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We model spherically symmetric black holes within the group field theory formalism for quantum
gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-
dimensional triangulations). The construction relies heavily on both the combinatorial tools of random
tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory
formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the
black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of
freedom and the entanglement entropy between the inside and outside regions. We recover the area law
under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be
generically independent of any specific value of the Immirzi parameter.
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I. INTRODUCTION

The physics of black holes is a crucial part of the current
frontier of theoretical physics. Beside their importance for
theoretical (and observational) astrophysics [1,2], they offer
a precious laboratory for testing the foundations of our
theories of fundamental interactions and of all other
physical systems, and their mutual (in)compatibility: gen-
eral relativity, quantum mechanics (and its offspring,
quantum information), and statistical mechanics. On the
one hand, black hole thermodynamics [3–7] (see also [8]
for a recent review and references covering the various
developments) remains to date a surprising set of (theo-
retical) facts, still in search for a microscopic (statistical)
understanding. It constantly challenges our assumed foun-
dations of physical theories, at least when framed within
semiclassical physics: locality, conservation of information,
the equivalence principle, Lorentz invariance, quantum
monogamy, causality, to name only a few of the principles
that have been suggested to be somehow in conflict with it.
On the other hand, together with the cosmology of the very
early Universe, black holes (and their thermodynamics)
are especially important for quantum gravity research,
representing the main concrete challenge and the first
testing ground at the nonperturbative level. Quantum
gravity is supposed to complete the very definition of
what black holes are, by providing the new physics
replacing their central curvature singularity, and to identify

the microscopic degrees of freedom whose statistical
mechanics is ultimately responsible for their macroscopic
thermodynamical properties.
In this paper, we tackle the issue of defining quantum

states representing (spherically symmetric) black holes, and
in particular their horizon degrees of freedom, within a full
quantum gravity formalism, and to compute their macro-
scopic entropy from first principles, within the same
formalism. The quantum gravity framework we use is
group field theory (GFT) [9,10], closely related to random
tensor models [11] and to loop quantum gravity (LQG)
[12,13]. To clarify what is the new contribution we give
here to this topic, it is in fact useful to relate and compare
our work to that done so far within loop quantum gravity,
forming by now an extensive literature.
In the canonical LQG approach to black hole entropy

calculation, the main strategy to the computation of black
hole entropy has been based on classical symmetry
reduction. The starting point for modeling the black hole
horizon is the local definition provided by the notion of
isolated horizon (IH) [14,15] (see [16,17] for reviews),
which enters as a specific set of boundary conditions. Their
implication is that a spherically symmetric isolated horizon
appears at any r0 for which the following classical
geometrical relation holds [18,19],

CIH ≡ FiðAÞ þ π

AIH
ð1 − γ2ÞΣi ¼ 0: ð1Þ

In the expression above, AIH is the area of the isolated
horizon, FiðAÞ the field strength of the Ashtekar–Barbero
connection Ai

a ¼ Γi
a þ γKi

a on the IH, and Σi ≡ ϵijkΣjk the
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2-form densitized triad pulled back on the horizon.
Spherically symmetric geometries constrained by such
boundary conditions are then taken to define the classical
degrees of freedom of the black hole system, which is then
quantized.
In the quantum theory, the IH condition (1) induces a

relation between the flux associated to a link coming from
the bulk and ending on the horizon and the holonomy on
the horizon around the given link. This is imposed as an
operatorial constraint equation on the tensor product of the
bulk Hilbert space, quantized through standard LQG tech-
niques, and the boundary Hilbert space, constructed by
relying on Chern-Simons theory formalism, which also
defines the boundary dynamics. As a result, fluctuations
of geometrical operators coming from the bulk get coupled
to those living on the boundary, through identification of
quantum numbers of the two Hilbert spaces, and Chern-
Simons curvature excitations (punctures) get identified with
quanta of space degrees of freedom. The microcanonical
counting of these degrees of freedom à la Boltzmann in the
semiclassical limit of large IH area yields a leading term
for the entropy linear in AIH together with a subleading
logarithmic term [20–29]. Extension of the SU(2)-invariant
formulation of isolated horizons to the distorted and the
rotating cases has been achieved in [30,31].
The realization that, in this classically reduced context,

the relevant degrees of freedom are associated to punctures
on the horizon (described by a simple Chern-Simons
theory) combined with the general key result obtained in
the full LQG theory that area operator has discrete
spectrum, with spin networks as eigenstates and eigenval-
ues carried by the links of their supporting graphs, has
motivated another well-explored strategy (in fact, the first
one to be followed [32–34]). This was the construction of
several toy models within LQG, i.e., simple spin network
states incorporating enough features of the mentioned
description of quantized isolated horizons to have a chance
to capture interesting black hole physics. Most of such toy
models consist of spin-network states based on a single
fixed graph, interpreted as having a number of nodes inside
a black hole horizon (encoding the bulk degrees of free-
dom), but often limited to a single intertwiner state, and a
number of links crossing it, providing for the horizon
degrees of freedom.
Both the mentioned strategies have produced very

important and interesting results, and will certainly con-
tribute to the complete understanding of the physics of
quantum black holes in quantum gravity. The reliability of
the results obtained within a symmetry reduced treatment is
notoriously questionable, however, and the limitations of
both strategies are apparent, motivating the search for a
more complete description of quantum black holes within
the full quantum gravity formalism.
Moreover, in all the LQG-based constructions so far, the

numerical value of the Barbero-Immirzi parameter needs to

be fixed to recover exactly the coefficient 1=4 in the
Bekenstein-Hawking entropy area formula. The long-
standing issue, extensively debated in the literature
[35–43], is whether this necessity might be signalling an
incompleteness in the identification of the microscopic
degrees of freedom counted in the LQG entropy calcu-
lation, or some other limitation in the usual constructions.
On the basis of the semiclassical nature of the Bekenstein-
Hawking formula and the expectation that the Barbero-
Immirzi parameter should play no important role in the
classical description of gravity, a natural option to remove
this undesired feature of the entropy calculation is that other
(noninternal and so far neglected) degrees of freedom
should be taken into account. A recent proposal within
the LQG framework, discussed in [44], uses new boundary
degrees of freedom representing information channels
between gravitational subsystems. However, the implica-
tions of the discovery of these new degrees of freedom for
the black hole entropy calculation have not been inves-
tigated in detail yet.
In this paper, we concentrate on an alternative proposal

for the fundamental boundary (and bulk) degrees of free-
dom, working within the full quantum gravity formalism
and using a construction that gives us access to a continuum
description of a black hole quantum geometry. More
precisely, we want to use the construction [45] of GFT
condensate states, generalizing those used in a cosmologi-
cal context [46–49], and representing continuum spheri-
cally symmetric geometries within the GFT formalism.
Leveraging on the structure of the Fock representation of
GFTs, it is possible to define a quantum black hole horizon
in the full, nontruncated, theory and then compute its
entropy. A short report of some of these results appeared in
[50]. Here we provide a much more detailed presentation of
those calculations, as well as a more general entropy
counting which extends to a wider and possibly more
physically relevant class of generalized condensates for a
spherically symmetric black hole.
We describe in some detail the construction of the class

of states that our analysis relies on, and highlight their
convenient features in the following; we note up front,
however, the main limitation of our construction.
Implementing the dynamics for generic GFT condensates
is not as easy as in the case of those used for cosmological
applications [46–49]. Therefore we treat these states as
kinematical trial states, under the hypothesis that they
can represent some reasonable approximation of realistic
states, i.e., solutions of the full quantum dynamics, at least
in some regime.
This remains a hypothesis, but it is supported by three

considerations. First, these states naturally include some
form of homogeneity (specifically, wave function homo-
geneity, to be clarified in the following) which already
restricts the possible shape of the states in combination with
the combinatorial restrictions that allow one to assign them
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a clear topological interpretation (in particular, as encoding
spherical symmetry). This sort of restrictions is expected to
apply also to an exact state (i.e., solving the equations of
motion of the theory) with spherical symmetry, or some
slightly less local variant (e.g. involving vertices along
tangential loops), resulting from constraints on curvature
observables. Second, very importantly (and for the first
time, to the best of our knowledge), the quantum states we
use already include a sum over a family of triangulations,
which is an inevitable consequence of the interacting nature
of the GFT equations of motion. It is not obvious that the
superposition of different graphs realized in physical states
is of the same melonic nature that we are using, even if the
dominance of melonic diagrams is a recurrent property of
GFT (and random tensor) models [51]; however, the
superposition that we are using explores a whole family
of triangulations obtained by refinement, which means that,
while differing in some crucial aspects, we might be still
close to the exact state (indeed, for general wave functions,
states associated to different graphs are not orthogonal
[10]). While the calculation of the overlap between our
condensate states and an exact spherically symmetric state
(assuming this notion makes sense in the full theory) is
nontrivial, we can expect that this overlap is nonzero.1

