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We extend the phenomenology of loop quantum cosmology (LQC) to second order in perturbations. Our
motivation is twofold. On the one hand, since LQC predicts a cosmic bounce that takes place at the Planck
scale, the second-order contributions could be large enough to jeopardize the validity of the perturbative
expansion on which previous results rest. On the other hand, the upper bounds on primordial non-
Gaussianity obtained by the Planck Collaboration are expected to play a significant role on explorations of
the LQC phenomenology. We find that the bounce in LQC produces an enhancement of non-Gaussianity of
several orders of magnitude, on length scales that were larger than the curvature radius at the bounce.
Nonetheless, we find that one can still rely on the perturbative expansion to make predictions about
primordial perturbations. We discuss the consequences of our results for LQC and its predictions for the

cosmic microwave background.
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I. INTRODUCTION

The origin of the large scale cosmic structure can be
traced back to quantum vacuum fluctuations in the early
Universe, which were amplified by a dynamical gravita-
tional field. The inflationary paradigm provides a theoreti-
cal framework to materialize this idea and to make concrete
predictions that can be confronted with observations
(see [1,2] for a recent debate about the pros and cons
of inflation). But despite the many interesting aspects of
the inflationary scenario, the picture of the early Universe
that it provides remains incomplete (for a list of open
questions, see, e.g., [3]). Among the most important open
issues is the fact that inflationary models suffer from the
initial big bang singularity [4], that makes us uncertain
about the way inflation begins and about the initial state
of the Universe at the onset of inflation. This point is
particularly relevant, since the predictions for the cosmic
microwave background (CMB) and large scale structure
depend on what the initial state was. It would be more
satisfactory to have a scenario in which inflation arises in
a well-defined manner, free of singularities, and in which
the dynamics of the preinflationary Universe could be
incorporated.

The idea that the Universe did not begin with a big bang
but rather it bounced, transitioning from a contracting
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phase to an expanding one, is an attractive possibility.
Bouncing models have been considered since the early
days of relativistic cosmology, e.g., by de Sitter in 1931 [5],
and more recently this idea has emerged in more precise
terms within different scenarios, including loop quantum
cosmology (LQC) [6-9], string theory-related models [10],
higher-derivative scalar-tensor theories [11,12], etc. In this
paper, we focus on cosmological bounces as predicted by
loop quantum cosmology, although some of our results
shall apply to other models as well.

In LQC (see [13-25] for review articles), the cosmic
bounce is caused by quantum gravitational effects. This
scenario has been used to provide a detailed quantum
gravity extension of the inflationary scenario [26,27] in
which trans-Planckian issues of the inflationary paradigm
are addressed from first principles. After the bounce, as the
value of matter energy density and curvature invariants
become smaller than the Planck scale, quantum gravita-
tional effects quickly become irrelevant. In the presence of
a scalar field ¢ and an appropriate potential V(¢), the
matter content of the Universe becomes dominated by this
potential soon after the bounce, and the Universe generi-
cally enters an inflationary phase [28—30]. In this scenario,
scalar and tensor cosmological perturbations begin their
evolution in the quantum vacuum at early times, and then
evolve across the bounce, until the onset of inflation, and
beyond. One then can use this evolution to compute the
state of perturbations at the onset of inflation, and to obtain
predictions for the CMB. The propagation across the
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bounce leaves an imprint in scalar and tensor perturbations.
If the state of perturbations at the onset of inflation happens
to be completely different from the Bunch-Davies initial
conditions normally postulated in standard inflation,
existing observational constraints would jeopardize the
viability of the LQC proposal for the preinflationary
Universe [31]. On the other hand, if the resulting state is
close enough to the Bunch-Davies vacuum at the onset of
slow-roll, but still contains some differences, new effects
would be predicted for the CMB temperature distribution.

In the last few years, a research program has been
dedicated to quantitatively analyze these possibilities (see
[14-25,32-34], and references therein). More concretely,
the primordial power spectra of perturbations have been
analyzed in detail by different groups, following different
strategies. The main conclusions are that the bounce can
leave an imprint on the largest scales probed by CMB,
while still being compatible with current observational
constraints. Concrete predictions have been obtained for
the amplitude of the scalar and tensor power spectrum,
spectral indices, and tensor-to-scalar ratio.

In this paper we argue that the analyses done so far for
the primordial power spectrum provides only a first step
towards a complete comparison of the predictions of LQC
with observations. In order to declare the viability of the
theoretical framework and the compatibility of its predic-
tions with observations, one has to go to the next order in
the perturbative expansion and show, first, that the next-to-
leading order contribution introduces only small correc-
tions, in such a way that the perturbative expansion on
which the computation rests is meaningful. But this is not
enough, since these corrections, although small enough to
maintain the validity of perturbation theory, could still give
rise to large non-Gaussianity and violate observational
upper bounds [35]. Such analysis was done for the standard
theory of inflation in [36], and it was shown that higher
order corrections and non-Gaussianity generated during the
slow-roll era are indeed small, consistent with CMB data.
But the situation could be different in the presence of a
cosmic bounce that takes place at a higher curvature. Non-
Gaussianity arises from self-interactions between pertur-
bations, and these are mediated by gravity. One expects,
from general arguments, that these interactions would
become “stronger” at higher curvatures. Since the bounce
in LQC takes place at the Planck scale, there exists the
possibility that the resulting non-Gaussianity is too large.
Here we extend the analysis of scalar perturbations in LQC
to second order and investigate the non-Gaussianity gen-
erated by the LQC bounce. This goes in three main steps.
Firstly, since LQC is based on a canonical approach to
quantization, we rewrite perturbation theory of cosmologi-
cal perturbations at second order in a purely phase space or
Hamiltonian language. Secondly, we extend the existing
theoretical framework to quantize cosmological perturba-
tions in LQC, the so-called dressed metric approach, to

second order in perturbations. Finally, as the approximations
that are available during inflation and that make the compu-
tation of non-Gaussianity tractable." are simply not applicable
in the preinflationary era, we have developed a numerical
code to compute non-Gaussianity in an arbitrary spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime.
Our code is dubbed class 1lgc and is available in an
online repository® It uses the numerical infrastructure of
CLASS [37,38].

We show that the non-Gaussianity generated by the
bounce in LQC are several orders of magnitude larger than
those generate by inflation alone, for length scales that were
larger than the (spacetime) curvature radius at the bounce.
However, we show that these higher order correlations do not
invalidate the perturbative expansion. We compare our
results with observations and reevaluate the range of values
of the parameter of the theory that make both, the power
spectrum and the non-Gaussianity compatible with obser-
vations. These results open new possibilities for observa-
tional signatures in the CMB and large scale structure arising
from the bounce.

The rest of the paper is organized as follows. In Sec. II,
we develop the classical Hamiltonian theory of cosmo-
logical perturbations at next-to-leading order in perturba-
tions and devote Sec. III to their quantization within the
dressed metric approach in LQC. In Sec. IV we show the
numerical evaluation of the three-point correlation func-
tion, and describe the “shape” of the resulting scalar non-
Gaussianity. In Sec. IV, we also explore the dependence of
our results on different freedoms in the theory, namely the
“initial” value of the scalar field, the value of the energy
density (or equivalently, the Ricci curvature) at the bounce,
the scalar field potential V(¢), and the initial state for
perturbations, respectively. We complement this numerical
analysis with an analytical justification of the main features
of the non-Gaussianty in Sec. V. In Sec. VI, we calculate
the leading order corrections to the power spectrum and
discuss the validity of perturbation theory. Finally, in
Sec. XII, we conclude with a summary of the results
and their implications in the light of observational data.

Although the effects of non-Gaussianity in the CMB
arising from LQC have been discussed in previous analyses
[39,40], these works do not incorporate the non-
Gaussianity generated during the bounce. Rather, they
focus on contributions to non-Gaussianity originated dur-
ing inflation, as a consequence of the fact that perturbations
reach the onset of inflation in an excited state. Since these
excitations were generated by the LQC-bounce, the non-
Gaussianity they induce during inflation is a by-product of
LQC. Here we provide the framework, the numerical tools,
and the computation of the full non-Gaussianity in LQC.

'Namely, the slow-roll approximation and the availability of
analytical approximation for the evolution of perturbations based
on the quasi-de Sitter symmetry of the inflationary spacetime.

website: https://github.com/borisbolliet/class_lqc_public.
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Throughout this paper we use reduced Planck units, in
which energy and time are measured in units of the reduced
Planck mass Mp, = \/h/(8zG) and reduced Planck time
Tp, = V8xGh. However, we will keep explicitly 72 and G
in our analytical expressions, in order to make the physical
origin of our results more transparent.

II. HAMILTONIAN FORMULATION OF
SECOND-ORDER PERTURBATION THEORY
AROUND SPATIALLY FLAT FLRW
BACKGROUNDS

Let us consider general relativity minimally coupled to a
scalar field @ on a spacetime manifold M = R x X. In this
paper we are interested in ¥ having the R? topology,
although the extension to other choices is straightforward.
In the Arnowitt-Deser-Misner, or Hamiltonian formulation,
the phase space I' is made of quadruples of fields defined
on X, ie., [®(X), Po(X), q;;(X), 7 (X)], where ¢,;;(X) is a
Riemannian metric that describes the intrinsic geometry
of £, and 7/(X), its conjugate momentum, describes the
extrinsic geometry of X. (Latin indices i, j run from 1 to 3.)
The only nonzero Poisson brackets between these canonical
variables are

{@(X). Po(¥)} = 6V (F - ¥).

{a)@). @)} = ool o0 G-7).  (@1)

where 5,6}, = 5 (85680 +
delta. Additionally, this phase space I' carries the four
constraints of general relativity, the so-called scalar and

vector (or diffeomorphism) constraints

+ 861 is the symmetrized Kronecker

2 - 1 1
S(X) = Tl <7r”7rl-j —57[2) \2/:1( R +-——P2

Vi N
+ GV (D) + \/76_1 D,®D® ~0, (2.2)
\/l()_c)) = —Zﬂq”Dk(q_llzﬂ'kj) + P@Di(b ~ 0, (23)

where k = 87G and V(®) is a potential for the field ®. In
these expressions, g, )R, and D; are the determinant, the
Ricci scalar, and the covariant derlvatlve associated with g,
respectlvely

The Hamiltonian that generates time evolution in I" is a
combination of constraints

M= [ @V

*In terms of the ordinary derivative associated with a reference
frame, the components of vector constraint read V;(X) =
—28k (qijﬂ.']k) =+ ﬂ]ka,‘qj'k =+ Pq,a,-d) ~ 0.

H+NEVE]L (24)

where the Lagrange multipliers N(X) and N'(X) are the so-
called lapse and shift. They can be chosen to depend on the
phase space variables. We now apply this formalism to the
early Universe.

One of the main assumptions in cosmology is that the
primordial Universe is described by a solution to Einstein’s
equations that is very close to a FLRW geometry. In the
Hamiltonian language, this means that we want to focus on
a sector of the phase space I' of general relativity,
consisting of a small neighborhood around the homo-
geneous and isotropic subspace, ['rirw € I'. In this neigh-
borhood, the canonical variables can be written as

O(X) = ¢ + 5p(X),
Po(X) = py + 6py(X),
q;;(X) = Z]ij + 8q;;(X),
7i(%) = 1 + sa' (%), (2.5)

where 6¢(X), 5p,(X), 8q;;(X), 67" (X) describe small per-
turbations around the homogenous and isotropic back-

ground variables ¢, p,, ¢,;, 7'

A. Background

The variables ¢, p(/,,zjij,zot” are chosen to describe a
spatially flat FLRW universe. This implies the following.
First of all, because we are dealing here with homogenous
fields and T has the noncompact R? topology, the spatial
integrals involved in the definition of the Hamiltonian and
the symplectic form, diverge. But this is a spurious infrared
divergence, which can be eliminated by restricting the
integrals to some finite, although arbitrarily large cubical
coordinate volume V. This infrared regulator will appear
only in intermediate expressions, and physical predictions
will not depend on it, therefore allowing us to take Vy — oo
at the end of the calculation. Secondly, the basic Poisson
brackets of these background variables are

1 o
s} =5 (g, 7"} = V—Oé(ﬁ.(sj). (2.6)
The rest of Poisson brackets between background variables,
as well as the “mixed” brackets involving both background
and perturbation fields, all vanish. Thirdly, homogeneity
and isotropy allow us to choose a gauge in which the metric
variables take the manifestly homogeneous and isotropic
form

°© 2 oij _ Ta gij
qij—aéij, T —@éj,

(2.7)
where §;; is the Euclidean metric on X and 87 its inverse, and
numerical factors have been chosen to make a and z,

canonically conjugated variables, {a,z,} =-. Furthermore,

homogeneity makes the vector constraint to vamsh identically,
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since the spatial derivatives of background variables are all
zero. Therefore, the background degrees of freedom are
subject only to the scalar constraint (2.2), which takes the form

(2.8)

This is the familiar Friedmann constraint. And finally,
dynamics is generated by the Hamiltonian

ki Dy
12a  2d°

Harw = / BaNS© = YN |-

Only uniform lapses N contribute to the right-hand side of
(2.9). Commonly used choices are (i) N = 1, which corre-
sponds to using proper—or cosmic—time ¢, (ii) N = a that
corresponds to conformal time #, (iii) or N = a® associated
with the so-called harmonic time 7. Friedmann equations are
easily obtained from Hamilton’s equations of motion which, in
cosmic time, read

;= _ _ Tl
a={a, Hprw} = K6a’
K 31
g = {7a, Harw} = — W”% —zgpé +3a’*V(9)|,
(2.10)
y P
¢ ={¢, Harw} = —Z,
a
dv
Py = {plﬁaHFLRW} = _a3d£b¢)' (2.11)

These equations can be combined into the more familiar set of
second-order differential equations

dv(¢) i k(1

where p =1¢> + V() and P=14* -V
and pressure density of ¢, respectively.

