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Using a convolutive field-theoretic product, it is shown here that the “square” of an Abelian D ¼ 6,
N ¼ ð2; 0Þ theory yields the free D ¼ 6, N ¼ ð4; 0Þ theory constructed by Hull, together with its
generalized (super)gauge transformations. This offers a new perspective on the (4,0) theory and chiral
theories of conformal gravity more generally, while at the same time extending the domain of the
“gravity ¼ gauge × gauge” paradigm.
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I. INTRODUCTION

It was at one time thought that nontrivial conformal
quantum field theories exist in at most D ¼ 4 spacetime
dimensions. This was somewhat at odds with Nahm’s
classification of admissible supersymmetries [1], which
includesD ¼ 6 superconformal algebras. Indeed, a remark-
able prediction of M-theory [2–4], anticipated in
Refs. [5,6], is the existence of nontrivial D ¼ 6 quantum
field theories with N ¼ ð2; 0Þ supersymmetry and
OSp⋆ð8j4Þ superconformal symmetry, contradicting the
received wisdom of the time while placing another
feather in Nahm’s cap. These “(2,0) theories” are not only
central to our understanding of M-theory; they have
fundamental implications for gauge theories more gener-
ally, from S-duality to the Alday-Gaiotto-Tachikawa (AGT)
correspondence [7–9].
Of course, the consistency of a given superalgebra does

not imply that a corresponding nontrivial quantum field
theory necessarily exists. See for example Ref. [10].
However, taking confidence from the (2,0) story, it is
tempting to speculate that the D ¼ 6, N ¼ ð4; 0Þ multiplet
with OSp⋆ð8j8Þ superconformal symmetry, a longstanding
and enticing outpost of Nahm’s taxonomy, should also
correspond to a nontrivial quantum theory. Indeed, drawing
on a range of analogies with the (2,0) theories, Hull argued
[11–13] that a nontrivial “(4,0) theory” may arise in the
large D ¼ 5 Plank length, l5, limit of M-theory compacti-
fied on a 6-torus, T6. As emphasised by Hull, the (4,0)
theory would constitute the maximally symmetric phase of

M-theory. Moreover, it contains a self-dual “gravi-gerbe”
field, suggestive of a D ¼ 6 chiral theory of conformal
gravity. Note that a local variational principle, breaking
manifest covariance, for the free gravi-gerbe field was
recently developed in Ref. [14]. Consequently, just as for
the (2,0) theories before it, establishing its existence would
have profound implications for not only M-theory but also
gravity more broadly understood. It should be stressed that,
while there is a large body of strong evidence, originating
from string/M-theory, for the (2,0) theories, there are at
present no comparable arguments supporting the existence
of the (4,0) theory, and it remains highly conjectural. For a
more nuanced discussion of the various possibilities,
and the associated difficulties, the reader is referred to
Refs. [11–13,15,16].
Here, we reexamine the free (4,0) theory introduced in

Refs. [11–13] from another, a priori unrelated, but equally
provocative, perspective: “gravity¼ gauge×gauge.”While
on face value a radical proposal, this paradigm has been
reinvigorated in recent years by the remarkable Bern-
Carrasco-Johansson double-copy procedure [17–19]; the
scattering amplitudes of (super)gravity are conjectured to
be the double-copy of (super-)Yang-Mills amplitudes to all
orders in perturbation theory. These fascinating amplitude
relations are both computationally expedient and concep-
tually suggestive, facilitating previously intractable calcu-
lations while probing profound questions regarding the
deep structure of perturbative quantum gravity [20,21].
In this context D ¼ 5, N ¼ 8 supergravity, the low-

energy limit of M-theory on a 6-torus, is the double-copy of
D ¼ 5, N ¼ 4 super Yang-Mills theory. Of course, D ¼ 5
Yang-Mills theory is nonrenormalizable, and we expect
new physics to enter for energies E ≥ 1=g2YM. For instance,
it can be regarded as the low-energy sector of the world
volume theory of a stack of D4-branes in string theory.
Taking the strong-coupling limit, the Yang-Mills theory
uplifts to a (2,0) theory compactified on a circle of radius
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R ∝ g2YM, which in this setting constitutes the low-energy
theory arising on a stack of M5-branes in M-theory. This
raises a challenging question: what happens to the double-
copy in this limit? Might we expect some relation of the
type ð4; 0Þ ¼ ð2; 0Þ × ð2; 0Þ, morally the M-theory uplift
of gravity ¼ gauge × gauge?
The ð4; 0Þ ¼ ð2; 0Þ × ð2; 0Þ picture was proposed in