Third, these particular states implement a nonobvious
macroscopic property, i.e., holography, in a form compat-
ible with a nonperturbative full quantum gravity regime.
This means that they contain some of the structural
properties necessary to match the dynamics of the
classical theory.
Still, it remains true that our analysis stays at the

kinematical level (as in all the previous LQG literature
on the subject). We use, however, a possible proxy for the
dynamics of the theory, because we impose a condition of
maximization of the entropy that one could expect to be
satisfied by solutions of the quantum dynamics and, in
particular, by black hole configurations. The (maximal)
entropy we compute for our states is shown to be
interpretable both as a Boltzmann entropy of horizon
degrees of freedom and as an entanglement entropy across
the same horizon, to scale with the mean area of the black
hole horizon, and to match (under additional assumptions,
amounting to semiclassicality conditions) the Bekenstein-
Hawking result.
We depart from the canonical LQG approach to black

hole entropy in three main ways: (i) the horizon quantum
state is defined including a sum over triangulations,
including very refined ones, admitting in this way an
interpretation in terms of a continuum geometry, whose
information is encoded in a single collective variable, i.e.,
the condensate wave function; crucially, this basic aspect of
the construction also implies that our states encode in their

very definition a coarse-graining of microscopic degrees of
freedom allowing one to control them via a limited number
of variables—this point is also relevant for their (lack of)
dynamical character: being the result of a coarse graining,
we should not expect them to be exact solutions of the
microscopic quantum dynamics; (ii) the interior bulk
degrees of freedom are not removed (or drastically reduced)
by hand through the introduction of a single intertwiner
model; space-time does not end at the horizon in our
construction, but both an interior and an exterior bulk are
included in the quantum state; (iii) our construction relies
uniquely on structures and techniques proper of the GFT
formalism, i.e., both boundary and bulk degrees of freedom
are described in a unique, consistent way, removing
ambiguities present in the canonical LQG approach, where
spin-network states are coupled to a Chern-Simons theory
on the boundary.2

Most importantly, with all the limitations of our work,
and the inevitable approximations and assumptions, we
work from beginning to end within the full quantum gravity
formalism, without any preliminary classical symmetry
reduction and with realistic quantum states of the full
theory. These points of departure from the standard treat-
ment are also at the origin of a remarkable feature of the
entropy calculation we present in this paper: by replacing
the area operator eigenstates for the quantum isolated
horizon by condensate states, the result of the entropy
calculation yields the semiclassical Bekenstein-Hawking
entropy area law with no explicit dependence on the value
of the Barbero-Immirzi parameter.

II. SHELL CONDENSATE STATE: GROUP
ELEMENT REPRESENTATION

We start by presenting in some detail the construction
of our quantum black hole states in the GFT formalism.
We do so, in this and in the next sections, in two
equivalent representations of the Hilbert (Fock) space of
the theory. This serves also the purpose of showing the
generality of our construction, and of our results. We
take a sort of engineering approach, by building up
our quantum states piece by piece, starting from the
fundamental building blocks provided by the GFT
formalism, i.e., GFT quanta corresponding to individual
spin-network vertices, in turn dual to fundamental three-
dimensional simplices. Specifically, we construct spheri-
cally symmetric configurations of quantum space as
glueings (along a radial direction) of homogeneous
spherical shells.
As pointed out above, in this work we build upon the

construction of a continuum quantum geometry represent-
ing a spherically symmetric shell performed in [45], to

1Its precise value would be a quantitative measure of the
goodness of the approximation used.

2See however [52,53] for a more uniform treatment of bulk and
boundary degrees of freedom through techniques developed in
the context of 2þ 1 LQG [54–58].
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which we refer for notation and basic notions.3 Their
construction can be easily described: we start with a seed
state for a given shell, containing few quanta, and then we
act upon it with a series or refinement operators in order to
increase the number of fundamental blocks (four-valent
vertices), preserving the initial topology. The same wave
function is associated to each new fundamental block,
enforcing homogeneity and symmetry.
Therefore, the GFT condensate state for a given shell is

formed by an infinite superposition of graphs, each with a
certain number of 4 vertices connected together. A color
t ¼ fB;Wg is associated to each 4-vertex and four SUð2Þ
group elements (denoted by the letter g variously deco-
rated) are assigned to the links departing from a given
4-vertex and labeled by a number I ¼ f1; 2; 3; 4g. A shell is
formed of three parts: an outer boundary, an inner boun-
dary, and a bulk in between. In order to keep track of these
three parts of each shell, we add a color s ¼ fþ; 0;−g to
the vertex wave function, labeling respectively these three
parts, so that we can specify the region to which a given
vertex of a shell belongs.
Following the conventions of [45] (see also the

Appendix), the action of the refinement operators on the
initial seed state is such that each boundary of a given shell
is formed by open radial links all with the same color, with
outer and inner boundaries having different colors. The
next step is to glue shells together. In order to do this, while
still being able to distinguish different shells, we need to
introduce a single extra label r ∈ N, also associated to the
shell wave function, which can be interpreted as an
effective radial coordinate. Therefore, the field operator
associated to the fundamental building block v reads

σ̂r;tvsvðhvI Þ ¼
Z

dgvI σr;svðhvI gvI Þφ̂tvðgvI Þ;

σ̂†r;tvsvðhvI Þ ¼
Z

dgvI σr;svðhvI gvI Þφ̂†
tvðgvI Þ; ð2Þ

satisfying the commutation relations

½σ̂r;tvsvðhvI Þ; σ̂†r0;twswðhwI Þ� ¼ δr;r0δtv;twδsv;swΔLðhvI ; hwI Þ

≡ δr;r0δtv;twδsv;sw
Z
SUð2Þ

dγ

×
Y4
I¼1

δðγhvI ðhwI Þ−1Þ; ð3Þ

where the rhs guarantees the left gauge invariance of the
vertex wave function, namely

σ̂r;tvsvðhvI Þ ¼ σ̂r;tvsvðγhvI Þ; ∀γ ∈ SUð2Þ: ð4Þ

Moreover, the δr;r0 implies that operators associated to
different shells commute with each other. The above field
operators are constructed out of the fundamental GFT field
operators by convolution with the condensate wave func-
tion σ; they thus create/annihilate GFT quanta, all asso-
ciated with such a wave function. This association with a
unique wave function for all the quanta forming a given
shell is what we call wave function homogeneity, which
puts these states in correspondence with homogeneous
(continuum) spatial geometries, and also what charac-
terizes the same states as GFT condensates. The condensate
quanta are then glued to one another, for a given radial
parameter, to form the three-dimensional triangulations
constituting the shell, with quantum correlations encoding
spatial topology [59,60].
In order to form a full space foliation we glue all the

radial links belonging to the outer boundary of a given shell
r with the radial links belonging to the inner boundary of
the shell rþ 1. For the gluing to be done consistently,
the two boundaries have to have the same number and color
of radial links. Two glued shells can be graphically
represented as

ð5Þ

The use of bipartite colored graphs in order to be able to
encode the information about the spatial topology suggests
that it is most convenient to adopt a construction of the seed
state in terms of melonic graphs, and of the associated
refinement operators in terms of dipole (or melonic) moves.
Explicitly, the seed state for a given shell r is graphically
represented as

1’’

4’’
3’’

1
3

2
3

2

4

44

2’

2’
4’’

1’’

3’’’

3’’’2’’’’3’’
1’’’’

4

1

2’’’’
1’’’’ ð6Þ

and, in terms of field operators, the seed state is given by
3For the reader’s convenience, we have reported the basic

notion in the Appendix.
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jτi ¼
Z

ðdgÞ10σ̂†r;Bþðe; g2; g3; g4Þσ̂†r;Wþðe; g02; g3; g4Þσ̂†r;B0ðg001; g02; g0003 ; g004Þ

× σ̂†r;W0ðg001; g2; g003; g004Þσ̂†r;B−ðg00001 ; g00002 ; g003; eÞσ̂†r;W−ðg00001 ; g00002 ; g0003 ; eÞj0i; ð7Þ

where we have arbitrarily assigned the color 1 to the radial links of the boundaryþ and the color 4 to the boundary −, and,
for the moment, we have set the gluing group elements h’s associated to both sets of radial links to the identity.
There are three refinement operators for each shell: Two refine the boundaries and one the bulk vertices. The complete set

of refinement operators has been studied in [45]. Here we just concentrate on one of the two boundaries, namely theþ one.
The construction for the other one follows the same logic. The action of the operator for the refinement of white vertices has
a simple graphical representation,

ð8Þ

with the one for black vertices having a similar structure (notice the colors of the edge in the loop, however),

ð9Þ

These two moves are the ones involving the minimum number of vertices, keeping fixed the topology. In terms of the group
fields, the two move operators read

cMr;Wþ ≡
Z

dk2dk3dk4dh40dh20dh30

× σ̂†W−ðe; k2; h30 ; h40 Þσ̂†B−ðe; h20 ; h30 ; h40 Þσ̂†W−ðe; h20 ; k3; k4Þσ̂W−ðe; k2; k3; k4Þ ð10Þ
and

cMr;Bþ ≡
Z

dk2dk3dk4dh40dh20dh30

× σ̂†r;Bþðe; h20 ; h30 ; k4Þσ̂†r;Wþðe; h20 ; h30 ; h40 Þσ̂†r;Bþðe; k2; k3; h40 Þσ̂r;Bþðe; k2; k3; k4Þ: ð11Þ

These are graph topology-preserving operators and their
actions (9) and (8) can be straightforwardly verified by com-
puting their commutators with, respectively, σ̂†r;Bþðe; g2;
g3; g4Þ; σ̂†r;Wþðe; g2; g3; g4Þ. In a similar fashion, we can
build refinement operators for vertices belonging to the other
two components of the shell. We can thus arbitrarily refine

the seed state (7) by repeated action of the operators cMr;ts in
order to implement the sum over triangulations while
preserving the desired topology and the key feature of wave
function homogeneity. In fact, the refinement moves are
implemented through operators built out of field operators
(2) dressed with the same wave function as the seed state; in
this way, the geometric information of the finer shell states is
still encoded in the same small number of parameters. The
state of a given shell r can then be written as

jΨri ¼ FrðcMr;Bs; cMr;WsÞjτi; ð12Þ

where, at this stage, Fr is a generic function of the refine-
ment operators associated to the given shell r.
This completes the definition of the spherically sym-

metric quantum states we use in the following, for
describing the microstructure of quantum black holes.

