
 

Holographic Lifshitz superconductors: Analytic solution
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We construct an analytic solution for a one-parameter family of holographic superconductors in
asymptotically Lifshitz spacetimes. We utilize this solution to explore various properties of the systems
such as (1) the superfluid phase background and the grand canonical potential, (2) the order parameter
response function or the susceptibility, (3) the London equation, and (4) the background with a superfluid
flow or a magnetic field. From these results, we identify the dual Ginzburg-Landau theory including
numerical coefficients. Also, the dynamic critical exponent zD associated with the critical point is given by
zD ¼ 2 irrespective of the value of the Lifshitz exponent z.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT duality [1–4] has been a useful tool to
study realistic strongly coupled systems (see., e.g.,
Refs. [5–9] for textbooks). In condensed-matter applica-
tions, holographic superconductors provide particularly
useful “theoretical laboratories” [10–12]. They are useful
to explore not only standard aspects of a superconducting
transition but also various related phenomena such as
critical dynamics [13], defect formations [14–16], and
superfluid turbulences [17].
The holographic superconductors arise in a broad range

of gravitational theories with matter fields. From field
theory point of view, this is natural since a superconductor
is a robust phenomenon at low temperature. For example, it
arises not only in asymptotically AdS spacetimes but also
in asymptotically Lifshitz spacetimes [18,19], which is our
main focus in this paper.
A holographic superconductor is typically an Einstein-

Maxwell-complex scalar system. Such a system is hard to
solve, in general. One often needs either a numerical

computation or an approximation method, and there are
only a few analytic solutions [20–22]. In this paper, we
present an analytic solution for a one-parameter family of
holographic Lifshitz superconductors.
A holographic Lifshitz superconductor has three param-

eters ðp; z;ΔÞ, where p is the number of boundary spatial
dimensions, z is the Lifshitz exponent,1 andΔ is the scaling
dimension of the order parameter. In this paper, we consider
the case where
(1) p ¼ 3z, and
(2) Δ ¼ ðpþ zÞ=2, or the scalar mass m2 saturates the

Lifshitz Breitenlohner-Freedman (BF) bound [23].
These conditions still admit a one-parameter family of
theories, and these parameters are related by

p ¼ 3z; Δ ¼ 2z: ð1:1Þ

In this case, there is a simple analytic solution for the order
parameter at the critical point,

Ψ ¼ u2z

1þ u2z
; ð1:2Þ

where u is the inverse of the radial coordinate. The z ¼ 1
case, namely the AdS case, has been discussed in Ref. [22].
Below we utilize this solution to explore various properties
of these systems, e.g.,
(1) The background solution in the superfluid phase

(Sec. VA).
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1The parameter z is known as “dynamic critical exponent,” but
we call it “Lifshitz exponent” to avoid confusion with zD below.
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(2) The grand canonical potential, and the phase tran-
sition is second order (Sec. V B).

(3) The order parameter response function or the sus-
ceptibility. The dynamic response is obtained in
the normal phase (Sec. IV), and the thermodynamic
response is obtained in the superfluid phase
(Sec. V C).

(4) The London equation. From the equation, one gets
the London penetration depth and the imaginary part
of the conductivity has the 1=ω-pole which implies
the diverging DC conductivity (Sec. V D).

(5) The background solution with a vector potential.
This gives the critical superfluid velocity and the
critical magnetic field (Sec. VI).

(6) From these results, all static critical exponents
ðα; β; γ; δ; ν; ηÞ, the dynamic critical exponent zD,
and the ratio of critical amplitudes. These results are
consistent with the standard Ginzburg-Landau (GL)
theory or the ϕ4 mean-field theory. We identify the
dual GL theory including numerical coefficients
(Sec. VII A).

The holographic Lifshitz superconductors have been
studied previously, but it is still nice to analyze these
properties all at once analytically for an infinite number of
theories. First, in previous works, the system was studied
mostly using numerical methods. Second, the system was
studied only for some specific values of ðp; z;ΔÞ.2 Third,
some of the above properties were studied but not all were
studied.
In particular, previous works typically have shown that

(i) there exists aΨ ≠ 0 solution at low temperatures, (ii) the
solution is favorable from the free energy or from the grand
canonical potential, (iii) the spontaneous condensate has
the standard ϕ4 mean-field exponent β ¼ 1=2, and (iv) the
diverging DC conductivity.
On the other hand, the other properties are newly

investigated, e.g., the other critical exponents as well
as exact expressions for various numerical coefficients
including critical amplitudes. Also, the critical dynamics of
a holographic Lifshitz superconductor has never been
investigated.3 At a finite-temperature critical point, the
correlation length ξ and the relaxation time τ of the order
parameter obey a scaling law,

τ ∝ ξzD : ð1:3Þ

We obtain zD ¼ 2 irrespective of the value of the Lifshitz
exponent z. We discuss the relation between z and zD in
Sec. VII B.

II. PRELIMINARIES

A. Lifshitz black hole

The Lifshitz geometry [32] is given by

ds2pþ2 ¼ −
�
r
L

�
2z
dt2 þ

�
r
L

�
2

dx2i þ L2
dr2

r2
ð2:1Þ

(see, e.g., Ref. [33] for a review). The geometry is invariant
under an anisotropic scaling

t → azt; xi → axi; r → r=a: ð2:2Þ
There are various Lifshitz black hole solutions known in the
literature, both analytically and numerically, depending on
bulk theories. We use the solution in Refs. [34,35]. The
metric is given by

ds2 ¼ −
�
r
L

�
2z
hdt2 þ

�
r
L

�
2

dx2i þ L2
dr2

r2h
; ð2:3aÞ

¼ −
�
rh
L

�
2z h
u2z

dt2 þ
�
rh
L

�
2 dx2i
u2

þ L2
du2

u2h
; ð2:3bÞ

h ¼ 1 −
�
rh
r

�
pþz

¼ 1 − upþz; ð2:3cÞ

where u ≔ rh=r, and rh is the horizon radius. The metric is
invariant under the Lifshitz scaling (2.2) with the scaled
horizon radius rh → rh=a. The Hawking temperature is
given by

T ¼ pþ z
4πL

�
rh
L

�
z
: ð2:4Þ

The metric can be obtained as a solution of an Einstein-
Maxwell-dilaton system,4

S ¼ 1

16πGpþ2

Z
dpþ2x

ffiffiffiffiffiffi
−g

p �
R − 2Λ

−
1

2
ð∂MϕÞ2 −

1

4
eλϕF 2

MN

�
; ð2:5Þ

where Gpþ2 is the (pþ 2)-dimensional Newton’s constant
and

2For example, Ref. [18] considers the ðp; zÞ ¼ ð2; 3=2Þ case
and obtains a charged Lifshitz black hole with scalar hair. The
other works typically take the probe limit to study the system.
Reference [19] considers the ðp; z;ΔÞ ¼ ð2; 2; 3Þ case in a
Lifshitz black hole background [24]. Reference [25] considers
the ðp; z;ΔÞ ¼ ð2; 2; 3Þ; ð2; 2; 4Þ cases in the same Lifshitz black
hole background as ours. Reference [26] considers ðp; z;ΔÞ ¼
ð2; 2; 2Þ, (2,2,3), (3,2,3), (3,3,3) cases in the same Lifshitz black
hole background as ours. As far as we are aware, our ðp; z;ΔÞ ¼
ð3z; z; 2zÞ case was not studied before.

3Dynamics in Lifshitz geometry has been studied, e.g., in
Refs. [27,28]. Critical dynamics has been studied in holography,
e.g., in Refs. [13,29–31].

4We use capital Latin indices M;N;… for the (pþ 2)-
dimensional bulk spacetime coordinates and use Greek indices
μ; ν;… for the (pþ 1)-dimensional boundary coordinates. The
boundary coordinates are written as xμ ¼ ðt; xiÞ ¼ ðt; x; y; � � �Þ.
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Λ ¼ −
ðpþ z − 1Þðpþ zÞ

2L2
; λ2 ¼ 2p

z − 1
; ð2:6aÞ

FMN ¼ 2∂ ½MAN�: ð2:6bÞ

The matter field solutions are given by

eλϕ ¼ u2p; ð2:7aÞ

At ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þ
pþ z

s
1

upþz : ð2:7bÞ

But for our purpose, the point using this solution is that (i) it
provides an analytic Lifshitz black hole solution, and (ii) a
class of holographic superconductors in this background
admits an analytic solution.