By solving (2.12) one directly obtains the spacetime
background ~metric  ds?=—di>+q;;(t)dx'dx/ =—di*+
a(t)?dx? and the scalar field ¢(¢). These are the background
fields upon which perturbations propagate.

Remark: From now on, we choose to raise and lower
all indices with the FLRW background metric 21,» ; and its

(¢) are the energy

. oij
inverse q*.

B. Perturbations

Perturbation fields are defined by Egs. (2.5). The Poisson
brackets of the physical fields (2.1) together with those of
the background variables (2.6), imply

(30(E).6py ()} =60 (G- F) =

0
- - = = 1
{8q;;(%), 67" (X')} = 5’(‘i5§) (5( (X =) - V_> (2.13)

0

The distribution appearing in the right-hand side,
S (X =¥ —Vio, is simply the Dirac delta on the space
of purely inhomogeneous fields.*

We have a total of 7 degrees of freedom (per point of
space) in configuration variables—6 in dg;;(X) (gravity)
and one in 6¢(X) (matter)—and 7 more in the conjugate
momenta. But perturbations are subject to the 4 constraints
(2.2), hence leaving a total of 3 physical degrees of freedom
in configuration variables, and a total of 6 in the phase
space of perturbations—recall that each first class con-
straint actually removes two degrees of freedom in phase
space. In order to isolate these physical fields, it is
convenient to first decompose 8g,;(X) and z(X) in a

way that is adapted to the symmetries of the background

metric &,. ;- This leads to the well-known scalar-vector-
tensor decomposition of metric perturbations. This decom-
position can be achieved either in position or Fourier space.
We choose to do it in Fourier space (see, e.g., [41,42] for
earlier references), with the aim of complementing the
more extended analysis in position space (see, e.g., [43,44]
for a recent study of non-Gaussianity in position space, also
in the canonical framework). We start by expanding the
metric perturbations in Fourier modes

34;;(%) A Z(Sq’/ e,

ol (3 Zaﬂw (k)ek* . (2.14)

Since the perturbation fields in position space are real, one
has 85;(k) = 63;;(—k), and similarly for &7"(k), where
the star indicates complex conjugation.

*This can be checked by smearing the left-hand side of (2.13)
with arbitrary functions f(X) and g(x), and noticing that the
presence of the term —1/), removes the homogeneous components
of those functions. Thus, only the inhomogeneous components of
f(X) and g(¥), defined as fi,(X) = f(¥) — 1/Vy [dx®f (%) and
similarly for g(x"), contribute to the right-hand side of (2.13). Note
also that at second order, the equations of motion for perturbations
are nonlinear. This implies that perturbation will pick a homog-
enous contribution throughout the evolution, even if the initial data
is purely inhomogeneous. Therefore, strictly speaking, perturba-
tions cannot be assumed to be purely inhomogeneous at this order
in perturbations. However, the Poisson brackets (2.13) imply that
the homogenous part of the perturbations will Poisson-commute
with its conjugate momentum, and hence will have no dynamics in
our formulation. This is equivalent to saying that, in perturbation
theory, this homogenous mode is neglected, since it is assumed to
always be much smaller that the background fields. This is the
reason why, in practice, one can treat perturbations as purely
inhomogeneous even at second order.
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The Poisson brackets (2.13) translate to

{63;;(k), 674 (K)} = Vod(:6%8; i (2.15)
for any nonzero k and K.

The matrices 6g;;(k) belong to the vector space of 3 x 3
symmetric matrices. The scalar-vector-tensor decomposi-
tion is obtained by writing 6g;;(k) in a convenient basis in
this space, namely

V3
| B A 1 - A
3 A A 4 N N
All) :—2(k’xj+ijl) £]> 7ﬁ(ktyj+ jyl)
5 P o 1 o
E]') :ﬁ(x’yJ +xjyl) z(]> - ﬁ(xt j _yzy])’

where k is the unit vector in the direction of k, and lAc, X,y

form an orthonormal set of unit vectors (with respect to 2] ij)-
These six matrices form an orthonormal basis, with respect

to the inner product A;(")Agn )= O,m- Now, we expand the
perturbation fields in this basis,

561,,

S (k (kA7 (k (2.16)

=Y
n=1
=¥
n=1
These equations can be seen as the definition of 77,1(1_5) =
Al 6,;(k) and 7, (k) =

rotations around the direction £, i.e., the SO(2) subgroup

(n) s~ij (T :
A}’ 67" (k). Consider the group of

that leaves k invariant—but rotates & and 9. It is evident

from their definition that Ag}) and Al(-Jz-) are unaffected by

these rotations, AS-) and Al(?) transform as vectors, and AE?

and Al(»?) as two-covariant tensors. For this reason 7,, and 7,
are called scalar modes for n = 1, 2, vector modes for

n =3, 4, and tensor modes for n = 5, 6. The canonical
Poisson brackets (2.15) are equivalent to

TAGES AW % {8q,(K), 677 (K)}

(/?’>}:A”
nm k —i>

{7 (k). 7 (K)} =0,
0.7 (K

{7, (k). 7, (k') } =0. (2.17)

Note that the conjugate variable of ;7,1(1_5) is ﬁm(—l_é) =
5 ().

C. Physical degrees of freedom

There are two common strategies to isolate physical
degrees of freedom in perturbations from pure gauge ones,
namely gauge fixing or working with the so-called gauge
invariant variables. Gauge invariant variables are combi-
nations of 8¢ and 7,’s that are invariant under the
Hamiltonian flow generated by some of the constraints.
More precisely, when working at linear order in perturba-
tions, gauge invariant variables are defined to be invariant
under the flow generated by the terms in the constraints
(2.2) that are linear in perturbations, and these variables are
commonly used in the literature (see, e.g., [41], and
Sec. III.C of [42]). However, finding gauge invariant
perturbations at second order is more tedious [44], since
one must involve second-order constraints in their defi-
nition. The gauge fixing strategy is more efficient, and
more common in the literature (see, e.g., [36]), and we shall
follow it in this paper.

Recall also that in making predictions for primordial
perturbations, the important point is to write the answer in
terms of the comoving curvature perturbations R (see, e.g.,
[36] for its definition at higher order in perturbations). This
is because Fourier modes of R remain constant from the
time they exit the Hubble radius during inflation until they
reenter towards the end of the radiation era. This property
of R is crucial, since it allows us to connect the inflationary
predictions with observables in the late time Universe, even
if we are uncertain about the evolution of the Universe
immediately after inflation. Therefore, irrespective of what
strategy one decides to follow—gauge invariant variables
or gauge fixed ones—the important point is to write the
answer in terms of R at the end of inflation.

However, performing all computations using R presents
some difficulties. When the Universe is dominated by a scalar
field ¢, the variable R is ill-defined whenever ¢ vanishes.
During inflation this situation does not occur, because the
evolution of the scalar field during this period is monotonic,
rolling down the potential, as long as the slow-roll conditions
are satisfied. In the scenario under consideration in this paper,
¢ vanishes just before the onset of inflation, thus making the
variable R unsuitable for our purposes (see [27,45] for
further details). Therefore, in our analysis below we work
with the scalar perturbations d¢ in the spatially flat gauge and
rewrite the answers in terms of comoving curvature pertur-
bation R at the end of the inflation, when all modes of interest
are in super-Hubble scales.

The spatially flat gauge is defined as the gauge in which
the scalar and vector modes of metric perturbations vanish,
ie., 7, =0 for i =1, 2, 3, 4. The physical degrees of
freedom are therefore encoded in the scalar perturbations
8¢ and the tensor modes 75 and 7. This strategy com-
pletely fixes the gauge freedom.

We are now ready to write the Hamiltonian that generates
dynamics, including terms up to third order in perturbations.

066021-5
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This will produce equations of motion that incorporate terms
up to second order.

D. Third-order Hamiltonian

This paper focuses on non-Gaussianity of scalar pertur-
bations. Therefore, we will not write terms containing tensor
modes in this section. Including them, however, does not add
any conceptual difficulty (for a treatment of tensor modes in
the context of inflation, see for instance, [36,46,47]),
although the expressions below become significantly longer.
The third order Hamiltonian for scalar perturbations in the
spatially flat gauge is obtained as follows:

(1) Expand the constraints (2.2) in perturbations

SO + sO(F) + SO (X) + SGI(F) 4 - -,
= VO + vIO(F) 4+ VO(X) + VO (X) + -,
(2.18)

where the superscript (0) denotes the terms that
are independent of perturbations, (1) the linear
terms, (2) and (3) the second- and third-order terms,
respectively. Expressions for each of these terms can
be obtained directly from (2.2) and (3), and are
reported in Appendix A.

Expand also the lapse and shift as N + 6N and
N+ 6N, where N and N' are the homogenous
lapse and shift. For consistency with the FLRW
gauge fixing [Eq. (2.7)], we take N’ = 0. On the
other hand, SN(X) and SN'(X) are the inhomo-
geneous part of the lapse and shift, which may
depend on perturbations.

(i) Impose the gauge conditions 7; = 0, 7, = 0 in the
constraints (2. 2) (Since we are interested in terms
involving only scalar perturbations, the gauge con-
ditions 73 = 0, 74 = 0 are not needed.)

(iii) Find the lapse SN and shift SN associated with this
gauge fixing by demanding that the gauge condi-
tions are preserved upon evolution; i.e., use the
equations
71=1{n.MH}=0, ={r.H} =0, (2.19)
to obtain 5N and 6N’ in terms of #,, #,, 6¢, and & Py
To write the third order Hamiltonian it is sufficient to
keep terms in 6N and SN’ up to first order in
perturbations.

(iv) Impose the first order constraints, S(l)()?) =0,

\/l(l)()_c') =0 to eliminate the conjugated variables

%y, 7, in favor of &¢ and 0Py, 1., to find the
relations 7, = 7, (¢, Spy), Ty = 72 (69, 5pgy)-

(v) Plug these results in the Hamiltonian (2.4) and keep
terms up to third order in perturbations.

We performed these calculations using the MATHEMATICA

package xAct® [48]. The result is

B 2N
N =-— (V37 + V67,),

. . 6
ON' = ik'y, where 7 = NfKﬂz,
ka
3a°V, b
7 = v3 Lo+ \/_p/ 5~(/),
K7,

- 3Py 5V¢ Py
ﬂz_\/;[<2 K7, 6¢_Ka opy > (220)

where k* = k;k;6" = a®k;k' is the so-called comoving wave
number.

Moving back to position space, we obtain the expression
for the Hamiltonian up to third order for scalar perturbations
Hpert = H@ + H®). The second-order Hamiltonian is’

H? = /d3xN§ =N /d3 { $6p;, +a’ (05¢)? + a®A54? |, (2.21)
with the potential 2 given by
3 6 2, ap?
o = -9 p"’+ p"’ p¢v +V¢+6p¢p¢ 380 _3 %% (2.22)
adn? 2" ar a*n; a’nm,

The “dot” on background variables must be understood as x = {x, Hg rw }» and each subscript ¢ for the potential V means a

derivative with respect to ¢.

From the phase space viewpoint, this is equivalent to introducing two new (second class) constraints.

http /Iwww.xact.es.

"We have, in addition, performed the canonical transformation (6¢,6p,) —

(6¢,6py = 6py — 545) to eliminate a term

proportional to 5p,0¢ in the second-order Hamiltonian. From now on we W111 work with 6p, but we Wil drop the bar to simplify

the notation.
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The third order Hamiltonian is

HO = [ Px(ENSPIE) + NV () + NSO (D)

a2p¢

9%p3  27p) 3a2p 1% a*V, 3p 9p; 2
—~N [ &x ¢ ' 0" b 009\ 503 — ¢55_ D 5p 5P — Sb(B5h)
/ K4a4ﬂ 2w 2m, 6 )7 T aai, P T g2 0000 $(059)
2
3p3 Py oo @py 2,92 p4,
Fy 5 O xO0°x 3 6 o' 6 0,0 40'07 2.23
* N, 2N2 ¢ + ¢ 5 Ny 000102007 | (223)
|

By performing a Legendre transformation, it can be  that time the terms in the second, third, and fourth lines

checked that these expressions agree with the third-order
Lagrangian derived in [36] (recall that, unlike [36], we use
the physical background metric co],» = a’s; ; and its inverse,
to lower and raise indices). Note that we have not used the
Friedmann constraint (2.8) to derive, or simplify, the
second- and third-order Hamiltonians.

The second-order Hamiltonian H(®) provides the free
evolution of perturbations, i.e., it leads to the linear
equations of motion

5 = {66, HP},

8py = {0ps HP} » (O —A(1))5p(X.1) =0, (2.24)
where [J is the d’Alembertian of the FLRW background
metric.

The third order piece of the Hamiltonian, H®O)  is the so-
called interaction Hamiltonian, which provides self-inter-
actions between perturbations (quadratic terms in the
equations of motion). Some of these interactions are
generated by the scalar field’s potential V(¢), but note
that most terms in ) are independent of V(¢), and
therefore would be present even if V(¢) = 0. These are
self-interaction mediated by gravity.