A. The area operator

The physical properties encoded in our quantum states
have to be extracted by computing suitable operators. While
the combinatorial aspects of the GFT formalism, shared with
random tensor models, were crucial in the definition of our
quantum states, alongside its second quantization tools, the
quantum geometric aspects, shared with loop quantum
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gravity (and simplicial approaches), become prominent in
the physical interpretation of the same states and in the
identification of interesting operators.
An important geometric operator for our purposes is the

area operator. Following the prescription in [45], a second
quantized version of a shell boundaries area operator is
defined by

ÂJr;s ¼
X
t¼B;W

ÂJr;ts

≡ κ
X
t¼B;W

Z
dhvI σ̂

†
r;tsðhvI Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei
JE

j
Jδij

q
⊳ σ̂r;tsðhvI Þ;

ð13Þ

where κ ¼ 8πγl2
P, introducing the dependence on the

Barbero-Immirzi parameter γ. In the expression above
the label s takes values fþ;−g, according to which
boundary of the shell r we want to compute the area of,
and the index J matches the number associated to the radial
links dual to the given boundary.
The action of the operator (13) is computed using the

definition

Ei
J ⊳ fðgIÞ ≔ lim

ϵ→0
i
d
dϵ

fðg1;…; e−iϵτ
i
gJ;…; g4Þ ð14Þ

for a given function f∶SUð2Þ4 → C. It is immediate to see
that the expectation value of the area operator (13) on a
shell boundary state can be written as a function of the
number of quanta and a single vertex expectation value,

hÂJr;si ¼ κhn̂r;si
Z

dhvI dg
v
I σr;sðhvI gvI Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei
JE

j
Jδij

q
⊳ σr;sðhvI gvI Þ≡ hn̂r;siaJr;s; ð15Þ

where we have defined aJr;s as the expectation value of the
area operator on a single radial link J in the boundary s of
the shell r, and n̂r;s is the number operator given by

n̂r;s ¼
X
t¼B;W

n̂r;ts ¼
X
t¼B;W

Z
dhvI σ̂

†
r;tsðhvI Þσ̂r;tsðhvI Þ: ð16Þ

Notice that, due to the definition of the seed state and the
refinement operators, after each refinement action the
graphs are such that

nr;Bs ¼ nr;Ws ¼
nr;s
2

ð17Þ

always holds, where n≡ hn̂i.
An analog one-body operator can be constructed for the

volume. Also in this case, the factorization property (15)
holds. The structure of these expectation values should
come as natural given the structure of the wave function,
boiling down to dimensional considerations (areas are
extensive quantities) and to the fact that a single wave
function has been used.

III. SHELL CONDENSATE STATE: SPIN
REPRESENTATION

Let us now introduce a dual spin representation for
generalized GFT condensates, and a different example of
condensate states constructed by the same scheme but
relying on this dual representation. This provides a useful
computational toolkit and, at the same time, it allows us to
circumvent the issue of non-normalizability in the kinemati-
cal Hilbert space (the Fock space) of the condensate states
constructed out of the field operators (2). In practice, when
working in the group representation, and for the condensate
states described in the previous section, a regularization
scheme is generally required in order to obtain finite
expectation values for geometric operators like (15). On
the other hand, when working in the spin representation at
fixed spins, and constructing adapted condensate states using
the same scheme, this issue does not arise. Beside these
technical advantages, we detail this dual construction for two
additional reasons. First, it shows the generality of our
construction and results; in fact, starting from these two basic
definitions of condensate states, one can envisage new
definitions combining or interpolating between the two
basic ones (which play a role of possible bases for linear
combinations possessing similar properties). Second, this
dual spin-based construction is the one producing quantum
GFT condensate states that are the closest to the quantum
states customarily used in loop quantum gravity as models of
quantum black holes, based on eigenstates of the area
operator and thus labeled by fixed spins on the links
puncturing the black hole horizon. This facilitates compari-
son of our results with the LQG literature.
The spin representation follows from a straightforward

Peter-Weyl decomposition of the vertex wave function,
with the field operators (2) now becoming

σ̂r;tsðhIÞ ¼
Z

dgIσr;sðhIgIÞφ̂tðgIÞ ¼
Z

dgI
X

fjg;lR;lL
σj1…j4lLlR
r;s ιj1j2j3j4lLm1m2m3m4

ιj1j2j3j4lRn1n2n3n4

Y4
I¼1

DjI
mIoIðhIÞDjI

oInIðgIÞφ̂tðgIÞ

¼
X

fjg;lR;lL
σj1…j4lLlR ιj1j2j3j4lLm1m2m3m4

âj1…j4lR
ðr;tsÞo1…o4

Y4
I¼1

DjI
mIoIðhIÞ; ð18Þ
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where we defined the following new field operators

âj1…j4lR
ðr;tsÞo1…o4

¼ σr;sι
j1j2j3j4lR
n1n2n3n4

Z
dgI

Y4
I¼1

DjI
oInIðgIÞφ̂tðgIÞ; ð19Þ

and we have assumed the factorization property

σj1…j4lLlR
r;s ¼ σr;sσ

j1…j4lLlR : ð20Þ

One might wonder whether such a restriction is plausible or
not. Let us notice that this particular choice means that
different layers differ more because of their volume (con-
trolled essentially by the number of quanta, determined by
jσr;sj2) rather than their intrinsic geometry (type of curvature,
for instance). This situation is very natural in spherical
symmetry, as it is by its very definition in the continuum
setting: the geometry of different two-dimensional spheres
singled out by the isometry group differs only by a rescaling
determined by the radial coordinate, the rest being con-
strained by the isometry group itself.
From the commutation relation of the basic field

operators

½φ̂tðgIÞ; φ̂†
t0 ðg0IÞ� ¼ δt;t0ΔRðg; g0Þ

≡ δt;t0
Z
SUð2Þ

dγ
Y4
I¼1

δðgIγðg0IÞ−1Þ ð21Þ

and the orthonormality relations between the Wigner
matrices Z

dgDj
mnðgÞDj0

m0n0 ðgÞ ¼
1

dj
δj;j0δm;m0δn;n0 ; ð22Þ

it is immediate to see that the new field operators (19)
satisfy

½âj1…j4lR
ðr;tsÞo1…o4

; â
†j0

1
…j0

4
l0R

ðr0;t0s0Þo0
1
…o0

4

�
¼ jσr;sj2δr;r0δt;t0δs;s0δlR;l0Rnðj1; j2; j3; j4; lRÞ

×
Y4
I¼1

1

djI
δoIo0IδjIj0I ; ð23Þ

where

δl;l
0
nðj1; j2; j3; j4; lÞ ¼

X
fmg

ιj1j2j3j4lm1m2m3m4
ιj1j2j3j4l

0
m1m2m3m4

ð24Þ

is the intertwiners normalization factor. With the
convention

ιj1j2j3j4lm1m2m3m4
¼

X
m;m0

Cj1j2l
m1m2mC

j3j4l0
m3m4m0Cll00

mm00; ð25Þ

where the C’s are the Clebsch-Gordan coefficients, the
normalization factor nðj1; j2; j3; j4; lÞ is equal to 1 and
therefore we omit it from now on.
The wave function of the new field operators then reads

aj1…j4lR
ðr;sÞo1…o4

ðgIÞ≡ hgtjâ†j1…j4lR
ðr;tsÞo1…o4

j0i

¼ σr;sι
j1j2j3j4lR
n1n2n3n4

Y4
I¼1

DjI
oInIðgIÞ: ð26Þ

A. Refinement operators

We now write the refinement operators cMr;Bs; cMr;Ws in
terms of the spin representation field operators (19).
We concentrate on the operators for the outer boundary
s ¼ þ. Refinement operators for the other boundaries can
be constructed straightforwardly in a similar fashion.
Assuming again that the boundary radial links have label 1,
we define

cMj1j2j3j4lR
ðr;BþÞo1o01o001o0001 ¼ 1

jσr;sj2
�Y4

I¼1

djI

�X
fmg

â†j1j2j3j4lRðr;BþÞo1m2m3m0
4

â†j1j2j3j4lRðr;WþÞo00
1
m0

2
m0

3
−m0

4

â†j1j2j3j4lRðr;BþÞo0
1
−m0

2
−m0

3
m4
âj1j2j3j4lRðr;BþÞo000

1
m2m3m4

; ð27Þ

where we notice the absence of the sign flips in the last term, due to the fact that we have â instead of â†.
By means of (23), we can now verify that the refinement operators above realize the move depicted in (9), namely

