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We describe supersymmetric A-branes and B-branes in open N ¼ ð2; 2Þ dynamically gauged nonlinear
sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds,
these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with
neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM
and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can
occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically
Becchi-Rouet-Stora-Tyutin quantize the mirror theory to analyze this phenomenon.
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I. INTRODUCTION

D-branes are crucial to the nonperturbative dynamics of
string theory, and their importance has been well under-
stood since Polchinski [1] identified them with black
p-brane solutions of supergravity. From the point of view
of mathematics, D-branes are essential objects of homologi-
cal mirror symmetry, first conjectured by Kontsevich [2].
In this paper, we investigate D-branes of dynamically

gauged nonlinear sigma models (GNLSMs) with N ¼
ð2; 2Þ supersymmetry, which we shall refer to as equivar-
iant branes. One motivation for this is that GNLSMs with
target space X and gauge group G flow in the IR limit to
nonlinear sigma models (NLSMs) with target space X==G,
and hence, we will obtain new descriptions of D-branes in
N ¼ ð2; 2Þ NLSMs, including those with Calabi-Yau
targets useful for physical compactifications of string
theory. A more mathematically oriented motivation is
furnishing an equivariant generalization of homological
mirror symmetry. As we shall see, describing equivariant
branes will also allow us to define an open version of
the mathematical theory of Hamiltonian Gromov-Witten
invariants [3–5].
The N ¼ ð2; 2Þ GNLSM governing maps from a

closed Riemann surface into a Kähler manifold X with
Hamiltonian isometry group G was studied in depth by
Baptista [6,7]. In particular, it was shown that the A-twisted
GNLSM localizes to the moduli space of symplectic

vortices, and its correlation functions compute the
Hamiltonian Gromov-Witten invariants of X. Moreover,
for Abelian G, Baptista used mirror symmetry (as proven
by Hori and Vafa [8]) to describe the quantum equivariant
cohomology ring for toric X.
Also, D-branes inN ¼ ð2; 2Þ NLSMs on open Riemann

surfaces have been studied by Hori, Iqbal, and Vafa [9,10],
with the mirrors of these D-branes being identified. We
are thus led to attempt an understanding of equivariant
branes by combining the insights described above, that is,
by analyzing N ¼ ð2; 2Þ GNLSMs on open Riemann
surfaces and their mirrors. Since only a subset of the N ¼
ð2; 2Þ supersymmetry can be preserved at the boundaries of
these open Riemann surfaces, we are led to two types of
equivariant branes, namely, equivariant A-branes and
equivariant B-branes.
Equivariant B-branes have been previously studied by

Kapustin et al. [11] within the context of topologically
B-twisted GNLSMs, although the mirrors of these branes
were not elucidated. On the other hand, equivariant
A-branes have only been studied for G ¼ Uð1Þ by Setter
[12], using the topologically A-twisted nondynamical
Uð1Þ-GNLSM; in this case, their mirrors were not eluci-
dated either. We shall study both types of equivariant
branes and provide the description of their mirrors in a
subset of toric target spaces, hence defining equivariant
homological mirror symmetry in these contexts. Other
proposals for equivariant homological mirror symmetry
of equivariant B-branes have appeared in the mathematical
literature [13,14]. In addition, understanding equivariant
A-branes allows us to define open Hamiltonian Gromov-
Witten invariants, which can be understood as integrals
over the moduli spaces of open symplectic vortices that
describe a map from an open Riemann surface Σ to a Kähler
and Hamiltonian G-manifold X, whereby the boundaries of
Σ correspond to equivariant A-branes in X. We note that
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closed Hamiltonian Gromov-Witten invariants have been
studied extensively in the mathematical literature [3–5].
However, the open invariants have been largely unexplored,
with the exception of the work of Xu [15], which concerns
the compactification of the moduli space of open symplec-
tic vortices on the disk forG ¼ Uð1Þ, as well as the work of
Wang and Xu [16] on the relationship between open
symplectic vortices for X and open world sheet instantons
for X==G (the open quantum Kirwan map).

A. An outline of the paper

In Sec. II, we introduce the N ¼ ð2; 2Þ supersymmetric
dynamically gauged nonlinear sigma model on the infinite
strip. In Sec. III, we review the mirror symmetry between
Abelian GNLSMs and gauged Landau-Ginzburg (LG)
models with neutral matter, and elucidate the explicit
reduction of open gauged linear sigma models (GLSMs)
to open GNLSMs, making use of the example of CPN−1. In
Sec. IV, we study equivariant B-branes, paying particular
attention to Abelian equivariant B-branes in toric manifolds
X, as well as the LG mirrors of these branes when X is
Fano. Non-Abelian equivariant B-branes in general G
manifolds are also analyzed. In Sec. V, Abelian equivariant
A-branes in toric manifolds X are introduced, and their LG
mirror description is shown for toric manifolds X with
c1ðXÞ ≥ 0. We also explore non-Abelian equivariant
A-branes for general G manifolds. In Sec. VI, we use
the data of equivariant A-branes to study open Hamiltonian
Gromov-Witten invariants. The open gauged A model is
first introduced, together with its bulk and boundary
observables. The path integrals of these observables are
given by classical integrals over the moduli spaces of
open symplectic vortices on a Riemann surface with
boundaries, and these integrals are identified with the open
Hamiltonian Gromov-Witten invariants. Then, we compute

the dimension of these moduli spaces, as well as the related
boundary axial R anomaly. For Abelian invariants, we use
mirror symmetry to compute the Q̂2

A ≠ 0 anomaly, which
implies supersymmetry breaking and indicates an obstruc-
tion to integration over the moduli spaces. We shall find the
condition whereby the anomaly vanishes and supersym-
metry is manifest. Finally, we show how mirror symmetry
can be used to compute the Abelian invariants themselves.
The reader who is interested in equivariant B-branes

should read Secs. II, III, and IV, whereas the reader who is
interested in equivariant A-branes and open Hamiltonian
Gromov-Witten invariants should read Secs. II, III, V, and
VI. Additional details are contained in the comprehensive
version of this paper [17].

II. THE GAUGED NONLINEAR SIGMA
MODEL WITH BOUNDARIES

We shall take the world sheet Σ to be the infinite strip
I ×R (where the interval is I ¼ ½0; π�) equipped with a flat
Minkowski metric η ¼ diagð−1; 1Þ. The main fields of the
GNLSM are a connection, A, on a principal G-bundle
P → Σ, and a section

ϕ∶ Σ → E ð2:1Þ

of the associated bundle E ≔ P ×G X, where X is a Kähler
manifold. Locally on Σ, E looks like the product Σ × X,
which implies that locally the section ϕ looks like a map
ϕ∶ Σ → X, as one finds in nongauged NLSMs.
The GNLSM action is

S ¼ 1

2π
ðSmatter þ Sgauge þ SB þ SθÞ; ð2:2Þ

where

Smatter ¼
Z
Σ
d2x

�
−gjk̄∂A

μϕ
j∂Aμϕ̄k̄ þ i

2
gjk̄ψ̄

k̄
−ðϕ�∇↔AÞþψ j

− þ i
2
gjk̄ψ̄

k̄þðϕ�∇↔AÞ−ψ j
þ

−
1

2
gjk̄σ

aẽjaσ̄b ¯̃ek̄b −
1

2
gjk̄σ̄

aẽjaσb ¯̃ek̄b þ igjk̄ð∇lẽ
j
aÞðσaψ̄ k̄

−ψ
lþ þ σ̄aψ̄ k̄þψ l

−Þ
þ gjk̄ðλ̄aþẽjaψ̄ k̄

− − λ̄a−ẽ
j
aψ̄ k̄þ − λaþ ¯̃ek̄aψ j

− þ λa− ¯̃ek̄aψ
j
þÞ

þ Ri|̄kl̄ψ
iþψk

−ψ̄
|̄
−ψ̄

l̄þ þ gjk̄ðFj − Γj
ilψ

iþψ l
−ÞðF̄k̄ − Γk̄

m̄ n̄ψ̄
m̄
− ψ̄

n̄þÞ
�
; ð2:3Þ

Sgauge ¼
1

2e2

Z
Σ
d2x

�
Fa
01F01a −∇A

μσ
a∇Aμσ̄a þ

1

4
½σ; σ̄�a½σ; σ̄�a þDaDa − 2e2ðϕ�μa þ raÞDa

þ i
2
ðλ̄−Þa∇

↔A

þλa− þ i
2
ðλ̄þÞa∇

↔A

−λ
aþ þ iλ̄a−½σ; λþ�a þ iλ̄aþ½σ̄; λ−�a

�
; ð2:4Þ

SB ¼ −
Z
Σ
ϕ�Bþ

Z
∂Σ

ϕ�CaAa; ð2:5Þ
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and

Sθ ¼
Z
Σ
d2xðθ; F01Þ ð2:6Þ

with d2x ¼ dx1 ∧ dx0.1 Here, Fj and Da are auxiliary
fields. The covariant derivatives are given explicitly as