Ref. [16], where the ultrashort (4,0) supermultiplet of the
six-dimensional conformal superalgebra OSp⋆ð8j8Þ was
derived and shown to consistently factorize, with respect
to the R-symmetry algebras USpð4Þ × USpð4Þ ⊂ USpð8Þ,
into the product of two (2,0) tensor multiplets. However, as
emphasized in Ref. [16], the intrinsically nonperturbative
nature of the (2,0) theories makes amplitude relations hard
to formulate, although there exist some limited tests
[16,22,23]. Here, we avoid this hurdle altogether by appeal-
ing to a complementary and independent off-shell field-
theoretic realization of gravity as the “square of Yang-Mills”
developed in Refs. [24–33], which can be used to study the
product of two gauge theories without reference to ampli-
tudes, allowing one to derive various properties, such as
curvatures, dynamics, off-shell local symmetries and duality
relations, directly. For two gauge potentials belonging to two
distinct Yang-Mills theories, referred to as the left (no tilde)
and right (tilde) factors, with arbitrary gauge groups G and
G̃, the product is given by [26]

Aμ ∘ Ãν ≔ Aa
μ ·Φaã · Ã

ã
ν ; ð1Þ

where ½f · g�ðxÞ ¼ R
dDyfðyÞgðx − yÞ. The biadjoint “spec-

tator” scalar field Φ allows for arbitrary and independent G
and G̃, while the convolution reflects the fact that the
amplitude relations are multiplicative in momentum space.
Crucially, together, they ensure that both the global and local
symmetries of the two factors are consistently mapped into
those of the corresponding gravitational theory, including
general coordinate transformations [24–29]. To linear
approximation, the equations of motion of the factors then
imply those of the gravity theory, and classical solutions of
the Yang-Mills factors are mapped into solutions of their
product [26,30,31]. Extending this construction, it is shown
here that, by defining a field (7) and ghost field (9)
dictionary, the product of two arbitrary Abelian (2,0)
theories generates, with no further input, the free (4,0)
theory first constructed by Hull [11]. This represents a new
perspective on the (4,0) theory thatmaybe exploited to better
understand its remarkable, as yet rather mysterious, proper-
ties, while at the same time extending the rapidly evolving
domain [25–55] of the gravity ¼ gauge × gauge paradigm.

II. STRONGLY COUPLED YANG-MILLS
AND (2,0) THEORIES

The free (2,0) theory is described by the (2,0) tensor
multiplet consisting of an Abelian two-form gauge

potential Bμν with self-dual three-form field strength
H ¼⋆H, four symplectic Majorana-Weyl spinors χ and
five scalars Φ, transforming, respectively, as the 1, 4 and 5
of the rigid Spinð5Þ ≅ USpð4Þ R-symmetry. The two-form
gauge and gauge-for-gauge transforms are given by

δBμν ¼ 2∂ ½μλν�; δλν ¼ ∂νλ; ð2Þ

leaving 15 − 6þ 1 ¼ 10 off-shell degrees of freedom. The
equation of motion d ⋆ H ¼ 0 leaves six on-shell degrees
of freedom in the ð3; 1Þ þ ð1; 3Þ representation of the
spacetime little group Spð1Þ × Spð1Þ. The self-duality
condition, which with the Bianchi identity dH ¼ 0 implies
the equation of motion, further reduces these to the chiral
(3, 1) representation. Dimensionally reducing on a circle,
S1, with radius R yields the maximally supersymmetric
Abelian D ¼ 5, N ¼ 4 gauge theory, consisting of a
one-form Abelian gauge potential Am, four symplectic
Majorana spinors ψ and five scalars ϕ, with coupling
constant g2 ∝ R and the same USp(4) R-symmetry.
Going beyond the free theories, it has been conjectured