½cMj1j2j3j4lR
ðr;BþÞo1o01o001o0001 ; â

†j0
1
j0
2
j0
3
j0
4
l0R

ðr;BþÞn1n2n3n4 � ¼
X
fmg

â†j1j2j3j4lRðr;BþÞo1m0
2
n3n4

â†j1j2j3j4lRðr;WþÞo00
1
−m0

2
m0

3
m0

4

â†j1j2j3j4lRðr;BþÞo0
1
n2−m0

3
−m0

4

δo000
1
;n1δlR;l0R

Y
I

δjI ;j0I : ð28Þ

Similarly, we have

cMj1j2j3j4lR
ðr;WþÞo1o01o001o0001 ¼ 1

jσr;sj2
�Y4

I¼1

djI

�X
fmg

â†j1j2j3j4lRðr;WþÞo1m0
2
m3m4

â†j1j2j3j4lRðr;BþÞo00
1
−m0

2
m0

3
m0

4

â†j1j2j3j4lRðr;WþÞo0
1
m2−m0

3
−m0

4

âj1j2j3j4lRðr;WþÞo000
1
m2m3m4

; ð29Þ

and a direct calculation as in the black case shows that the operator above implements the action (8).
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B. Area expectation value

Let us compute the area expectation value on a single-
vertex state created by the field operator (19). Consistently
with our previous convention, the vertex radial link dual to
the boundary of interest has color 1. Using (15) and (26),
we get

a1r;s ¼ κ

Z
dgIa

j1…j4lR
ðr;sÞo1…o4

ðgIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei
1E

j
1δij

q
⊳ aj1…j4lR

ðr;sÞo1…o4
ðgIÞ

¼ κ

Z
dgIjσr;sj2ιj1j2j3j4lRm1m2m3m4

ιj1j2j3j4lRn1n2n3n4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ðj1 þ 1Þ

p

×
Y4
I¼1

DjI
oImIðgIÞDjI

oInIðgIÞ

¼ κjσr;sj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ðj1 þ 1Þ

p Y4
I¼1

1

djI
: ð30Þ

As anticipated above, the only dependence on the
vertex wave function is through the normalization factor
jσr;sj2. As we have already remarked, this might seem
suspicious but it is to be expected if we take seriously the
idea that these states have leaves which support the same
symmetry group.

IV. SHELL DENSITY MATRIX

Given the single shell state (12), we can construct a pure
state associated to a full three-dimensional spatial foliation
through a shell-gluing procedure. This can be obtained
through the definition of a full foliation refinement operator
built out of the single-shell ones. At this kinematical stage,
there is considerable freedom left in such a definition, with
the only constraint coming from the requirement of spatial
topology preservation. More precisely, the refinement and
gluing operations have to be carried out in such a way that
the outer boundary of a given shell r always contains the
same number of vertices as the inner boundary of the shell
rþ 1 it is glued to, so that no open links are created. It
should be remarked, however, that the structure of the
refinement operators associated to the three different
components of a given shell is such that these can act
independently on one another. Therefore, without further

inputs coming from the dynamics, the most generic
complete-foliation state can be written as a product of
single-shell states, namely

jΨi ¼
Y
r

jΨri; ð31Þ

upon which the constraint on the synchronization of
nearby shell boundaries refinement is applied (thus
removing the factorization into shells and introducing
correlations).
From the pure state (31) we can obtain the density

matrix

ρ̂ ¼ jΨihΨj ð32Þ

of the full three-dimensional spatial foliation.

A. Reduced density matrix for a single shell

We now want to compute the reduced density matrix
associated to the outer boundary of a single shell r by
tracing over the rest of the bulk state. This reduced
density matrix is the central object for our entropy
calculation.
In general, the boundary component of a given shell

state (12) contains a superpositions of all graphs that can
be obtained by all possible combinations of strings of
refinement operators associated to the boundary. The
coefficients of such superposition are determined by
the specific form of the function Fr. We come back
to this important point in a moment. For now, in order to
understand the entanglement structure between different
shells, let us start by simply considering a given graph A
associated to the shell r outer boundary and the graph B
of the inner boundary of the shell rþ 1 right outside.
The result of this simple example can be easily gener-
alized to the rest of the graph. Therefore, if we assume
that both graphs are formed by n vertices (in order to be
properly glued they must have the same number of
building blocks), where again we take the connecting
radial links of color 1, we can write the wave function of
these two components as

ψðgA1

I ;…; gAn
I ; gB1

I ;…; gBn
I Þ ¼

Yn
i¼1

aj1…j4lR
Aimi

1
…mi

4

ðgAi
I Þaj1…j4lR

Bini1…ni
4

ðgBi
I Þδ

mi
1
;−n

tm
1
ðiÞ

1

Y4
J¼2

δ
mi

J;−m
tm
J
ðiÞ

J

δ
niJ;−n

tn
J
ðiÞ

J

; ð33Þ

where the δ’s are used to keep track of the connectivity of the whole graph A ∪ B, with the notation tmJ ðiÞ ðtnJðiÞÞ indicating
the target vertex in the graph A (B) of the edge of color J departing from the vertex i in the graph A (B), and similarly for
tm1 ðiÞ with the target vertex in the graph B (instead of A), encoding the connectivity between the two boundaries through the
radial links of color 1. We can thus write the total density matrix as
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ρðnÞðgA1

I ;…; gAn
I ; gB1

I ;…; gBn
I ; g0I

A1 ;…; g0I
An ; g0I

B1 ;…; g0I
BnÞ ð34Þ

¼ C
Yn
i¼1

aj1…j4lR
Aimi

1
…mi

4

ðgAi
I Þaj1…j4lR

Bini1…ni
4

ðgBi
I Þδ

mi
1
;−n

tm
1
ðiÞ

1

Y4
J¼2

δ
mi

J;−m
tm
J
ðiÞ

J

δ
niJ;−n

tn
J
ðiÞ

J

× aj1…j4lR
Aim0i

1
…m0i

4

ðg0Ai
I Þaj1…j4lR

Bin0 i1…n0i
4

ðg0Bi
I Þδ

m0 i
1
;−n0

tm
0

1
ðiÞ

1

Y4
J¼2

δ
m0 i

J ;−m
0 t
m0
J

ðiÞ
J

δ
n0 iJ ;−n

0t
n0
J

ðiÞ
J

; ð35Þ

where C is a normalization factor.
If we now use the relation

Z
dgIa

j1…j4lR
ðr;sÞm1…m4

ðgIÞaj1…j4lR
ðr;sÞn1…n4

ðgIÞ ¼ jσr;sj2
Y4
I¼1

1

djI
δmI;nI ; ð36Þ

following from the commutation relation (23), to integrate away the B part, we get

ρðnÞA ðg1I ;…; gnI ; g
0
I
1;…; g0I

nÞ ¼
�Q

4
I¼1 djI
jσr;sj2

�n Yn
i¼1

aj1…j4lR
Aimi

1
…mi

4

ðgiIÞaj1…j4lR
Aim0 i

1
…m0 i

4

ðg0IiÞδmi
1
;m0 i

1

Y4
J¼2

δ
mi

J;−m
tm
J
ðiÞ

J

δ
m0 i

J ;−m
0 t
m0
J

ðiÞ
J

; ð37Þ

where we have set the normalization factor C ¼ ðQ4
I¼1 djI=

jσr;sj2Þ2n. We see that the normalized reduced density
matrix we obtain is mixed, as a consequence of the relation
mi

1 ¼ m0i
1 imposed by the first set of δ’s and following from

the property (36).
Remarkably, as it emerges from this simple example, any

property about the rest of the graph traced away disappears:
different completions of the same visible portions of the
state lead to the same reduced density matrix. This is a
direct consequence of the commutation relation (23) [which
implies (36)]. This holographic property of our states
remains valid also when tracing away a bigger graph in
the bulk, exactly for the same mechanism. This means that,
given a graph for the whole three-dimensional space
foliation, if we choose the boundary of an arbitrary shell
r and trace away all the rest of the graph, we end up with a
mixed reduced density matrix which contains no informa-
tion about the bulk degrees of freedom. The only entan-
glement that remains in the reduced density matrix is the
one induced by the radial links of the closest shell. Let us
reiterate the message: for these particular states, all the rest
of the information about the remaining graph disappears

from the reduced density matrix, regardless of how big or
intricate the rest of the graph is. This means that the
entanglement entropy contribution comes uniquely from
the entanglement with the closest shell, as expected by
standard calculation in QFT on a sphere [61].

B. Entanglement entropy

To compute the entanglement entropy we now need to
diagonalize the reduced density matrix, that is, we need to
compute the eigenvectors of (37). Let us consider the state

ΨðnÞ
A ðn1; gÞ ¼

�Q
4
I¼1 djI
jσr;sj2

�n=2 Yn
i¼1

aj1…j4lR
Aini1…ni

4

ðgiIÞ
Y4
J¼2

δ
niJ;−n

tn
J
ðiÞ

J

;

ð38Þ
which satisfies

hΨðnÞ
A ðn1; gÞjΨðnÞ

A ðn01; gÞi ¼
Yn
i¼1

δni
1
;n0 i

1
; ð39Þ

and compute

Z Yn
i¼1

dgiIρ
ðnÞ
redðg1I ;…; gI; g0I

1;…; g0I
nÞΨðnÞ

A ðn1; gÞ ¼
�Q

4
I¼1 djI
jσr;sj2

�3
2
n Z Yn

i¼1

dgiIa
j1…j4lR
Aimi

1
…mi

4

ðgiIÞaj1…j4lR
Aim0 i

1
…m0 i

4

ðg0IiÞδmi
1
;m0 i

1

×
Y4
J¼2

δ
mi

J;−m
tm
J
ðiÞ

J

δ
m0 i

J;−m
0 t
m0
J

ðiÞ
J

aj1…j4lR
Aini1…ni

4

ðgiIÞ
Y4
J¼2

δ
niJ;−n

tn
J
ðiÞ

J

¼
�Q

4
I¼1 djI
jσr;sj2

�n
2

aj1…j4lR
Aimi

1
…mi

4

ðg0I iÞ
Y4
J¼2

δ
mi

J;−m
tm
J
ðiÞ

J

¼ ΨðnÞ
A ðm1; g0Þ; ð40Þ
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where we have used the relation (36) again. From the
calculation above, we see that the states (38) are eigenstates
of the shell reduced density matrix (37) with eigenvalue 1.
We can thus label all the eigenstates of the shell reduced

density matrix using a graph basis and the notation

ΨðnÞ
r;s ðΓαÞ to denote the states (38), where the structure of

the given graph Γα is encoded in the product of del-
tas

Q
4
J¼2 δ

niJ;−n
αtn
J
ðiÞ

J

.