∂A
μϕ

k ¼ ∂μϕ
k þ Aa

μẽka;

ðϕ�∇AÞμψk ¼ ∂μψ
k þ Aa

μψ
j∂jẽka þ Γk

jlð∂A
μϕ

jÞψ l;

∇A
μσ

a ¼ ∂μσ
a þ ½Aμ; σ�a;

∇A
μ λ

a ¼ ∂μλ
a þ ½Aμ; λ�a: ð2:7Þ

We have also used the notations

∇þ ¼ ∇0 þ∇1;

∇− ¼ ∇0 −∇1; ð2:8Þ
as well as

A∇↔B ¼ A∇B −∇BA: ð2:9Þ
Additional details regarding the GNLSM action can be

found in [6,17]. The main difference from the closed
GNLSM is the boundary term with a C field, where C
is an equivariant map X → g� that obeys

dCa ¼ {ẽaB: ð2:10Þ

This term is required to cancel the nonzero gauge variation
of the B-field term, leaving the action invariant under the
following gauge transformations:

δϕk ¼ αaẽka;

δϕ̄k̄ ¼ αa ¯̃ek̄a;

δψk
� ¼ αaψ i

�∂iẽka;

δψ̄ k̄
� ¼ αaψ̄ {̄

�∂ {̄
¯̃ek̄a;

δFk ¼ αaFi∂iẽka;

δF̄k̄ ¼ αaF̄{̄∂ {̄
¯̃ek̄a; ð2:11Þ

δAa
μ ¼ ½α; Aμ�a − ∂μα

a ¼ −∇A
μα

a;

δσa ¼ ½α; σ�a;
δσ̄a ¼ ½α; σ̄�a;
δλa� ¼ ½α; λ��a;
δλ̄a� ¼ ½α; λ̄��a;
δDa ¼ ½α; D�a: ð2:12Þ

For a closed world sheet, the action (2.2) would be
invariant under the following N ¼ ð2; 2Þ supersymmetry
transformations:

δϕk ¼ ðϵþψk
− − ϵ−ψ

kþÞ;
δϕ̄k̄ ¼ −ðϵ̄þψ̄ k̄

− − ϵ̄−ψ̄
k̄þÞ;

δψkþ ¼ iϵ̄−ð∂A
0 þ ∂A

1 Þϕk þ ϵþFk þ iϵ̄þσ̄aẽka;

δψ̄ k̄þ ¼ −iϵ−ð∂A
0 þ ∂A

1 Þϕ̄k̄ þ ϵ̄þF̄k̄ − iϵþσa ¯̃ek̄a;

δψk
− ¼ −iϵ̄þð∂A

0 − ∂A
1 Þϕk þ ϵ−Fk − iϵ̄−σaẽka;

δψ̄ k̄
− ¼ iϵþð∂A

0 − ∂A
1 Þϕ̄k̄ þ ϵ̄−F̄k̄ þ iϵ−σ̄a ¯̃ek̄a;

δFk ¼ −iϵ̄þð∂−ψ
kþ þ Aa

−ð∂jẽkaÞψ j
þÞ

− iϵ̄−ð∂þψk
− þ Aaþð∂jẽkaÞψ j

−Þ þ ϵ̄−λ̄
aþẽka − ϵ̄þλ̄a−ẽka

− iϵ̄þσ̄að∂jẽkaÞψ j
− − iϵ̄−σað∂jẽkaÞψ j

þ;

δF̄k̄ ¼ −iϵþð∂−ψ̄
k̄þ þ Aa

−ð∂ |̄
¯̃ek̄aÞψ̄ |̄

þÞ
− iϵ−ð∂þψ̄ k̄

− þ Aaþð∂ |̄
¯̃ek̄aÞψ̄ |̄

−Þ − ϵ−λ
aþ ¯̃ek̄a þ ϵþλa− ¯̃ek̄a

− iϵþσað∂ |̄
¯̃ek̄aÞψ̄ |̄

− − iϵ−σ̄að∂ |̄
¯̃ek̄aÞψ̄ |̄

þ; ð2:13Þ

δAaþ ¼ iϵþλ̄aþ þ iϵ̄þλaþ;

δAa
− ¼ iϵ−λ̄a− þ iϵ̄−λa−;

δσa ¼ −iϵ̄þλa− − iϵ−λ̄aþ;

δσ̄a ¼ −iϵþλ̄a− − iϵ̄−λaþ;

δλaþ ¼ ϵ−ð∇Aþσ̄aÞ þ ϵþ

�
−Fa

01 þ
1

2
½σ; σ̄�a þ iDa

�
;

δλ̄aþ ¼ ϵ̄−ð∇AþσaÞ þ ϵ̄þ

�
−Fa

01 −
1

2
½σ; σ̄�a − iDa

�
;

δλa− ¼ ϵþð∇A
−σ

aÞ þ ϵ−

�
Fa
01 −

1

2
½σ; σ̄�a þ iDa

�
;

δλ̄a− ¼ ϵ̄þð∇A
−σ̄

aÞ þ ϵ̄−

�
Fa
01 þ

1

2
½σ; σ̄�a − iDa

�
;

δDa ¼ 1

2
ð−ϵ̄þð∇A

−λ
aþÞ − ϵ̄−ð∇Aþλa−Þ þ ϵþð∇A

−λ̄
aþÞ

þ ϵ−ð∇Aþλ̄a−Þ þ ϵþ½σ; λ̄−�a þ ϵ−½σ̄; λ̄þ�a
− ϵ̄þ½σ̄; λ−�a − ϵ̄−½σ; λþ�aÞ; ð2:14Þ

where A� ¼ A0 � A1, ∂� ¼ ∂0 � ∂1, and

δ ¼ ϵþQ− − ϵ−Qþ − ϵ̄þQ̄− þ ϵ̄−Q̄þ ð2:15Þ

in terms of the supercharges of the N ¼ ð2; 2Þ supersym-
metry algebra. On the other hand, since our theory is
defined on I ×R, supersymmetry is not preserved at the
boundaries, and we have

1We consider only the case where G is compact, in order to
ensure positive definiteness of the gauge multiplet kinetic terms.
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δSmatter ¼
1