Finally, the relation between &¢ to the comoving
curvature perturbations R, needed to write our results in
terms of R at the end of inflation, is given by [36]

3 Vyad 2
R(z,t):—95¢+ S +KZ —5¢
2 Kp¢71'a 4a°

3a2d
K, dt K22 gz
a’

d
2

(35¢)

955 5 0720,0,(0'5p05)
Z

+32 fa,-;(af&;; —32 fa—Zaiaj [0y 0I5,

KT, Z KTty 2

(2.25)

where z = — gfr—‘”. Although this relation looks complicated,

we will only need to use it at the end of the inflation, and at

become negligible compared to those in the first line. The
reason for this is that perturbations that can affect our CMB
have wavelengths much larger than the Hubble radius at the
end of inflation. As previously mentioned, these super-
Hubble modes of R become time independent. These two
facts—super-Hubble wavelength and time independence—
make both the spatial and time derivatives appearing in the
second, third, and fourth lines negligibly small.

III. EXTENSION OF THE DRESSED METRIC
APPROACH TO SECOND ORDER

In this section we obtain the equations that describe
the propagation of scalar perturbations in the Planck
era of the Universe, using LQC. We use the so-called
dressed metric approach, introduced in [49], and further
developed in [27,42] (see also the review articles [14,17,21]).
Here we extend the existing formalism to second order in
perturbations.

In semiclassical cosmology, to account for the CMB
temperature fluctuations it has sufficed to consider just the
first-order perturbations around a FLRW solution, ignoring
their backreaction. In the Planck era of the Universe, to
begin with, one has a quantum gravitational field instead of
a smooth metric. The question is whether we can find
solutions in loop quantum cosmology that deviate from a
quantum FLRW configuration only by small perturbations,
and whose effect on the background quantum geometry can
be neglected. Such solutions exist [27,42,49] and can be
calculated, and they can be used to build a self-consistent
quantum gravity extension of the inflationary scenario
[26,27]. We first summarize how these solutions are
obtained and then extend previous analyses by including
terms up to second order in perturbations.

Our goal is to find the quantum theory of the classical
midisuperspace made of spatially flat FLRW geometries
sourced by a scalar field ¢, together with scalar perturbations
8¢ (X) propagating thereon. In LQC, dynamics is extracted
from the constraint equation (the analog of the Wheeler-
deWitt equation) HY = 0, where H = ﬂpLRW + ﬂpert is the
operator associated with the Hamiltonian obtained in the
previous section, and W is the total wave function describing
both the background degrees of freedom, a and ¢, as well as
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scalar perturbations 6¢. In LQC it is convenient to trade the
scale factor a for the “volume” v, defined as v = a*V,4/k and
use the lapse N, = a® (see [50], and references therein, for
additional details). The constraint equation (¥ (v, ¢, 5¢p) =
0 takes the form

_hzaéqj(y’ ¢v 5¢) = ([’_\1(2) - ]:I% - Zvoﬂpert[NTDqJ(v’ ¢v 5¢)’
(3.1)

where H} =1x?9?V(¢), and Hj is a difference operator,
whose explicit form is not important for our discussion (it can
be found, e.g., in Eq. (2.2) of [50]; see also the original
references [6-9,51]). Both A, and H, act only on back-
ground degrees of freedom, while ﬂpen acts on both, back-
ground and perturbations. We are interested in solutions
to this equation of the form ¥(v,,5¢) = ¥o(v,¢) ®
SY¥(v, ¢, 6¢), with Wy(v,¢) representing a quantum
FLRW gravitational field, and 6¥(v,¢,5¢) describing
inhomogeneous scalar perturbations.

A. Background

The states Wy(v, ) are chosen to be a normalized
solution, with respect to a suitably defined inner product
[14], of (3.1) with ﬂpen = 0. They describe a quantum
FLRW geometry. The Hilbert space Hprw to which the
states Wy (v, ¢) belong to, was studied in detail in [6,9,14]
in absence of a potential V(¢), i.e., with A, = 0.

Adding a potential introduces additional subtleties
related to the definition of the inner product on the
Hilbert space. This issue has been discussed in [50], and
the reader is referred there for details. In this paper, we will
focus only on bounces that are “kinetic dominated”, since
this is the regime of phenomenological interest for us (see
Sec. VII). For such bounces, one can check that <I:I%> >
(H?) during the Planck era [50].® This makes the term
proportional to 4, in our quantum equations to produce
negligible effects on physical observables (e.g., the pri-
mordial power spectrum), several orders of magnitude
smaller than observational error bars. Hence, although
the mathematical subtleties that appear in the inclusion
of H, are important from the conceptual and mathematical
viewpoint, they are not of direct relevance for phenom-
enological considerations. Therefore, in this paper we will
work with states W (v, ¢) obtained by neglecting A, in the
Planck era.

The Hilbert space of the states for the background
geometries that we are interested in, Herw 2 Yo (v, @),
is then made of solutions to the “Schrodinger-like” equation

—ihd,¥o(v.¢) = Ay (v, ¢), (3.2)

$This epoch is defined as the period for which the quantum
gravity corrections to the dynamics are larger than a 0.1%.

with a finite norm ||¥y|> =, %o (v, #)|> < co. This
equation is simply the positive “square root” of (3.1) with
H, =0and ’Hpm = 0. Hprw is the analog of the space of
states of the more familiar example of a scalar field in
Minkowski spacetime, that is made of positive frequency
solutions to the Klein-Gordon equation. It is useful—
although not essential—to think of ¢ in Wy(v,¢) as a
relational time variable with respect to which the wave
function “evolves”.

As shown in [9], states in (a dense subspace of) Hpy rw are
free of curvature singularities, in the sense that curvature
invariants are all bounded. The eigenvalues of the matter
energy density and pressure have also an absolute supremum
on Hprw, given by a fraction of the Planck scale.
Furthermore, every state W,(v,¢) experiences precisely
one “instant” ¢p at which the expectation value of the
volume of the fiducial box, or of any other finite region of
space, attains its minimum, while energy density and
curvature reach their maximum. In other words, in this
theory a cosmic bounce replaces the big bang singularity of
classical general relativity.

1. Effective theory

To gain physical intuition, consider states ¥y (v, ¢) that are
sharply peaked in the volume v, i.e., states with small relative
dispersion in v (or equivalently, in the scale factor @) during
the entire “evolution”. Such solutions to (3.2) exist and have
been studied in detail [7,8,52,53]. For these states, it has been
shown [14,54] that the expectation value of the scale factor,
a=(a), and the rest of background quantities, can be
obtained very accurately from an effective theory. This
effective theory takes the form of a classical theory whose
equations of motion incorporate the leading quantum cor-
rections. The phase space is four dimensional, made of
quadruples (@, 7, ¢. p ), and dynamics on it is generated by
the effective Hamiltonian constraint

(eff) A 1 _, 341 . K7\ e -
HpLrw[N]=VoN ﬁpﬁ,—Tszgsmz f()g? +a*V(p)|.
(3.3)
where 3 = % £%,, and A is area gap in LQC—the lowest

nonzero eigenvalue of the area operator. This Hamiltonian
depends on 7% through Z. In the limit £, — 0, it reduces
to the classical FLRW Hamiltonian given in (2.9). In terms of
the energy density p=3p3a®+ V(¢), the equation

Héeffgw = 0 becomes

*We have included the potential V(¢) because, as emphasized
before, it plays an important role at late times, out of the Planck
era. However, within the Planck era it is completely subdominant
in all solutions of interest for this article. Hence, the way we use
this effective Hamiltonian is consistent with the previous dis-
cussion, where the potential V was neglected in deriving the wave
function ¥, in the Planck era.
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1 KT, K
ﬁsm <bﬁ0 6-) = gp (34)
0

The trigonometric function on the left-hand side reveals that

the energy density is bounded above by pg,, = - fz Some

analyses of black hole entropy in loop quantum gravity
[55-57] suggest the value Ay = 5.17 for the area gap, that in
turn makes pg,, = 0.4092pp (see, e.g., [58] for an alternative
view). In this paper we treat A as a free parameter and derive
results for the CMB for different values of A,,.

The equations of motion (using cosmic time) for the

canonical variables a, 7,, ¢, and p, that describe the
effective geometry, read

- ett
= {a, HFLRW

Qh

_a 1 KT
=H=—=—— 20,-=-2,
a fosm< °6a2>
(eff) 317(/, 1 K 7T,
={z avHFeLRW 27 +9_psmz bﬂogg

T, . T, _ -
- 70 S (2{0 6?) - 302V(¢),
b = {b. Hikw} = pyla.
Ve
d

(eff) }_ )

Py = {pf/?’HFLRW (3.5)

These equations reproduce the classical FRLW dynamics
(2.10)=(2.11) in the limit £, — 0. Equation (3.5) implies,
due the presence of the trigonometric function, that the
Hubble rate of the effective geometry is also bounded from
above, by [Hyp| = 25 = /55 Pup

Now, a relation between energy density and Hubble rate,
that generalizes the classical Friedmann constraint, can be
obtained by combining (3.4) and (3.5). More precisely,
using the identity sin?(2x) = 4sin’x(1 — sin’x), together
with (3.4), Eq. (3.5) takes the form

1:12:EP<] S )
3 Psup

The term in parenthesis breaks the linearity between the
Hubble parameter 4 and the energy density § p that holds
in general relativity. Moreover, H vanishes when p reaches
its maximum value pg,,; such an instant corresponds to a
smooth transition between a contracting and an expanding
universe, i.e., a cosmic bounce. When p is small compared
to Py, the classical relation H* =% p is recovered.

The set of equations (3.5)—(3.6) can be recast as a system
of two second-order differential equations

(3.6)

a K p K p
4 _Eo(1-4 >——P<1—2 >
a 6 ( Psp/ 2 Psup
¢+3Hp+V; =0, (3.7)
where P = %g{ﬁ — V() is the pressure density of the scalar

field, and the dot indicates derivative with respect to cosmic
time 7.'" These are the so-called effective equations of LQC.
The solutions to these equations provide an effective
FLRW metric g,, around which the quantum geometry
Wo(v, @) is sharply peaked.

It is important to notice that solutions of the effective
equations are characterized by two parameters, which can be
chosen to be the value of the scalar field at the time of the
bounce ¢(tz) = ¢ and its energy density at that same time,
p(tg) =pg = Psup- To understand why we only need two
numbers to characterize a solution, even though the phase
space we are working with is four dimensional, consider the
following. Note first that in a spatially flat FLRW geometry,
the scale factor a can be rescaled freely without altering the
physics. We choose ag = 1. On the other hand, at the bounce
a =0 in all solutions. Additionally, because the energy

density equals pg,, at the bounce, ¢y determines b(tg).
Therefore, from the apparently four initial data required to
solve the system (3.5)—(3.6), the value of ¢g and pg,
(together with the convention ag = 1), suffices to uniquely
characterize a solution.

2. Generalized effective equations

What about states ¥ (v, ¢) that are not sharply peaked?
They, of course, are not accurately described by the
effective equations. In particular, the geometry they
describe cannot be approximated in any reasonable sense
by a smooth metric tensor. For those states, quantum
fluctuations play an important role. Nevertheless, it has
been proven in [59] that the expectation value of the scale
factor a = (Wyla|¥,) is still accurately described by
equations (3.7), with the only difference that pg,, must
be replaced by the actual value of the energy density at the
bounce, pg, which satisfies pg < pg,,. That is, @ bounces at
an energy density pg smaller than or equal to pg,, for states
Wo(v,¢) with large dispersion. It turns out that pg
decreases when the relative quantum dispersion in volume
Avl/v increases. (The authors of [59] also derive an
analytical relation between pg and Aw/v, valid for
Gaussian states.) This behavior is sensible: since pg,, is

Recall that in LQC evolution has been defined, at the
fundamental level, in a relational manner. In other words we have
studied how the gravitational degree of freedom a evolves with
respect to the matter degree of freedom ¢. In this sense, the “time”
variable ¢ in this effective theory arises just as a parameter that
changes monotonically with ¢, that allows us to “separate” the
relation a(¢) into a(¢) and ¢(t). This is the way the ordinary time
we use in general relativity “emerges” in loop quantum cosmology.
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a supremum, only infinitely sharply peaked states reach
PB = Psup» While quantum fluctuation can only decrease
pg- However, it is remarkable that, even in presence of large
quantum fluctuations, the mean values of Wy (v, ¢) are still
very well approximated by “generalized effective equa-
tions” which are identical to the equations (3.7) with pg,,
replaced by pg.

B. Perturbations

Recall that we are interested in solutions of (3.1) of the
form  W(v,¢,5¢) = Yo(v,¢p) ® 6Y(v, ¢, 5¢p), where
Wo(v, @) is one of the quantum FLRW states described
above, and oW is a small perturbation around it. Intuition
tells us that states of this type exist, as long as 8% (v, ¢, 5¢)
remains a small perturbation throughout the evolution—
i.e., as long as the test field approximation is valid. As we
will see below, this is in fact the case.

The states we are looking for are the “positive fre-
quency” solutions to the constraint equation (3.1), i.e.,
states satisfying [49]

70, B(0. §.50) =\ HEN,] = 2V lyer [N ¥ (0. 8. 5.