[56,57] that the strong-coupling limit of D ¼ 5, N ¼ 4
Yang-Mills theory is given by an interacting (2,0) theory
compactified on S1 with g2YM ∝ R. Crucial to this picture is
the existence of 1=2-supersymmetric instantonic 0-branes
in the D ¼ 5, N ¼ 4 Yang-Mills theory, which preserve
the full USp(4) R-symmetry. They have mass ∝ jnj=g2YM,
where n is the instanton number, so that they become light
in the strong-coupling limit and can be matched to the
Kaluza-Klein modes of the (2,0) theory compactified on S1,
which have mass ∝ n=R [56].

III. STRONGLY COUPLED GRAVITY
AND THE (4,0) THEORY

Maximally supersymmetric D ¼ 5, N ¼ 8 supergravity
has USp(8) R-symmetry and an exceptional noncompact
global E6ð6ÞðRÞ-symmetry [58] that is broken by quantum
effects to the discrete subgroup E6ð6ÞðZÞ, corresponding to
the U-duality group of M-theory compactified on T6 [59].
Its massless fields include 27 one-form Abelian gauge
potentials Am, transforming in the fundamental 27 of
E6ð6Þ. Hull [11–13] considered a large l5 limit under the
assumption that the E6ð6Þ-symmetry is preserved and all
supersymmetric states are protected. Decomposing the
N ¼ 8 multiplet with respect to an N ¼ 4 subalgebra,
we obtain five N ¼ 4 Abelian gauge multiplets with
coupling constant g2 ¼ l5, each of which therefore lifts
to an Abelian (2,0) theory as l5 → ∞, where g2 ¼ l5 is
identified with R as before. If the E6ð6Þ-symmetry is to be
preserved, it follows that all 27 one-forms must lift to
two-forms. Hence, if all supersymmetries survive the entire
N ¼ 8 supergravity multiplet must lift to a D ¼ 6 theory,
where l5 is identified with R such that the l5 → ∞ limit
is conformal. We therefore require a superconformal
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gravitational theory inD ¼ 6 dimensions, consistent with a
global E6ð6Þ-symmetry, that yields D ¼ 5;N ¼ 8 super-
gravity when compactified on a circle. According to
Nahm’s classification, there is a unique candidate satisfying
these criteria, the (4,0) theory.
As described in Refs. [11–13], the free (4,0) theory

consists of eight two-form “gravitini” Ψμν, 27 Abelian self-
dual two-forms Bμν, 48 symplectic Majorana-Weyl spinors
λ and 42 scalars Φ, transforming, respectively, as the 8, 27,
48 and 42 of the USp(8) R-symmetry. Finally, rather than a
graviton, there is a rank-4 tensor,

Gμνρσ ¼ G½μν�½ρσ� ¼ G½ρσ�½μν�; G½μνρ�σ ¼ 0; ð3Þ

which might be thought of as a gravi-gerbe field [60,61].
It has a rank-6 field strength,

Rμνρστλ ¼ 9∂ ½μGνρ�½στ;λ� ¼ Rστλμνρ; ð4Þ

satisfying the first and second Bianchi identities,

R½μνρσ�τλ ¼ ∂ ½κRμνρ�στλ ¼ 0: ð5Þ

It is invariant under the gauge transformations,

δGμνρσ ¼ ∂ ½μξν�ρσ þ ∂ ½ρξσ�μν − 2∂ ½μξνρσ�
¼ ∂ ½μζν�ρσ þ ∂ ½ρζσ�μν; ð6Þ

where ξρμν ¼ ξρ½μν� and ζνρσ ≔ ξρμν − ξ½ρμν�. The natural
free field equation, Rμ