2π

Z
∂Σ

dx0
�
−ϵþ

�
1

2
gi|̄ð∂A

0 þ ∂A
1 Þϕ̄|̄ψ i

− þ 1

2
gi|̄σa ¯̃e

|̄
aψ iþ −

i
2
gi|̄Fiψ̄ |̄

þ þ i
2
gi|̄Γi

jlψ
j
þψ l

−ψ̄
|̄
þ

�

þ ϵ̄þ

�
1

2
gi|̄ð∂A

0 þ ∂A
1 Þϕiψ̄ |̄

− þ 1

2
gi|̄σ̄aẽiaψ̄

|̄
þ þ i

2
gi|̄F̄|̄ψ iþ −

i
2
gi|̄Γ

|̄
{̄ l̄
ψ̄ {̄
−ψ̄

l̄þψ iþ

�

− ϵ−

�
1

2
gi|̄ð∂A

0 − ∂A
1 Þϕ̄|̄ψ iþ þ 1

2
gi|̄σ̄a ¯̃e

|̄
aψ i

− þ i
2
gi|̄Fiψ̄ |̄

− −
i
2
gi|̄Γi

jlψ
j
þψ l

−ψ̄
|̄
−

�

þ ϵ̄−

�
1

2
gi|̄ð∂A

0 − ∂A
1 Þϕiψ̄ |̄

þ þ 1

2
gi|̄σaẽiaψ̄ |̄

− −
i
2
gi|̄F̄|̄ψ i

− þ i
2
gi|̄Γ

|̄
{̄ l̄
ψ̄ {̄
−ψ̄

l̄þψ i
−

��
; ð2:16Þ

δðSgauge þ Sr þ SθÞ ¼
1

2π

1

2e2

Z
∂Σ

dx0
�
ϵþ

�
i
2
λ̄−að∇A

1 þ∇A
0 Þσa − λ̄þa

�
i
2
Fa
01 þ

i
4
½σ; σ̄�a þDa

2

�
þ e2ðϕ�μa þ ra − iθaÞλ̄aþ

�

þ ϵ̄þ

�
i
2
λ−að∇A

1 þ∇A
0 Þσ̄a − λþa

�
i
2
Fa
01 −

i
4
½σ; σ̄�a −Da

2

�
− e2ðϕ�μa þ ra þ iθaÞλaþ

�

þ ϵ−

�
i
2
λ̄það∇A

1 −∇A
0 Þσ̄a − λ̄−a

�
i
2
Fa
01 þ

i
4
½σ; σ̄�a −Da

2

�
− e2ðϕ�μa þ ra þ iθaÞλ̄a−

�

þ ϵ̄−

�
i
2
λþað∇A

1 −∇A
0 Þσa − λ−a

�
i
2
Fa
01 −

i
4
½σ; σ̄�a þDa

2

�
þ e2ðϕ�μa þ ra − iθaÞλa−

��
; ð2:17Þ

δSB ¼ 1

2π

Z
∂Σ

dx0
�
ðBij∂A

0ϕ
i þ B{̄j∂A

0 ϕ̄
{̄Þðϵþψ j

− − ϵ−ψ
j
þÞ þ ðBi|̄∂A

0ϕ
i þ B{̄ |̄∂A

0 ϕ̄
{̄Þð−ϵ̄þψ̄ |̄

− þ ϵ̄−ψ̄
|̄
þÞ

þ i
2
ðϵþλ̄aþ þ ϵ̄þλaþ þ ϵ−λ̄

a
− þ ϵ̄−λ

a
−Þϕ�Ca

�
: ð2:18Þ

To restore supersymmetry at the boundaries, we need to
chooseanappropriate set ofboundaryconditionson the fields,
and these conditions must themselves be supersymmetric. In
fact, only certainN ¼ 2 subsets of the four supersymmetries
can be restored (A-type or B-type supersymmetry).
Furthermore, we can include compatible boundary inter-
actions. These boundary conditions/interactions shall corre-
spond to equivariant generalizations of D-branes. Note that
one can further generalize the action (2.2) by considering
quiver GNLSMs, i.e., with gauge group G1 × G2 ×G3…,
each factorGi having itsowncouplingconstant,ei. InSecs. IV
and V, we shall focus on finding boundary conditions/
interactions for quiver Abelian GNLSMs on toric manifolds.

III. GNLSMS FROM GLSMS AND
MIRROR SYMMETRY

It is well known that N ¼ ð2; 2Þ NLSMs with target
spaces being toric manifolds can be obtained in the IR
limit of N ¼ ð2; 2Þ quiver Abelian GLSMs [18]. Hori and

Vafa [8] made use of this to prove the mirror symmetry of
manifolds with non-negative first Chern class in terms of
Landau-Ginzburg theories. This proof of mirror symmetry
was later applied to world sheets with boundaries, whereby
the Landau-Ginzburg mirrors of B-branes [9] and A-branes
[10] were found.
As shown by Baptista [7], it is also possible to obtain

quiver Abelian GNLSMs on closed world sheets with toric
target spaces by taking a different limit of quiver Abelian
GLSMs. Moreover, Baptista found the mirror Landau-
Ginzburg theories of these GNLSMs. This then suggests a
natural generalization of Baptista’s proof to world sheets
with boundaries, in order to find equivariant A-branes and
B-branes in Abelian GNLSMs, as well as the Landau-
Ginzburg mirrors of these branes. We shall pursue this line
of thought in Secs. IV and V.
Before doing so, let us briefly review Baptista’s idea for

closed world sheets. In superfield language, the action of a
Uð1ÞN GLSM with target space CN is

SGLSM ¼ 1

2π

Z
d2x

Z
d4θ

�XN
j¼1

Φ̄jðeQ̂
b
j V̂bþQ̃c

j ṼcÞΦj −
XN−k

b¼1

�
1

2ê2b

¯̂ΣbΣ̂b

�
−
Xk
c¼1

�
1

2ẽ2c
¯̃ΣcΣ̃c

��

þ 1

2π

1

2

Z
d2x

�Z
d2θ̃ð−t̂bΣ̂b − t̃cΣ̃cÞ þ c:c:

�
; ð3:1Þ
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where Uð1ÞN ¼ Uð1ÞðN−kÞ ×Uð1Þk, with the indices b ¼ 1;…; N − k and c ¼ 1;…; k. The mirror of this theory is the
following Landau-Ginzburg sigma model with twisted chiral superfields Yi (whose imaginary parts are periodic, with
period 2π) and action

Sdual ¼
1

2π

Z
d2x

Z
d4θ

�
−
1

2

XN
j¼1

ðYj þ ȲjÞ logðYj þ ȲjÞ −
XN−k

b¼1

�
1

2ê2b

¯̂ΣbΣ̂b

�
−
Xk
c¼1

�
1

2ẽ2c
¯̃ΣcΣ̃c

��

þ 1

2π

1

2

Z
d2x

�Z
d2θ̃

�
ðQ̂b

jY
j − t̂bÞΣ̂b þ ðQ̃c

jY
j − t̃cÞΣ̃c þ

XN
j¼1

e−Y
j

�
þ c:c:

�
: ð3:2Þ

Taking quantum effects into account, the target space for
this Landau-Ginzburg sigma model is the algebraic torus
ðC×ÞN [8]. In deriving the duality between the two mirror
theories, it can be shown that

Yj þ Ȳj ¼ 2Φ̄je
Q̂b

j V̂bþQ̃c
j ṼcΦj; ð3:3Þ

which is an explicit relationship between the fields of the
mirror theories.
To obtain a GNLSM from (3.1), we take the limit where

êb → ∞. The Σ̂b kinetic terms vanishes, and the remaining
fields belonging to V̂b become auxiliary fields and are
integrated out. The resulting sigmamodel hasCN==Uð1ÞN−k

as target space, but is still gauged, since the vector super-
fields Ṽc are still present in the action. However, note that to
obtain a Kähler target space with k complex dimensions, the
Fayet-Iliopoulos (FI) parameters r̂b must be within a Kähler
cone. In this way, we obtain theN ¼ ð2; 2Þ Uð1Þk-GNLSM
with Kähler CN==Uð1ÞN−k target space.
Taking the same limit êb → ∞ in the dual Landau-

Ginzburg sigma model (3.2) makes the Σ̂b kinetic terms

vanish. Σ̂b is then an auxiliary superfield, which we can
integrate out to impose the constraints

Q̂b
jY

j − t̂b ¼ 0: ð3:4Þ

These constraints have the solution

Yj ¼ ŝj þ
Xk
c¼1

vjcΘc; ð3:5Þ

where Θ1;…;Θk are new twisted chiral fields, the
complex constants ŝ1;…; ŝN ∈ C are any solution of the
algebraic relation Q̂b

j ŝ
j ¼ t̂b, and vjc are N primitive

vectors v1;…; vN ∈ Zk [which generate the regular fan
associated with CN==Uð1ÞN−k] that span Zk and satisfyP