Given that this does not hold in general [10], it is
instructive to show explicitly the orthogonality of the states

ΨðnÞ
r;s ðΓαÞ for different graphs Γα;Γα0 . We want to prove that

hΨðnÞ
r;s ðΓαÞjΨðnÞ

r;s ðΓα0 Þi ¼ δα;α0
Yn
i¼1

δni
1
;n0i

1
: ð41Þ

To do so, for all α ≠ α0, it is enough to consider one simple
case, namely graphs with nB ¼ nW ¼ n=2 ¼ 2 (recall that
all the graphs have always the same number of black and
white vertices). These states are created by acting once with
the refinement operators (8) and (9) on the seed state for the
shell boundary.

ð42Þ

where links 1 are the radial ones and links 2 are connected
to the bulk of the shell. The two possible states with 4
vertices, when acting with the black (9) and white (8)
refinement operators respectively, thus are

ð43Þ

ð44Þ

The scalar product between these two states gives

hΨð4Þ
r;2 jΨð4Þ

r;1i ¼
Z

dg1I dg
2
I dg

3
I dg

4
I dg

01
I dg

02
I dg

03
I dg

04
I

aj1…j4lR
m1

1
m1

2
m1

3
m1

4

ðg1I Þaj1…j4lR
m2

1
m2

2
m2

3
−m1

4

ðg2I Þaj1…j4lR
m3

1
−m2

2
−m2

3
m3

4

ðg3I Þaj1…j4lR
m4

1
m4

2
−m1

3
−m3

4

ðg4I Þ
aj1…j4lR
n1
1
n1
2
n1
3
n1
4

ðg0I1Þaj1…j4lR
n2
1
n2
2
−n1

3
−n1

4

ðg0I2Þaj1…j4lR
n3
1
−n2

2
n3
3
n3
4

ðg0I3Þaj1…j4lR
n4
1
n4
2
−n3

3
−n3

4

ðg0I4Þ
h0jφ̂Wðg0I1Þφ̂Bðg0I2Þφ̂Wðg0I3Þφ̂Bðg0I4Þφ̂†

Bðg1I Þφ̂†
Wðg2I Þφ̂†

Bðg3I Þφ̂†
Wðg4I Þj0i

¼
�Y4

I¼1

1

djI

�4

ðδm1
1
;n1

1
δm1

2
;n1

2
δm1

3
;n1

3
δm1

4
;n1

4
δm3

1
;n3

1
δm2

2
;n2

2
δ−m2

3
;n3

3
δm3

4
;n3

4

þ δm1
1
;n3

1
δm1

2
;−n2

2
δm1

3
;n3

3
δm1

4
;n3

4
δm3

1
;n1

1
δ−m2

2
;n1

2
δ−m2

3
;n1

3
δm3

4
;n1

4
Þ

× ðδm2
1
;n2

1
δm2

2
;n2

2
δm2

3
;−n1

3
δm1

4
;n1

4
δm4

1
;n4

1
δm4

2
;n4

2
δm1

3
;n3

3
δm3

4
;n3

4

þ δm2
1
;n4

1
δm2

2
;n4

2
δm2

3
;−n3

3
δm1

4
;n3

4
δm4

1
;n2

1
δm4

2
;n2

2
δm1

3
;n1

3
δm3

4
;n1

4
Þ;

where we have performed the Wick contractions and used
(21). If we now expand this last expression, we end up with
four products of δ’s which all give rise to either one of the
following relations,

δm1
3
;−m2

3
; δm1

4
;m3

4
: ð45Þ

None of these two relations can be satisfied, though, due to
the structure of the graph of the state (44). In fact, they

would both change the shell topology by creating two
disconnected regions in the boundary graph. Therefore, the
scalar product vanishes and the states (43) and (44) are
orthogonal. Due to the local action of the refinement
operators, similar relations follow when computing the
scalar product between any two eigenstates at given n
corresponding to the action of a sequence of refinement
operators generating two different graphs. This implies that
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all the eigenvectors ΨðnÞ
r ðΓαÞ of the total reduced density

matrix (48) are orthogonal for α ≠ α0. A similar calculation
shows that when α ¼ α0 (41) is again satisfied.
This seemingly unremarkable results has a very impor-

tant consequence, namely

ρðnÞr;s ðΓαÞΨðnÞ
r;s ðΓα0 Þ ¼

�
ΨðnÞ

r;s ðΓα0 Þ if α ¼ α0

0 if α ≠ α0;
ð46Þ

which implies that we can diagonalize the reduced
density matrix, since we have discovered its diagonal
form in terms of graphs, even in the case in which
the full sum over triangulations is kept. This result also
shows that the computation of the entanglement entropy,
at least in the particular corner of the Fock space that
we are exploring, becomes a classic “counting of graphs”
problem.

V. SEMICLASSICALITY CONDITIONS

Our construction so far is general, in the sense that it can
apply to any of the shells in the spacelike hypersurface of
our foliation, and thus to generic spherically symmetric
geometries. We now want to restrict our attention to a
horizon 2-sphere cross section, i.e., we want to be able to
interpret one of our shells as defining a spherical horizon,
and for this we need to specify horizon boundary con-
ditions. As we recalled in the introduction, in the standard
LQG black hole entropy calculation these boundary con-
ditions are specified by the notion of isolated horizon and
they are implemented in the quantum theory through the
imposition of the boundary conditions (1) (though most
often this is already implemented at a classical level).
In the context of the GFT condensate for a spherically

symmetric shell, imposition of the boundary condition (1)
amounts to a relation between the flux variable E1

associated to the r radial link (in the convention adopted
so far for the outer boundary of a shell) of a given vertex of
the shell and the holonomy around it, constructed out of the
group elements associated to the orthogonal remaining
links. The latter correspond to the group elements g2, g3, g4
of the fundamental field operator φ̂ðgIÞ. In fact, these are
the group elements which have the geometrical interpre-
tation of parallel transport from the center of a given
tetrahedron to its faces lying on the horizon. The identi-
fication of the horizon shell could then be implemented
through the construction of a second quantized curvature
operator around a given puncture to be interpreted as the
GFT holonomy operator around the radial link 1 of the
corresponding vertex. However, given the fundamentally
discrete nature of the GFT formalism and the lack of
continuum manifold structures to be used as auxiliary tools
to define quantum operators related to curvature, which
generically involve correlation across several graph vertices
and which correspond to intensive quantities from the GFT

many-body perspective, their precise definition for GFT
condensates remains one of the main open technical
challenges of this second quantization formalism.
Given this obstruction, we are not going to explicitly

impose IH boundary conditions in operatorial terms.
Instead, we are going to rely on a maximum entropy
argument in order to characterise the most generic horizon
shell geometry, as well as to capture some aspects
of the semiclassical dynamics in our so far purely kin-
ematical construction. Such treatment of the horizon semi-
classical regime seems natural in light of the laws of black
hole thermodynamics [4] and arguments for entropy
bounds [62,63].
The isolated horizon formalism still plays a role in our

entropy calculation. In fact, we check the compatibility
of the single vertex Hilbert space degeneracy obtained
through extremization of the global horizon entropy with
the constraint (1), in the semiclassical limit. Moreover, we
also require consistency with the thermodynamical proper-
ties of isolated horizons.
In addition to the notion of typicality, encoded in the

maximum entropy argument, there are other geometrical
requirements to be demanded in order to guarantee the
validity of a semiclassical regime, namely the following:
(1) large horizon shell boundary area;
(2) small horizon shell bulk volume;
(3) small fluctuations of the horizon shell geometrical

operators.
This last requirement is guaranteed by the factorization
property of the one-body geometrical operators (like area
and volume, see Sec. II A) in the large nr;s limit; from here
on we thus take nr0;s ≫ 1, with r0 denoting the horizon
shell. It also follows rather generically from the condensate
nature of our quantum states.