νρμτλ ¼ 0, describes ten on-shell
degrees of freedom in the ð5; 1Þ þ ð1; 5Þ. This is reduced
to the chiral (5, 1) representation by the self-duality relation
R ¼⋆ R ¼ R ⋆. It was shown in Ref. [12] that the free (4,0)
theory compactified on a circle yields linearized D ¼ 5,
N ¼ 8 supergravity. The (4,0) theory is gravitational but
does not contain a graviton.
As for the (2,0) theory, it is not possible to construct a

conventional set of local covariant interactions, making the
nonlinear theory difficult to probe. Nonetheless, an analysis
of the Bogomol’nyi-Prasad-Sommerfield (BPS) spectrum
analogous to that of the (2,0) theory suggests that the
identification of the strong-coupling limit ofD ¼ 5,N ¼ 8
supergravity as the full interacting (4,0) theory compacti-
fied on S1 is in principle consistent [11]. In particular,
D ¼ 5, N ¼ 8 supergravity admits 1=2-supersymmetric
gravitational instantonic solutions, which preserve the
E6ð6Þ-symmetry [62]. In analogy with the instantons
appearing in the (2,0) story, these are the uplift of
Euclidean D ¼ 4 self-dual gravitational instantons
[62–64], which can be interpreted as 0-branes [62]. They
carry mass ∝ jnj=l5 and so become light in the l5 → ∞
limit. The analyses of Refs. [2,56] indicate that these
solutions may be regarded as the Kaluza-Klein modes of
a D ¼ 6 theory on a circle of radius R ∝ l5 [11].

This proposal still requires many checks, but encourag-
ingly, these 1=2-supersymmetric states sit in massive (4,0)
multiplets that have precisely the correct content to have
originated from an S1 compactification of the D ¼ 6, (4,0)
theory: 27 massive self-dual two-forms and 42 massive
scalars. A more detailed analysis of the D ¼ 5, N ¼ 8 and
D ¼ 6, N ¼ ð4; 0Þ supersymmetric multiplets paints a
compelling picture. In particular, the 27 self-dual two-
forms in D ¼ 6 couple to self-dual supersymmetric strings,
which yield the required D ¼ 5 charged 0-branes and
1-branes transforming in the 27 and 270 of the global E6ð6Þ.

IV. (2,0) THEORY SQUARED

In direct analogy with (1), we apply the product to a pair
of self-dual two-forms belonging to left and right Abelian
(2,0) tensor multiplets,

Gμνρσ ≔ Bμν ∘ B̃ρσ: ð7Þ

Adopting this dictionary, we recover precisely the free (4,0)
theory. In particular, the generalized gauge transformations
of the gravi-gerbe field (3) are generated by the local
symmetries of the left and right (2,0) factors. Since the
supercharges of the left and right theories generate the
supersymmetries of their product [26], the remaining fields
of the (4,0) multiplet and their transformations then follow
essentially automatically.
The field G has 15 × 15 ¼ 225 components, reduced to

10 × 10 ¼ 100 off-shell degrees of freedom by the gener-
alized gauge transformations generated by (2). Explicitly,
using ∂ðf ∘ gÞ ¼ ∂f ∘ g ¼ f ∘ ∂g, we obtain

δGμνρσ ¼ δBμν ∘ B̃ρσ þ Bμν ∘ δB̃ρσ

¼ 2∂ ½μCν� ∘ B̃ρσ þ Bμν ∘ 2∂ ½ρC̃σ�

¼ 2∂ ½μC
ð10Þ
ν�ρσ þ 2∂ ½ρC

ð01Þ
σ�μν; ð8Þ

where δ is the Becchi-Rouet-Stora-Tyutin (BRST) trans-
formation corresponding to (2) and we have introduced the
ghost field dictionary,

