
 

Fast radio bursts and the stochastic lifetime of black holes
in quantum gravity
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Nonperturbative quantum gravity effects might allow a black-to-white hole transition. We revisit this
increasingly popular hypothesis by taking into account the fundamentally random nature of the bouncing time.
We show that if the primordial mass spectrum of black holes is highly peaked, the expected signal can in fact
match the wavelength of the observed fast radio bursts. On the other hand, if the primordial mass spectrum is
wide and smooth, clear predictions are suggested and the sensitivity to the shape of the spectrum is studied.
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I. INTRODUCTION

Finding observational consequences of quantum gravity is
obviously a major challenge. In the last decade most
attempts have focused on the early Universe, evaporating
black holes, or Lorentz invariance violation (see Ref. [1] for
a recent overview). In the last years, the idea that quantum
gravity effects could be seen in higher-mass black holes has
attracted a lot of interest [2–6]. In particular, it was suggested
that the quite mysterious fast radio bursts (FRBs) [7] could
be explained by bouncing black holes [8]. There are
unquestionably simpler astrophysical explanations that we
consider to be more probable, but this hypothesis is worth a
deeper look. At the heuristic and intuitive level, this bounce
can be understood as a phenomenon quite similar to what is
expected to happen to the Universe in loop quantum
cosmology [9,10]. In the cosmological framework, the
classically contracting branch is linked to the classically
expanding one by a quantum tunneling, whereas in the black
hole sector the classically collapsing solution is glued to the
classically exploding one (on the double cover of the
Kruskal map [3]). The usual event horizon is replaced by
a trapping horizon [11]. In this brief article we revisit this
hypothesis by taking into account the fundamental random-
ness of the tunneling process that was previously ignored. In
Sec. II we assume a peaked mass spectrum for the bouncing
black holes and show that the 3 orders of magnitude in
energy thought to be missing to explain FRBs can easily be
accounted for. In Sec. III we consider a wide mass spectrum
and investigate the sensitivity of the signal to the spectral
index. We show that the expected emission remains com-
patible with measurements and make clear predictions.

II. PEAKED MASS SPECTRUM

The heuristic arguments given by Rovelli, Haggard, and
Vidotto in the previously mentioned articles suggested that

the black hole lifetime could be of the order ofM2 in Planck
units (those units are used throughout the rest of the article
except otherwise stated). As this is shorter that the Hawking
evaporation time (of the order ofM3), this means that black
holes might bounce before they evaporate: the Hawking
effect would just be a dissipative correction. An exact
calculation of this lifetime is in principle possible in loop
quantum gravity (see, e.g., Ref. [12]), but it is still hard to
perform accurately at this stage [13]. The previous phe-
nomenological works around this hypothesis have focused
on gamma-ray bursts [14], FRBs [8], the space-integrated
signal [15], and trying to explain the Fermi excess [16]. In
all of them the lifetime was taken (as a first approximation)
to be deterministic, fixed at the value τ ¼ kM2 where kwas
chosen to be of the order of 0.05 (however, in one of the
studies [15] its value was varied). We also assume this value
in the present article as it the most phenomenologically
interesting one (and the smallest one theoretically allowed).
However, as the black-to-white hole transformation is to be
understood as a tunneling process, the lifetime of a black
hole should be considered as a random variable.
The probability that a black hole has not yet bounced

after a time t is given by

PðtÞ ¼ 1

τ
e−

t
τ: ð1Þ

This is the usual “nuclear decay” behavior which comes
directly from the fact that the number of bouncing black
holes during a time interval dt is proportional to the full
number of black holes and to dt. We focus in this study on
local effects and neglect the redshift integration as this will
play only a minor role in the analysis carried out. The black
holes we are interested in can be considered to have been
produced in the early Universe, as the range of masses (far
below a solar mass) leading to bounces occurring in the
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contemporary Universe can only be associated with pri-
mordial black holes (PBHs; see Ref. [17] for a rather recent
review on the limits on the PBH abundance and references
therein for possible formation mechanisms). In general, the
number of black holes of a given type bouncing after a time
tH (taken to be the Hubble time as we are considering
present-day phenomena) in a time interval dt is

dN ¼ N0

kM2
e−

tH
kM2dt; ð2Þ

whereN0 is the initial abundance. The exponential function
entering this calculation comes directly from the random
nature of the bounce, as in the previous formula. Let us
assume that the initial differential mass spectrum of the
considered PBHs is given by dN=dM.
In this study, we focus on the so-called bouncing black