N
j Q̂b

j v
j ¼ 0. Thus, the êb → ∞ limit gives the following

Uð1Þk-gauged Landau-Ginzburg sigma model with neutral
matter and with target ðC×Þk

Ŝdual ¼
1

2π

Z
d2x

Z
d4θ

�
−
1

2

XN
j¼1

ðŝj þ ¯̂sj þ hvj;Θþ Θ̄iÞ logðŝj þ ¯̂sj þ hvj;Θþ Θ̄iÞ −
Xk
c¼1

�
1

2ẽ2c
¯̃ΣcΣ̃c

��

þ 1

2π

1

2

Z
d2x

�Z
d2θ̃

�
hΣ̃; Q̃jiðhvj;Θi þ ŝjÞ − hΣ̃; t̃i þ

XN
j¼1

e−hvj;Θi−ŝj
�
þ c:c:

�
; ð3:6Þ

where h·; ·i is the canonical inner product on Rk. This
gauged Landau-Ginzburg theory has the holomorphic
twisted superpotential

W̃ðΘ; Σ̃Þ ¼ hΣ̃; Q̃jiðhvj;Θi þ ŝjÞ− hΣ̃; t̃i þ
XN
j¼1

e−hvj;Θi−ŝj :

ð3:7Þ

Baptista’s technique of obtaining GNLSMs from
GLSMs is an extremely powerful one, as it allows us
to obtain multiple GNLSMs from a single GLSM, by

choosing which coupling constants we wish to send to
infinity. This implies the equivalence of several GNLSMs
with different Kähler target manifolds, as well as the
equivalence of equivariant branes contained in these
manifolds. These branes will be the main objective of
our study in the following sections. Furthermore, once a
particular GNLSM is obtained, even its gauge group can be
modified, by demoting some of its Uð1Þ gauge symmetries
to global symmetries. These points shall be useful to keep
in mind when reading the following sections, where we
attempt to study Abelian equivariant branes in as much
generality as possible.
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A. Explicit reduction of GLSMs to GNLSMs in the case with boundaries

We have only discussed the method of obtaining GNLSMs from GLSMs in superfield language for closed world sheets
thus far. We would now like to understand this reduction method in component form for an open world sheet, so that we
may eventually find explicit boundary actions and boundary conditions in GNLSMs. The Uð1ÞN ¼ Uð1ÞN−k ×Uð1Þk
GLSM action with boundaries is given explicitly as2

SGLSM ¼ 1

2π

XN
i

Z
d2xf−Dμϕ̄iDμϕi þ

i
2
ψ̄−iðD

↔

0 þD
↔

1Þψ−i þ
i
2
ψ̄þiðD

↔

0 −D
↔

1Þψþi

−
�XN−k

b

Q̂ibσ̂b þ
Xk
c

Q̃icσ̃c

��XN−k

b

Q̂ib
¯̂σb þ

Xk
c

Q̃ic
¯̃σc

�
ϕ̄iϕi

−
XN−k

b

Q̂ibð ¯̂σbψ̄þiψ−i þ σ̂bψ̄−iψþiÞ −
Xk
c

Q̃icð ¯̃σcψ̄þiψ−i þ σ̃cψ̄−iψþiÞ

−
XN−k

b

iQ̂ibϕið ¯̂λ−bψ̄þi −
¯̂λþbψ̄−iÞ −

Xk
c

iQ̃icϕið ¯̃λ−cψ̄þi −
¯̃λþcψ̄−iÞ

−
XN−k

b

iQ̂ibϕ̄iðψ−iλ̂þb − ψþiλ−bÞ −
Xk
c

iQ̃icϕ̄iðψ−iλ̃þc − ψþiλ−cÞ þ jFij2g

þ 1

2π

Z
d2x

�XN−k

b

�
D̂b

�XN
i

Q̂ibϕ̄iϕi − r̂b

�
þ θ̂bF̂01b

�
þ
Xk
c

�
D̃c

�XN
i

Q̃icϕ̄iϕi − r̃c

�
þ
Xk
c

θ̃cF̃01c

��

þ 1

2π

XN−k

b

1

2ê2b

Z
d2x

�
ðF̂01bÞ2 − ∂μσ̂b∂μ ¯̂σb þ ðD̂bÞ2 þ

i
2
¯̂λþbð∂

↔

0 − ∂↔1Þλ̂þb þ
i
2
¯̂λ−bð∂

↔

0 þ ∂↔1Þλ̂−b
�

þ 1

2π

Xk
c

1

2ẽ2c

Z
d2x

�
ðF̃01cÞ2 − ∂μσ̃c∂μ ¯̃σc þ ðD̃cÞ2 þ

i
2
¯̃λþcð∂

↔

0 − ∂↔1Þλ̃þc þ
i
2
¯̃λ−cð∂

↔

0 þ ∂↔1Þλ̃−c
�
; ð3:8Þ

where the covariant derivatives are

Dμϕi ¼
�
∂μ þ i

XN−k

b

Q̂ibÂμb þ i
Xk
c

Q̃icÃμc

�
ϕi;

Dμψ�i ¼
�
∂μ þ i

XN−k

b

Q̂ibÂμb þ i
Xk
c

Q̃icÃμc

�
ψ�i: ð3:9Þ

We shall now take the êb → ∞ limit in (3.8), whereby the vector multiplet kinetic terms as well as the term ðD̂bÞ2 vanish.
This means that all the components of the vector superfields V̂b ¼ fÂμb; σ̂b; λ̂b; D̂bg become auxiliary.
Consequently, the equations of motion of Âμb and σ̂b give the following constraints on themselves3:

XN
i

Q̂ib½iðϕ̄iD0ϕi − ϕiD0ϕ̄iÞ þ ψ̄−iψ−i þ ψ̄þiψþi� ¼ 0;

XN
i

Q̂ib½iðϕ̄iD1ϕi − ϕiD1ϕ̄iÞ − ψ̄−iψ−i þ ψ̄þiψþi� ¼ 0; ð3:10Þ

2It is important to keep in mind that the superfield action (3.1) is only equal to this action upon integration by parts, which give rise to
boundary terms. However, we shall be concerned with this action (which has the standard kinetic terms), as well as the GNLSMs we can
obtain from it, and their mirrors.

3To be precise, the equation of motion for Â0b [which is the first equation in (3.10)] will be modified by a boundary term proportional
to θ̂b, unless appropriate boundary conditions and/or boundary terms are used. We shall assume that this is the case for now, and in the
following sections we will study boundary actions whereby the Â0b equation of motion in (3.10) is precise both in the bulk and at the
boundaries.
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XN
i

�
−Q̂ib

�XN−k

b

Q̂idσ̂d þ
Xk
c

Q̃icσ̃c

�
ϕiϕ̄i − Q̂ibψ̄þiψ−i

�
¼ 0;

XN
i

�
−Q̂ib

�XN−k

d

Q̂id
¯̂σd þ

Xk
c

Q̃ic
¯̃σc

�
ϕiϕ̄i − Q̂ibψ̄−iψþi

�
¼ 0; ð3:11Þ

while integrating out the gauginos (λ̂b) gives the constraints

XN
i

Q̂ibϕ̄iψ�i ¼ 0; ð3:12Þ

and finally, integrating out D̂b gives

XN
i

Q̂ibϕ̄iϕi − r̂b ¼ 0; ð3:13Þ

for b ¼ 1;…; N − k.4

To derive the explicit action for the Uð1Þk-GNLSM with
a Kähler target space CN==Uð1ÞN−k, we need to set the FI
parameters r̂b to be in a particular Kähler cone, before
taking the êb → ∞ limit. Next, we need to find para-
metrizations for the scalar fields ϕi that satisfy (3.13), as
well as parametrizations for ψ� that satisfy (3.12). Then,
Âμb and σ̂b must be integrated out of the action using (3.10)
and (3.11). Finally, we need to replace the matter auxiliary
field term