Cð10Þ
νρσ ¼ Cν ∘ B̃ρσ; Cð01Þ

σμν ¼ Bμν ∘ C̃σ: ð9Þ

Here, the superscripts ðxx̃Þ denote the ghost numbers of
the left/right factors, which are additive so that the ghost

number of Cðxx̃Þ is xþ x̃. The ghosts Cð10Þ
νρσ ; C

ð01Þ
νρσ have

6×15þ6×15¼180 components. However, the left/right
two-form ghost-for-ghost transformations, δCν ¼ ∂νC,
generate gravi-gerbe ghost-for-ghost transformations.
Using δðfðxÞ ∘ gðx̃ÞÞ ¼ δfðxÞ ∘ gðx̃Þ þ ð−1ÞxfðxÞ ∘ δgðx̃Þ, the
full set of BRST variations and ghost fields can be
systematically determined by repeatedly varying the field
(7) and ghost (9) dictionaries. This procedure yields
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δCð10Þ
νρσ ¼ ∂νC

ð20Þ
ρσ − 2∂ ½ρC

ð11Þ
jνjσ� ð10aÞ

δCð01Þ
νρσ ¼ ∂νC

ð02Þ
ρσ þ 2∂ ½ρC

ð11Þ
σ�ν ð10bÞ

δCð11Þ
ρσ ¼ ∂ρC

ð21Þ
σ − ∂σC

ð12Þ
ρ ð10cÞ

δCð20Þ
ρσ ¼ 2∂ ½ρC

ð21Þ
σ� ð10dÞ

δCð02Þ
ρσ ¼ 2∂ ½ρC

ð12Þ
σ� ð10eÞ

δCð21Þ
ρ ¼ ∂ρCð22Þ ð10fÞ

δCð12Þ
ρ ¼ ∂ρCð22Þ; ð10gÞ

where we have introduced the dictionary for the ghost-for-
ghost fields,

Cð20Þ
ρσ ¼C∘B̃ρσ; Cð11Þ

ρσ ¼Cρ∘C̃σ; Cð02Þ
ρσ ¼Bρσ ∘C̃;

Cð21Þ
ρ ¼C∘C̃ρ; Cð12Þ

ρ ¼Cρ∘C̃; Cð22Þ ¼C∘C̃: ð11Þ

The complete set of ghost fields removes a total of 125¼
ð90þ90Þ− ð15þ15þ36Þþð6þ6Þ−1 components from
G, leaving 100 off-shell degrees of freedom as expected.
That the full set of generalized gauge transformations is
generated directly by the left/right factors is a nice feature
of the construction.
Letusnowdefine the irreducibleGLð6;RÞ representations,

Gμνρσ ¼
1

2
ðGμνρσ þ GρσμνÞ − G½μνρσ�; ð12aÞ

Φμνρσ ¼ G½μνρσ�; ð12bÞ

Bμνρσ ¼
1

2
ðGμνρσ − GρσμνÞ; ð12cÞ

which transform as the 1þ 20þ 84; 15 and 15þ 45þ 4̄5
of Spin(1, 5), respectively.
First, Gμνρσ has the symmetries of (3) and, directly from

(8), the generalized gauge transformations given in (6),
where we have identified the ghost field,

ξνρσ ≔ Cð10Þ
νρσ þ Cð01Þ

νρσ : ð13Þ

Hence, it is naturally identified with the gravi-gerbe field
(3) of the (4,0) multiplet. Note that G has a total of
50 ¼ 105 − 70þ 15 off-shell degrees of freedom sitting in
the 1þ 14þ 35 of Spin(5). This follows directly from the
generalized ghost and ghost-for-ghost transformations
generated by (10) through the dictionary (11),

δζνρσ ¼ ∂νζρσ þ ∂ ½σζρ�μ; δζρσ ¼ 0; ð14Þ

where ζρσ ≔ 3ðξρσ − Cð11Þ
½ρσ� Þ=4 and 2ξρσ ≔ Cð20Þ

ρσ þ Cð02Þ
ρσ .