hole low-energy component as this is the one that is
relevant for a possible link with FRBs. This specific
component is based on a simple dimensional analysis:
photons are assumed to be emitted with a characteristic
wavelength that is of the order of the size of the black hole,
which is the only length scale of the problem. As in
Ref. [16], we model the shape of the signal emitted by a
single black hole by a simple Gaussian function:

dNBH
γ

dE
¼ Ae

−ðE−E0Þ2
2σ2

E ; ð3Þ

where E0 ¼ 1=ð2RSÞ ¼ 1=ð4MÞ, RS is the Schwarzschild
radius, andM is the mass of the considered black hole. This
choice is arbitrary and simply taken as an example. The
width is typically fixed to be σE ¼ 0.1E0, but the results do
not critically depend on this value or the detailed shape of
the distribution.
The full signal due to a local distribution of bouncing

black holes is given by

dNγ

dE
¼

Z
∞

MPl

Ae
−ðE−E0Þ2

2σ2
E ·

dN
dM

ðMÞ · 1

kM2
e−

tH
kM2 : ð4Þ

The point we want to raise in this study is that the mean
energy of the detected signal might not be the naively
expected one, that is, may not be E ∼ 1=ð4MtHÞ, whereMtH
is the mass satisfying tH ¼ kM2

tH (this would correspond to
black holes having a characteristic lifetime equal to the age
of the Universe). The naive expectation E ∼ 1=ð4MtHÞ is
not in the radio band, but rather 3 orders of magnitude
higher in energy, in the infrared band. If the initial mass
spectrum is peaked around a value M0, e.g., according to

dN
dM

∝ e
−ðM−M0Þ2

2σ2
M ; ð5Þ

which can in principle be different than
ffiffiffiffiffiffiffiffiffiffi
tH=k

p
, the energy

will however be peaked around 1=ð4M0Þ which can differ

from 1=ð4MtHÞ. This is possible precisely because of the
distributional nature of the actual bouncing time.
Considering a peaked mass spectrum is not arbitrary and

can be justified if PBHs are created, for example, because
of a phase transition in the early Universe (see, e.g.,
Ref. [18]). As the primordial cosmological power spectrum
is now clearly known not to be blue [19] (at least on large
scales), the naturally expected density contrast is not high
enough to produce PBHs [20] and specific post-inflationary
phenomena are generically required (see, e.g., Ref. [21]).
In Fig. 1, the expected emitted flux is shown for

different values of the central mass M0 of the initial
mass spectrum: MtH , 10MtH , 100MtH , and 1000MtH . As
expected, this shows that the energy of the signal depends
on the mass spectrum even if the parameters of the model
are fixed. Naturally, when the mass spectrum is peaked at
masses well above MtH , the amplitude of the expected
signal decreases as BHs that are exploding today constitute
an increasingly smaller fraction of the full population.
However, the key point we stress here is that a given mean
lifetime τ ¼ kM2 does not imply a fixed expected energy.
In particular, it was previously emphasized that the

expected mean wavelength (obtained by fixing τ ¼ tH) of
the electromagnetic emission associatedwith bouncingblack
holes was basically one thousand times smaller than required
to explain the FRBs. If themass spectrum is peaked atmasses
higher thanMtH , it is however perfectly possible to precisely
account for the expected wavelength. The curve on the left in
Fig. 1 is peaked around 1.5 GHz, which corresponds to the
typicalwavelength of FRBs.At this stage, there is noobvious
motivation for choosing a specific value for the peak mass.
Interesting proposals were recently suggested, for example,
in the framework of critical Higgs inflation [22], but (as
pointed out in thementioned reference) the actual peak value
could differ from the naively calculated one by several orders
of magnitude due to accretion and merging, and many other
models do exist that suggest other mass values.
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FIG. 1. Differential electromagnetic flux emitted by bouncing
PBHs for a central mass M0 equal (from right to left) to MtH ,
10MtH , 100MtH , and 1000MtH . The normalization is such that the
total mass going into PBHs is the same in all cases.
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In Fig. 1 the normalization between the different curves
is such that the total mass going into black holes is the
same:

Z
∞

MPl

M
dN
dM

¼ cte: ð6Þ

This is somehow justified if ones tries to account for dark
matter with PBHs. The point we want to stress with this
remark is simply that the decrease in flux when one moves
below the “natural" mass MTH

is not drastic. Accounting
for the observed events by shifting the peaked mass to
higher values requires a higher density of PBHs. This
cannot be done up to arbitrary values, as the upper bounds
on the density of PBHs would then be violated. However,
orders of magnitude show that the density of PBHs required
to account for observed events is very far below the known
bounds, and this does not limit the present proposal as the
rate of FRBs is actually very small [23]. There is no point in
performing a detailed normalization of the expected spec-
trum at this stage, as the initial mass spectrum normaliza-
tion is totally unknown and the calculation of any
observable would directly depend on it.
We have also considered a second normalization, such

that the total number of black holes is the same,
Z

∞

MPl

dN
dM

¼ cte; ð7Þ

and this basically leads to the exact very same results.
Beyond FRBs—which can be explained by astrophysical

phenomena—the point raised here is simply the fact that
when the probabilistic nature of the bouncing time is
accounted for, the mean energy of the emitted signal is
also determined by the mass spectrum and not only by the
lifetime of the black holes.

III. WIDE MASS SPECTRUM

It is also possible that the mass spectrum of PBHs is quite
wide. As a toy model, if it is directly produced by scale-
invariant density perturbations in a perfect fluid with
equation of state w ¼ p=ρ, the mass spectrum can be
approximated by [20]

dN
dM

∝ M−1−1þ3w
1þw : ð8Þ

In this study, we just consider (as a first approximation) a
spectrum

dN
dM

∝ Mα; ð9Þ

where α is an unknown parameter. In Fig. 2 we present the
expected signal for α ¼ f−3;−2;−1; 0g (a spectrum rising
with an increasing mass on a wide interval would be rather
unphysical). Once again, the shape of the mass spectrum

does influence the expected signal as the probabilistic
nature of the lifetime is now taken into account: black holes
with masses smaller or larger thanMtH do also contribute to
the emitted radiation, and changing their relative weights
does change the result.
This leads to another way of addressing the discrepancy

between the “natural” wavelength (around 0.02 cm∼
2 × 10−6 eV) of bouncing black holes and the observed
wavelength (around 20 cm ∼ 2 × 10−3 eV) of FRBs. It could
indeed be thatmost bouncing black holes do lead to a signal of
wavelength ∼0.02 cm and that only the tail (which exists
because of the probabilistic nature of the lifetime) of the
distribution is observed in the radio band. If the peak is in the
infrared—which shouldoccur if themass spectrum iswide—it
might be that it is simply unobserved today. Detectors in the
infrared band have proper time constants that aremuch to high
to allow for themeasurement of such fast transient phenomena
and there are no deep surveys being carried out.
In this case, as shown in Fig. 2, a clear prediction of this

model for future observations is that one should expect a
higher flux as the energy increases (up to the infrared
band). The slope of this increase reflects that of the mass
spectrum. This is qualitatively quite independent of the
details of the mass spectrum.

IV. CONCLUSION

The possible existence of a black-to-white hole transition
through a kind of tunneling process has recently received a
lot of attention in quantum gravity. In this brief article we
have taken into account the fundamentally random nature
of the black hole lifetime in those models. We showed that
this can induce a substantial shift with respect to previous
studies in which the characteristic lifetime τ [either derived
from the full theory (first attempts can be found in
Ref. [13]) or inferred by heuristic arguments] was taken
as an actual bouncing time.
In a Poisson process, the distribution of time intervals is

wide and exponentially decreasing. A bounce can occur
after a time which is very different from its characteristic
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FIG. 2. Signal expected from a wide mass spectrum, with α ¼
f−3;−2;−1; 0g from the lower curve to the upper curve at
10−6 eV.
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timescale, with the smallest time being always the most
probable one. This should be taken into account (and this
was indeed accounted for in Ref. [24]).
Beyond this quite trivial statement, we have shown that,

because of this stochastic process, the mean energy of the
emitted signal can be different than that previously con-
sidered. In particular, if the mass spectrum of PBHs is
peaked, it is perfectly possible to match the observed FRBs.
In addition, if the mass spectrum of PBHs is wide and

continuous it is still possible to explain the data, and a
prediction was suggested for future observations.

The main point of this study was not to revive at any
price the hypothesis that FRBs are due to bouncing black
holes. Our point was to show that the randomness of the
lifetime of black holes in quantum gravity can drastically
change the spectral characteristic of the expected signal
when the mass spectrum is highly peaked and can lead to
interesting predictions in any case.
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