XN
i

jFij2 ð3:14Þ

with the matter auxiliary field term of the GNLSM in (2.3).
This procedure is simplest for the case of N − k ¼ 1,

where (3.10) and (3.11) reduce to

Â0 ¼
P

N
i Q̂i½iðϕ̄iD̃0ϕi − ϕiD̃0ϕ̄iÞ þ ψ̄−iψ−i þ ψ̄þiψþi�

2
P

N
j Q̂2

j jϕ2
j j

;

Â1 ¼
P

N
i Q̂i½iðϕ̄iD̃1ϕi − ϕiD̃1ϕ̄iÞ − ψ̄−iψ−i þ ψ̄þiψþi�

2
P

jQ̂
2
j jϕ2

j j
;

ð3:15Þ
and

σ̂ ¼
P

N
i¼1½−Q̂ið

P
k
c Q̃icσ̃cÞϕiϕ̄i − Q̂iψ̄þiψ−i�P
N
j¼1 Q̂

2
jϕjϕ̄j

;

¯̂σ ¼
P

N
i¼1½−Q̂ið

P
k
c Q̃ic

¯̃σcÞϕiϕ̄i − Q̂iψ̄−iψþi�P
N
j¼1 Q̂

2
jϕjϕ̄j

; ð3:16Þ

where

D̃μϕi ¼
�
∂μ þ i

Xk
c

Q̃icÃμc

�
ϕi;

D̃μϕ̄i ¼
�
∂μ − i

Xk
c

Q̃icÃμc

�
ϕ̄i: ð3:17Þ

A good example is that of X ¼ CPN−1, which corresponds
to the quotient CN==Uð1Þ with charges Q̂i ¼ 1, and the FI
parameter r̂ > 0, which is the Kähler cone of CPN−1. Thus,
we should begin with the GLSM (3.8) with N − k ¼ 1,
Q̂i ¼ 1, and r̂ > 0. In this case, the constraint (3.13) is

XN
i

ϕ̄iϕi ¼ r̂ ð3:18Þ

and is solved by

ϕi ¼
Zi

ffiffiffî
r

p
eitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þP
N−1
k jZkj2

q ; i ¼ 1;…; N − 1;

ϕN ¼
ffiffiffî
r

p
eitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þP
N−1
k jZkj2

q ; ð3:19Þ

where

Zi ¼ ϕi

ϕN
ð3:20Þ

correspond to the inhomogeneous coordinates that para-
metrize a local patch of CPN−1. Furthermore, the fermionic
constraint (3.12) can be solved by

ψ i� ¼ ψZi
�

ffiffiffî
r

p
eit

ð1þP
N−1
k jZkj2Þ12 −

ZiðPN−1
l ψZl

� Z̄
lÞ ffiffiffî

r
p

eit

ð1þP
N−1
k jZkj2Þ32 ;

i ¼ 1;…; N − 1;

ψN� ¼ −
P

N−1
j ðψZj

� Z̄jÞ ffiffiffî
r

p
eit

ð1þP
N−1
k jZkj2Þ32 ; ð3:21Þ

where ψZi

� correspond to Grassmann-valued vector fields
defined on the aforementioned patch of CPN−1.
Using (3.15) and (3.19), we can show that the terms

containing only bosonic fields in the scalar kinetic term of
the GLSM (−

P
N
i DμϕiDμϕi) are

4These constraints are consistent with the N ¼ ð2; 2Þ super-
symmetry of the GLSM action.
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−
r̂ðPN−1

j ∂A
μZj∂AμZ̄jÞ

ð1þP
N−1
i jZij2Þ þ r̂ðPN−1

j Zj∂A
μ Z̄jÞðPN−1

k Z̄k∂AμZkÞ
ð1þP

N−1
i jZij2Þ2 ; ð3:22Þ

where

∂A
μZj ¼ ∂μZj þ i

XN−1

c

ðQ̃jc − Q̃NcÞÃμcZj ðno sumover jÞ:

ð3:23Þ

In (3.22), we find the scalar kinetic term given in (2.3) for
X ¼ CPN−1 and G ¼ Uð1ÞN−1, with the metric on CPN−1

being the standard Fubini-Study metric.5 Comparing the
covariant derivative (3.23) with the general form given
in (2.7), we find that the holomorphic Killing vector
fields corresponding to the Uð1ÞN−1 isometry on CPN−1

are given by6

ẽjc ¼ iðQ̃jc − Q̃NcÞZj: ð3:24Þ

The term proportional to D̃c in the GLSM is found to
contain the moment map for the Uð1ÞN−1 isometry of
CPN−1,

μ̃c ¼
−r̂ðPN−1

i Q̃icjZij2 þ Q̃NcÞ
ð1þP

N−1
k jZj2Þ ; ð3:25Þ

via (3.19), and thereby we retrieve the moment map term of
(2.4). Similarly, using (3.15) and (3.19), we find that the θ̂
term gives rise to the B-field and C-field terms of the
GNLSM, with

B ¼ −
θ̂

r̂
ω ð3:26Þ

(where ω is the Fubini-Study Kähler form) and

Cc ¼ −
θ̂

r̂
μ̃c; ð3:27Þ

as well as the boundary term

−
1

2π

Z
∂Σ

θ̂

2r̂

XN
i

ðψ̄−iψ−i þ ψ̄þiψþiÞ; ð3:28Þ

where we have maintained its GLSM form for convenience.
We shall comment more on this term below.

In a similar manner, we may continue the procedure
explained below (3.13) with the help of (3.15), (3.16),
(3.19), and (3.21) in order to obtain the complete GNLSM
action given in (2.2) for X ¼ CPN−1 and G ¼ Uð1ÞN−1,
together with the (spurious) boundary term (3.28). This
boundary term also occurs in the well-known reduction of
GLSMs to NLSMs [19] and can be removed in several
ways, including the addition of a boundary term to the
GLSM we start with [19], or by a judicious choice of
boundary conditions on the fermionic fields. In the follow-
ing sections, we shall explain how this term is removed
when investigating the cases of A-type and B-type super-
symmetry at the boundaries.
Before ending this section, we would like to point out

that the classical procedure of obtaining GNLSMs from
GLSMs which we have explained above is valid at the
quantum level, since the êb → ∞ limit can be taken for the
path integral of the GLSM, and functional integration over
the auxiliary components of V̂b is equivalent to imposing
their algebraic equations of motion as constraints.
However, taking renormalization of the FI parameters into
account, it can be shown that we may only obtain quantum
GNLSMs for Kähler targets with c1ðXÞ ≥ 0. This is
because the renormalization group flow at the one-loop
level of the bare FI parameters r̂0b is

r̂0b ¼ r̂bðμÞ þ
XN
i¼1

Q̂ib log

�
ΛUV

μ

�
ð3:29Þ

(where ΛUV is an ultraviolet cutoff and μ is a finite energy
scale). As shown in [20], for a basis eb of H2ðX;ZÞ,
we have

P
N
i Q̂ib ¼ c1ðXÞ · eb. Then, for a holomorphic

curve m ¼ P
N−k
b mbeb in X (i.e., an element of the Mori

cone of X)

XN−k

b

mbr̂0b¼
XN−k

b

mbr̂bðμÞþ
XN−k

b

mbðc1ðXÞ ·ebÞ log
�
ΛUV

μ

�
:

ð3:30Þ

For the bare FI parameters to be in the Kähler cone of X, the
left-hand side of (3.30) ought to be greater than zero. In
the continuum limit (ΛUV → ∞), this is impossible if
c1ðXÞ ≥ 0 is not satisfied.

IV. EQUIVARIANT B-BRANES
AND THEIR MIRRORS

We shall apply the techniques discussed above to find
boundary actions and boundary conditions in Abelian

5Here, the FI parameter plays the role of the modulus that
parametrizes the size of CPN−1.