B. Holographic Lifshitz superconductors

We couple an additional matter system, a Maxwell-
complex scalar system, in addition to the above system
[18,19],

S¼−
1

e2

Z
dpþ2x

ffiffiffiffiffiffi
−g

p �
1

4
F2
MNþjDMΨj2þVðΨÞ

�
; ð2:8Þ

where

FMN ¼ 2∂ ½MAN�; DM ≔∇M− iAM; V¼m2jΨj2:
ð2:9Þ

The Uð1Þ-field AM is different from AM in Eq. (2.5).
We take the probe limit e ≫ 1, where the backreaction of

these matter fields onto the geometry is ignored. Namely,
we solve the system (2.8) in the background (2.3). The
equations of motion are given by

ðD2 −m2ÞΨ ¼ 0; ð2:10aÞ

∇NFMN ¼ jM ð2:10bÞ

≔ igMN ½ðDNΨÞ†Ψ −Ψ†ðDNΨÞ�: ð2:10cÞ

In the Au ¼ 0 gauge, the asymptotic behaviors of the matter
fields are given by

At ∼ Að0Þ
t þ Að1Þ

t ũp−z; ðp > zÞ; ð2:11aÞ

Ai ∼ Að0Þ
i þ Að1Þ

i ũpþz−2; ð2:11bÞ

Ψ ∼Ψð0ÞũΔ− þ Ψð1ÞũΔþ ; ð2:11cÞ

ũ ≔
L
r
; ð2:11dÞ

Δ� ≔
pþ z
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ zÞ2

4
þ L2m2

r
; ð2:11eÞ

where Að1Þ
t represents the charge density ρ, and Að0Þ

t ¼ μ is

the chemical potential. Similarly, Að1Þ
i represents the current

density Ji, and Að0Þ
i is the vector potential. For Ψ, Ψð1Þ

represents the order parameter O, and Ψð0Þ is the external
source for O. (See Appendix A for the precise dictionary.)
Then, the BF bound in the asymptotically Lifshitz geom-
etry is given by

m2
BF ¼ −

ðpþ zÞ2
4L2

: ð2:12Þ

When the BF bound is saturated, the asymptotic behavior is
replaced by

Ψ ∼Ψð0ÞũΔ ln ũþ Ψð1ÞũΔ; Δ ≔
pþ z
2

: ð2:13Þ

The equations of motion (2.10) admit a solution

At ¼ μð1 − up−zÞ; ðp > zÞ; ð2:14aÞ

Ai ¼ Au ¼ 0; ð2:14bÞ

Ψ ¼ 0; ð2:14cÞ

where boldface letters indicate background values. But,
at the critical point, the Ψ ¼ 0 solution becomes unstable
and is replaced by a Ψ ≠ 0 solution. We see this in
detail below.

III. CRITICAL POINT

Below we consider the case p ¼ 3z. It is convenient to
introduce a new coordinate s ≔ u2z. The metric then
becomes5

ds2¼−
�
rh
L

�
2z h
s
dt2þ

�
rh
L

�
2dx2i
s1=z

þ
�
L
2z

�
2ds2

s2h
; ð3:1aÞ

h ¼ 1 − s2: ð3:1bÞ

We consider the scalar which saturates the Lifshitz BF
bound m2 ¼ −ð2z=LÞ2. The scaling dimension Δ is given
by Δ ¼ 2z. First, consider the static homogeneous solution
Ψ ¼ ΨðsÞ, and approach the critical point from high
temperature. Near the critical point, the scalar field Ψ
remains small, and one can ignore the backreaction of Ψ
onto the Maxwell field. In this region, one can use

5It is well known that the z ¼ ∞ limit of the Lifshitz geometry
is AdS2 × IRp asymptotically. But this is the case for a finite p. In
our case, p ¼ 3z, and the z ¼ ∞ limit does not reduce to AdS2.
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Eq. (2.14) for the Maxwell field, and it is enough to solve
the Ψ-equation.6 The Ψ-equation becomes

∂s

�
h
s
∂sΨ

�
þ
��

μ

2πT

�
2 ð1 − sÞ2

hs2
þ 1

s3

�
Ψ ¼ 0; ð3:2Þ

T ¼ z
πL

�
rh
L

�
z
: ð3:3Þ

Thus, the solution is parametrized by a dimensionless
parameter μ=T. The equation admits a solution

Ψ ∝
s

1þ s
; at

�
μ

T

�
c
¼ 2π;

or
μ

1
L ðrhLÞz

¼ 2z: ð3:4Þ

This is the solution at the critical point.
The z-dependence disappears in Eq. (3.2), and it only

appears implicitly in the definition of T. One can under-
stand this as follows. For the static homogeneous solution,
the Laplacian becomes

∇2Ψ ¼ 1ffiffiffiffiffiffi−gp ∂sð
ffiffiffiffiffiffi
−g

p
gss∂sΨÞ: ð3:5Þ

The z-dependence appears in the boundary spatial metric
gij, and it appears only through det g. But in our case,

− det g ∝ s−3−p=z ¼ s−6; ð3:6Þ

so p and z disappear. The metric gss is also proportional to
z2, but it is factored out in the Ψ-equation since m2 ∝ −z2
and 1=T2 ∝ 1=z2. It then follows that the Ψ-equation
formally reduces to the same equation for all z.
Note that Eq. (3.4) is the solution directly at the critical

point. As one lowers temperature further, the solution is
modified, and we construct the background solution Ψ, At
in Sec. V. The z-dependence can also be eliminated from
the At-equation [by redefining Ψ and At as in Eq. (3.9).]
Thus, the static homogeneous solution is essentially the
same as the z ¼ 1 case apart from various factors of ð2zÞ.
Then, from the analysis of Ref. [22], Eq. (3.4) is the
solution at the critical point, and the solution has a lower
grand canonical potential than the Ψ ¼ 0 solution at low
temperature.
However, the full equations of motion do not reduce to

the same equations as the z ¼ 1 case. In general, more
nontrivial z-dependence appears. For example, they appear
when one considers

(i) inhomogeneous perturbations in the boundary spa-
tial directions, e.g., δϕ ∝ eiqx (Sec. IV), or

(ii) perturbations or solutions with a vector potential Ai
(Secs. V D and VI).

Below we construct the background solution Ψ, AM. We
also consider the linear perturbations from the background,

Ψ ¼ Ψþ δΨ; ð3:7aÞ
AM ¼ AM þ δAM: ð3:7bÞ

We take the gauge As ¼ δAs ¼ 0. We consider the pertur-
bations of the form

δϕðkÞ ∼ e−iωtþiqx; ð3:8Þ
where kμ ¼ ðω; q; 0;…Þ. Then, the Maxwell perturbations
are decomposed as

(i) vector modes, e.g., δAy, and
(ii) scalar modes δAt, δAx which can couple to δΨ, in

general.
For simplicity, we set e ¼ L ¼ rh ¼ 1 below. In this unit,
μc ¼ 2z, and we vary the chemical potential μ. Also, we
often use quantities with “ ¯ ”. All quantities with “ ¯ ” are
defined by

ϕ̄ ≔
ϕ

2z
; ð3:9Þ

when rh ¼ 1. For example, μ̄c ¼ 1. We restore units for
some of our main results in Appendix C.

IV. HIGH-TEMPERATURE PHASE

At high temperature, the background solution is given by

At ¼ μð1 − sÞ; ð4:1aÞ

Ai ¼ 0; ð4:1bÞ

Ψ ¼ 0: ð4:1cÞ

The interesting quantity in the high-temperature phase is
the “order parameter response function,” the susceptibility,
or the correlation function of the order parameter. We show
that the response function takes the form

χk ¼
δOðkÞ
δΨð0ÞðkÞ

∝
1

− 2i
cKΓ

ωþ q2 þ 1
ξ2
; ð4:2aÞ

ξ2 ∝ jϵμj−1; ð4:2bÞ

for a small ðω; q; ϵμÞ, where ϵμ ≔ μ − μc, and cK and Γ are
parameters we use to compare with GL theory (Sec. VII A).
The function gives the following information:

6We later use a perturbative expansion for a systematic analysis
(Sec. VA).
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(i) The ω ¼ q ¼ 0 limit is the thermodynamic response
function

χT ¼ A=jϵμj; ð4:3aÞ
where the coefficient A is known as the critical
amplitude. Then, the exponent γ defined by χT ∝
jϵμj−γ is γ ¼ 1.

(ii) The ω ¼ 0 limit is the static response

χω¼0;q ∝ ðq2 þ ξ−2Þ−1: ð4:3bÞ
Then, ξ is the correlation length, and the exponent ν
defined by ξ ∝ jϵμj−ν is ν ¼ 1=2 from Eq. (4.2b).
Also, the anomalous exponent η defined by
χω¼0;qjμc ∝ q−2þη is η ¼ 0.

(iii) The ω ≠ 0 case is the dynamic response. Then, the
relaxation time behaves as

τq¼0 ∝ ξ2; ð4:3cÞ
and the dynamic critical exponent zD defined by
τq¼0 ∝ ξzD is zD ¼ 2.