A. Holographic aspects of GFT black
hole condensates

Before proceeding with the black hole entropy calcu-
lation we need to identify the relevant degrees of freedom
which contribute to it. In order to understand better the
features of the quantum states we have constructed and of
their reduced density matrix, we recall here some basic
aspects of the holographic principle which is implemented
by it in a specific manner.
We can identify two notions of holography: strong and

weak [64]. In the strong version, the holographic principle
becomes a fundamental feature of quantum gravity, assert-
ing that all bulk degrees of freedom can be encoded on a
boundary screen. This is the point of view adopted for
instance in the AdS=CFT correspondence, when inter-
preted as an exact duality.
There are various arguments, however, to believe that in

a background independent quantum gravity approach only
a weaker notion of holography can survive [64]. In
particular, in a thermodynamical context where interactions
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between subsystems play a fundamental role, the causal
structure of a black hole diagram strongly suggests that the
only relevant degrees of freedom to account for the atomistic
description beyond macroscopic variables are those living in
the proximity of the horizon; in fact these are the only ones
in causal contact with the exterior subsystem and relevant for
the analysis of an external stationary observer. For these
reasons, we are going to invoke a weak holographic principle
in order to select the relevant reduced density matrix for the
black hole entropy calculation.
Let us recall that in Sec. IV we modeled, before

dynamical considerations were eventually implemented,
the three-dimensional foliation of a spherically symmetric
black hole geometry as a GFT pure condensate state
factorized as a product over components of different shells.
In particular, this means that refinement operators could act
independently on different shells, suggesting that indeed
strong holography is not realized at the microscopic level,
at least in the kinematical setting. Selection of the micro-
scopic degrees of freedom at the origin of the statistical
mechanical nature of the Bekenstein-Hawking area entropy
law thus requires us to trace out all bulk shells, both in the
exterior and the interior of the horizon shell r0.
Entanglement entropy calculations in QFT on a fixed

classical background might lead to the expectation that it
should be enough to trace out only part, but not all, of the
bulk Hilbert space in order to obtain a result that scales with
the area of the entangling surface [61]. However, this
expectation is borne out of examples in which gravity is
treated classically and entropy is associated to matter
degrees of freedom, not gravitational ones. As we have
argued above, in a general full quantum gravitational
regime holography has probably a weaker nature.
At the same time, one could consider a subclass of the

GFT condensate states we constructed in which nonlocal
correlations between different shells are introduced by the
imposition of some effective dynamics, which would allow
an entropy counting compatible with a stronger form of
holography. The extreme case of such a scenario would be
physical states for which the refinement operators on a
given shell are synchronized with those acting on all the
other shells at the same time. In this case the number of
boundary graphs would exhaust all the possible configu-
rations of bulk graphs as well: Each boundary graph is in
correspondence with just one graph in all the rest of the
bulk and there is no extra degeneracy. Such states are in fact
rather straightforward to construct.
Before proceeding, a few remarks are in order. At this

stage, there is no indication that such a specific sector is the
physically relevant one as this is ultimately dictated by the
quantum equations of motion, even considered in some
approximate form. The counting discussed in what follows,
obtained by tracing over all the bulk vertices outside of the
r0 shell, applies straightforwardly to this particular case of
strong holography.

Let us also point out that implementation of the weak
holographic principle does not automatically yield an area
law for the entropy. In fact, a priori the horizon reduced
density matrix could retain information about the rest of the
bulk. It is therefore a nontrivial property of our construction
the fact that, as seen above, by tracing out bulk degrees of
freedom, the resulting reduced density matrix of the
horizon is mixed but loses all the information about the
bulk beyond its existence.
In addition, as we see in a moment, there is also a further

holographic feature concerning the degeneracy associated
to the space of wave functions for the single-vertex Hilbert
space. This characteristic of our states is what we would
expect from a causal barrier, suggesting that the foliation of
space provided by our shell graphs could be naturally used
to mimic a foliation by null surfaces. This does not
obviously represent the most general case of foliation,
but it suits very well the description of a black hole horizon.
Moreover, if we were in a more general case where
information about the bulk had not been washed away
by the tracing operation, the implementation of weak
holography for the horizon density matrix would have
required some further restriction on the bulk wave func-
tions, for instance coming from the dynamics. Due to the
holographic nature of our particular states, such restriction
is automatically included. What remains to be checked is
the compatibility of these holographic states and their
associated geometrical data with the imposition of the
dynamics. This is far from trivial, as we have repeatedly
stressed, and it is left for future work.
Finally, it is also remarkable that we could find an

orthogonal set of eigenvectors for the horizon density
matrix (48). This allows us to diagonalize it and then,
due to the property (46), the calculation of the horizon von
Neumann entropy can be performed precisely, without
neglecting any entanglement contribution, and this corre-
sponds exactly to a statistical counting á la Boltzmann. We
have thus proven that the horizon entanglement entropy is
the same as the horizon Boltzmann entropy. Let us now
perform the counting.

VI. COMBINATORIAL CONTRIBUTION:
GRAPH COUNTING

Our states are defined via iterated action of refinement
moves on the seed of each shell. The generic parametriza-
tion (12) makes use of a generic function of two sets ðB;WÞ
of refinement operators. Written more explicitly,

�X∞
n¼0

Y
s

Yn
m¼1

ðan;mr0;Bs
cMr0;Bs þ an;mr0;Ws

cMr0;WsÞ
�
jτi: ð47Þ

The refinement move operators, together with the seed
state, specify the general class of possible microscopic
combinatorial structures, i.e., the specific portion of the
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Fock space, that we are exploring. The parameters a control
instead the relative weights of the different possible strings
of refinement move operators that can be applied to the
seed state. As we have said, we determine them following
some global considerations, making use of a maximum
entropy principle, appealing to typicality of the state given
some mild general constraints.
Let us clarify this point further. From the perspective of

macroscopic, large scale dynamics, making reference to the
detailed combinatorial structure of the state does not seem a
plausible approach. Instead, the state has to be determined
as the most general state compatible with global constraints
on topology, symmetry and semiclassicality. A statistical
approach based on typicality and maximum ignorance
seems to be more suitable, exploring as much as possible
the space of states that we have described so far, and
limiting the truncations to specific sectors of the GFT
kinematical space to the ones that respect mild constraints
associated to the physical regime we are interested in.
In Sec. IV B we have studied the properties of the

reduced density matrix, showing a basis of states diagonal-
izing it. We showed how the problem of computing the
entropy boils down to a (weighted) count of graphs, but we
did not proceed further in the counting. We now resume the
computation of the entropy by first evaluating the con-
tribution arising from the graph proliferation.
The action of the refinement moves, via the Wick’s

theorem, generate a linear superposition of states possess-
ing different combinatorial structure, according to each
particular sequence of Wick contractions. Let Gn be the set
of graphs that can be obtained via any sequence of n
refinement moves per shell component starting from the
given seed. The particular function in (12) then specifies a
set of weights wnðΓÞ, the coefficients entering the diagonal
of the reduced density matrix. The detailed dependence of
these weights on the coefficients a’s is not necessary, but
could be computed, in principle. Let us stress that the
assumption that at each step a given horizon component
gets refined with the same number of vertices as the other
two is here made mainly to simplify the notation and it
could be relaxed without affecting the final result of the
entropy counting.
We have already shown that, for a given boundary graph,

the reduced density matrix of the horizon takes the form
(37), where A ¼ r0 corresponds to the horizon shell,
including all its three components. As argued, this form
remains unchanged even when we trace away the whole
bulk degrees of freedom (both interior and exterior ones).
Therefore, we can write the total normalized reduced
density matrix of the shell for a given number n of
boundary vertices as

ρðnÞtot;r0 ¼
XN
α¼1

wnðΓαÞρðnÞr0 ðΓαÞ; ð48Þ

where N ¼ #Gn is the total number of shell graphs for a
given number of vertices (which are 2n, given the presence
of two colors for the vertices), obtained through all the

possible actions of the refinement operators. Here, ρðnÞr0 ðΓαÞ
is the reduced density matrix in (37).
The presence of several graphs (at fixed topology) results

into a combinatorial contribution to the entropy:

Scomb ¼ −
XN
α¼1

wnðΓαÞ log ðwnðΓαÞÞ: ð49Þ

As explained in Sec. V, we determine the weights wn [and
then, implicitly, the function Fr in (12)] by maximizing this
entropy. It is immediate to do so: the most disordered
configuration is the one in which the weights are all equal,

wmax
n ðΓÞ ¼ 1

N
; Smax

comb ¼ logðN Þ: ð50Þ

Therefore, the only thing left to determine is the size of the
set of graphs that can be obtained from the given set of
refinement moves.
The counting of the number of graphs generated by our

refinement moves can be easily performed using familiar
techniques. Let us focus on a given layer, for instance the
outer boundary of the horizon shell. Following the con-
vention adopted so far, let us suppress for a moment the
edges of color 1, whose only role is to connect the horizon
shell with the next one. They do not play a role in the
counting since the state is completely determined by the
specification of the combinatorial pattern of the gluings of
edges of colors 2, 3, 4. This effectively reduces the counting
problem to a counting of graphs obtained connecting
3-valent vertices (i.e., a lower dimensional problem, as
should be expected).
At a first inspection, following the reasoning in [65], one

would expect the counting of the boundary states to give us
the Catalan numbers (for D ¼ 2, in fact), as what we are
looking at is the refinement of a melonic graph with the
insertion of melons. However, some care is due in the case
of the shell boundaries. In fact, we have only two moves at
our disposal, inserting loops with colors (2,3) and (3,4)
only [see (8) and (9)]. The insertion of loops with colors
(2,4) would cause a crossing with an edge of color 1.
Therefore the strategy of [65] has to be slightly adapted.
Notice that the refinement moves can be seen as the

insertion of melons on links of color 2 and 4 only (this
corresponds to the addition of tetrahedra incident on the
same dual edge, i.e., the increase of the curvature around
that edge). Therefore, our problem can be seen as the
calculation of the number of ways in which we can insert,
into a line of color 2 (for instance), a string of pairs of nodes
connected according to our rules.
This is easily done using generating functions. Let u

be a real (or complex) parameter such that the Taylor
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coefficients of GðuÞ in 0, which we wish to determine, are
the number of graphs obtained acting with our moves; i.e.,
the nth coefficient is the number of graphs with n pairs of
nodes. The basic building blocks are 1PI graphs, which are
then combined to get all the graphs.
The equation for the 1PI part can be obtained by

inspection of the diagrammatics. We can obtain a recursion
relation observing that, due to the peculiar connectivity, the
only 1PI diagrams are the ones in which the first black
vertex and the last white vertex are connected by a line of
color 3. If this were not the case, one could cut the graph
into two disconnected components removing the link
between the white vertex connected with the first black
vertex and the next black vertex. Let us call ΣðuÞ the
function that generates the 1PI graphs. We have

GðuÞ ¼ 1

1þ ΣðuÞ : ð51Þ

However, it is easy to realize that ΣðuÞ ¼ uGðuÞ, as the
graphs that we would be counting are determined by all the
possible ways of inserting n − 1 pairs of nodes in the link
that would connect the first and last node of the 1PI graph.
The u prefactor keeps track of the initial pair to be inserted.
Therefore,

GðuÞ ¼ 1

1þ uGðuÞ : ð52Þ

The solution, differentiable in 0, is

GðuÞ ¼ −1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4u

p

2u
; ð53Þ

which, as indeed expected, is the generating function for
the Catalan numbers, namely

Ck ¼
ð2kÞ!