Similarly, it is straightforward to show that the left/right
two-form gauge symmetries imply thatΦμνρσ has four-form
gauge transformations given by

δΦμνρσ ¼ 4∂ ½μΛνρσ�; δΛνρσ ¼ 3∂ ½νΛρσ�; ð15aÞ

δΛρσ ¼ 2∂ ½ρΛσ�; δΛσ ¼ ∂σΛ; ð15bÞ

where Λνρσ ¼ ξ½νρσ�, Λρσ ¼ ξ½ρσ� þ 2Cð11Þ
½ρσ� , Λσ ¼ 3ðCð21Þ

σ þ
Cð12Þ
σ Þ=2, and Λ ¼ 3Cð22Þ=2, leaving 5 ¼ 15–20þ 15 −

6þ 1 off-shell degrees of freedom in the 5 of Spin(5).
Finally, Eq. (12c) transforms as

δBμνρσ ¼ ∂ ½μαν�ρσ − ∂ ½ρασ�μν; ð16aÞ

δανρσ ¼ ∂ναρσ − 2∂ ½ρβσ�ν; ð16bÞ

δαρσ ¼ 2∂ ½ρασ�; δβσν ¼ 2∂ðσανÞ; ð16cÞ

where ανρσ ≔ Cð10Þ
νρσ − Cð01Þ

νρσ , αρσ ≔ Cð20Þ
ρσ − Cð02Þ

ρσ , ασ ≔
Cð21Þ
σ − Cð12Þ

σ and βρσ ≔ 2Cð11Þ
ðρσÞ. This leaves 45 ¼ 105 −

90þ 36 − 6 off-shell degrees of freedom in the 10þ 35 of
Spin(5). In total, we have 100 off-shell degrees of freedom
in the 10 × 10 ¼ 1s þ 14s þ 350s þ 5s þ 10a þ 35a, as
expected since each two-form represents a 10 of Spin(5).
While (12a) and (12b) are immediately recognizable as the
off-shell potentials for the gravi-gerbe (3) and a scalar field
(in its dual form), respectively, Eq. (12c) is perhaps less
familiar. It describes the same on-shell degrees of freedom
as a self-dual two-form, as is most easily seen by going to
physical gauge [65] using the gauge transformations given
in (16). In this case, we have Bijkl ¼ B½ij�½kl� ¼ −Bklij,
i;j¼ 1;…;4, where the self-duality relations B¼⋆B¼B ⋆
(which follow directly from the left and right self-duality
relations in physical gauge Bij ¼⋆ Bij) leave three inde-
pendent degrees of freedom in the (3, 1) of Spð1Þ × Spð1Þ.
Applying global supersymmetries to the factors, the rest

of the (4,0) multiplet follows. For example, the eight two-
form gravitini Ψμν are identified with the eight products,
χ ∘ B̃μν and Bμν ∘ χ̃ [66]. The super-BRST variation δΨμν ¼
2∂ ½μην� is generated by the left/right two-form transforma-
tions, where the bosonic spinor-vector ghosts ην are
identified with χ ∘ C̃ν and Cν ∘ χ̃. The complete details will
be presented elsewhere.
Before concluding, we note, briefly, that by going first to

physical gauge the equations of motion, Bianchi identities
and self-dualities relations for the free (4,0) theory follow
straightforwardly from those of the (2,0) factors. Recall that
the on-shell degrees of freedom of a self-dual two-form are
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given by a symmetric bispinor BAB, A;B ¼ 1, 2, in the
(3, 1) of Spð1Þ × Spð1Þ, where □BAB ¼ 0. Hence, for
example, the symmetrized product GðABCDÞ ¼ BðAB ∘ B̃CDÞ
yields the (5, 1) representation satisfying □GðABCDÞ ¼ 0,
which corresponds to the gravi-gerbe field (3) in physical
gauge,

Gijkl ¼ G½ij�½kl� ¼ Gklij; G½ijk�l ¼ 0; ð17Þ

where Gijkl ¼⋆ Gijkl ¼ G ⋆ijkl [11].