Thus, the computation determines the exponents
ðγ; ν; η; zDÞ as well as the critical amplitude A. An explicit
solution is not really necessary to compute critical expo-
nents, and analytic arguments are possible [13,16]. On the
other hand, an explicit solution is useful to obtain various
numerical coefficients such as A.
The response function can be obtained from the bulk

scalar field Ψ. Consider the linear perturbation from the
background Ψ ¼ Ψþ δΨ. From the bulk point of view, the
response function pole corresponds to a quasinormal pole
of δΨ. When Ψ ¼ 0, Maxwell scalar modes δAt and δAx
decouple from the δΨ-equation.7 Thus, to determine the
order parameter response, it is enough to consider the
δΨ-equation,

∂s

�
h
s
∂sδΨ

�
þ
�ðĀtþ ω̄Þ2

hs2
−

q̄2

s3−1=z
þ 1

s3

�
δΨ¼0: ð4:4Þ

Asymptotically, we impose the boundary condition
δΨðs → 0Þ ¼ δΨð0Þs ln s=ð2zÞ. At the horizon, we impose
the incoming-wave boundary condition.
The δΨ perturbation cannot be solved for a generic μ, so

we set ϵ̄μ ¼ μ̄ − 1 < 0 and employ the ϵ̄μ-expansion as well
as the ðω; qÞ-expansion:

δΨðs; kÞ ¼ ð1 − sÞ−iω̄=2
× ððψc þ ϵ̄μψϵ þ � � �Þ þ ω̄ψω þ q̄2ψq þ � � �Þ:

ð4:5Þ

This form is taken to implement the incoming-wave
boundary condition. Then, the boundary condition reduces
to the regularity condition for ψc and so on. The equation of
motion reduces to

Lψψc ¼ 0; ð4:6aÞ

Lψψ i ¼ jiðψcÞ; ð4:6bÞ

where

Lψ ¼ ∂s

�
h
s
∂s

�
þ
�ð1 − sÞ2

hs2
þ 1

s3

�
;

and the index i collectively represents ϵ, ω, and q. The
homogeneous equation Lψψc ¼ 0 can be solved as

ψc ¼ c1
s

1þ s
þ c2

s
1þ s

ln

�
s

ð1 − sÞ2
�
: ð4:7Þ

From the regularity at the horizon, c2 ¼ 0.
The source terms of inhomogeneous equations then

become

jϵ ¼ −
2ð1 − sÞ
sð1þ sÞ2 c1; ð4:8aÞ

jω ¼ −4 − ið1þ sÞ
2sð1þ sÞ2 c1; ð4:8bÞ

jq ¼
1

s2−1=zð1þ sÞ c1: ð4:8cÞ

The ψϵ and ψω solutions are

ψϵ ¼ −c1
s

1þ s

�
−
1

2
ln sþ lnð1þ sÞ

�
ð4:9aÞ

∼ c1
1

2
s ln s ðs → 0Þ; ð4:9bÞ

ψω ¼ c1
s

4ð1þ sÞ fð3þ iÞ ln s − 2 lnð1þ sÞg ð4:9cÞ

∼ c1
3þ i
4

s ln s ðs → 0Þ: ð4:9dÞ

For ψq, we discuss the z ¼ 1 and z ≠ 1 cases separately.

7The Maxwell scalar modes give a diffusion pole, and one can
determine the diffusion constant. But at high temperature, the
computation is not unique to holographic superconductors. It is
just a Maxwell field problem in the Lifshitz background. The
Maxwell vector mode can determine the conductivity. Again, at
high temperature, the computation is not unique to holographic
superconductors. But we compute the vector mode in the low-
temperature phase. The OðωÞ-coefficient is common both to the
high-temperature and the low-temperature phases.
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A. z= 1

The ψq solution is given by

ψq ¼ −c1
1

2ð1þ sÞ s ln s ð4:10Þ

∼ −c1
1

2
s ln s ðs → 0Þ: ð4:11Þ

The asymptotic behavior then becomes

δΨ∼ c1ð1− sÞ−iω̄=2

×

�
−
1

2

�
q̄2 −

3þ i
2

ω̄þ jϵ̄μj þ � � �
�
s ln sþ sþ � � �

�
:

ð4:12Þ

The asymptotic boundary condition determines c1. Then,
the order parameter response function becomes

χ>ω;q ¼
δO

δΨð0Þ ¼
2

1
2
q2 − 3þi

2
ωþ jϵμj

; ð4:13Þ

where we use the dictionary in Appendix A. The response
function indeed takes the form of Eqs. (4.2), and

ξ2> ¼ 1

2jϵμj
; ð4:14aÞ

A> ¼ 2: ð4:14bÞ
The dispersion relation is given by

ω ¼ 3 − i
5

�
jϵμj þ

1

2
q2 þ � � �

�
: ð4:15Þ

The relaxation time τ then becomes

τ−1 ¼ 1

5
jϵμj ¼

1

10
ξ−2> : ð4:16Þ

B. z > 1

In this case, we are not able to obtain the generic
expression for ψq. Besides, even when the analytic expres-
sion is available, it is too cumbersome to write here.
However, the slow falloff has a simple expression,

ψ ð0Þ
q ¼ −c1IðzÞ; ð4:17aÞ

IðzÞ ≔
Z

1

0

ds

s1−1=zð1þ sÞ2 ð4:17bÞ

¼ 1

2
þ 1

2

�
1 −

1

z

�

×

�
ψ0

�
1

2z
þ 1

2

�
− ψ0

�
1

2z

��
; ð4:17cÞ

where ψ0ðxÞ is the digamma function:

ψ0ðxÞ ¼
d
dx

lnΓðxÞ: ð4:18Þ

A few examples of IðzÞ are

Ið1Þ ¼ 1

2
;

Ið2Þ ¼ 1

2
þ π

4
≈ 1.285;

Ið3Þ ¼ 1

2
þ 2

3

�
ln 2þ πffiffiffi

3
p

�
≈ 2.171:

The combination IðzÞ=z monotonically increases with z
and reaches 1 for z → ∞. In order to obtain the falloff, we
essentially used the standard method to solve an inhomo-
geneous differential equation (Appendix B).
Then, the order parameter response function becomes

χ>ω;q ¼
2

IðzÞ
z q2 − 3þi

2
ωþ jϵμj

; ð4:19Þ

which gives

ξ2> ¼ IðzÞ=z
jϵμj

; ð4:20aÞ

A> ¼ 2: ð4:20bÞ

The dispersion relation is given by

ω ¼ 3 − i
5

�
jϵμj þ

IðzÞ
z

q2 þ � � �
�
: ð4:21Þ

The relaxation time is given by

τ−1 ¼ 1

5
jϵμj ¼

IðzÞ
5z

ξ−2> : ð4:22Þ

C. z ≫ 1

For large z,

IðzÞ ≈ z; ð4:23Þ
so

χ>ω;q ≈
2

q2 − 3þi
2
ωþ jϵμj

; ð4:24aÞ

ω ≈
3 − i
5

ðjϵμj þ q2 þ � � �Þ; ð4:24bÞ

ξ2> ≈
1

jϵμj
; τ−1 ¼ 1

5
jϵμj ≈

1

5
ξ−2> : ð4:24cÞ

MAKOTO NATSUUME and TAKASHI OKAMURA PHYS. REV. D 97, 066016 (2018)

066016-6



V. LOW-TEMPERATURE PHASE

In the low-temperature phase, our task is
(1) to construct the background,
(2) to show that the Ψ ≠ 0 solution has a lower grand

canonical potential, and
(3) to derive the London equation. (This establishes that

the Ψ ≠ 0 phase is a superconducting phase.)

A. Background solution

The solution (1.2) is the solution only at the critical
point, and we first construct the background solution in the
low-temperature phase. As mentioned in Sec. III, the
construction is essentially the same as the z ¼ 1 case [22].
Consider the solution of the form

Ψ ¼ ΨðsÞ; At ¼ AtðsÞ; Ai ¼ As ¼ 0: ð5:1Þ

The equations of motion are given by

∂s

�
h
s
∂sΨ̄

�
þ
�
Ā2
t

hs2
þ 1

s3

�
Ψ̄ ¼ 0; ð5:2aÞ

∂2
sĀt ¼

2

hs2
Ψ̄2Āt; ð5:2bÞ

Ψ†Ψ0 −Ψ†0Ψ ¼ 0: ð5:2cÞ

One can set Ψ to be real. We construct the background
perturbatively,

Ψ̄ ¼ ϵ1=2ðΨ1 þ ϵΨ2 þ � � �Þ; ð5:3aÞ

Āt ¼ Φ0 þ ϵΦ1 þ ϵ2Φ2 þ � � � ; ð5:3bÞ

where ϵ is a small parameter whose meaning will be clear in
a moment. From Sec. III, we already know

Φ0 ¼ 1 − s; ð5:4aÞ

Ψ1 ¼
s

1þ s
: ð5:4bÞ

To proceed to higher orders in ϵ, we impose the
boundary conditions following Ref. [22]:

(i) Ψn: Asymptotically, no slow falloff and no fast

falloff, or Ψð0Þ
n ¼ Ψð1Þ

n ¼ 0 (for n ≥ 2). The former
means the condition for a spontaneous condensate.
The latter means that O comes only from Ψ1. At the
horizon, we impose the regularity condition.