6The fact that the Uð1ÞN−1 charges of the inhomogeneous
coordinates Zj are given by (Q̃jc − Q̃Nc) can also be deduced
from (3.20).
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GNLSMs with toric target spaces, X, as well as their
mirror descriptions. These boundary actions and boundary
conditions will correspond to branes in X, which we refer
to as equivariant branes. We first study the case where B-
type supersymmetry is preserved at the boundaries of the
I ×R world sheet, since this leads us to make contact with
a result found previously by Kapustin et al. [11,21], while
in the next section, we shall use similar techniques to
study equivariant A-branes. After gaining insights from
the study of Abelian equivariant B-branes, we shall then
proceed to analyze equivariant B-branes for non-Abelian
GNLSMs.
The combination of supercharges that define B-type

supersymmetry are

QB ¼ Q̄þ þ eiβQ̄−;

Q†
B ¼ Qþ þ e−iβQ−; ð4:1Þ

where β ∈ R. In the following, we shall set β ¼ 0 for
simplicity, though it is straightforward to study the β ≠ 0
generalization by the same techniques. From (2.15), we
find that the corresponding relations among the supersym-
metry transformation parameters are

ϵ ¼ ϵþ ¼ −ϵ−;

ϵ̄ ¼ ϵ̄þ ¼ −ϵ̄−: ð4:2Þ

We shall also make use of superfields when discussing
boundary conditions, and to this end, the concept of
“boundaries” in superspace [10] is useful. For the case
at hand, the relevant boundary in superspace is known as
“B boundary” and corresponds to

θ ¼ θþ ¼ θ−;

θ̄ ¼ θ̄þ ¼ θ̄−: ð4:3Þ

Let us briefly review what is known of ordinary
B-branes. For N ¼ ð2; 2Þ NLSMs, the boundary condi-
tion needed to preserve B-type supersymmetry at the
boundaries maps each boundary to a holomorphically
embedded complex submanifold of the target space [9].
Such submanifolds can support a holomorphic line bundle,
described by the following boundary action:

S∂Σ ¼
Z
∂Σ
dx0

�
AX
M∂0XM−

i
4
FX
MNðψMþ þψM

− ÞðψNþþψN
−Þ
�
;

ð4:4Þ

which is B-type supersymmetric if FX
mn ¼ FX

m̄ n̄ ¼ 0 [here,
we use (M;N;…) as coordinate indices on the holomorph-
ically embedded branes], where AX

M corresponds to a
connection of a line [Uð1Þ] bundle on each B-brane,
and FX

MN is the corresponding curvature. Alternatively,

when mixed Dirichlet-Neumann boundary conditions are
imposed instead of Neumann ones, the boundary action is

S∂Σ ¼
Z
∂Σ

dx0AX
M∂0XM: ð4:5Þ

We are interested in the generalizations of (4.4) and
(4.5) (and their corresponding boundary conditions) for
GNLSMs. These shall be obtained from GLSM boundary
conditions and boundary actions, using the methods of
Sec. III. In the following, we shall attempt to generalize the
boundary action (4.4) to the case of Uð1Þk-GNLSMs with
Kähler toric target space, before proceeding to do the same
for the boundary action (4.5).

A. Equivariant B-branes on
CN==Uð1Þ from GLSM

We shall first proceed to obtain the B-type super-
symmetric boundary action and boundary conditions for
Abelian GNLSMs with toric target spaces of the form
CN==Uð1Þ. We shall focus on obtaining GNLSM boun-
dary conditions corresponding to space-filling branes.
To this end, we must impose B-type supersymmetric
boundary conditions at the GLSM level that include
Neumann boundary conditions on the chiral superfields.
Hence, we impose the following boundary conditions,
which are invariant under Uð1ÞN gauge symmetry:

DþΦi ¼ D−Φi;

Σa ¼ Σ̄a ð4:6Þ

at B boundary, where D� ¼ e−
P

N
a
QiaVaD�e

P
N
a
QiaVa , as

well as

F01a ¼ −ea2θa: ð4:7Þ
In components, these boundary conditions are

ψþi − ψ−i ¼ 0;

Fi ¼ 0;

D1ϕi ¼ 0;

D1ðψþi þ ψ−iÞ ¼ 0; ð4:8Þ

and

ImðσaÞ ¼ 0;

λþa þ λ−a ¼ 0;

∂1ReðσaÞ ¼ ea2θa;

F01a ¼ −ea2θa;

∂1ðλþa − λ−aÞ ¼ 0;

∂1ðDa þ ∂1ImðσaÞÞ ¼ 0: ð4:9Þ
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It is crucial to note that these boundary conditions
are compatible with the constraints (3.15) and (3.16)
which are imposed when taking the ê → ∞ limit. We
also need to add boundary terms to cancel the B-type
supersymmetry variations of the bulk theta terms, which
gives the B-type supersymmetry invariant expression

θ̂

2π

Z
Σ
F̂01d2xþ

θ̂

2π

Z
∂Σ

ðσ̂ þ ¯̂σÞ
2

dx0

þ
XN−1

c

�
θ̃c
2π

Z
Σ
F̃01cd2xþ

θ̃c
2π

Z
∂Σ

ðσ̃c þ ¯̃σcÞ
2

dx0
�
:

ð4:10Þ

With the above boundary conditions and boundary
terms, the GLSM action is B-type supersymmetric at
the boundaries.
In addition, we include a boundary action for the

Uð1ÞN-GLSM given in (3.8), with N − k ¼ 1. This is
given by

S∂Σ ¼
θ̂

4πr̂

Z
∂Σ

dx0
XN
i

�
iD0ϕ̄iϕi − iϕ̄iD0ϕi

þ ðψþi þ ψ−iÞðψ̄þi þ ψ̄−iÞ−
XN
a

Qiaðσa þ σ̄aÞjϕij2
�

ð4:11Þ

[where the covariant derivatives of the scalar fields are
given by (3.9)] and is B-type supersymmetric on its own. Its
inclusion is necessary to obtain the generalization of the
boundary action (4.4), which plays the role of elucidating
the geometry of the branes.
Now, recall from [9] that the bulk theta term can be

converted into a boundary term in some circumstances. In
particular, we have

θ̂

2π

Z
Σ
d2xF̂01 ¼ −

θ̂

2π

Z
∂Σ

dx0Â0; ð4:12Þ

via Stoke’s theorem, but this violates gauge invariance. The
violation is

θ̂

2π

Z
∂Σ

dx0∂0α ¼ θ̂

2π

Z
dα ¼ θ̂

2π
2πm; ð4:13Þ

where m ∈ Z. However, if θ̂ ∈ 2πZ, then (4.13) implies
that expð−i θ̂

2π

R
∂Σ ÂÞ is gauge invariant, and hence,

the path integral remains gauge invariant. We shall
assume that θ̂ ∈ 2πZ hereafter, by setting θ̂ ¼ 2πn, where
n ∈ Z.

This allows us to write (4.10) and (4.11) as

S∂Σ0 ¼
n
2r̂

Z
∂Σ
dx0

�XN
i

ði∂0ϕ̄iϕi− iϕ̄i∂0ϕiÞ

þ
XN
i

ðψþiþψ−iÞðψ̄þiþ ψ̄−iÞ

þ2Â0

�XN
i

Q̂ijϕij2− r̂

�
− ðσ̂þ ¯̂σÞ

�XN
i

Q̂ijϕij2− r̂

�

þ2
XN−1

c

Ã0c

XN
i

Q̃icjϕij2−
XN−1

c

ðσ̃cþ ¯̃σcÞ
XN
i

Q̃icjϕij2
�

þ
XN−1

c

�
θ̃c
2π

Z
Σ
F̃01cd2xþ

θ̃c
2π

Z
∂Σ
ðσ̃cþ ¯̃σcÞ

2
dx0

�
:

ð4:14Þ

Taking the ê → ∞ limit results in the corresponding vector
multiplet components becoming auxiliary (see Sec. III).
Integrating D̂ out of the bulk action imposes the condition

XN
i

Q̂ijϕij2 − r̂ ¼ 0; ð4:15Þ

and this results in the second line of (4.14) vanishing.
Integrating out the rest of the components in the vector
multiplet gives several more constraints, the one relevant to
the boundary action being7

XN
i

Q̂iϕ̄iψ�i ¼ 0: ð4:16Þ

As explained in [9], the first term in (4.14) is nothing but
the Hermitian connection

AX
I dX

I ¼ −n
i
2

P
N
i¼1 ϕ̄i d

↔
ϕiP

N
i¼1 Q̂ijϕij2

ð4:17Þ

of OXð−nÞ on the toric manifold X ¼ CN==Uð1Þ,
since it transforms under Uð1Þ gauge transformations
(ϕi → eiQ̂iαϕi) as

AX
I dX

I → AX
I dX

I − ð−nÞdα: ð4:18Þ
Here, OXð−nÞ is the holomorphic line bundle on X
with

R
X c1ðOXð−nÞÞ ¼ −n.