(3.8)

Here H, represents the Hamiltonian of the “heavy” degree
of freedom (background), and 7:[pm IN,] = HP[N,] +
H[N,] the Hamiltonian of “light” ones (perturbations).
Recall, N, = a® is the lapse associated with harmonic time.
We can now expand out the square root and keep only terms
linear in ﬂpen

— ihd, ¥ (v, b, 5¢)
~ [Ho = Vo((Ho) ™" Floen [N (Ho) ") ¥ (v, ¢, 56),
(3.9)

where we have chosen a symmetric order to write the
operators in the right-hand side. Note that the factors that
multiply ﬂpen are physically consistent, since in the
classical theory N, =V H;'N, is precisely the lapse
associated with the relational time ¢. Hence
Vo (o)™ Hpen[N,|(Hp)™" is a specific quantization
of Hpert [N {/,]

Now, introducing our ansatz ¥(v, ¢, 6¢) = ¥o(v, ) ®
8¥(v, ¢, 6¢) and using that ¥, satisfies the background
equation (3.2), we obtain from (3.9) the equation of motion
for 6%

¥ ® [i1040%] = Hyen [Nyl (P ® 6F). (3.10)
The test field approximation has been crucial to derive this

equation, but no other simplification has been used. Also,

recall that ﬂpen [N4] acts on both ¥, and 5§'¥. However, the
presence of ¥, in the left-hand side indicates that we can
take the inner product with ¥, without loosing any
information and obtain

ih0y0% = (Wo| Hpen [N 4]|Wo) 0P (3.11)
where we have used that ¥, is normalized. This equation
tells us that the information regarding the background
FLRW geometry that influences the evolution of perturba-
tions under the test field approximation is simply the
expectation value of the background operators that appear
in 7:{,,611 [N4]; no other “moment” of ¥, contributes to the
dynamics.

Equation (3.11) is a Schrodinger equation for 6%, with
evolution Hamiltonian <ﬂ>pen = <‘I’0|7A{pert [N4][Wo), where
the hat reminds us that this expectation value is only on the
background state, and therefore this quantity is still an
operator when acting on perturbations. To solve this
dynamics and compute physical observables, we will
follow techniques that are standard in quantum field theory
in curved spacetimes. That is, states of perturbations belong
to a Fock space He, on which dynamics is dictated by
<7:(>pen in the standard way. (The total Hilbert space is
therefore Heprw ® Hoper; this is the quantum analog of the
classical phase space I'gp rw X [pere Of FLRW metrics plus
perturbations propagating thereon.)

Now, we shall describe the dynamics of perturbations in
more detail. As seen in Sec. II B, at the next-to-leading
order in perturbations the Hamiltonian has a quadratic and a
cubic piece (ﬂ)pm = (H®) + (H®), where (H?) and
<7:(<3 )> are the quantum operators associated with the
classical expressions (2.21) and (2.23), respectively. The
quadratic Hamiltonian <7:{<2)> provides the free evolution,
and <ﬂ<3>> describes self-interactions between perturba-
tions, which will be introduced perturbatively.

1. Free evolution of perturbation: The power spectrum

The free evolution, which is obtained from (3.11) by using

(H®)Y as the evolution Hamiltonian, can be now rewritten in
a more familiar form. Moving to the Heisenberg picture,
dynamics is given by the Heisenberg equations

9o = in~' 5, (HPN )]
=ih- [5174» A )[N¢}>]

Now, by simple algebraic manipulations, these equations
can be written as the second-order differential equation [49]

04SPy (3.12)

(0 - AW)sp(X.77) = 0. (3.13)

This equation has the same form as in semiclassical
cosmology. The difference is that the differential operator
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O= gabvﬁb and the potential 9 are now constructed
using the state W,(v, ) chosen to describe the quantum
FLRW geometry. More precisely, [ is the d’Alembertian
associated with a smooth FLRW metric tensor

Gapdxdx? = @* (i) (—di> + dx?), (3.14)
where a is given by
H-1244 =12
o — <0f’—_10>, (3.15)
(Hy')

and the conformal time 7 is defined in terms of the internal
time ¢ of LQC via

>)1/2<<H—1/2 4H_1/2>)l/2d¢ (316)

diy = Vo((Hy

The tensor §,, is known as the effective dressed metric.
Furthermore, the dressed potential 2(7j) is defined by

&)
e
>
=
~

g A& , (3.17)

where 9 is the operator associated with the classical
potential A defined in (2.22). All expectation values are
evaluated in the state Wy(v.¢). Recall, H, is the
Hamiltonian used in the evolution of ¥y(v,¢) and a is
the operator associated with the scale factor. Hence, under
the test field approximation, the evolution of d¢ at leading
order in perturbations is mathematically equivalent to a
quantum field theory of 6¢) on a curved FLRW spacetime
described by §,;,- ([27] has analyzed the validity of the test
field approximation by studying the energy-momentum
tensor of perturbations.)

Now, if Wy (v, ¢) is taken to be one of the sharply peaked
states, then [] becomes the d’Alembertian associated with
the LQC effective metric obtained by integration of (3.7),
and the potential 2 is obtained from the classical expres-
sion (2.22) by just replacing the background variables a,
74, ¢ and py by the solution of (3.7). Hence, for sharply
peaked states W, the evolution of perturbation proceeds in
the same mathematical manner as in semiclassical cosmol-
ogy, with the difference that the background FLRW metric
is not a solution to Einstein equations, but a solution to the
LQC effective dynamics (3.7).

For other states Wy (v, ¢) containing a large dispersion in
v, the differential operator [ and the potential 9 are
sensitive not only to the mean values of the scale factor and
other simple operators, but also about a few specific
“moments” of Wy(v,¢), precisely those appearing in
Egs. (3.15), (3.16), and (3.17). These moments, although
nontrivial in appearance, can be computed numerically, and
the result can be used to predict observable effects in the

CMB anisotropies. Such analysis has been carried out in
[50] using states W (v, ¢) with relative dispersion Av/v as
large as 168% in the Planck regime. Interestingly, these
computations show that, among all the effects that a large
dispersion produces on the power spectrum, the only one
that becomes significant compared to observational error
bars is a direct consequence of pg being smaller than pg,,
[see discussion below Eq. (3.7)]. This means that, in order
to compute the primordial power spectrum in LQC for
states Wy (v, ¢p) with a large dispersion, we can simply use
the solution to the effective equations (3.7) after replacing
Psup DY the actual value of the energy at the bounce (i.e., use
the generalized effective equations). This is an accurate and
simple recipe to extend the phenomenology in LQC to
states Wy (v, ¢) that are not sharply peaked [50]."

Remark: To simplify the notation, from now on we will
drop the “tilde” on the conformal time of the dressed
metric, and the “bar” on solutions to the effective and
generalized effective equations.

Once we have the dressed metric g,, and the dressed
potential 2, the computation of observable quantities
follow the standard procedure.12 First, expand the field
operator in terms of creation and annihilation operators

3
%@m—/fﬁwg>k

B /((21”];3 (Agoln) + AT_;(P; (n))e’**,

(3.18)

AL AT 36V (L) AL A 1—O—TAT AT
where [ApAL]|=h(27)°6") (k+k), [ArAp]=0=[ALA}],
and the set of mode functions ¢, (1) form a basis of solutions
to the equation

/
WL +2Z g+ (@ =0, (3.19)

with normalization

i

PRPE ~ PP =3 (3.20)

where k? = k; k; 5 is the comoving wave number, and the

prime indicates the derivative with respect to conformal time.

The scalar power spectrum of 5A¢ is extracted from the two-
point function in momentum space via

"In [50] wave functions Wy(v, ¢) with different “shapes” in
the v variable and having large relative dispersion in v, although
not arbitrarily large, were explored. However, the Hilbert space is
infinite dimensional, and one could find states for which the
concluswns of [50] do not apply.

"Note that, since we have already solved for the background
dynamics, we can take the volume of the fiducial cell to infinity,
Vy = oo, in this section. Not taking this limit would only

introduce a discretization of the wave numbers I_é, and the
integrals in k& below would have to be replaced by sums.
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(015 n)65 ()I0) = ()50 F + F) 25 oy (k.m),
(3.21)

where |0) is the vacuum annihilated by the operators
A,—(v for all k. In terms of mode functions, we have
Psy(k,n) = (hk*122%)| @i ()|>. The power spectrum of
comoving curvature perturbations at the end of inflation,
is obtained from Py, by using the relation between 6¢ and R,
written in (2.25), truncated at linear order

Pr(k) = (a(”end))zp&p(’ﬁ Hend)

- Z(”end)
a(’/lend) 2k
= (m) 2_7[2|§0k(’76nd) 2, (322
ent
where 7 = —gi—“’.

Remark: An ambiguity appears in the analysis pre-
sented in this section, and it deserves some comments. Note
that the potential 2 that appears in the classical
Hamiltonian of scalar perturbations [Eq. (2.22)] contains
powers of 7, the momentum conjugated to the scale factor
a. In the quantum theory one finds the problem that, in loop
quantum cosmology, there is no operator associated with
z,; only complex exponentials of z,—i.e., holonomies of
the connection—are defined as operators. This fact is
intrinsic to the quantization strategy used in loop quantum
gravity/cosmology, and it is a consequence of diffeomor-
phism invariance.

There are several strategies that one can follow in order
to compute the dressed potential in (3.17). We spell here
three of them, which have been chosen based on the criteria
of simplicity.

(i) Use the classical Friedmann constraint (2.8) to trade

n, for a, ¢ and p . There is no loss of generality in
using the classical constraint; it is an identity in the
classical theory, which is the departing point for
quantization.

(i) At a more practical level, when working with
sharply peaked states, we can simply replace the
expectation values of 7, by the solution 7,(¢) to the
effective equations of LQC.

(iii) Again, at the level of effective equations, replace
factors 1/z, in the -classical Hamiltonian by
—H/(2a%p), where p is the energy density in the
background. This equation holds in general relativ-
ity. In loop quantum cosmology, such a relation is
also valid after taking advantage of the freedom in
the quantization strategy (see, e.g., [60], and refer-
ences therein for discussions on quantization ambi-
guities in LQC).

In view of the existing freedom, we have compared the

results for the power spectrum and non-Gaussianity by

using all three strategies, in order to understand how
sensitive observables are to these quantization ambiguities.
Our results (see Sec. IV G) show that the results of this
paper remain the same regardless of the choice we make for
7,, out of the three strategies explained above. For the sake
of simplicity, we will use strategy (ii) in the main
calculations presented in the next section.

2. Interaction Hamiltonian: The bispectrum

The self-interaction of perturbations are described, at the
lowest order, by the interaction Hamiltonian H;,=

(Wo|H®) [N4]|Wo), where the classical expression for

HO) was given in (2.23). As for the linear evolution, we
are not free of factor ordering ambiguities, and we choose a
symmetric ordering. At second order, therefore, the evo-
lution of perturbations is sensitive to other moments of the
state. Wo(v,¢) chosen to describe the quantum FLRW
geometry, in addition to the three already involved in the
free evolution, written in (3.15), (3.16), and (3.17). The
new moments follow straightforwardly from (2.23)—
keeping in mind the expression for N, and the symmetric
ordering—and we do not explicitly write them here.

To begin with, in the computation of the three-point
function of scalar perturbations, we restrict ourselves to
sharply peaked states ¥, for the background geometry. As
discussed above, at the practical level this is equivalent to
replacing expectation values of background quantities by
solutions to the effective equations (3.7). Furthermore, as
described at the end of Sec. III A 1, the leading effects
introduced by using more generic states can be accounted
for by varying the value of the mean energy density at the
bounce pg. We postpone such analysis to Sec. IV D.

The equal-time n-point correlation functions of scalar
perturbations d¢, can be now computed at second order in
perturbations by using the standard time-dependent per-
turbation theory,

= <0|UT(’17’70)5A¢)1()?1 ’77)6%[()?2777) . 6,&5[()?11’77) U(nvn0)|0>’
(3.23)

where the superscript / denotes operators in the interaction
picture, and

n A
U(n,ng) =Texp (—i/ft / dn”Hin(n’)),
No

is the time evolution operator relative to ﬂilm.

The observable quantity we are interested in is the
bispectrum By (k;, k,, k3) of comoving curvature pertur-
bations evaluated at the end of inflation. It is defined
from the three-point correlation function of R in Fourier
space, via

066021-12



NON-GAUSSIANITY IN LOOP QUANTUM COSMOLOGY

PHYS. REV. D 97, 066021 (2018)

<0|7A2;;]7A3;;27A3;:3|0> = (22)°0%) (ky + ky + k3)Br (k. Ky, k).
(3.24)

The bispectrum By (ki , k,, k3) has dimensions of (length)®.
The presence of the Dirac-delta distribution is a conse-
quence of the homogeneity of the background FLRW
metric. This delta distribution implies that only triads

(751 Ky, 123) that form a triangle may have a nonzero
bispectrum. Additionally, isotropy makes the orientation
of this triangle irrelevant. These two facts combined are the
reason why By depends on the wave numbers (1?1 , 122, ]_6)3)
only via three real parameters. Common choices are
(klv k2, k3) with k3 < k1 + k2, or (kl’ kz,/l = ]}1 . 122)

It is common, and convenient, to quantify the amplitude
of the bispectrum in terms of the dimensionless function
fNL(kl s k2, k3), defined as

6
Br(ky, ky, ks) = _ngL(kl»k% ks)

X (AklAkz + AklAk3 + Aszk3)9 (325)
or, equivalently, by
5
Ik, ko ks) = _EBR(kl’k2’k3)
X (Ag, Ay, + Ay Ay, + Aszkg)_l7
(3.26)

where A; = %2 P (k) is the dimensionful power spectrum.
(See [61] for the origin of the convention leading to the
numerical factor —5/6, and see Appendix A of [62] for a
summary of different conventions for the sign). Looking at
expression (3.26), we can intuitively think about f; as the
amount of correlations in “units” of AZ.