(ii) Φn: Φnðs ¼ 1Þ ¼ 0 at the horizon.
Namely, we fix the fast falloffO, but the chemical potential
is corrected as

μ̄ ¼ 1þ ϵδμ̄1 þ ϵ2δμ̄2 þ � � � : ð5:5Þ

Under these boundary conditions,

Ψ̄ ∼ ϵ1=2s; ð5:6Þ

so ϵ1=2 represents the order parameter O. We impose
four boundary conditions in total, which completely
fixes the solution. For example, Φ1 and Ψ2 have four
integration constants, and they are determined by the
four conditions.
At OðϵÞ,

Φ1 ¼ δμ̄1ð1 − sÞ − sð1 − sÞ
2ð1þ sÞ ð5:7Þ

∼ δμ̄1 þ ð−1=2 − δμ̄1Þsþ � � � ; ð5:8Þ

where we imposed the boundary conditionΦ1ðs ¼ 1Þ ¼ 0,
and δμ̄1 is the remaining integration constant. It is fixed at

Oðϵ3=2Þ from the condition that Ψð0Þ
2 ¼ 0.

At Oðϵ3=2Þ, there are two more integration constants and
δμ̄1. After imposing the boundary condition at the horizon

and the Ψð1Þ
2 ¼ 0 condition, one obtains

Ψ2 ¼ −
s2

3ð1þ sÞ2 ð5:9Þ

þ
�
δμ̄1 −

1

12

�
s ln s

2ð1þ sÞ þ
�
1

4
− δμ̄1

�
s lnð1þ sÞ

1þ s

∼
1

2

�
δμ̄1 −

1

12

�
s ln s; ð5:10Þ

so the remaining no slow falloff condition Ψð0Þ
2 ¼ 0 gives

δμ̄1 ¼ 1=12. Then, at OðϵÞ, the chemical potential
becomes

μ̄ ¼ Ātjs¼0 ¼ 1þ 1

12
ϵþ � � � ; ð5:11Þ

so ϵ is determined as

ϵ ¼ 12ϵ̄μ ¼ 12ϵμ=ð2zÞ: ð5:12Þ

Thus,

O ¼ −ð2zÞϵ1=2 ¼ −ð24zϵμÞ1=2; ð5:13Þ

and the critical exponent β ¼ 1=2. More generally,

Að0Þ
t gives the GL equation of motion (Secs. V C and

VII A).
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At Oðϵ2Þ,

Φ2 ¼ −
ð1 − sÞ

1728ð1þ sÞ2 ð253þ 842sþ 253s2Þ

þ 1

36
ð7 − 13sÞ ln 2þ lnð1þ sÞ

3ð1þ sÞ ð5:14Þ

∼
−253þ 336 ln 2

1728
þ 493 − 624 ln 2

1728
sþ � � � ð5:15Þ

¼ δμ̄2 þ
�
373

864
−
5

9
ln 2þ δμ̄2

�
sþ � � � ; ð5:16Þ

δμ̄2 ¼
−253þ 336 ln 2

1728
: ð5:17Þ

Again, we determine an integration constant δμ̄2 at Oðϵ5=2Þ
from the condition Ψð0Þ

3 ¼ 0. The expression for Ψ3 is too
cumbersome to write here.

B. Grand canonical potential

We use the Lorentzian formalism to evaluate the grand
canonical potential Ω. (Note SE ¼ βΩ ¼ −SL.) The matter
on-shell action is given by

SOS ¼
Z

dpþ1x

�
−
p − z
2

Að0Þ
t Að1Þ

t

þ
Z

1

0

du
ffiffiffiffiffiffi
−g

p
gttA2

t jΨj2
�
: ð5:18Þ

We are interested in the grand canonical potential of the
spontaneous condensate, or the solution with Ψð0Þ ¼ 0, so
the boundary term from Ψ vanishes.
We evaluate the difference of the grand canonical

potential between the Ψ ¼ 0 solution and the Ψ ≠ 0
solution. We fix the chemical potential as μ̄ ¼ 1þ
ϵδμ̄1 þ ϵ2δμ̄2 þ � � �, where δμ̄1 and δμ̄2 are obtained in
the previous subsection. It turns out that δSOS ¼ 0 at OðϵÞ,
so we evaluate the difference atOðϵ2Þ. This implies that one
has to take into account up to Oðϵ2Þ of At in order to
evaluate the above boundary action.
For the Ψ ¼ 0 solution,

Āt ∼ ð1þ ϵδμ̄1 þ ϵ2δμ̄2 þ � � �Þð1 − sÞ: ð5:19Þ

In this case, only the boundary action contributes since
Ψ ¼ 0. The on-shell action becomes

SΨ¼0 ¼ βVpð2zÞ3
�
1

2
þ δμ̄1ϵþ

1

2
ðδμ̄21 þ 2δμ̄2Þϵ2 þ � � �

�
ð5:20Þ

¼ βVpð2zÞ3
�
1

2
þ ϵ

12

þ
�
−

247

1728
þ 7

36
ln 2

�
ϵ2 þ � � �

�
; ð5:21Þ

where β is the inverse temperature, and Vp is the boundary
spatial volume. For the Ψ ≠ 0 solution,

SΨ≠0 ¼ βVpð2zÞ3
�
1

2
þ δμ̄1ϵ ð5:22Þ

þ
�
−

181

1728
−
1

4
δμ̄1 þ

1

2
δμ̄21 þ

7

36
ln 2

�
ϵ2 þ � � �

�

¼ βVpð2zÞ3
�
1

2
þ ϵ

12

þ
�
−

211

1728
þ 7

36
ln 2

�
ϵ2 þ � � �

�
: ð5:23Þ

Thus, the difference is

δSOS ¼ SΨ≠0 − SΨ¼0 ¼ βVp
z3

6
ϵ2 ¼ −βδΩ; ð5:24Þ

⇒
δΩ
Vp

¼ −6zϵ2μ: ð5:25Þ

δΩ < 0, so the Ψ ≠ 0 solution is favorable. The difference
is proportional to ϵ2μ ¼ ðμ − μcÞ2 ∝ ðTc − TÞ2, which
implies the second-order phase transition. (The difference
and its first derivative are continuous, but the second
derivative is discontinuous.) The specific heat Cμ behaves
as Cμ ¼ −T∂2Ω=∂T2 ∝ T, which determines the critical
exponent α ¼ 0, where α is defined by Cμ ∝ ðTc − TÞ−α.

C. Background with source

We construct the background without the source of the
order parameter, but it is straightforward to extend the
construction to the background with the source. Going back
to Eq. (5.27), we obtained

Ψ2 ¼ −
s2

3ð1þ sÞ2 ð5:26Þ

þ
�
δμ̄1 −

1

12

�
s ln s

2ð1þ sÞ þ
�
1

4
− δμ̄1

�
s lnð1þ sÞ

1þ s

∼
1

2

�
δμ̄1 −

1

12

�
s ln s; ð5:27Þ

so the asymptotic behavior becomes

Ψ̄ ∼
1

2

�
δμ̄1 −

1

12

�
ϵ3=2s ln sþ ϵ1=2s: ð5:28Þ
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Previously, we imposed the source-free conditionΨð0Þ ¼ 0,
which gives δμ̄1 ¼ 1=12. We now allow Ψð0Þ ≠ 0. The
chemical potential is given by μ̄ ¼ 1þ ϵδμ̄1. At the critical
point, μ̄ ¼ 1, so δμ̄1 ¼ 0. From the asymptotic behavior
(5.28), O ∝ ϵ1=2 and Ψð0Þ ∝ ϵ3=2. Then, the exponent δ
defined by O ∝ ðΨð0ÞÞ1=δ (at μ ¼ μc) is δ ¼ 3.
One can evaluate the thermodynamic response function

at low temperature. By imposing our boundary conditions,

Ψ̄ð0Þ ¼ z

�
δμ̄1 −

1

12

�
ϵ3=2: ð5:29Þ

The chemical potential is then determined as

μ̄ ¼ 1þ ϵδμ̄1 ¼ 1þ 1

12
ϵþ Ψ̄ð0Þ

zϵ1=2
; ð5:30Þ

which is rewritten as

ϵ̄μ ¼
1

12
ϵþ Ψ̄ð0Þ

zϵ1=2
: ð5:31Þ

This is essentially the GL equation of motion (Sec. VII A).
For a fixed μ, this gives

dϵ ¼ −
12

zϵ1=2
dΨ̄ð0Þ þOðΨ̄ð0ÞdϵÞ: ð5:32Þ

Thus,

χ<T ¼ ∂O
∂Ψð0Þ

				
Ψð0Þ¼0

¼ dO=dϵ

dΨð0Þ=dϵ

				
Ψð0Þ¼0

¼ 12

2zϵ
¼ 1

ϵμ
; ð5:33Þ

⇒ A< ¼ 1: ð5:34Þ

(Recall O ¼ −2zϵ1=2.)
We obtained χ<T from the background solution, but it

should also be possible to obtain it from the scalar
perturbation as in Sec. IV. One would also obtain the full
response function χ<ω;q using the ðϵ;ω; qÞ-expansion. But,
in the low-temperature phase, δΨ couple with δAt and δAx,
and the computation is more involved, so we leave it to a
future work.

