S.A.
This work was supported by the National Science
Foundation CAREER Grant No. PHY-1552603, National
Science Foundation Grant No. PHY-1603630, and funds of
the Hearne Institute for Theoretical Physics. B. B. acknowl-
edges financial support from the Franco-American
Fulbright Commission, European Research Council

TABLE I. In this table ϕBðminÞ represents the minimum value
of ϕB for different values of ρB obtained from a conservative
application of observable constraints on non-Gaussianity. On the
other hand, ϕBðmaxÞ is the maximum value of ϕB for which the
enhancement of non-Gaussianity produced by the bounce ap-
pears in observable scales. We emphasize that values of ϕB
larger than ϕBðmaxÞ are allowed, but for them the bounce
does not produce any direct effect in the CMB, neither in
the power spectrum nor in non-Gaussianity, and hence the
results agree with those obtained from standard inflation. The
numbers in this table are obtained by using the quadratic potential
with the mass parameter fixed by the Planck normalization,
m ¼ 6.4 × 10−6MPl.

ρB ϕBðminÞ ϕBðmaxÞ
0.2M4

Pl 8.05MPl 8.41MPl

0.5M4
Pl 7.70MPl 8.08MPl

1M4
Pl 7.46MPl 7.82MPl

2M4
Pl 7.19MPl 7.58MPl

5M4
Pl 6.88MPl 7.24MPl

IVAN AGULLO, BORIS BOLLIET, and V. SREENATH PHYS. REV. D 97, 066021 (2018)

066021-26



consolidator Grant No. 725456 and Ecole Normale
Superieure Lyon.

APPENDIX A: EXPLICIT FORM OF THE
CONSTRAINTS UP TO THIRD ORDER

In this appendix we write the explicit form of the scalar
and vector constraints of general relativity, written in
Eqs. (2.2), around a FLRW background, up to third order
in perturbations. For simplicity, we only show terms
involving scalar perturbations, and after gauge fixing
γ1 ¼ γ2 ¼ 0. These expressions have been used in
Sec. II to derive the second and third order Hamiltonians
for scalar perturbations.

Sð0Þ ¼−
κπ2a
12a

þ p2
ϕ

2a3
þa3VðϕÞ¼ 0:

V ð0Þ
i ¼ 0:

Sð1Þðx⃗Þ¼pϕ

a3
δpϕðx⃗Þ−

κπaffiffiffi
3

p
a2

π1ðx⃗Þþa3Vϕδϕðx⃗Þ:

V ð1Þ
i ðx⃗Þ¼pϕ∂iδϕðx⃗Þ−

2ffiffiffi
3

p ∂iπ1ðx⃗Þ−2

ffiffiffi
2

3

r
∂iπ2ðx⃗Þ:

Sð2Þðx⃗Þ¼ 1

2a3
δp2

ϕðx⃗Þ−
κ

a3
π21ðx⃗Þ−

κ

a3
π22ðx⃗Þ

þ1

2
a3∂iδϕðx⃗Þ∂iδϕðx⃗Þ

þ3κ∂i∂j∂−2π2ðx⃗Þ∂i∂j∂−2π2ðx⃗Þ
a3

þa3Vϕϕ

2
δϕ2ðx⃗Þ:

V ð2Þ
i ðx⃗Þ¼ δpϕðx⃗Þ∂iδϕðx⃗Þ:

Sð3Þðx⃗Þ¼ a3

6
Vϕϕϕδϕ

3ðx⃗Þ: ðA1Þ

In these expressions, the subscripts ϕ in the potential
VðϕÞ indicate derivative with respect to ϕ. The third order

vector constraint V ð3Þ
i ðx⃗Þ appears in the Hamiltonian

multiplied by δNi, which itself is linear in perturbations.

Therefore, V ð3Þ
i ðx⃗Þ does not contribute to the third order

Hamiltonian in the spatially flat gauge.

APPENDIX B: EXPLICIT EXPRESSIONS FOR
f 1ðηÞ, f 2ðηÞ, and f 3ðηÞ

Expressions of the functions f1ðηÞ, f2ðηÞ, and f3ðηÞ
appearing in expression (3.31), Sec. III B 2,

f1ðηÞ ¼ a
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