Now, in order to compute the bispectrum By (ky, k, k3)
in terms of d¢p, we use the relation between both variables
given in Sec. IID

V¢a5 K 72

- a._, . 3
R(¥X,n) = —2545(%’7) + {—§+3Kp¢ﬂ i

x <§5¢(7€, :1))2 T (3.27)

where, the dots represent terms producing subdominant
contributions to correlation functions at the end of inflation
for the wave numbers k that we can observe today [see
Eq. (2.25) and the discussion after it]. With this, we have

A Ao a3, A~ A 4
<0|RE,RE2RI§3|O> = (— E) <0|5¢,;] 5¢,:25¢/§3|0>

n 3+3V¢a5+1<z2 a\*
2 KPpTq 4 g? z

& A A A A
x [ | s 0 G iyl

+(/;1 <_>7é3)+(/€2<_>/€3)
+}

In this equation, (1_5, <k ;) indicates terms obtained from

(3.28)

the first term in the second line after interchanging E,- and

I% and the dots indicate subdominant contributions. To

obtain the scalar bispectrum By and fy; at leading order
we need to compute the three- and four-point correlation

functions of 5?;5,—{».

Let us begin with the three-point function, appearing in
the first line in (3.28). At leading order in the interaction
Hamiltonian, it is given by
(0l5z, (m)ogr (m)Spz, (n)]0)

EINEN | o] o]
= <O|5¢,;] (’7)5415,;2 (’7)545,;3 (n)]0)
it [ 01183, ()68, ()68, (o). Fl o]0
+ O(H%). (3.29)
The first term in the right-hand side vanishes,
<0|5A¢§-€» 6A¢§-<» 6;;5% |0) = 0, since 5215}; in the interaction picture
is a Gaussian field. Hence, the term in the second line gives

the leading order contribution. By using the mode expan-
sion (3.18), we find

0[5z, (), (m)Sz (n)]0)

= (27)36%) (k) + Ky + %3)3545(’(1, ky, k3),  (3.30)

where

Bsy(ky, ky, k3) = 20*Im [w,zl (Mg, (Mez, ()

x / "' (£, (i, (et ()i, ()
Mo

+ 20 )i, () ex, 1) e'3, ()

+ f300 )ox, (0 )e'3, () e'3, (')

+ky o Ks) + (k< K3)) | + O(H2,),

(3.31)

066021-13



IVAN AGULLO, BORIS BOLLIET, and V. SREENATH

PHYS. REV. D 97, 066021 (2018)

where the functions f(n), f»(n) and f3(5) are combina-
tions of background functions, given in Appendix B.

The terms in the second line of (3.28) involve the four-
point correlation function of 5215112 Applying again time-
dependent perturbation theory, we get

0[5z, (m)ogpr, (M) (n )545,@ ,,( 1)[0)
= (0logy. (m)opy (m)oe); ()oY _5(n)|0) + O(Hin).
(3.32)

In this case, the first term does not vanish and provides the
leading order contribution. There is no need to compute
higher order terms, since they are subdominant. The first
term, furthermore, does not involve any time integral of the
interaction Hamiltonian, and its expression in terms of the
mode functions ¢, reads

d3
[ s 0 v Syl

= (22)%60) (ky + ky + k3)2h2|§0k1 Plow, > (3.33)

Substituting these results in (3.28) we obtain the desired
expression for By

a\ 3
Br(ky, ky, k) = (_E) B, (ki ky, k3)

3 v ,a®
+ [——+3 / fz
2 kppm, 4 a?

a\*, , 2 2
X Z 2h (|¢k,| |(Pk2|

|? (3.34)

+ lor, Plow, I + lox, [* o 1),

where all quantities are evaluated at the end of inflation.

IV. NUMERICAL EVALUATION OF THE
THREE-POINT CORRELATION FUNCTION

The main goal of this section is to evaluate the bispectrum
Br(ky, ko, k3), written in (3.34), at the end of inflation, for
different values of the three momenta k,, k,, and ks, and to
compute the function fyy (ki, ko, k3) from it. This section
shows the results of numerical computations, while in Sec. V
we present analytical arguments that will help us to better
understand their physical origin.

Scalar perturbations are evolved starting at an early time,
to be specified below, across the bounce, and until the
modes of interest become super-Hubble during the infla-
tionary phase. The power spectrum and bispectrum will be
computed at that time. In order to perform these calcu-
lations we need to:

(1) Specify a potential V(¢) for the scalar field.

(2) Specify a solution (a(n), 7,(17), ¢(1), py(n)) to the
effective equations (3.5)—(3.6) of LQC. As discussed
in the last two paragraphs of Sec. III A 1, these
solutions are uniquely characterized by specifying
the value of ¢ and its energy density at the time of
bounce.

(3) Specify the quantum state of scalar perturbations at
some initial time 7.

These are the freedoms that we have in our calculation. In
this section we choose:

(1) The quadratic potential V(¢) = 3m?¢?, with the
value of m that is obtained from the Planck nor-
malization [63], m = 6.4 x 107°Mp,.

(2) A background effective geometry with ¢ =
7.62M p, and pp = IM$,.

(3) A Minkowski-like vacuum for perturbations, speci-
fied at an early enough time before the bounce such
that all Fourier modes of interest are in an adiabatic

. . D
reglme/:. Mori pre.mselzzli(z)e choose (pk.(n-o.) = VR
and @) (ny) = [—ik + a(no)]‘pk<’70) as initial data for
the modes, for 7y = —2.8 x 10°Tp, (the bounce
takes place at ny, = 0).

In Secs. IVC, IV D, IVE, IV F we analyze the way the
results vary for other choices.

To carry out the calculation we use the numerical
infrastructure of CLASS [37], a standard Einstein-
Boltzmann solver for cosmological perturbations, written
in C. First, we solve the background dynamics, and then we
use the result to solve the dynamics of perturbations. We
compute the time integrals in (3.31) by writing it as a first
order differential equation for the integrands, and we solve
them simultaneously with the equation of motion (3.19) for
each Fourier mode. This ensures that the time step of the
numerical integrator is adapted to achieve the desired
accuracy for the bispectrum. For solving the differential
equations, we have used the Runge Kutta evolver provided
by CLASS.

There are other codes aimed at computing primordial
non-Gaussianity (e.g., BINGO [64], PyTransport and
CppTransport [65], and a code to compute three-point
functions involving tensor perturbations [46]). But they are
mostly oriented towards computations during the infla-
tionary epoch, and they cannot be used for our purposes.

Before computing the bispectrum, we first summarize
our results for the power spectrum.

A. The power spectrum

The mathematical and physical aspects of the primordial
power spectrum Py, (k) in LQC have been discussed in detail
in [42,45,66,67], so we will be brief here. To compute Py, (k),
we need to solve the second-order differential equation (3.19)
for the set of wave numbers of interest for observations. The
values of k that we can probe in the CMB, range approx-
imately from k,;, = k./10, to k.« = 1000k, where k, is a
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pivot, or reference wave number whose physical value at
present is k./a(fiqey) = 0.002 Mpc™'. We will, however,
compute Pr (k) for values of k smaller than k;,, because
these modes, although not directly observable in the CMB,
may indirectly affect the observable power spectrum once
non-Gaussianity are taken into account [39].

In order to better understand the form of the power
spectrum, it is convenient to define the rescaled mode
functions vy () = a(n)pi(n). The wave equation (3.19),
when written in terms of vy, takes the form

vi(n) + (& + f(n)vi(n) = 0, (4.1)
where f(n) = a(n)*A(n) -4 (1) = (A~ §),and R(n) is
the Ricci scalar of the effective spacetime geometry. The
potential 2 was defined in (2.22). It is clear from this
equation that whenever k>>> |f(5)|, the solutions are
simple oscillatory functions with time independent fre-
quency equal to k. On the contrary, v, () will have a more
complicated behavior when k> < |f()|. In particular, when
the function f (1) becomes negative, the oscillatory behav-
ior of these modes changes to an exponentially varying
amplitude, that results in a modulation of the amplitude of
v (1) and consequently of the power spectrum.

During the inflationary era, f(#) remains approximately
constant and is proportional to the Ricci scalar R, or the
square of the Hubble radius. This value sets up the wave
number scale for which amplification of perturbations takes
place. Similarly, the amplification of perturbations around
the time of bounce can be characterized in terms of the
physical scale associated with the bounce. This scale is
given by the value of the function f () at the bounce, which
is approximately equal to a®% evaluated at that time
[see the definition of f(5) above, and take into account
that 2 is of the same order as R/6 around the bounce].
Therefore, we define the bounce scale kjgc as kpgc=

a(ng)v/Re/6 ~ a(np)\/kpg, where the subscript B indi-
cates quantities evaluated at the bounce. Qualitatively, we
expect the power spectrum to be significantly affected by
the bounce for modes with k < ky c. On the other hand, the
bounce is expected to have little effect on k > k; ¢, since
these modes are “too ultraviolet to feel the bounce”.

In Fig. 1 we show the LQC power spectrum Py (k) for
scalar perturbations computed using the settings specified
at the beginning of this section. The scale invariant infla-
tionary prediction is recovered for k > ki c. In contrast,
for k < ki ¢ there is an extra contribution coming from the
propagation of perturbations across the bounce. This
contribution breaks scale invariance, and makes Pg (k)
to grow significantly for small wave numbers. As discussed
in Sec. IV F, all other choices of initial data for perturba-
tions explored in this paper produce a power spectrum that
grows for k < ki gc. Note, however, that there exist other
choices in the literature for which the spectrum is
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1074 1073 1072 107! 10° 10!
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FIG. 1. Power spectrum for comoving curvature perturbations

for ¢g = 7.62Mp,, and pp = 1M‘},f. Gray dots indicate the
numerical value of Px for individual values of k. The black
curve denotes the average of the gray points. As expected, the
spectrum is scale invariant for k > kjoc. The effects from the
bounce appear for k < ki g¢. For the value of ¢5 used in this plot,
the number of e-folds between the bounce and horizon exit for the
pivot scale k,, is, Np, = 12.3. This number is large enough to
make the effects created by the bounce to be redshifted to super-
Hubble scales at the present time (recall that the observable
window is approximately k € [k,/10, 1000k,]). Sections IV C
and IV D contain plots of Py, for other values of ¢z and py for
which the enhancement of the power spectrum occurs for
observable scales (see also [66]).

suppressed, rather than enhanced, on these scales
[68-70]. We do not consider such states in the analysis
presented here.

B. The bispectrum

The numerical evaluation of the bispectrum requires
more effort than what is needed to compute non-
Gaussianity during inflation. The first reason is that,
in the inflationary era, only the terms in the third order
Hamiltonian (2.23) that are leading order in the slow-roll
parameters need to be considered. This provides a
significant simplification of the Hamiltonian, which,
after integration by parts, reduces to a single term
[36]. The second reason is that the background geometry
during slow-roll inflation is very close to be described by
de Sitter geometry. This makes an analytical approxima-
tion for the modes ¢ () available, which in turn allows
for an analytical calculation of the bispectrum. All these
simplifications cannot be used in our case because, first
of all, before inflation the slow-roll approximation is no
longer valid. And secondly, in our problem the spacetime
goes through a contracting phase, followed by a bounce,
a preinflationary phase on which the kinetic energy of the
scalar field is converted to potential energy, and finally
an inflationary phase. In each of these phases the scale
factor behaves in a quite different manner and, as a
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FIG. 2. Equilateral configurations. Plot of fy; (k, k, k) versus
k. We have used here the same parameter as in the plot of the
power spectrum, Fig. 1, namely ¢pg = 7.62M p,, and pg = 1M},
and Minkowski-like initial data for perturbations at 75, =
—2.810°Tp, (or equivalently, ty = —10°Tp, in cosmic time).
The plot shows that fyi (k, k, k) is highly oscillatory, and its
amplitude is strongly scale dependent. For the value of the ¢g,
and pg chosen in this plot, fi; grows only for the most infrared
scales that we can observe in the CMB, which correspond to
angular multipoles ¢ < 30.

consequence, it is difficult to arrive at an analytical
approximation for ¢(n) valid during the entire
evolution.

We present our results for non-Gaussianity in terms
of the function fyi (ky, ks, k3), defined in (3.26). We
evaluate fny (k, a1k, ayk) as a function of &, for different
values of a; and a,. Following standard terminology, we
will refer to triads (k, @k, ayk) for which (&, = a, = 1) as
equilateral configurations of wave numbers. Similarly,
(qy~ 1,0y <) and (ay~1—a;) are known as
squeezed and flattened configurations, respectively.
These names are motivated by the shape of the triangles
formed by I_<'1, EZ, and I_c>3.

In Fig. 2 we show [ in the equilateral configuration as
a function of k/k,. In the regime k Z ki ¢ the result agrees
with the inflationary prediction, i.e., fy;, ~ € where € is the
slow-roll parameter evaluated at horizon exit. For scales
that were larger than the curvature radius at the bounce, i.e.,
k < kige, fai oscillates between positive and negative
values with an amplitude of order 10°. In Fig. 3 we show
the absolute value of fy; in the equilateral configuration in
order to analyze the scale dependence of fr; more

BThere exist efforts to compute non-Gaussianity in more
complicated inflationary scenarios involving deviations from
slow-roll, both analytically (see, e.g., [71,72]) and numerically
[64,73]. However, the preinflationary evolution that we are
interested in is more complicated than the scenarios previously
considered.
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FIG. 3. Equilateral configurations. Plot of |fyy (k, k, k)| versus
k. We have used the same values of the parameter as in the
previous plot.

carefully. In Fig. 4 we show fy in a few different
configurations. In Fig. 5 we present two-dimensional plots
for fy, containing all configurations, by fixing k; to three
different values.