D. Vector modes

From the vector mode, one can show the London
equation and compute the conductivity. The δAy-equation
is given by

∂s

�
h

s1−1=z
∂sδAy

�

þ
�

ω̄2

hs2−1=z
−

q̄2

s3−2=z
−

2Ψ̄2

s3−1=z

�
δAy ¼ 0; ð5:35Þ

where Ψ̄ was constructed in Eq. (5.3). We impose the
incoming-wave boundary condition at the horizon and

δAyjs¼0 ¼ Að0Þ
y asymptotically. We again employ the

(ϵ, ω)-expansion,

δAy ¼ ð1 − sÞ−iω̄=2
× ððac þ ϵaϵ þ � � �Þ þ ω̄aω þ � � �Þ: ð5:36Þ

The equation of motion reduces to

Laac ¼ 0; ð5:37aÞ

Laai ¼ jiðacÞ; ð5:37bÞ

where

La ¼ ∂s

�
h

s1−1=z
∂s

�
:

The homogeneous equation Laac ¼ 0 can be solved as

ac¼c1

þc2s2−1=z
2z

2z−12F1

�
1;
2z−1

2z
;
4z−1

2z
;s2

�
: ð5:38Þ

From the regularity at the horizon, c2 ¼ 0.
The source terms of inhomogeneous equations then

become

jϵ ¼
2

s1−1=zð1þ sÞ2 c1; ð5:39aÞ

jω ¼ −
i
2

�
1þ s

s1−1=z

�0
c1: ð5:39bÞ

Again, we discuss the z ¼ 1 and z ≠ 1 cases separately.

1. z = 1

The solution is

aϵ ¼ c1
1

1þ s
∼ c1ð1 − sÞ; ð5:40aÞ

aω ¼ 1

2
ic1 lnð1þ sÞ ∼ ic1s=2: ð5:40bÞ

The asymptotic behavior then becomes
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δAy ¼
Að0Þ
y ðkÞ

1þ ϵþ � � � ð1 − sÞ−iω̄=2

×

�
1þ ϵ

1þ s
þ 1

2
iω̄ lnð1þ sÞ þ � � �

�
ð5:41Þ

∼ Að0Þ
y f1þ ð−ϵþ iω̄þ � � �Þsg: ð5:42Þ

We determine the constant c1 from the asymptotic boun-

dary condition δAyjs¼0 ¼ Að0Þ
y . So,

Jy ¼ ð4z − 2ÞAð1Þ
y ð5:43Þ

¼ 2ð−ϵþ iω̄þ � � �ÞAð0Þ
y : ð5:44Þ

The ω → 0 limit gives the London equation,

Jy ¼ −ð1=λ2ÞAð0Þ
y ; ð5:45Þ

with the London penetration depth λ−2 ¼ 2ϵ. The conduc-
tivity is then given by

σðωÞ ¼ Jy

iωAð0Þ
y

¼ 2iϵ
ω

þ 1þ � � � : ð5:46Þ

ImðσÞ has the 1=ω-pole which implies the diverging DC
conductivity.
A superconductor has singular behaviors in the current,

but its essence is not in the diverging DC conductivity but
in the London equation. A diverging DC conductivity also
appears in a perfect conductor, but the London equation is
unique to superconductors.
When one combines the London equation with the

Maxwell equation, one obtains the Meissner effect.
However, for usual holographic superconductors, the
boundary Maxwell field is added just as an external source
and is not dynamical in the boundary theory, so the
Meissner effect does not arise; the magnetic field can
always penetrate into the material. In this sense, a holo-
graphic superconductor may be regarded as a superfluid.
(In low spatial dimensions p ≤ 2, one can obtain a
boundary theory with a dynamical Maxwell field. See,
e.g., Ref. [36].)
However, the London equation must hold even in this

case if the system is really a superconductor or a superfluid.
The London equation is the response of the current under
the external source, and whether the source is dynamical or
not is irrelevant to the issue.

2. z > 1

For aω, one can get the generic expression8

aω ¼ 1

2
ic1

�
s2−1=z

2z
2z − 1 2F1

�
1;
2z − 1

2z
;
4z − 1

2z
; s2

�

þ lnð1 − sÞ
�

ð5:47Þ

∼OðsÞ þ ic1
z

2z − 1
s2−1=z: ð5:48Þ

For aϵ, the generic expression is either difficult to obtain or
too cumbersome, but again the fast falloff has a simple
expression,

að1Þϵ ¼ −
2z

2z − 1
c1IðzÞ: ð5:49Þ

The asymptotic behavior then becomes

δAy ∼ Að0Þ
y

�
1þ � � � þ 1

4z − 2
f−4zIðzÞϵ

þ iωþ � � �gs2−1=z þ � � �
�
: ð5:50Þ

Thus,

Jy ¼ f−4zIðzÞϵþ iωþ � � �gAð0Þ
y : ð5:51Þ

Again, the ω → 0 limit gives the London equation Jy ¼
−ð1=λ2ÞAð0Þ

y with the London penetration depth λ−2 ¼
4zIðzÞϵ. The conductivity is then given by

σ ¼ Jy

iωAð0Þ
y

¼ i
ω

IðzÞ
z

O2 þ 1þ � � � : ð5:52Þ

For large z,

σ ≈
i
ω
O2 þ 1þ � � � : ð5:53Þ

The GL parameter κ is defined by

κ2 ≔
�

λ

ξ>

�
2

¼ z
24IðzÞ2 : ð5:54Þ

In conventional superconductors, κ2 < 1=2 for type I and
κ2 > 1=2 for type II superconductors. For z ¼ 1, κ2 ¼ 1=6,
so one may conclude that our system is type I (in the sense
of κ), but whether our system is type I or II is more subtle.
Physically, 1=λ represents the Maxwell field mass, so we

8We set p ¼ 3z, but the Oðω; q2Þ-equations can actually be
solved for a generic ðp; zÞ.
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should determine the normalization of λ by comparing with
normalization of the boundary Maxwell action. However,
as mentioned above, the boundary Maxwell field is added
as an external source here and is not dynamical in the
boundary theory, so the normalization cannot be deter-
mined.9 (Holographic superconductors are type II super-
conductors in the sense that there is no Meissner effect.)

VI. BACKGROUND WITH VECTOR POTENTIAL

In this section, we add a vector potential Ai as a
background. We again consider the perturbative expansion:

Ψ̄ ¼ ϵ1=2ðΨ0
0 þ � � �Þ; ð6:1aÞ

Āt ¼ Φ0
0 þ � � � ; ð6:1bÞ

Āy ¼ Ay;0 þ ϵAy;1 þ � � � : ð6:1cÞ

Note that we take into account (1) Ay as a background
and (2) the backreaction of Ay onto the other fields. (That is
why we use variables with primes.) The former is the
difference from the perturbative expansion in Sec. VA, and
the latter is difference from the vector mode computation in
Sec. V D.
At Oðϵ0Þ, the Maxwell equation becomes

∇NFMN
;0 ¼ 0; ð6:2Þ

where FMN;0 ¼ ∂MAN;0 − ∂NAM;0. The equation has sim-
ple solutions. Namely, Φ0

0 ¼ μ̄ð1 − sÞ and two interesting
solutions for Ay;0:

Ay;0 ¼ āy ¼ ðconstantÞ; ð6:3aÞ

Ay;0 ¼ B̄x: ð6:3bÞ

The former corresponds to adding a constant superfluid
flow ay, and the latter corresponds to adding a constant
magnetic field B.