ðkþ 1Þ!k! : ð54Þ

Therefore, the number of distinct graphs obtained with n
refinement moves acting on l layers of the shell initial seed
state is

N ¼
� ð2n − 2Þ!
n!ðn − 1Þ!

�
l
: ð55Þ

As explained above, in the horizon entropy counting we
consider the most general case in which each layer is
refined independently, i.e., we set l ¼ 3. As it will be clear
in a moment, considering a subclass of states in which the
refinement proceeds in a more synchronized way among
the different layers (and which therefore implements also a
stronger form of holography) simply affects the numerical
coefficient in front of the logarithmic corrections, but not
the leading linear term.

Taking the large n limit of (55), in order to meet our
semiclassicality requirements, by means of the Stirling
formula we get

Smax
comb ¼ logðN Þ ¼ 2nl logð2Þ − l

2
logðnÞ: ð56Þ

It is interesting to note that this is not the first time that
Catalan numbers enter the calculation of black hole
entropy, see [66], albeit in a different context. We come
back to this later.

VII. FULL ENTROPY: FROM MACRO
TO MICRO

The graph counting quantifies the contribution of the
combinatorial degrees of freedom to the horizon entropy.
This is not the entire entropy of the reduced state. There is
also another, more geometrical, component which arises
from the information attached to each vertex by the wave
function: the degeneracy of the Hilbert space for a single
vertex,ΔðaÞ, for fixed values of the macroscopic quantities.
This quantity measures the size of the space of wave
functions compatible with our semiclassicality restrictions
(and solution of the dynamics equations). Since the geo-
metric and combinatorial components are independent, at
this (kinematical) stage of the construction, the total
horizon entropy is then

Sðn; aÞ ¼ log ðNΔðaÞÞ

¼ 2nl logð2Þ þ logðΔðaÞÞ − l
2
logðnÞ: ð57Þ

This is the entropy of reduced matrix of the most typical
state that we can construct with our special class of
condensates, at fixed number of vertices.4

The next step is to maximize this entropy at fixed value
of the classical area AIH of the horizon. Consider the
function

Σðn; a; λÞ ¼ Sðn; aÞ þ λðAIH − 2anÞ; ð58Þ

where λ is a Lagrange multiplier imposing the area
constraint. Necessary conditions for the maximization of
(58) are

∂Σ
∂λ ¼ AIH − 2an ¼ 0; ð59Þ

∂Σ
∂n ≈ 2l logð2Þ − 2λa ¼ 0; ð60Þ

4If the number of vertices is not fixed, an additional contri-
bution should be added to include the effect of the dispersion in
the number of vertices.
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∂Σ
∂a ¼ Δ0ðaÞ

ΔðaÞ − 2nλ ¼ 0; ð61Þ

where the prime indicates derivative with respect to a. In
(60) we have dropped a term of order 1=n, since we are in
the large n regime, as the semiclassicality conditions of
small fluctuations of the horizon geometrical properties
imply. These are three equations for the values of the three
quantities ðn; a; λÞ which maximize the entropy func-
tional (58).
We could solve them explicitly only if we knew the

expression the single vertex Hilbert space degeneracy Δ as
a function of a. In principle, its evaluation could be
achieved by the imposition of the isolated horizon boun-
dary condition, by computing the number of solutions to
that equation compatible with the dynamics. However, both
tasks, i.e., solving the isolated horizon boundary condition
and the equations of motion defining the microscopic
dynamics, are highly nontrivial and currently out of our
reach, as we had already emphasized.
Alternatively, we could turn the argument around and

use the three relations (59), (60), and (61) to get an explicit
expression of a and ΔðaÞ as functions ofAIH and λ. At this
point, then, we could require consistency with a further
semiclassical property of a black hole horizon, namely its
thermality, in order to determine the value of the Lagrange
multiplier λ and thus remove the last ambiguity left in our
entropy calculation. This gives a different twist to this
discussion, turning it into the inference of how certain
microscopic quantities should look if we want them to be
compatible with macroscopic observations. Following this
strategy, we obtain

a ¼ l logð2Þ
λ

; ð62Þ

Δ ¼ c0 exp ð2λanÞ ¼ c0 exp ðλAIHÞ; ð63Þ

where c0 is an integration constant left unspecified for the
moment. The horizon entropy we derive is then

SðAIHÞ ≈ 2λAIH −
l
2
log

�
AIH

l2
P

�
: ð64Þ

Notice that the solution (63) matches the expectation that
the dimension of the Hilbert space for the wave function at
fixed plaquette area should be finite once we implement the
semiclassicality conditions listed in Sec. V. In particular,
this would
(1) exclude degenerate (zero-volume) configurations

(which would be indeed incompatible with a rea-
sonable semiclassical limit);

(2) impose a finite volume of the shell, again consistent
with the semiclassical intuition.

In other words, we should expect that whenever ΔðaÞ
diverges, we should not be worried about possible prob-
lems in the calculation of the entropy since the geometry
would be highly problematic to be interpreted as a semi-
classical one in the first place.
We can go further in our attempt of determine the

properties of states that match the large scale behavior
of classical gravity. Since the semiclassical limit involves
large values of n, the area constraint (59) requires a to be
small. In the limit of a → 0, the IH boundary condition
fixes the holonomy around each radial link to be flat; this
can be achieved only if the spin labels of the tangent links
are 0. Therefore, in the limit a → 0 the wave function
should be a delta peaked on jI ¼ 0, which means Δð0Þ ∼ 1.
As soon as a > 0, ΔðaÞ should grow.5 These expectations
are matched by the Taylor expansion of the solution (63)
around a ¼ 0, if we fix the integration constant c0 ¼ 1,
namely

ΔðaÞ ∼ 1þ 2λan; ð65Þ

for small a.
The free parameter λ can now be fixed by requiring

consistency with the semiclassical thermodynamical con-
dition relating the derivative of the entropy with respect to a
local notion of energy at the horizon for fixed n to the
(inverse) Unruh6 1=TU ¼ βU ¼ 2π=ðl2

PκÞ ¼ 2πl=l2
P. In

the previous expression, l is a local stationary observer
proper distance and κ ¼ 1=l is its surface gravity. For this
purpose, we can use the local notion of energy introduced
in [68] for isolated horizons, namely

EIH ¼ AIH

8πl
: ð66Þ

Dropping a subdominant term (∝ 1=AIH), which becomes
immaterial for large enough areas, we get

βU ¼ 2πl
l2
P

¼ ∂S
∂EIH

¼ 8πl
∂S

∂AIH
≈ 16πlλ; ð67Þ

which leads, finally, to

λ ≈
1

8l2
P
: ð68Þ

5Notice that these arguments about semiclassical limits are
used only to constrain the functional dependence of ΔðaÞ on a;
there is no requirement that jl actually ever take the zero value,
which may be problematic from the quantum geometric point
of view.

6A geometric notion of temperature [39] can be associated to a
quantum IH by demanding the Kubo-Martin-Schwinger condi-
tion [67] to be satisfied for a subalgebra of the holonomy-flux �
algebra of LQG. In the large IH area this notion of temperature
coincides with the Unruh one.
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Therefore, consistency with the IH thermodynamical prop-
erties yields an entropy

SðAIHÞ ≈
AIH

4l2
P
−
3

2
log

�
AIH

l2
P

�
ð69Þ

whose leading term reproduces the Bekenstein-Hawking
formula; the numerical coefficient in front of the subleading
logarithmic correction comes from explicitly setting l ¼ 3
as argued above, and it matches the result of previous
calculations in LQG [27,29,69] as well as those performed
through CFT techniques [70].