Next, to find the explicit B-type GNLSM boundary
conditions and boundary action, we must find parametri-
zations that satisfy (4.15) and (4.16). Let us study our usual
example of CPN−1. Using the parametrizations (3.19) and

7It is important to integrate out D̂ before integrating out Â0;
otherwise, the algebraic equation of motion of Â0 given in (3.15)
will be modified by a boundary term (see footnote 3).
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(3.21), as well as the constraints (3.15) and (3.16), the
boundary conditions become

ψZi

þ − ψZi

− ¼ 0;

FZi ¼ 0;

∂A
1Z

i ¼ 0;

ϕ�∇A
1 ðψZi

þ þ ψZi

− Þ ¼ 0;

ð4:19Þ

and

Imðσ̃cÞ ¼ 0;

λ̃þc þ λ̃−c ¼ 0;

∂1Reðσ̃cÞ ¼ ẽc2θ̃c;

F̃01c ¼ −ẽc2θ̃c;
∂1ðλ̃þc − λ̃−cÞ ¼ 0;

∂1ðD̃c þ ∂1Imðσ̃cÞÞ ¼ 0;

ð4:20Þ

which are invariant under the Uð1ÞN−1 gauge symmetry
and satisfy the B-type supersymmetry transformations
obtained from (2.13) and (2.14). Moreover, these boun-
dary conditions result in the vanishing of the expressions
(2.16) and (2.17), thus ensuring the preservation of B-
type supersymmetry at the boundaries. Note that the
expression (2.18) does not occur when performing a
supersymmetry variation, since the B-field and C-field
terms do not appear in the action of the GNLSM, as we
have used the bulk θ̂ term of the corresponding GLSM in
the construction of our boundary action via (4.12). The
spurious boundary term (3.28) also does not occur, for
the same reason. In addition, the Neumann boundary
conditions on Zi imply that the equivariant B-brane
wraps the entire target space, CPN−1; i.e., it is space
filling.
Next, let us find the explicit form of the boundary action.

The parametrizations (3.19) and (3.21) give

S0∂Σ ¼
Z
∂Σ

dx0
�
AX
j ∂0Xj þ AX

|̄ ∂0X̄|̄ −
XN−1

c

iRcÃc þ n∂0t −
i
2
FX
jk̄
ðψ j

þ þ ψ j
−Þðψ̄ k̄þ þ ψ̄ k̄

−Þ
�

þ
XN−1

c

�
θ̃c
2π

Z
Σ
F̃01cd2xþ

θ̃c
2π

Z
∂Σ

ðσ̃c þ ¯̃σcÞ
2

dx0
�
; ð4:21Þ

where Xj ¼ Zj, ψ j
� ¼ ψZj

� ,

AX
j ¼ −n

i
2

Z̄j

ð1þP
N−1
k jZkj2Þ ;

AX
|̄ ¼ n

i
2

Zj

ð1þP
N−1
k jZkj2Þ ð4:22Þ

are the components of the connection ofOCPN−1ð−nÞ, while
its curvature is

Fjk̄ ¼ nωjk̄; ð4:23Þ

where ωjk̄ ¼ igjk̄ are the components of the normalized8

Fubini-Study Kähler form of CPN−1,

ω ¼ i
ðPN−1

j dZj ∧ dZ̄jÞ
ð1þP

N−1
k jZkj2Þ

− i
ðPN−1

l Z̄ldZlÞ ∧ ðPN−1
j ZjdZ̄jÞ

ð1þP
N−1
k jZkj2Þ2 : ð4:24Þ

Besides the supersymmetrized θ̃ terms, the only other term
with vector multiplet fields is

−
XN−1

c

iRcÃc; ð4:25Þ

where

Ãc ¼ −i
�
Ã0c −

ðσ̃c þ ¯̃σcÞ
2

�
; ð4:26Þ

and

Rc ¼
−nðPN−1

i Q̃icjZij2 þ Q̃NcÞ
ð1þP

N−1
k jZj2Þ : ð4:27Þ

The expression (4.21) is gauge invariant under the un-
broken Uð1ÞN−1 symmetry.9 The n∂0t term reflects the fact
that a Uð1Þ gauge symmetry is broken at the boundaries,
and it can be removed via the gauge transformation (4.18),
with α ¼ −t. Now, we must remove this term, since t is not
a coordinate of the CPN−1 target space, but rather locally
parametrizes the Hopf fiber overCPN−1, which gives rise to
the sphere SNþ1 defined by Eq. (3.18). Furthermore, it is
not a field that appears in the bulk theory, and has no
supersymmetry transformation, leaving us unable to test the

8Unlike (4.24), the Fubini-Study metric that appears in the
bulk GNLSM action contains the FI parameter, r̂, which is the
size modulus of the Fubini-Study metric; see (3.22).

9Note that, from the local parametrizations (3.19) and (3.21),
we can see that the Uð1ÞN−1 gauge transformation of t is
δt ¼ Q̃Ncα, since we know that the Uð1ÞN−1 charge of Zi is
Q̃1c − Q̃Nc.
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supersymmetry of the boundary action. Thus, we shall gauge away n∂0t. However, doing so will break the Uð1ÞN−1

symmetry of our GNLSM at the boundaries.10

The cure to this broken symmetry is via the supersymmetrized θ̃ terms, as follows. Setting θ̃c ¼ 2πnQ̃Nc, we have

XN−1

c

�
θ̃c
2π

Z
Σ
F̃01cd2xþ

θ̃c
2π

Z
∂Σ

ðσ̃c þ ¯̃σcÞ
2

dx0
�

¼
XN−1

c

�
−nQ̃Nc

Z
∂Σ

Ã0cdx0 þ nQ̃Nc

Z
∂Σ

ðσ̃c þ ¯̃σcÞ
2

dx0
�

¼
XN−1

c

�
−inQ̃Nc

Z
∂Σ

Ãcdx0
�

ð4:28Þ

since both n and the charge Q̃Nc are integers, as explained below (4.12). Then, the final boundary action takes the form

S∂Σ0 ¼
Z
∂Σ

dx0
�
AX
j ∂0Xj þ AX

|̄ ∂0X̄|̄ −
XN−1

c

iR̃cÃc −
i
2
FX
jk̄
ðψ j

þ þ ψ j
−Þðψ̄ k̄þ þ ψ̄ k̄

−Þ
�
; ð4:29Þ

where11

R̃c ¼
−nðPN−1

i ðQ̃ic − Q̃NcÞjZij2Þ
ð1þP

N−1
k jZkj2Þ

¼ −AX
i ẽ

i
c − AX

|̄
¯̃e|̄c

¼ −{ẽcA
X: ð4:30Þ

Invariance of the boundary action (4.29) under the B-type supersymmetry transformations [given by (2.13) and (2.14) for
ϵþ ¼ −ϵ−] holds since

dR̃ ¼ {ẽFX: ð4:31Þ

This is known as the equivariant Bianchi identity and implies that the line bundle OCPN−1ð−nÞ has Uð1ÞN−1-equivariant
structure,12 for which R̃c is the moment [22,23].
The equivariant Bianchi identity is, in fact, a restatement of the Uð1ÞN−1 invariance of the connection,