A. Superfluid flow

For the superfluid flow, it is enough to consider
homogeneous perturbations. The equations of motion are
given by

∂s

�
h
s
∂sΨ̄

�
þ
�
Ā2
t

hs2
−

Ā2
y

s3−1=z
þ 1

s3

�
Ψ̄ ¼ 0; ð6:4aÞ

∂2
sĀt ¼

2

hs2
Ψ̄2Āt; ð6:4bÞ

∂s

�
h

s1−1=z
∂sĀy

�
−

2Ψ̄2

s3−1=z
Āy ¼ 0: ð6:4cÞ

We impose the same boundary conditions as Sec. VA.
Our main interest is the phase diagram, i.e., the deviation

of the critical point by the vector potential. Then, we
evaluate how Ay at Oðϵ0Þ affects Ψ1

0 at Oðϵ1=2Þ. This in
turn affects the value of μc. We employ the ay-expansion as
well as the ϵ-expansion [22]. Namely,

Ψ0
1 ¼ Ψ1 þ ā2yΨa þ � � � ; ð6:5aÞ

Φ0
0 ¼ ð1þ ā2yc0 þ � � �Þð1 − sÞ; ð6:5bÞ

where c0 is a constant. This expansion is consistent with the
above equations of motion.
At Oðϵ1=2Þ, Ψ1 ¼ s=ð1þ sÞ. The Ψa-equation becomes

LψΨa ¼ ja; ð6:6aÞ

ja ¼ −2c0
1 − s

sð1þ sÞ2 þ
1

s2−1=zð1þ sÞ : ð6:6bÞ

The equation is hard to solve, in general. However, to
determine the āy-dependence on the chemical potential, it is
enough to obtain the slow falloff ofΨa. The slow falloff has
a simple expression:

Ψð0Þ
a ¼ −

Z
1

0

dsja
s

1þ s
ð6:7Þ

¼ c0
2
− IðzÞ: ð6:8Þ

We impose the boundary condition Ψð0Þ
a ¼ 0, which

gives c0 ¼ 2IðzÞ.
At the critical point, the order parameter vanishes, so

ϵ ¼ 0. Then, to determine the critical point, set ϵ ¼ 0, and

Að0Þ
t gives the critical chemical potential,

μc ¼ μc;0 þ a2y
IðzÞ
z

þ � � � ð6:9Þ

∼ μc;0 þ a2y ðz ≫ 1Þ; ð6:10Þ

where μc;0 ¼ 2z is the critical point without superfluid flow.
To obtain Jμ, one needs to obtain Aμ. This is necessary to

derive the second sound c2 [22,39]:

c22 ¼ −
∂Jy=∂ay
∂Jt=∂μ

				
ay¼0

: ð6:11Þ
9The value of κ for holographic superconductors has been

discussed in Refs. [37,38]. In Ref. [38], κ depends on the scalar
charge e. On the contrary, if we restore dimensionful parameters,
our κ does not depend on e (Appendix C).
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To derive c2, it is enough to use the results obtained in the
previous section. The Ay;1-equation is the same as the
vector mode perturbation aϵ. So, Jy is given by

Āy ∼ āy

�
1 −

1

4z − 2
4zIðzÞϵs2−1=z þ � � �

�
;

⇒ Jy ¼ ð4z − 2ÞAð1Þ
y ¼ −4zIðzÞϵay: ð6:12Þ

Jt is given by

Āt ∼ ð1 − sÞ þ ϵfδμ̄1 þ ð−1=2 − δμ̄1Þsg þ � � �
¼ μ̄þ ð6 − 7μ̄Þsþ � � � ;

⇒ Jt ¼ −2zAð1Þ
t ¼ 2zð7μ − 12zÞ: ð6:13Þ

Thus,

c22 ¼
IðzÞ
14z2

O2 ð6:14Þ

∼
1

14z
O2 ðz ≫ 1Þ: ð6:15Þ

B. Magnetic field

We follow Ref. [40] to obtain the critical magnetic field.
The Ψ-equation is given by

∂s

�
h
s
∂sΨ̄

�
þ
�
Ā2
t

hs2
þ 1

s3−1=z
ð∂̄i − iĀiÞ2 þ

1

s3

�
Ψ̄ ¼ 0:

ð6:16Þ

Here, ∂̄i ¼ ∂i=ð2zÞ ¼ ∂=∂xi, where xi ≔ ð2zÞxi. The
vector potential is given by Āy ¼ B̄x ¼ ¯̄Bx, where ¯̄B ≔
B=ð2zÞ2.
This problem can be solved as a Landau-level problem

after separation of variables. First, set10

Ψ̄ðx; y; sÞ ¼ eikyyφðx; s; kyÞ:

The equation then takes the form

s3−1=z
�
∂s

�
h
s
∂s

�
þ Ā2

t

hs2
þ 1

s3

�
φ

¼ ½−∂2
x þ ðk̄y − ¯̄BxÞ2�φ; ð6:17Þ

so setting

φnðx; s; kyÞ ¼ ρnðsÞγnðx; kyÞ;

one obtains

ð−∂2
X þ X2Þγn ¼ λnγn; ð6:18aÞ

�
∂s

�
h
s
∂s

�
þ Ā2

t

hs2
þ 1

s3

�
ρn ¼ ¯̄Bλn

ρn
s3−1=z

; ð6:18bÞ

where X ≔
ffiffiffiffī̄
B

p
ðx − k̄y=

¯̄BÞ, and λn is a separation constant.
The γn-equation is solved by the Hermite function Hn as

γnðXÞ ¼ e−X
2=2HnðXÞ; ð6:19Þ

with eigenvalue λn as

λn ¼ 2nþ 1 ðn ≥ 0Þ: ð6:20Þ

The solution is parametrized by ¯̄Bλn, so one has the largest
magnetic field Bc2 when λn takes the minimal value,
namely the n ¼ 0 solution.
The ρ0-equation is given by

∂s

�
h
s
∂sρ0

�
þ
�
Ā2
t

hs2
−

¯̄Bc2

s3−1=z
þ 1

s3

�
ρ0 ¼ 0: ð6:21Þ

Then, the problem formally reduces to the same problem as
the superfluid flow one with the replacement ā2y by ¯̄Bc2.
Thus, the critical point is given by

μc ¼ μc;0 þ Bc2
IðzÞ
z

; ð6:22Þ

Using the result of ξ2> in Sec. IV, we get

Bc2 ¼ 1=ξ2>: ð6:23Þ

VII. THE DUAL GL THEORY

A. Identifying the dual GL theory

We thus obtained all critical exponents and critical
amplitudes

ðα; β; γ; δ; ν; η; zDÞ ¼
�
0;
1

2
; 1; 3;

1

2
; 0; 2

�
; ð7:1aÞ

A> ¼ 2A<: ð7:1bÞ

The results are consistent with the standard GL theory or
the ϕ4 mean-field theory. In fact, the following GL theory
reproduces all our results11:

10For simplicity, we set the other momenta as k3 ¼
k4 ¼ � � � ¼ 0.

11As always, presumably the dual theory is some large-Nc
gauge theory. This is the effective GL theory at low energy and
momentum.
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HGL ¼
Z

dpx

�
cK
2
jDiϕj2 −

c2
2
ϵμjϕj2 þ

c4
4
jϕj4 þ � � �

− cϕðϕJ† þ ϕ†JÞ
�
; ð7:2aÞ

Di ≔ ∂i − icAA
ð0Þ
i : ð7:2bÞ

In the dynamic case, consider the time-dependent GL
equation (for Model A dynamic universality class):

Γ−1∂tϕ ¼ −
δHGL

δϕ
ð7:3Þ

¼ −
cK
2
D2

iϕ −
c2
2
ϵμϕþ c4

2
ϕjϕj2 − cϕJ: ð7:4Þ

We determine the GL parameters ðc2; c4; cϕ; cK; cA;ΓÞ to
reproduce our holographic results.
In the static homogeneous case, the ϕ-equation becomes

c2ϵμϕ − c4ϕjϕj2 þ 2cϕJ ¼ 0: ð7:5Þ

Substituting the J ¼ 0 solution jϕj2 ¼ c2ϵμ=c4 into HGL,
one obtains the grand canonical potential:

Ω
V
¼ −

c22
4c4

ϵ2μ: ð7:6Þ

The current is given by

Ji ≔ −
δHGL

δAð0Þ
i

¼ −cKc2Ajϕj2Að0Þ
i : ð7:7Þ

In the high-temperature phase, the response function is
given by

χ>k ¼ cϕΓ
−iωþ Γ

2
ðcKq2 þ c2jϵμjÞ

; ð7:8Þ

which implies

ω ¼ −i
Γ
2
c2

�
jϵμj þ

cK
c2

q2
�
; ð7:9Þ

ξ2> ¼ cK
c2

jϵμj−1: ð7:10Þ

Add a background vector potential. When a constant Ay ¼
ay is added, the critical point is shifted as

μc ¼ μc;0 þ
cK
c2

c2Aa
2
y: ð7:11Þ

When a magnetic field is added, the critical magnetic field
is given by

Bc2 ¼
c2

cKcA
ϵμ ¼

1

cA
ξ−2> ; ð7:12Þ

by solving the Landau-level problem.
Returning to our holographic results, Eq. (5.31) is

rewritten as

ϵμO −
1

24z
O3 þ 2Ψð0Þ ¼ 0; ð7:13Þ

which takes the form of the GL theory equation of motion
(7.5). The grand canonical potential, the current, and the
response function are obtained in Eqs. (5.24), (5.51), and
(4.19), respectively. These determine the GL parameters as

H ¼ IðzÞ
2z

jð∂i − iAð0Þ
i Þϕj2 − ϵμ

2
jϕj2 þ 1

96z
jϕj4 þ � � �

− ðϕJ† þ ϕ†JÞ; ð7:14aÞ

Γ
2
¼ 1þ 3i

5
: ð7:14bÞ

In the presence of a background vector potential, Eqs. (6.9)
and (6.23) agree with Eqs. (7.11) and (7.12), respectively.
One would be tempted to ask how various results change

as we vary z. But to make such a comparison, one must
keep in mind that (1) we consider a special class of Lifshitz
theories and (2) we must specify what quantities to fix as
we vary z.
We consider a special class of theories where p ¼ 3z and

m2 ¼ −4z2. Even the spatial dimensionality p is different
for a different z, and it is unclear if the comparison with a
different z is physically meaningful. Also, some results
may be generic for Lifshitz theories in general but some are
not. As a simple example, in our case, ðμ=TÞc is indepen-
dent of z. This is so by construction of our theories as
discussed in Sec. III and is certainly not a generic behavior.
It simply means that holographic Lifshitz superconductors
have enough parameters to fix ðμ=TÞc as we vary z.
We also have to specify what quantities to fix.