V. CONCLUSIONS

We have shown that the linear (4,0) theory and its local
symmetries follow from the square of Abelian (2,0)
theories. This leaves a number of directions for future
work. Perhaps most obvious is the need to understand the
(4,0) theory beyond the linear approximation. A natural
setting for such a question is higher gauge theory [67]. For
example, a number of higher gauge (2,0) models were
developed in Refs. [68–71] using superconformal twistors.
However, the (4,0) theory will require new structures,
gravitational analogs of the (2,0) models, and it is not
a priori clear how to proceed. Here, however, we have an
extra input to guide our considerations: the (4,0) higher
gauge theory will be required to be consistent with the
square of the (2,0) theory.
Irrespectively, we can still test ð4; 0Þ ¼ ð2; 0Þ × ð2; 0Þ by

considering its compatification, in the first instance, on a
circle. Besides testing the expected amplitude relations
[23], we anticipate a matching of classical solutions, at least
in a weak-field approximation, using the methodology
developed in Refs. [30,31]. In particular, it is natural to
expect that the 1=2-supersymmetric gravitational instan-
tonic solutions of D ¼ 5, N ¼ 8 supergravity, which
must be identified with Kaluza-Klein modes of the
would-be (4,0) theory, are related to the “square” of the
1=2-supersymmetric instantonic 0-branes in the D ¼ 5,
N ¼ 4 Yang-Mills theory, which are the Kaluza-Klein
modes of the (2,0) factors.
We conclude with some rather speculative comments

regarding the strong/weak gravitational S-duality suggested
by the (4,0) theory [11–13]. First, note that the generalized
gauge invariant curvature, self-duality relations and
Bianchi identities for G follow directly from those of
Bμν and B̃ρσ . In particular, the generalized gauge invariant
curvature is the product of the left and right three-form
curvatures,

Rμνρστλ ¼ 9∂ ½μGνρ�½τλ;σ� ¼ Hμνρ ∘ H̃στλ: ð18Þ

It then follows immediately that the left/right two-form
self-duality conditions, H ¼⋆ H, H̃ ¼⋆ H̃, and Bianchi
identities, dH ¼ dH̃ ¼ 0, imply the self-duality relations,
R ¼⋆ R ¼ R ⋆, and the Bianchi identities, ∂ ½μRνρσ�τλκ ¼
∂ ½κRjμνρjστλ� ¼ 0, respectively. Now, recall that a D ¼ 6

Abelian two-form with self-dual field strength, H ¼⋆ H,
compactified on T2 yields an SLð2;ZÞ doublet of D ¼ 4

one-forms Ai, i ¼ 1, 2, which are related through
Fi ¼⋆ Fjεjkγ

ki, where γki is the constant metric on T2.
Since the gravi-gerbe field strength originates from H ∘ H̃,
feeding this observation into the ð2; 0Þ × ð2; 0Þ construc-
tion, we anticipate an SLð2;ZÞ triplet of D ¼ 4 linearized
Riemann tensors,

RðijÞ ∼ Fði ∘ F̃jÞ; ð19Þ

obeying the duality constraint RðijÞ ¼⋆ RðkjÞεjkγki. This
is indeed the case; the free (4,0) theory compactified on
T2 yields linear N ¼ 8 supergravity, with an SLð2;ZÞ-
symmetry acting on a triplet of duality related gravitational
field strengths [11–13]. Here, it is shown to be the square
of the familiar SLð2;ZÞ of the Abelian (2,0) multiplet
compactified on T2. Of course, this symmetry is broken by
interactions. This is not, however, necessarily an argument
against its existence; it simply tells us that it is not a
symmetry of classicalN ¼ 8 supergravity, just as S-duality
is not a symmetry of classical N ¼ 4 super-Yang-Mills
theory. While this picture is suggestive, it is highly
speculative and will depend crucially on the nonlinear
structure of the complete (4, 0) theory. Clearly, it may fail to
materialize, and a strong degree of scepticism is advised,
but the lessons in gauge theory and gravity learned on the
journey will regardless return much insight. Even more
speculatively, if the (4,0) theory on M6 ¼ X × C, where C
is a punctured Riemann surface, admits quantities that are
protected as we vary the size of X or C, then one might
expect a gravitational analog, or square, of the AGT
correspondence.
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