These results can be summarized as follows:

(1) fau(ky, ks, k3) is highly oscillatory. This is a con-
sequence of the oscillatory behavior of the mode
functions around the bounce.

(2) As expected, in the regime k 2 kyoc, (k1. ko, k3)
reduces to standard inflationary prediction
(fnL ~ 1072). This is similar to the large-k behavior
of the power spectrum (see Fig. 1). The fact that we
recover the inflationary result for large wave num-
bers is a good consistency test of our numerical
computations.

(3) The amplitude of fyp (ki, ks, k3) is strongly scale
dependent. A scale invariant fy;, would not change
under simultaneous re-scaling of &y, k,, and k3. The
bounce breaks the scale invariance and makes the
amplitude of fy(k;,ky, k3) to grow for wave
numbers comparable or smaller than kjgc. This is
a key feature that may allow us to contrast this
framework with observational data.

(4) By comparing Figs. 1 and 2, we can see that, while
the power spectrum deviates from scale invariance
for k < kpge, fa does it for k < 10k gc. This is
consistent with the fact that non-Gaussianity gen-
erally provides a better probe of new physics than
the power spectrum [74].

(5) Consider, without loss of generality, that
ki > ky > k3. Now, on the one hand, Fig. 5 tells
that, for fixed k,, the amplitude of fy;, although
quite uniform when we change k, and ks, attains its
maximum value in the upper left region of the
triangle. These are configurations for which k3 <«
k, =k, and ks + k, = ky, i.e., squeezed-flattened
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FIG. 4. Plots of |fy (k. k. k12)
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and |f (k. k, k/100)] (bottom) versus k. We have used the same
values of the parameter as in the previous plot.

configurations. But note that fy; becomes small
again when k; — 0 (upper-left corner), that corre-
sponds to very squeezed configurations. Hence,
S 1s maximum in the squeezed-flattened, but not
too squeezed configurations. A shape of this type
was anticipated in more general terms in [75,76],
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~ -0.015
<
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ks/ki
FIG. 5. Plots of fnL(ki, ky, k3) versus x; = ky/k; and

X3 = ksy/ky, for ky = 0.5k, (top panel), k; = k, (middle panel)
and k; = 3k, (bottom panel). The ﬁgure shows configurations
allowed by the triangle condition kl + k2 + k3 = 0. Choosing,
without loss of generality, k| > k, > k3, the triangle condition is
equivalent to 1 > x, > 1/2, 1 — x, > x3 > x,. By comparing the
values of fy; among the three plots, we see again its scale
dependent character. These three plots also show the oscillatory
behavior of f , although this feature is more clearly displayed in
Figs. 2—4. Furthermore, the plots reveal that the amplitude of f.
is quite uniform when k, and k5 are varied while k; is kept fixed,
except for a small change that makes fy; maximum in the upper
left region of the triangle, corresponding to “squeezed-flattened”
(although not too squeezed) configurations.

and the physical model discussed in this paper
provides a concrete example of a single field model
in which non-Gaussianity is enhanced in squeezed
configurations.

C. Dependence of fy;, on the value of the
scalar field at the bounce

The value of ¢ determines the number of e-folds of
expansion between the bounce and the onset of the
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observable phase of inflation, dubbed Ny, [27,30,50,66].14
We are interested in effective trajectories for which
Npg, = 12. For this value the effects created by the bounce
on the power spectrum and non-Gaussianity would appear
only in the smallest wave numbers—or equivalently, the
lowest multipoles #—that we can observe in the CMB. For
larger values of Ng,, scales affected by the bounce are
redshifted outside our observable Universe, and these effects
become unobservable. On the contrary, if N, is smaller than
12, the effects of the bounce would appear on all scales in the
CMB, and our predictions would be a strongly scale
dependent power spectrum with large non-Gaussianity, in
clear tension with observations. Ny, & 12 corresponds to
¢p =~ 7.6M p,. This small value of the field makes the kinetic
energy to dominate over the potential energy at the bounce."

What effect should we expect on the observable quan-
tities if we change ¢g? Since a change in ¢g modifies the
amount of expansion N, , we expect that changing ¢p will
shift Pr(k) and fni with respect to the set of wave
numbers that we can directly observe. However, the shape
of Pr(k) and fyr is not expected to change, since the
bounce itself is not modified by changing ¢p.'°

Figure 6 shows the power spectrum and fy; in the
equilateral configuration for different values of ¢p, and
for pg = 1M%,. The results are qualitatively the same for
other configurations. As expected, the only effect of chang-
ing ¢y is a shift of P (k) and fy relative to k.. We see, for
instance, that for ¢pg = 8.02M p, both the power spectrum
and fy;, are indistinguishable from the standard results
of slow-roll inflation for observable modes k € [k,/10,
1000k, ]. All the effects from the bounce are redshifted to
super-Hubble scales for this value of ¢pg. On the contrary, for
¢p = 7.42M p, the bounce affects both the power spectrum
and non-Gaussianity, although only for infrared scales in
the CMB.

In summary, the scalar field at the bounce ¢z determines
the amount of cosmic expansion accumulated after the
bounce, and changing it produces a shift of the power
spectrum and non-Gaussianity with respect to the scales
that are directly observable in the CMB, without modifying
their shape.

14By “onset” of inflation we refer in this paper to the time
n = n, at which the reference scale k, that today has a physical
value k,/aigqy = 0.002M73!, exits the Hubble radius during
inflation. Since inflation lasts approximately 61 additional e-
folds after #,,, the number of e-folds from the bounce to the end of
inflation is Ng, + 61.

This is the reason why in this paper, as well as in previous
analyses [27,50,66], one focuses on kinetic dominated bounces.
In the subsequent evolution, the ratio of the potential energy to
the total energy of ¢ grows and, at time # = 7, when slow roll
inflation begins, the potential energy dominates over kinetic.

The bounce is dominated by quantum gravity effects, rather
than by matter, and therefore a small change on ¢y does not
modify the spacetime geometry around the time of the bounce in
any significant amount.
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FIG. 6. Power spectrum (upper panel), and |fy; | in the equi-
lateral configuration (bottom panel) for pg = 1M}, for different
values of ¢g. The horizontal axis shows wave number relative to
the reference scale k, that today corresponds to 0.002 Mpc~!.
Hence the window of observable modes is approximately
k € [k,/10, 1000k, ]. The plot shows that different values of ¢y
give rise to power spectra and fy; with exactly the same shape,
with the only difference that they are shifted from each other.

D. Dependence of fy;, on the energy
density at the bounce

Changing the energy density at the bounce also changes
the amount of expansion from the bounce to the onset of
inflation. This is because larger the value of pg, larger
would be the expansion needed for the energy density to
decrease and reach the inflationary value. Therefore, we
expect fnr, as well as the power spectrum, to shift its
position in relation to observables scales, in a way similar to
the effect of changing ¢g.

There two different factors that could change the energy
density at the bounce: (i) a change in the value of the are
gap Ay, (ii) a change in the quantum state ¥(v,¢) that
describes the background quantum geometry. The analysis
of this section is, therefore, well-motivated.

Figure 7 shows the power spectrum and fy; in the
equilateral configuration (the result is similar for other
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FIG. 7. Power spectrum (upper panel), and |fy; | in the equi-
lateral configuration (bottom panel) for ¢p = 7.62Mp,, for
different values of pg. The plot shows that different values of
pp change the maximum value of fy; . We also see that both, the
power spectrum and fy are shifted towards more infrared scales
relative to k, for large values of pg.

configurations) for different values of pg, with ¢p =
7.62M p,. As expected, both Py and fy; are redshifted
towards infrared scales for larger values of pg. We also
observe that Pr and fy; are more enhanced for large
values of pg. For the power spectrum, the change in the
amplitude produced by changing pp is very small, and
therefore the dominant effect is simply a shift relative to k..
Therefore, regarding Py, (k), changing pg and ¢g produces
the same results. This fact was analyzed in [50], and it was
pointed out that, if one restricts to observable scales and
takes into account observational error bars, the effect
produced by a change in pp in the power spectrum
Pr(k) can be compensated by a change in ¢g. Hence,
observations of the power spectrum alone can only provide
information about a combination of ¢g and pg, and not
about their individual values. We find that this does not
happen for fy;. Hence the degeneracy between the
observable effects of ¢g and pg disappears for non-
Gaussianity. Consequently, an observation of the power
spectrum and non-Gaussianity generated by the bounce

would provide information about the energy (or curvature)
scale of the bounce.

The results of this section can be interpreted in more
general terms. Recall that, as discussed in [59,50] and
summarized in Sec. IIT A 1, a change in the quantum state
Wo(v,¢) that describes the background geometry has
effects on observable quantities that, with great accuracy,
can be mimicked by a change in pg. Therefore, the content
of this section can be also understood as an investigation of
the sensitivity of observable quantities to the choice

of ‘P()(U, ¢)

E. Influence of the scalar field’s potential

In this section, we investigate the sensitivity of the
results for non-Gaussianity in LQC under a change
of the scalar field’s potential. In LQC the bounce is
generated by quantum gravity effects, and the contribution
of V(¢) is subdominant. Therefore, we expect that the
results for fy; (ki, ko, k3) obtained in the previous sections
by using the quadratic potential will remain largely
unaltered for other choices of V(¢). We compute

InL(ki ky, k3) in this  section for the so-called
Starobinsky potential [77-80],
3M? :
V(g) = —(1—e VI (4.2)
K

The power spectrum in LQC has been analyzed in detail in
[81,82], and the results are qualitatively similar to the
quadratic potential.

We compute fy; (ky, ko, k3) by using (4.2) for the value of
M obtained from the Planck normalization, M =
2.51 x 107°M p,. Figure 8 shows the results for two different
configurations, and for ¢pp = —4.88Mp, and pg = lM‘,‘)f.
The initial state of perturbations has been chosen to be the
Minkowski-like vacuum at ny = —281.5T p, (equivalently,
ty = —2.32 x 10°Tp,). At this time all modes of interest are
in the adiabatic regime. Our analysis indicate that the
conclusion reached in all previous section remain true, as
expected, since most of these features are due to the bounce.

At the quantitative level, the results also agree, although
some small difference appear both for large and small wave
numbers. The value of |fyi(ki, ks, k3)| for large k; is
proportional to the slow-roll parameter ¢ evaluated at the
horizon exit during inflation. This parameter is smaller for
the Starobinsky potential (grey squares) than for the
quadratic potential (black circles) and explains the small
difference in amplitude in Fig. 8. The differences in the
bottom panel of Fig. 8 are larger, and they originate from
the discrepancies in the background dynamics at early and
late times, far from the bounce. These differences can be
reduced by adjusting appropriately the value of the free
parameters ¢g and pg.
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FIG. 8. Comparison of |fxp(k, &, k)| (upper panel) and

[fnL(k, k, k/5)| (bottom) evaluated at the end of inflation for
the quadratic and the Starobinsky potential. The figure illustrates
that the spectral shape is very similar regardless of the potential.
The differences, more evident in the bottom panel, arise from
contributions generated far from the bounce.

F. Dependence of fy;, on the initial state
for perturbations

We explore in this section the sensitivity of non-
Gaussianity to different choices of initial state for the
quantum scalar perturbations. This question is relevant
because in spacetimes with no timelike isometries, such as
the spatially flat FLRW spacetime considered in this paper,
the notion of quantum vacuum for a test field is ambiguous:
there are infinitely many candidates for Fock vacua, and
none are preferred with respect to the other [83] (see [84]
for further discussions). In FLRW, one can narrow the
freedom by restricting to homogenous and isotropic states
that are adiabatic of, at least, fourth order—so that the
energy-momentum tensor is well-defined for these states
[85]—but the mathematical freedom is still large.
Consequently, one could in principle obtain very different
results by appropriately tuning the initial state.

Notice that this freedom is not specific to LQC. It is
common to any cosmological model dealing with quantum

perturbations, including the inflationary framework. A way
to make progress is to add physical principles to select
appropriate initial data for perturbations. For instance, if
evolution begins at a time at which all wavelengths of
interest for observations are small compared to the curva-
ture scale, then the adiabatic analysis [85] provides guid-
ance. This is the strategy that one follows in standard
inflation, and we adopt it here as well. We use three
different proposals for initial state, all based on reasonable
criteria, and compute fy;, in each case. A similar explora-
tion using these three different initial states, has been done
for the power spectrum in LQC in [27,66]. The outcome of
these analyses was that the power spectrum is very similar
for observable scales in all three cases considered. Here, we
reach the same conclusions for non-Gaussianity. Therefore,
we argue that the results of this paper do not rely on a fine-
tuned choice of initial conditions for perturbations, and are
therefore generic, within the mathematical limitations
mentioned above.

More precisely, the three types of initial state that we
choose are

(i) Minkowski-like initial state. This state was intro-
duced at the beginning of Sec. IV A. This state is not
a forth-order adiabatic state (it is only of adiabatic
order zero).

(ii)) Obvious adiabatic vacuum. This state was intro-
duced in [42]. It is the state obtained by using initial
data for the mode functions given by the first four
terms of the adiabatic expansion of ¢, (7). This state
is therefore of fourth adiabatic order. This prescrip-
tion, however, cannot be specified for very infrared
modes, since it produces modes with the incorrect
normalization. Nevertheless, the ambiguity will only
modify the most infrared part of our results that
correspond to modes that are not directly observable,
and therefore we use this state for the purpose of this
section.