One natural candidate is μc (or Tc) since ðμ=TÞc is z-
independent, but it is unclear if this is really appropriate.
We do not have the answer to this question. So far we set
rh ¼ 1 just for simplicity, so here we simply fix rh (and ϵμ)
and how various results change as we vary z. Again, we do
not mean that fixing rh is natural from the boundary point
of view. Rather, the following comparison should be
regarded as a handy way to understand the z-dependence
of our holographic results or the dual GL theory.
(1) In the dual GL theory, the coefficient of the ϕ4-term

becomes smaller as we increase z. So, the conden-
sate increases as jϕj2 ∝ z.

(2) The z-dependence appears only in the kinetic term
and the ϕ4-term. Thus, the relaxation time τq¼0 of
the order parameter does not depend on z.
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(3) The correlation length ξ depends on the kinetic term
so does depend on z. It monotonically increases as
IðzÞ=z but increases slowly and reaches a constant
value for z ≫ 1.

(4) On the other hand, the London penetration depth λ

decreases. This is because Ji ¼ −ð1=λ2ÞAð0Þ
i ∝

−jϕj2Að0Þ
i and because ϕ increases. (λ also depends

on the kinetic term so has the factor IðzÞ=z, but it is
not a dominant factor.) Then, the GL parameter κ
decreases.

(5) As usual, the presence of a background vector

potential Að0Þ
i increases the critical chemical poten-

tial μc. From the gravity point of view, this is
because Ai increases the effective mass of Ψ. μc
monotonically increases as IðzÞ=z since Að0Þ

i comes
from the covariant derivative in the kinetic term.

B. Lifshitz exponent and dynamic critical exponent

We already mentioned that some results are not generic
to Lifshitz theories, in general. Then, what results are
expected to be generic? An obvious answer is critical
exponents and the ratio of critical amplitudes. The ϕ4

mean-field critical exponents are likely to hold for theories
of Eq. (2.8). The dynamic critical exponent zD ¼ 2 is also
likely to hold.
For a Lifshitz geometry, one would expect a dispersion

relation of the form

ω ∝ qz: ð7:15Þ

This form is expected from the Lifshitz scaling (2.2). But
from the analysis of the high-temperature phase, the order
parameter obeys the dispersion relation

ω ∝ q2; ð7:16Þ

i.e, the dynamic critical exponent zD ¼ 2 irrespective of the
value of the Lifshitz exponent z. This does not contradict
with the Lifshitz scaling. If we restore the horizon radius rh,

ω ∝ rz−2h q2: ð7:17Þ

Namely, at finite temperature, there are two length scales rh
and 1=q. They combine to give the scaling dimension z. In
other words, the Lifshitz scaling alone does not determine
the dynamic critical exponent.
Then, what determines zD? We obtain zD ¼ 2 because

the order parameter is not a conserved charge. According to
the classification of Hohenberg and Halperin [41], all our
models belong to Model A universality class.
The dynamic universality class is classified based on
(1) whether the order parameter is conserved or not,

(2) whether there are the other hydrodynamic modes
which couple to the order parameter (none for Model
A and B).

Conservation laws play important roles to determine the
dynamic universality class since a conservation law forces
the relaxation to proceed more slowly. When only the order
parameter matters in critical dynamics, a nonconserved
order parameter gives Model A, and a conserved order
parameter gives Model B.
The Lifshitz geometry is conjectured to describe a

quantum critical point. Using holographic Lifshitz super-
conductors, one prepares a new finite-temperature critical
point in addition to the Lifshitz critical point. What we have
shown is that the dynamic critical exponent zD associated
with the new critical point can differ from z. Instead, the
value of zD is determined by the critical dynamics of the
new critical point.

VIII. DISCUSSION

A. Lifshitz geometry and holographic
superconductors

The Lifshitz geometry appears even in the context of the
standard z ¼ 1 holographic superconductor [42,43].
Consider the backreaction of matter fields onto the geom-
etry. In the high-temperature phase,Ψ ¼ 0, so the geometry
is the Reissner-Nordström AdS black hole. In the low-
temperature phase, Ψ ≠ 0, but one may expect that the
geometry is somewhat similar to the Reissner-Nordström
AdS black hole. However, the T ¼ 0 geometry is conjec-
tured to be a Lifshitz geometry in the IR and the AdS
geometry in the UV. The solution in IR has been con-
structed, but the full geometry remains an open question.
It is unclear what happens at low temperature, but it is

natural to expect that a Lifshitz-like black hole appears at
low enough temperature. (Unfortunately, the Lifshitz black
hole used in this paper is not a solution of the Einstein-
Maxwell-complex scalar system.) Then, one should con-
sider the Einstein-Maxwell-complex scalar system in a
Lifshitz (IR)-AdS (UV) black hole. This is not an easy task
however. First, the full geometry is not constructed even in
the T ¼ 0 limit. Second, the stability of the geometry is an
different issue. Finally, one has to solve perturbations in the
full geometry to explore various properties.
What we have done in this paper is one small step

towards this program; we solved matter fields in a simple
Lifshitz black hole background. As we have seen in this
paper, qualitative behaviors of holographic Lifshitz super-
conductors are the same as the ones of the standard
holographic superconductors. In particular, static and
dynamic critical exponents are the same. One would expect
those behaviors are common even in the full problem.
Critical dynamics is governed by dynamics of the critical
point itself (such as criteria 1 and 2 in previous subsection)
and is not governed by the Lifshitz exponent z in the
underlying geometry.
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B. Implications to quantum criticality

We briefly discuss the implications of our result on
quantum criticality. The Lifshitz geometry is conjectured to
describe a quantum critical point. In this sense, our system
has two critical points:

(i) One is the T ¼ 0 quantum critical point. Its dynamic
scaling is determined by z.

(ii) The other is the T ≠ 0 superconducting critical point
explored in this paper. Its dynamic scaling is
determined by zD as we have shown in this paper.

It has been proposed that quantum criticality explains
strange metallic behaviors of high-Tc superconductors.
According to the proposal, a quantum critical point is
“hidden” inside the superconducting dome, and the quan-
tum criticality explains scaling behaviors of various trans-
port coefficients even in the normal phase.
Our model is far from real materials, but roughly

speaking, the quantum critical point could correspond to
the T ¼ 0 Lifshitz geometry, and the superconducting
dome could correspond to the holographic Lifshitz super-
conductor. The Lifshitz scaling may determine the scaling
behaviors in the normal phase. But our result implies that
the Lifshitz scaling does not determine the scaling behavior
of the order parameter near Tc. Rather, the T ≠ 0 critical
point has its own scaling. Whatever the value of z a
quantum critical point has, the T ≠ 0 critical point is likely
to have zD ¼ 2 at the mean-field level.
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APPENDIX A: FIELD/OPERATOR
CORRESPONDENCE AND HOLOGRAPHIC

RENORMALIZATION

The asymptotic behaviors of matter fields are given by

At ∼ Að0Þ
t þ Að1Þ

t ũp−z

⇒ Að0Þ
t þ Að1Þ

t s̃; ðA1aÞ

Ai ∼ Að0Þ
i þ Að1Þ

i ũpþz−2

⇒ Að0Þ
i þ Að1Þ

i s̃2−1=z; ðA1bÞ

Ψ ∼ Ψð0ÞũΔ ln uþ Ψð1ÞũΔ

⇒
Ψð0Þ

2z
s̃ ln sþ Ψð1Þs̃: ðA1cÞ

(In expressions after “⇒”, we set p ¼ 3z ¼ 3Δ=2 and
used s̃ ≔ ũ2z.)
The field/operator correspondence is derived by evalu-

ating the on-shell action. The bulk on-shell action, in
general, diverges, and one needs to add counterterm
actions. We take the probe limit, so we discuss counterterm
actions for matter fields only. We use the Lorentzian
formalism.
In the static homogeneous case, or at the leading order in

the ðω; qÞ-expansion, the scalar action diverges, and the
counterterm action is

SCT ¼ 1

e2

Z
∂M

dpþ1x L1; ðA2aÞ

L1 ¼ −
1

L
ffiffiffiffiffiffi
−γ

p �
Δþ 1

ln δ

�
jΨj2

⇒ −
2z
L

ffiffiffiffiffiffi
−γ

p �
1þ 1

ln δs

�
jΨj2; ðA2bÞ

where γμν is the (pþ 1)-dimensional boundary metric and
u ¼ δ (or s ¼ δs ≔ δ2z) is the UV cutoff. As usual, the
second term is necessary for the scalar which saturates the
BF bound.
Using the standard holographic technique, one then gets