VIII. CONCLUSIONS AND FINAL REMARKS

We now briefly summarize the results obtained and
observations made in this paper.
We have constructed, within the full quantum gravity

formalism of group field theory, a class of quantum states
that can be argued to describe (at least some key properties
of) continuum spherically symmetric geometries. We have
done this by making use of both its quantum geometric
aspects, shared with loop quantum gravity, and its combi-
natorial aspects, shared with random tensor models. We
have then imposed additional conditions on such states that
support an interpretation of them as containing horizons,
and thus describing black hole geometries. For such states,
we have then identified the microscopic degrees of freedom
contributing to the horizon entropy and computed the latter
explicitly. Under appropriate semiclassicality restrictions
and the assumption that the entropy is maximized, we have
recovered both a general area law and the exact Bekenstein-
Hawking value. The fact that our states are realistic
quantum states in the full theory, involving also a highly
nontrivial sum over graphs, including arbitrarily refined
ones, is one main improvement over the existing deriva-
tions of the same results in the loop quantum gravity
literature. Let us now mention a few additional interesting
aspects of our analysis and results.
The entropy result (69) is completely independent on the

Barbero-Immirzi parameter γ. This is a striking conse-
quence of the GFT formalism in its Fock representation and
the way in which it allows us to work with quantum gravity
states. More precisely, the GFT fundamental field operators
(2), encoding the state geometrical data in the collective
wave function σr for a given shell, represent the key
departing point from canonical LQG. It allows us to
introduce a well-defined number operator in the theory
and replace area eigenstates and eigenvalues for the
quantum horizon with condensate states and area expect-
ation values on a single-vertex state (which is the same for
each fundamental block due to the condensate hypothesis).
In this way, while γ still enters in the value of a, it
completely disappears in the final expression of the
entropy. Another way to understand the same important
point is that this is a consequence of our choice of states in a

second quantized formalism (reasonably simple conden-
sates), allowing us to do a microscopic counting of degrees
of freedom, while not using eigenstates of the total area
operator. The latter, customarily used in LQG, besides
being dubious as corresponding to semiclassical black hole
states, immediately introduce a dependence on the Barbero-
Immirzi parameter, since this appears inevitably in the area
spectrum. This also means that obtaining our results,
including this intriguing independence from the Barbero-
Immirzi parameter, has been facilitated greatly by the GFT
formalism, with its convenient organization of spin-
network states into a Fock space (with the mentioned
existence of a number operator), and the tools it provides
for handling sums over different triangulations/graphs. The
reason for this independence from the Barbero-Immirzi
parameter can also be traced back to the appearance of (63)
(see the related discussion in the text). It is not just the area
value that matters, but also the single-vertex density of
states. The calculations that we have given above suggest
that this should lead to terms compensating γ in the
physical quantities. They also suggest that LQG calcula-
tions might be overlooking an essential step, signaled by
the appearance of the Barbero-Immirzi parameter in
expressions for quantities that should be independent of
it, at least at the classical level. The evaluation of the
expectation values of operators on properly defined semi-
classical states (which are not necessarily eigenvectors of
the area operator for some fixed graphs structure) seems to
be a critical calculation, in this respect.
The graph basis provides, in this case, an orthonormal

basis for the reduced density matrix. This, together with the
holographic property of our states, allows us to compute the
horizon entanglement entropy exactly and prove the result

SVon Neumann ≡ −TrðρðnÞtot;r0 logðρ
ðnÞ
tot;r0ÞÞ

¼ logðN ðnÞÞ≡ SBoltzmann; ð70Þ

which then reduces to a relatively simple counting exercise.
As we have already mentioned, the particular class of states
that we have chosen, obtained by what are very close to be
melonic refinement of seed states, has a very specific
growth rate with the number of vertices. This growth has
also been considered in [66], in a different context and with
a different picture in mind. Despite all the limitations that
have been discussed, these results point at a specific
behavior for physical quantum gravity states describing
black holes. Together with the observation about the
disappearance of the Barbero-Immirzi parameter, related
to the density of physical states per vertex, these facts
suggest that the superposition of microscopic kinematical
configurations in the physical states cannot be neglected in
such calculations, and it might also have to be severely
constrained.
Following up on the last point, the dynamics has not yet

been used, essentially. Our results can be seen as general,
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therefore, only provided that the states we have used turn
out to be good representatives of the true microstates of
physical black holes, not only encoding in a more precise
manner the various properties that we expect from such
particular space-time geometries (at least semiclassically)
and that we have imposed only implicitly, but also solving
at least approximately the microscopic quantum dynamics
of the theory.
Given the experience in the cosmological setting, one

should expect that the imposition of the GFT equations of
motion will result in some nonlinear (set of) effective
equation(s) on the wave function and on the coefficients of
the linear combinations defining our quantum states in
terms of graphs. From the discussion above, it might be
relatively easy, once even only a qualitative understanding
of the structure of some of the solutions to the equations is
achieved, to check the compatibility of the dynamics with
macroscopic properties, as quantities as rate of growth of
graphs with the number of quanta are already rather
constrained. We leave this type of analysis for future work,
though.
The maximum entropy principle that we are used, itself,

may or may not be compatible with the full quantum
dynamics. At this stage, we use it to fix the shape of the
states given the available information and try to infer
consequences about the nature of the states, but nothing
more. It goes without saying that it would be even more
significant if we could recover this reasoning as an end
point of a calculation that starts from the microscopic
equations, especially given the deep relations between
gravity and thermodynamics.

ACKNOWLEDGMENTS

Research at the Perimeter Institute for Theoretical
Physics is supported in part by the Government of
Canada through Natural Sciences and Engineering
Research Council and by the Province of Ontario through
Ministry of Research, Innovation and Science.

APPENDIX: BASICS OF GFT FOCK SPACE

In this appendix we briefly summarize the necessary
ideas about group field theories that are needed in the main
body of the paper, in order to make the text as self-
contained as possible. We closely follow [45]. A more
thorough discussion can be found in [9,10].
In a nutshell, GFTs are a generalization of matrix models

for two-dimensional quantum gravity. They are quantum
field theories over group manifolds whose perturbative
expansion generates Feynman diagrams whose combina-
torial structure can be put in correspondence with trian-
gulations of higher dimensional manifolds. Besides
extending the combinatorial structure of the Feynman
rules, they include additional data which can be used to
store additional geometric information. In particular, these

data allow the construction of models which can be put in
correspondence with LQG and spin foam models. While
the formalism per se leaves considerable freedom for model
building, we restrict the discussion to the simplest models
that are relevant for 3þ 1 quantum gravity.
One possible presentation of GFTs is the one based on

the Fock space representation, which starts from the idea
that the basic building block of a theory, the elementary
quantum excitation, is a single four-valent spin network
vertex. The basic ingredients are group field ladder oper-
ators φ̂; φ̂†, defined over the group SUð2Þ4. The argument g
of one such field operator is then the tuple ðg1; g2; g3; g4Þ.
A geometric interpretation is then attached to this type of

data: each SU(2) argument is interpreted as the parallel
transport, induced by a gauge connection, from a four-
valent vertex to an end point of an edge emanating from it.
For consistency with this interpretation, then, a gauge
invariance property is enforced in terms of the invariance
of the field operators under diagonal right action of SU(2),

φ̂ðgkDiagÞ ¼ φ̂ðgÞ; kDiag ¼ ðk; k; k; kÞ; ∀ k ∈ SUð2Þ:
ðA1Þ

Notice that, with a slight abuse of notation, we refer to this
sort of gauge invariance by using directly the SU(2) group
elements, even when the diagonal action on SUð2Þ4 is
intended.
The algebra of bosonic ladder operators is determined

then by the commutation relations,

½φ̂ðgvÞ; φ̂†ðg0vÞ� ¼ ΔRðgv; g0vÞ; ðA2Þ

where we are using the following definition for the right-
invariant Dirac delta distribution on SUð2Þ4,

ΔRðgv; g0vÞ ¼
Z
SUð2Þ

dh
Y4
I¼1

δðgv;Ihg−1v0;IÞ; ðA3Þ

and δðgÞ denotes the ordinary delta function over a single
copy of SU(2).
The role of these ladder operators is then to create and

annihilate objects with all the properties of spin-network
vertices. Using the noncommutative Fourier transform on
these basic operators gives rise to a representation in which
the fundamental ladder operators correspond to elementary
quanta labeled with the data of quantum tetrahedra.
Generic states in the Fock space defined by these

representations, then, correspond to sets of quantum
tetrahedra or spin network vertices variously arranged.
Among these states there are the ones corresponding to
closed connected spin networks, or, equivalently, triangu-
lated three-dimensional manifolds. The properties of the
states can be encoded into wave functions, as usual. For
instance, a generic n-particle state can be written as
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jψi ¼
Z
ðSUð2Þ4Þn

Yn
i¼1

dgvi

�
ψðgv1 ;…; gvnÞ

Yn
i¼1

φ̂†ðgviÞ
�
j0i;

ðA4Þ

where j0i is the Fock vacuum. The wave function ψ
provides the bridge between GFT and the language of
LQG [10]. In particular, by controlling the dependence on
the group elements, the familiar wave functions of closed,
gauge invariant spin network attached to graphs can be
recovered.
This kinematic construction is completed by definition

of suitable dynamics, which we do not describe in detail
here. Typical choices for the equation of motion obeyed by
a physical state jΨi are

δS
δφ̄ðgÞ ½φ̂; φ̂

†�jΨi ¼ 0 ðA5Þ

where the action S is designed in such a way that the
Feynman expansion of the theory gives rise to diagrams
that can be put in correspondence with four-dimensional
simplicial complexes, decorated with appropriate geometric
data. The various kernels appearing in the field monomials,
then, can be adjusted to reproduce spin foam amplitudes.
The advantage of the Fock representation stems from the

fact that the equation of motion (A5) does not generically
single out states entirely contained in an eigenspace of the
Fock number operator. The Fock representation of the
theory makes it very easy to work with states which are
superpositions of states with a different number of quanta,
leveraging on the techniques familiar in the domains of
quantum optics and condensed matter physics. The ability
to do so is crucial if we want to obtain even an approximate
description of the continuum regime following from (A5),
where the notion of elementary quanta dissolves in the
continuum soup.
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