(iii) Preferred instantanecous vacuum. This state was
introduced in [84], and it is defined as the only
state that has zero expectation value of the adiabati-
cally renormalized energy-momentum tensor at the
initial time #,. In this sense, this is a generalization
of the Minkowski vacuum to cosmological space-
times. It is also a state of fourth adiabatic order.

Figure 9 shows the function fy; for equilateral con-
figurations computed using these three different initial
states, specified at 7, = 2.842 x 103Tp,. As anticipated,
the results are essentially the same.

We have also explored the sensitivity of fy, to the time
at which the initial conditions are imposed. We found that
as long as 7, is chosen such that all modes of interest are
ultraviolet compared to the curvature-scale, k> > a”/a, the
results for fni (ky, k», k3) are insensitive to the choice of 7.

Another physically motivated instant to specify initial
data is the bounce. At that time, however, the condition
k2> a"/a is not satisfied for all modes of interest, and

066021-20



NON-GAUSSIANITY IN LOOP QUANTUM COSMOLOGY

PHYS. REV. D 97, 066021 (2018)

104 TTTTTIIr T T T Trrr T T T T TTTTT T T T TTTTTT

T T T 1117

| fa (ke Ky Fo)]
--u'l"""{I
| + € &
I-i:f-
]
lJ“"'

Minkowski-like vacuum

v Preferred instantaneous vacuum

Obvious 4th-order adiabatic vacuum ;'

1073 I NN L L1 111111 1 Ll 11111l 1 L1 11 111) 1 11 1 111]
1073 1072 107! 100 10!
k/k,
FIG. 9. Plot of |fni(ky, ks, k3)| in the equilateral configuration

(k; = ko = k3) for different choices of initial quantum state for
perturbations. The plot shows that the three choices considered in
this paper produce results that are all very similar. Differences
only appear for the most infrared part of the spectrum, that
corresponds to unobservable scales.

therefore the adiabatic condition is not sufficient to choose
an initial state. We found that fy; is very sensitive to the
ambiguity in the choice of initial data for perturbations at
the bounce. Different choices produce results that differ
significantly from each other, and therefore we were unable
to make any generic statement about the value of fy; when
the evolution begins at the bounce. Unless one adds new
principles that enable us to select preferred initial data for
perturbations at the bounce (see [68—70] for interesting
examples within LQC) it seems difficult to reach any
conclusion. In absence of such principles, the far past well
before the bounce appears as the most natural place to
specify the initial state of perturbations.

G. Tests of the numerics

In this section we provide further tests of the numerical
computations, with the goal of increasing our confidence
on the results and rule out potential numerical artifacts.

The main challenge of the numerical evaluation of the
bispectrum is that it involves integrals of highly oscillatory
functions. These integrands include products of three mode
functions ¢, (1) [see Eq. (3.31)]. As discussed in Sec. IVA,
these functions transition from being slowly evolving when

k< \/If(n)| = 1/]a*(A —B)|, to highly oscillatory func-
tions when k > +/|f(n)]. It is the latter case that produces
numerical instabilities.

However, because the main contribution to the integrals
comes from times when at least one of the modes satisfies
k < +/|f(n)], a convenient strategy to reduce numerical
instabilities, and also to reduce the computation time
without affecting the result, is to remove from the integra-
tion time intervals for which all the three modes are highly
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FIG. 10. |fni(ky, ko, k3)| at the end of inflation computed by
adding a damping factor exp [—-8(k; + ko + k3)/(a+/kp/3)] to the
numerical integrals. The plot shows the equilateral configuration,
k; = ky = k5. For large values of 6 (6 = 20, 2, 0.2) the compu-
tation underestimate the real value of fy . For smaller values of J,
the actual value of fyp is no longer suppressed, but then
numerical artifacts appear for large k if & is chosen too small,
as can be seen in the plot for § = 0.002. These instabilities
originate in the highly oscillatory nature of these modes. This
analysis indicates that the optimal value of ¢ is around 0.02.

oscillatory. This can be easily done by including a damping
factor to the integrand in Eq. (3.31) of the form
exp [—6(ky + ky + k3)/\/|f(n)|], with § <1, similar to
the strategy followed in other approaches [36,46,64].
However, because the function f(5) has a complicated
behavior close to the bounce, at the practical level it is more
convenient to work with a smoother damping factor of the
form exp [-8(k; + ky + k3)/(a\/kp/3)]. Figure 10 shows
the result for fyi(ki,ks, k3) evaluated at the end of
inflation for different values of the cutoff o. As expected,
for large values of 6 the integral is artificially suppressed,
and the result underestimates the value of fy;. On the
contrary, when ¢ is very small, numerical instabilities
appear for large wave numbers. Our analysis shows that
there is an optimal value, around 6 = 0.02 for which the
numerical calculation is fast and reliable. This is the value
that we have used to produce the figures in Sec. IV B.
The second test that we perform in this section concerns
the ambiguity regarding the value of 7, in LQC, discussed
at the end of Sec. III B 1. There, we proposed three different
strategies for evaluating 7, and the various powers of it that
appear in the classical Hamiltonian for perturbations. We
will now show that the results obtained for the power
spectrum and non-Gaussianity are very similar in all three
cases. In order to do this, we compare the power spectrum
in Fig. 11, and | f | in Fig. 12, obtained by using the three
proposed strategies. Although some small differences
appear, they are either smaller than observational error
bars or they appear for very infrared modes that cannot be
observed in our Hubble patch of the Universe. Note also
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FIG. 11. The scalar power spectrum P, (k) evaluated at the end

of inflation for the three different strategies for evaluating =,
described at the end of III B 1. The power spectrum is very similar
in the three cases, and important differences appear only for the
very infrared part of the spectrum, that corresponds to wave-
lengths that are several orders of magnitude larger than today’s
Hubble radius.
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FIG. 12. |fnL(k, k, k)| evaluated at the end of inflation for the
three different strategies for evaluating z, described at the end of
IIIB 1. The results are very similar in all three cases, and the
differences between them are small compared to current obser-
vational error bars.

that the freedom that we have in changing the free
parameters of the theory, and that we have explored in
previous sections, make these differences even less rel-
evant, since, as we saw, a small change in the value of some
of these parameters would compensate the effects in the
power spectrum and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE
EVOLUTION OF NON-GAUSSIANITY
ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced
by the LQC bounce is an enhancement of fy; for wave

numbers comparable to the scale kj ¢ set by the bounce.
The goal of this section is to complement the previous
numerical analysis with an analytical understating of
the origin of this feature. By doing so we will, on the
one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of
such behavior.

We will use standard techniques from asymptotic analy-
sis of integrals to find approximate expressions for the way
the amplitude of fy; behaves. Although our arguments are
quite simple, the result captures the physics of the problem
remarkably well, both qualitatively and quantitatively.

First of all, we want to isolate the contribution to fy; that
comes exclusively from the bounce. For this, we go back to
the definition of fy; in Sec. IIIB2 and find that this
contribution is given by

1k koo k) =/

o dn(f1(mer, (mer, (ner, (n)

+ f2(mex, e, (me'; (1)
+ fa(mew, o't e's, (n)

+ (k1 © k3) + (ka <> k3)), (5.1)
where f(n), fo(n) and f3(n) are background functions,
given in Appendix B. We use Ay = 10007 p, (recall, the
bounce happens at 7 = 0). For k 2 k¢ the mode function

can be approximated by ¢, ~ e~¥. With this we have

A .
I(ky, ky, k3) ~ /A'7 dng(n)el(k1+kz+k3)n
—an

~ /_ " dng(n)e*Wn. An).  (5.2)

(e8]

where k; =k + k, + k3; g(n) is a combination of the
functions f;’s in (5.1); and W(5, An) is a window function
that is equal to zero for || > An, equal to one for || < An,
and smoothly interpolates between both values. The func-
tion W(n, An) allows us to extend the integration limits to
—oo and +o0, without modifying the value of the integral,
and its concrete form will be unimportant for our purposes.

Now, Cauchy’s integral theorem tells us that the right-
hand side of (5.2) is equal to 2zi times the sum of the
residues of the poles of g(n) with positive imaginary part.
The real part of each pole contributes to the oscillatory
behavior of the integral as a function of k;, while the
imaginary part adds an exponentially decreasing factor.
Hence, the asymptotic behavior of the amplitude of the
integral I as a function of k, is given by the pole of g(n) with
the largest imaginary part.

To find this pole, it is sufficient to realize that, out of the
four background functions a(), 7,(n), ¢ (1), and p,(n)
that appear in g(1), the scale factor is the only one having a
minimum at the bounce. From this, we know that the pole
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FIG. 13. Comparison of the numerically computed contribution

from the bounce to fy (gray points), called AfY in the
figure, and the analytical approximation e~*kitk+k)/kioc (black
line). The comparison is made for three different configurations
of wave numbers. The agreement is very good for all of them.
Aftounee i defined as the value of fiy; given only by the first term
in Eq. (3.34), and evaluating the integral in (3.31) just before the
onset of inflation.

we are looking for comes from factors a+(n) contained in

g(n). To compute this pole, we use an analytical approxi-
mation for the scale factor, valid close to the bounce, that in
cosmic time reads (see, e.g., [67])

a(t) = ag(1 + 3xpgt*)'s, (5.3)
where we have chosen the bounce to take place at t = 0.
The pole of a(t)~! is at t, = i/\/3kpp and, in conformal
time, at'’

r[si] 1
n, = iVal3 [>/6] =i 2 (5.4)

2U'[4/3] ag\/kps  kioc'

where T'[x] is the Gamma function, a =~ 0.64677, and
we have used koc = ag./kpg. Therefore, this argument
tells us that the bounce produces a contribution to
L (ky, ky, k3) whose amplitude changes with k; according
to ealhiththk)lioc  when (ki +ky+k3) 2 kige. In
Fig. 13 we compare this analytical approximation with
the numerical result, for three different configurations
finding a good agreement.

To summarize, the analysis of this section confirms that
the scale dependent enhancement of fy; originates from
the bounce, and it is the scale k¢ that dictates how
pronounced this enhancement is. Furthermore, since it is
only the complex pole of the scale factor at the bounce that

"The relation between ¢ and n close to the bounce
can be written in terms of a hypergeometric function as

n=Jya(t)"dl' = tag',Fi[t.5.3, =3kpp?].

accounts for the main features of fy, it is expected that
bounces in other cosmological models different from LQC
will produce similar non-Gasussianity.

VI. STABILITY OF PERTURBATION THEORY

We found that a cosmic bounce taking place close to the
Planck scale produces large values of fy; , of order 103. This
result is in agreement with the extended intuition that, near
the Planck regime, self-interactions of scalar perturbations
with purely gravitational origin—i.e., described by terms in
the third order interaction Hamiltonian (2.23) that are
independent of the potential V(¢)—become strong. This
large value of fy raises concerns about the validity of the
perturbative expansion, on which the entire analysis rests.

To evaluate the validity of the perturbative series, we need to
compute the corrections that fy; (the three-point functions)
introduces in the power spectrum (the two-point function). If
this correction is similar or larger than the leading order
contribution, then the perturbative expansion would break
down. As we show in this section, this is not the case.

The two-point function of comoving curvature pertur-
bations at the end of inflation at next-to-leading order, is
obtained from the correlation function of d¢) by keeping the
first correction arising from (3.27). We get

A A 2 A A~
(O0Rs Ry 0) = (=2 toldng v o)

a\3[ 3
“(‘E) [—§+3

Ep A A
| s 00 g0

() e

By & A A A A
<[ s o 010 01,50

4o (6.1)

The power spectrum computed in previous sections was
obtained by considering only the first line of this equation
and, additionally, by ignoring corrections from the inter-
action Hamiltonian when computing it. Now, we go to the
next order in perturbations.

For the two-point function in the first line of (6.1), we have

V¢a5 K 72
kpyr, 4a’

V¢a5 k7272
kpym, 4a*

(0[8¢pz 57 |0) = (0[Spg: 6p 0) — i
« ot 0l B9, P 0}

+O(H2). (6.2)

The first term in the right-hand side was the one computed in
Eq. (3.21). The second term in the right-hand side vanishes,
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since it involves expectation values of an odd number of
fields in the interaction picture, which are Gaussian.
Therefore, there is no correction linear in the third order
Hamiltonian to this term. Hence, the leading order correction
to the two-point function comes from the second and third
line of (6.1).

The three-point function in the second line contributes
with terms linear in the third order Hamiltonian. In contrast,
the leading order term in the four-point function is
independent of the interaction Hamiltonian. By using
(3.33) and the definition of the bispectrum of 6¢ given
in (3.30), we obtain the first perturbative correction to the
power spectrum,

A oA - - 2n?
(01, Ry, 10) = (27)361) (ky + kz)? [Pr (k1)
1
+ AP (ky)], (6.3)
where
K3 a\3[ 3 V,a® k72
Priki) 7? K Z) [ 2+ KPpTq 4a2}
dp - L=
X/WB&b(kl’p?_kl - D)
4 3 V.ad 272
(-9 [2eates 52
Z 2 kpyr, 4a
d3p
X/w%l%z,_mlz} (6.4)

where all quantities are evaluated at the end of inflation.
Note from this expression that the next-to-leading order
correction to the power spectrum for a wave number &,
gets contributions from other wave numbers, as a result of
the correlations arising from the three-point function.