ρ ¼ −
p − z
e2L

Að1Þ
t ⇒ −

2z
e2L

Að1Þ
t ; ðA3aÞ

Ji ¼ pþ z − 2

e2L
Að1Þ
i ⇒

4z − 2

e2L
Að1Þ
i ; ðA3bÞ

O ¼ −
1

e2L
Ψð1Þ ⇒ −

1

e2L
Ψð1Þ: ðA3cÞ

(More precisely, left-hand sides represent expectation
values such as hOi.)
The Lifshitz scaling (2.2) is just a coordinate trans-

formation from the bulk point of view. The Maxwell field is
a one-form, and Ψ is a scalar, so they transform as

At → At=az; Ai → Ai=a; Ψ → Ψ; ðA4Þ

under the scaling. Then, the scaling dimensions are

½μ�s ¼ z; ½ρ�s ¼ p; ðA5aÞ

½Að0Þ
i �s ¼ 1; ½Ji�s ¼ pþ z − 1; ðA5bÞ

½Ψð0Þ�s ¼ ½O�s ¼ Δ: ðA5cÞ

On the other hand, the mass dimensions are

½μ� ¼ ½Að0Þ
i � ¼ ½Ψð0Þ� ¼ M; ðA6aÞ
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½ρ� ¼ ½Ji� ¼ ½O� ¼ Mp: ðA6bÞ

(We choose mass dimensions as ½e2� ¼ M2−p and ½AM� ¼
½Ψ� ¼ M.)
Continuing higher orders in the derivative expansion,

one has additional counterterms:

L2 ¼
1

4
MFðΨÞ

ffiffiffiffiffiffi
−γ

p
γμνγρσFμσFνσ; ðA7aÞ

L3 ¼ MΨðΨÞ
ffiffiffiffiffiffi
−γ

p
γμνðDμΨÞ†DνΨ: ðA7bÞ

MF andMΨ are power series in Ψ whose explicit forms are
not necessary in the discussion below. In the text, we take
into account Oðω; q2Þ terms in the scalar perturbation and
OðωÞ term in the vector perturbation, so it is enough to
consider L2 and L3, but they make no contribution. For the
scalar perturbation in the high-temperature phase, Fμν ¼ 0,
so L2 ¼ 0, and

L3 ¼
�
2z
L

�
2

MΨh1=2
�
−
ðω̄þ ĀtÞ2

hs
þ q̄2

s2−1=z

�
jδΨðkÞj2

∼Oðsðln sÞ2Þ þOðs1=zðln sÞ2Þ; ðA8Þ

so L3 makes no contribution as s → 0 (for a finite z). For
the vector perturbation, L2 ∼Oðω2; q2Þ, so L2 makes no
contribution,12 and

L3 ¼
�
2z
L

�
2

MΨ
h1=2

s2−1=z
jΨ̄j2δAyð−kÞδAyðkÞ

∼ ϵOðs1=zÞ; ðA9Þ

where we consider the case of the spontaneous condensate
for Ψ̄.

APPENDIX B: EXTRACTING FALLOFFS

We solve the following differential equation:

Lφ ¼ j; ðB1aÞ

L ¼ ∂sðpðsÞ∂sÞ: ðB1bÞ

Denote two independent solutions of the homogeneous
equation Lφ ¼ 0 as φ1 and φ2. We assume that φ1 satisfies
the boundary condition at the horizon s ¼ 1. The solution
of the inhomogeneous equation (B1a) which is regular at
the horizon is given by

φðsÞ ¼ −φ1ðsÞ
Z

s

0

ds0
jðs0Þφ2ðs0Þ
pðs0ÞWðs0Þ

− φ2ðsÞ
Z

1

s
ds0

jðs0Þφ1ðs0Þ
pðs0ÞWðs0Þ ; ðB2Þ

where W is the Wronskian WðsÞ ≔ φ1φ
0
2 − φ0

1φ2.
For example, for δΨ and δAy,

δΨ∶ φ1 ¼
s

1þ s
;

φ2 ¼
s

1þ s
ln

�
s

ð1 − sÞ2
�
∼ s ln s;

pðsÞ ¼ h
s
:

δAy∶ φ1 ¼
z

2z − 1
;

φ2 ¼ s2−1=z2F1

�
1;
2z − 1

2z
;
4z − 1

2z
; s2

�
∼ s2−1=z;

pðsÞ ¼ h

s1−1=z
:

For both cases, pW ¼ 1.
Even if the integral (B2) is difficult to evaluate or has a

cumbersome expression, one can extract a falloff. Suppose
that φ2 has the appropriate falloff. Then, near the AdS
boundary s → δs,

φðδsÞ ∼ −φ2ðδsÞ
Z

1

δs

dsjðsÞφ1ðsÞ: ðB3Þ

This integral essentially gives the falloff coefficient
we want.
The δs-dependence in the integral essentially has no

contribution from the following reason. First, the integral
may or may not converge:
(1) When it converges, one can take the δs → 0 limit

since the δs-dependence in the integral does not
produce an appropriate falloff when it is combined
with φ2ðδsÞ; it gives a subleading falloff.

(2) When it diverges, simply discard the δs-dependence
in the integral since again it does not produce an
appropriate falloff.13 Even if it diverges as δs → 0,
the expression (B2) itself does not.

For example, the slow falloff of ψq becomes

ψ ð0Þ
q ¼ −

Z
1

0

dsjq
s

1þ s
¼ −c1

Z
1

0

ds

s1−1=zð1þ sÞ2
¼ −c1IðzÞ: ðB4Þ

12Since L2 is a relevant operator for z ≥ 1 in our theories, it
should be taken into account at Oðω2; q2Þ.

13There may be an exception. The δs-dependence in the
integral may produce an appropriate falloff when it is combined
with the subleading term of φ2ðδsÞ.
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Similarly, the fast falloff of aϵ becomes

að0Þϵ ¼ −
Z

1

0

dsjϵ
z

2z − 1
¼ −

2z
2z − 1

c1

Z
1

0

ds

s1−1=zð1þ sÞ2

¼ −
2z

2z − 1
c1IðzÞ: ðB5Þ

APPENDIX C: RESTORING UNITS

We set e ¼ L ¼ rh ¼ 1, but here we present some of our
main results by restoring units.

(i) The scalar mode (high-temperature phase): the
dispersion relation, the relaxation time, and the
correlation length are given by

ω¼ 3− i
5

�
jϵμjþ

IðzÞ
z

L

�
rh
L

�
z−2

q2þ���
�
; ðC1aÞ

τ−1 ¼ 1

5
jϵμj ¼

IðzÞ
5z

L

�
rh
L

�
z−2

ξ−2> ; ðC1bÞ

ξ2> ¼ IðzÞ
z

L

�
rh
L

�
z−2 1

jϵμj
: ðC1cÞ

(ii) The order parameter:

O ¼ −
1

e2L

�
rh
L

�
2z 2z

L
ϵ1=2 ðC2aÞ

¼ −
1

e2L

�
rh
L

�
3z=2

�
24z
L

ϵμ

�
1=2

ðC2bÞ

¼ −
ffiffiffiffiffi
48

p
π2

e2
T3=2
c ðTc − TÞ1=2 ðz ¼ 1Þ: ðC2cÞ

(iii) The current (low-temperature phase):

Jy¼ 1

e2L

�
rh
L

�
4z−2

�
−
IðzÞ
z

ð4z2ϵÞþ iωL
ðrhLÞz

þ���
�
Að0Þ
y

ðC3aÞ

¼−
L
e2

�
1

L

�
rh
L

�
3z−2

24IðzÞϵμ
�
Að0Þ
y ðω¼0Þ

ðC3bÞ

¼ −
IðzÞ
z

e2L3

ðrhLÞ2
O2Að0Þ

y ðω ¼ 0Þ: ðC3cÞ

In our conventions, it is natural to define λ as

Jy ¼ −
L
e2

1

λ2
Að0Þ
y : ðC4Þ

Then, λ and κ are given by

λ2 ¼ L

�
rh
L

�
−3zþ2 1

24IðzÞϵμ
; ðC5aÞ

κ2 ≔
�

λ

ξ>

�
2

¼ z
24IðzÞ2

�
rh
L

�
−4zþ4

: ðC5bÞ

(iv) The dual GL theory:

H ¼ IðzÞ
2z

L
ðeLÞ2
ðrhLÞ2

jð∂i − iAð0Þ
i Þϕj2

−
ϵμ
2

ðeLÞ2
ðrhLÞz

jϕj2 þ 1

96z
ðeLÞ6
ðrhLÞ4zL

jϕj4 þ � � �

− ðϕJ† þ ϕ†JÞ; ðC6aÞ
Γ
2
¼ 1þ 3i

5

ðrhLÞz
ðeLÞ2 : ðC6bÞ
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