An order of magnitude estimate of (6.4) can be obtained
as follows. In the first line, the background function
between square brackets is of order € (¢ symbolizes here
any of the slow-roll parameters). The bispectrum By, is of
order fNLP%z, and, therefore, the term made of the first two
lines of (6.4) is of order e¢f NLP%2 (e symbolizes a slow-roll
parameter). Similarly, the third and fourth lines of (6.4) is of
order €2P%. Since fy. < 10% and e ~ 1072, the first two
lines of (6.4) is much larger than the third and fourth ones.
Then, we expect APr/Pr ~efn.Pr < 1074

We have numerically evaluated expression (6.4), and the
results appear in Fig. 14. The figure shows that AP, /Py, is
smaller than 107#, confirming that the next to leading order
corrections to the power spectrum are indeed negligible.
Therefore, we find that although fy; experiences an
enhancement of several orders of magnitude, the perturba-
tive expansion remains valid. The reason is found in the
smallness of the leading order power spectrum
Pr(k) <1077, From the expressions above, we see that
the leading order correction contains, in addition to fyy,, an
additional power of Pg(k). The smallness of Pp
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FIG. 14. Plot of the relative size of the first order correction to
the power spectrum, |APr/Pxr|. The plot shows the numerically
computed value as a function of the wave numbers k. The result
shows that, indeed, |[APx/Pr| < 1, confirming that we are well
inside the perturbative regime. This plot is obtained by using the
same values for the free parameters as in Sec. IV B, and the
conclusions remain unchanged for other choices.

compensated for the enhancement of fy;. Higher order
corrections contain even higher powers of P (k). In this
sense, one can intuitively think about Py (k) as the small
“parameter” in terms of which the perturbative expansion is
defined.

VII. DISCUSSION AND CONCLUSIONS

The goal of this section is to provide a summary of the
main results of this paper, contrast them with observational
data, and discuss the main consequences. The main take-
home messages from our analysis are the following:

(1) The evolution of scalar perturbations across the LQC
bounce, starting from an adiabatic vacuum state
before the bounce when all the Fourier modes of
interest have wavelengths much smaller than the
(spacetime) curvature radius, produces a state that at
the onset of inflation is both excited and non-
Gaussian, relative to the Bunch-Davies vacuum.
In other words, both the two- and three-point
correlation functions of scalar perturbations deviate
significantly from their Bunch-Davies counter-
parts at the onset of inflation. Consequently, the
predictions for the primordial power spectrum and
non-Gaussianity are modified as a result of the
preinflationary evolution. (See Secs. III and IV.)

(2) The bounce of LQC produces a strong enhancement
of the non-Gaussianity as compared to that generated
by inflation alone, producing values for the function
(ki ko, k3) as large as 10* for some wave numbers
and for some choices of the free parameters of the
model. Recall that inflation alone produces fy, of
order of 1072. (See Sec. IV.)
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The large enhancement of non-Gaussianty raises

concerns about the validity of perturbation theory.

We have computed higher order contributions to

correlation functions and found that they are small

compared to the leading order result. Hence, per-
turbation theory remains a valid tool to compute the
primordial power spectrum and bispectrum of cos-

mological perturbations in LQC. (See Sec. VI.)

The non-Gaussianity produced by the LQC bounce

is strongly scale dependent. The bounce introduces a

new scale, determined by the Ricci spacetime

curvature scalar at the bounce, Ry. For perturbations,
this new scale can be written as kj oc = ag+/Rp/6
or, equivalently, in terms of the energy density at the
bounce, pg, as ky oc = ag./kpg. Fourier modes with
comoving wave numbers k 3> kj o¢ are not affected
by the bounce, and their primordial non-Gaussianity
originate entirely from the inflationary phase and are
small. On the contrary, for Fourier modes that are
infrared enough to “feel” the bounce, i.e., k < kLQC’
the bounce contributes significantly to their non-

Gaussianty. We have provided an analytical argu-

ment to understand the enhancement observed in our

numerical computations, and concluded that it is
given by |faw(ki. ko, k3)| o e~ @titketk)kee with

a~0.65. (See Sec. V.)

The non-Gaussianty generated by the LQC bounce

has a very particular “shape”, discussed in Sec. [V B,

that can be used to differentiate the results for LQC

from other models of the early Universe. Namely, in
addition to the scale-dependence mentioned above,

i (ky, ka, k3) peaks in the flattened-squeezed con-

figurations. (See Sec. IV B).

The function fyy(ki, ks, k3) is highly oscillatory

with respect to the wave numbers kq, k,, k3.

Non-Gaussianity is more sensitive to the bounce than

the power spectrum. For both the power spectrum and

non-Gaussianity, the relative size of the modifications
that the bounce introduces decreases for large
wave numbers k and becomes negligible for

k > ki oc. However, the effects on the power spec-

trum disappear “faster”” than on fy;,, when we move

towards larger k. As a consequence, there is an interval
of wave numbers, given approximately by k €

(2kpqc, 10k o¢) for which the modifications in the

power spectrum are already negligible, but they are

still important in non-Gaussianity.

Impact of different choices of the free parameters in

the model.

(a) A change in the value of the scalar field at the
bounce ¢y increases the number of e-folds of
expansion between the bounce and the beginning
of inflation, and this produces a shift of the
function fny (k;, ky, k3) relative to the interval
of wave numbers that we can directly observe in

the CMB. Increasing ¢y produces a shift of
Ii(ky, ky, k3) towards infrared scales with re-
spect to the observable window. This effect was
known to happen for the power spectrum (see,
e.g., [42]), and we have shown that it also occurs
for non-Gaussianty. (See Sec. IV C.)

(b) A change in the value of the energy density of the
scalar field at the bounce, pg, produces also a shift
on the function fyy (ki, ko, k3), together with a
change in its amplitude. For the power spectrum,
the effects of changing ¢p and pp compensate
each other (except for extreme infrared scales),
and therefore their consequences cannot be indi-
vidually distinguished. This degeneracy is broken
for the bispectrum. (See Sec. IV D.)

(c) The contribution from the bounce to
L (ky, ky, k3) is largely insensitive to the choice
of the scalar field’s potential. We have checked
this by comparing the result for fxi (ki ks, k3)
obtained with two commonly used potentials: the
quadratic and the Starobinsky potential. (See
Sec. IVE.)

(d) The predictions for fyi (ky, ko, k3) are un-
changed for several different choices of initial
quantum vacuum states for scalar perturbations,
provided this initial state is specified at a time
well before the bounce, when all modes
of interest are in the adiabatic regime (see
Sec. IV F). On the contrary, we find that the
result for fyi(ki, ko, k3) is sensitive to the
choice of initial data for perturbations if they
are specified at or close to the bounce. This does
not happen for the power spectrum and shows
again that non-Gaussianity is more sensitive to
the physics of the bounce than the power
spectrum. (See Sec. IV F).

Finally, we discuss the observational perspective of our
analysis in regard of the current and forthcoming con-
straints on primordial non-Gaussianity.

The Planck Collaboration reported results on their search
for non-Gaussianty in the CMB in [35]. They were unable
to confirm any primordial non-Gaussianity and provided
tight constraint on different models of the early Universe.
These constraints are rather strong for models producing

. .18 ..
scale-invariant ° non-Gaussianity. They found fi =

0.8+ 5.0 for the local template, fed! = —16+70 for
the equilateral template, and fU° =—34433 for the ortho-
gonal one, at 68% confidence level [35]. These results pro-
vide little information about models with scale-dependent
non-Gaussianity, especially on large angular scales. In
those cases the comparison with observational data must
be done individually for each model. Recall that due to the

"These are models for which LKy, ko, k3) does not change
when the three wave numbers are simultaneously rescaled.
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sampling variance observational error bars at low multipole

scale approximately as 1/y/Z, where £ is the angular
multipole. Planck observational error bars are smaller for
large multipoles, attaining uncertainties A fy;, &~ £10 for
¢ Z 1000. If fy, is assumed to be scale-invariant, then the
precision at large multipoles suffices to constrain fy; with
great accuracy at all scales. The situation is different for
scale-dependent fy; , as the one we obtained. Nevertheless,
we can still find estimates for the constraints that Planck
data implies for the parameters of our model. We found that
fu is of order 1072 for large wave numbers, and then it
increases for small wave numbers, reaching values of order
10°. In order to respect observational constraints, the
enhancement of fy;, may only occur for the largest scales
probed by the CMB data, for which error bars are large. It is
important to emphasize that, the non-Gaussianity gener-
ated by the bounce has a shape that allows having large
non-Gaussianty at low multipole, while being consistent
with observational constraints at large multipoles of
the CMB.

Taking a conservative viewpoint, we require that the non-
Gaussianty generated by the bounce shall only appear for
multipoles #Z <50 (which corresponds to k < 2k,, for
k, = 0.002 Mpc~!). Recall that the values of ¢g and pg
control the scales at which the effects from the bounce would
manifest themselves in the CMB. Therefore, observational
constraints on non-Gaussianity translate into a restriction for
the permissible values of ¢z and pg; see Table 1.

As mentioned earlier, the enhancement that the bounce
produces in the power spectrum appears for smaller wave
numbers than the enhancement in non-Gaussianty. This
implies that if ¢ is chosen to be equal or larger than
¢g(min), in such a way that the LQC-effects on non-
Gaussianity appear only for £ < 50, then the LQC-effects

TABLE I. In this table ¢g(min) represents the minimum value
of ¢y for different values of pg obtained from a conservative
application of observable constraints on non-Gaussianity. On the
other hand, ¢z (max) is the maximum value of ¢g for which the
enhancement of non-Gaussianity produced by the bounce ap-
pears in observable scales. We emphasize that values of ¢g
larger than ¢g(max) are allowed, but for them the bounce
does not produce any direct effect in the CMB, neither in
the power spectrum nor in non-Gaussianity, and hence the
results agree with those obtained from standard inflation. The
numbers in this table are obtained by using the quadratic potential
with the mass parameter fixed by the Planck normalization,
m=06.4x10"Mp,.

PB ¢ (min) ¢p(max)
0.2M3%, 8.05Mp, 8.41Mp,
0.5M3}, 7.70M p, 8.08M p,
M5, 7.46M p, 7.82M p,
2M3}, 7.19Mp, 7.58Mp,
5M%, 6.88Mp, 7.24M p,

in the power spectrum would appear only for the first few
multipoles £ <5 and would be difficult to observe.

However, one should keep in mind this analysis corre-
sponds to the most conservative application of observa-
tional constraints. It is likely that the oscillatory character of
the non-Gaussianity found in this paper may partially
attenuate some of its effects in the CMB, and such
attenuation would relax the restrictions on ¢g. For this
reason, the numbers given above, and the conclusions
extracted from them, are meant to be taken as “worse-case
scenario”, rather than a strict constraint.

Regarding observational consequences of the non-
Gaussianity generated by the bounce, we point out two
possibilities. On the one hand, although the CMB has been
the main source of information about primordial perturba-
tions, the large scale structure will take this role in the near
future [86]. The characteristic shape of the non-Gaussianity
produced by a bounce obtained in this paper could then be
used as the smoking gun to contrast our findings with future
observations of the large scale structure.

On the other hand, even though error bars for non-
Gaussianity in CMB observations are too large to directly
observe the predictions obtained in this paper, it was
recently emphasized in [39,87] that this non-Gaussianity
can modify the power spectrum at low multipoles, via
higher order effects known as non-Gaussian modulation of
the power spectrum. A detailed analysis shows that these
effects can be large enough to be observable for multipoles
¢ < 30 in the power spectrum, and that they are expected to
produce effects very similar to the anomalous features that
the Planck and WMAP missions have observed at low
angular multipoles in the CMB, and that remain unex-
plained at the present time (see [88,89] for a detailed
account of the observational aspects of these anomalies,
and their statistical significance). The possibility that these
features could originate from a bounce that takes place
before inflation, as the one predicted by LQC, is exciting,
and the quantitative details are worth to be explored.
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APPENDIX A: EXPLICIT FORM OF THE
CONSTRAINTS UP TO THIRD ORDER

In this appendix we write the explicit form of the scalar
and vector constraints of general relativity, written in
Egs. (2.2), around a FLRW background, up to third order
in perturbations. For simplicity, we only show terms
involving scalar perturbations, and after gauge fixing
y1 =7y» = 0. These expressions have been used in
Sec. II to derive the second and third order Hamiltonians
for scalar perturbations.

2

s — _a P % 0.
T2 T TEV(@) =
v =0
p
(1)()7)261_255%(*) \/_27r1(x)+a3v¢5¢(”)

\/El)(f):lmaﬁfﬁ(f) \/—5‘”1()?) 2\/231'”2(3?)-
() =5 503(7) ~ 53 (F) ~ 53 ()

050050
+3K3,3ja 27[2()?)81'61.8_27[2()?) +a3V¢¢5¢2

a’

(%).
VP (@) = ap¢<f>a-5¢<*>

B (x) = V¢¢(/)5¢ (X). (A1)

In these expressions, the subscripts ¢ in the potential
V(¢) indicate derivative with respect to ¢. The third order

vector constraint \/5-3) (X) appears in the Hamiltonian

multiplied by SN’, which itself is linear in perturbations.

Therefore, \/53)()?) does not contribute to the third order
Hamiltonian in the spatially flat gauge.

APPENDIX B: EXPLICIT EXPRESSIONS FOR
f1(n), f2(n), and f3(n)

Expressions of the functions f;(n), f2(n), and f3(n)
appearing in expression (3.31), Sec. III B 2,

7 5 3 4
Filn) = a2 243p¢ 81p¢ 27Kp¢ 81p¢V¢
: 2uadnS  2ad°x3 ' 8a*m, | kar’
B 27ap¢V(/, 27a6p(/,V§S
272 2k}
ki -k)?\  3dipy- - 9apiVy
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1%2 a a
3a2p )V)) a3V o
3PV 3¢44} (B1)
5 3 2
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