LẽAX ¼ 0: ð4:32Þ

Now, rewriting the boundary action (4.29) as

S∂Σ0 ¼
Z
∂Σ

dx0
�
AX
j ∂A

0X
j þ AX

|̄ ∂A
0 X̄

|̄ þ
XN−1

c

R̃c
ðσ̃c þ ¯̃σcÞ

2
−
i
2
FX
jk̄
ðψ j

þ þ ψ j
−Þðψ̄ k̄þ þ ψ̄ k̄

−Þ
�

ð4:33Þ

facilitates the proof that it is invariant under the gauge transformations given in (2.11) and (2.12) for G ¼ Uð1ÞN−1. The
variation is

δS∂Σ0 ¼
XN−1

a

αa

Z
∂Σ

dx0
�
LẽaA

X
j ∂A

0X
j þ LẽaA

X
|̄ ∂A

0 X̄
|̄ þ

XN−1

c

{ẽadR̃c
ðσ̃c þ ¯̃σcÞ

2
−
i
2
LẽaF

X
jk̄
ðψ j

þ þ ψ j
−Þðψ̄ k̄þ þ ψ̄ k̄

−Þ
�
; ð4:34Þ

10ThisUð1ÞN−1 gauge symmetry is not broken if we only require that it holds for the path integral and not necessarily the action. Even
in that case, the following steps help make the geometric properties of the brane obvious.

11The boundary conditions (4.20) and the boundary action (4.29) result in equations of motion that are modified by boundary terms,
for some of the fields.

12The G-equivariant Bianchi identity is equivalent to the G invariance of the connection, A, of the bundle [Eq. (4.32)], which implies
that the covariant derivative dþ A is G invariant, and this defines a G-equivariant bundle; see [22], Sec. 3.2.
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which vanishes using (4.32), as well as the identities
LẽFX ¼ 0 and LẽR̃ ¼ {ẽdR̃ ¼ 0.13

We have thus found B-type supersymmetric and
Uð1ÞN−1 gauge invariant boundary conditions and boun-
dary interactions corresponding to an equivariant B-brane
in CPN−1, which is a space-filling brane supporting
the holomorphic line bundle OCPN−1ð−nÞ with Uð1ÞN−1-
equivariant structure. We may follow a procedure analo-
gous to that presented above for CPN−1 in order to describe
an equivariant B-brane in a toric manifold X ¼ CN==Uð1Þ
(by choosing different values for Q̂i), which would be a
space-filling brane supporting the holomorphic line bundle
OXð−nÞ with Uð1ÞN−1-equivariant structure.
The GNLSM boundary action (4.29) that we have

derived from the GLSM expressions (4.10) and (4.11) is
a special case of the more general boundary Wilson line
found by Kapustin et al. [11,21], using a B-twisted
topological non-Abelian GNLSM, with gauge group G
and target space X, i.e., a gauged B model. This boundary
Wilson line corresponds to a graded G-equivariant hol-
omorphic vector bundle. As explained in [11,21], in some
cases, the category of branes defined by the boundary
Wilson line is equivalent to Db

GC
ðCohðXÞÞ, the bounded,

derived category ofGC-equivariant coherent sheaves on the
target space, X. This occurs if X has a G-resolution
property; i.e., any G-equivariant coherent sheaf on X has
a G-equivariant resolution by G-equivariant holomorphic
vector bundles. This property, however, does not hold for
general complex manifolds. Nevertheless, even for such
spaces where it does not hold, it is believed that the full
category of equivariant B-branes is still Db

GC
ðCohðXÞÞ,

where the GNLSMs for these spaces require more general
boundary actions corresponding to differential graded (DG)

modules over the Dolbeault DG algebra of X, instead of
holomorphic bundles.
In our construction, we have found Abelian equivariant

B-branes that wrap toric manifolds given by the quotient
X ¼ CN==Uð1Þ, and that support the Uð1ÞN−1-equivariant
holomorphic line bundle OXð−nÞ. In the language of
algebraic geometry, OXð−nÞ is a locally free sheaf of rank
1 and is, in fact, one of the simplest objects ofDbðCohðXÞÞ
([24], page 56). The additional Uð1ÞN−1-equivariant
structure then implies that the equivariant B-branes we
have found are objects in Db

ðC×ÞN−1ðCohðXÞÞ, the bounded,
derived category of ðC×ÞN−1-equivariant coherent sheaves
on X.14 Of course, we have not constructed all the objects in
the category.
In particular, we have not constructed non-space-filling

equivariant B-branes. The latter, i.e., equivariant B-branes
of lower dimension, should exist, in analogy with the
NLSM case, although we shall not attempt to derive them
from GLSMs here. The path to doing so is via Hori’s
construction of non-space-filling ordinary B-branes from
GLSMs [10]. Using the same GLSM used there, but with
gauge group generalized to Uð1ÞN , we should be able to
derive the relevant GNLSM boundary action and boundary
conditions, as we have done for space-filling equivariant
B-branes in this section.

B. Equivariant B-branes on CN==Uð1ÞN − k from GLSM

The prior discussion can be generalized to the case of
general Kähler toric manifolds, i.e., X ¼ CN==Uð1ÞN−k.
We impose the B-type supersymmetric boundary condi-
tions (4.6) and (4.7) on the GLSM (for N − k > 1), which
include the purely Neumann boundary conditions on ϕi,
while also supersymmetrizing the GLSM theta terms

XN−k

b

�
θ̂b
2π

Z
Σ
F̂01bd2xþ

θ̂b
2π

Z
∂Σ

ðσ̂b þ ¯̂σbÞ
2

dx0
�
þ
Xk
c

�
θ̃c
2π

Z
Σ
F̃01cd2xþ

θ̃c
2π

Z
∂Σ

ðσ̃c þ ¯̃σcÞ
2

dx0
�
: ð4:35Þ

This preserves B-type supersymmetry at the boundaries. In addition, the B-type supersymmetric GLSM boundary action
needed is

S∂Σ ¼ θ0

4πr0

Z
∂Σ

dx0
XN
i

�
iD0ϕ̄iϕi − iϕ̄iD0ϕi þ ðψþi þ ψ−iÞðψ̄þi þ ψ̄−iÞ −

XN
a

Qiaðσa þ σ̄aÞjϕij2
�
; ð4:36Þ

where θ0 ¼ 2πn0 (n0 ∈ Z) and r0 ∈ R. In addition, we ought to set θ̂b ¼ 2πn̂b, where n̂b ∈ Z, and we need to impose the
condition

θ0

r0
¼ θ̂b

r̂b
ð4:37Þ

for all values of b

13If we require only Uð1ÞN−1 gauge invariance of the path integral, then we are free to choose θ̃c ¼ 2πmc for any integer mc, and we
would still derive a boundary action which is B-type supersymmetry invariant, as well as gauge invariant mod 2πZ.. This freedom is
merely a reflection of the fact that the moment in the equivariant Bianchi identity (4.31) is defined only up to a constant.

14The algebraic torus ðC×ÞN−1 is the complexification of Uð1ÞN−1.
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This allows us to write (4.36) and (4.35) as

S∂Σ0 ¼
n0

2r0

Z
∂Σ

dx0
�XN

i

ði∂0ϕ̄iϕi − iϕ̄i∂0ϕiÞ þ
XN
i

ðψþi þ ψ−iÞðψ̄þi þ ψ̄−iÞ

þ 2
XN−k

b

Â0b

�XN
i

Q̂ibjϕij2 − r̂b

�
−
XN−k

b

ðσ̂b þ ¯̂σbÞ
�XN

i

Q̂ibjϕij2 − r̂b

�

þ 2
Xk
c

Ã0c

XN
i

Q̃icjϕij2 −
Xk
c

ðσ̃c þ ¯̃σcÞ
XN
i

Q̃icjϕij2
�

þ
Xk
c

�
θ̃c
2π

Z
Σ
F̃01cd2xþ

θ̃c
2π

Z
∂Σ

ðσ̃c þ ¯̃σcÞ
2

dx0
�
: ð4:38Þ

Taking the êb → ∞ limit allows us to integrate D̂b out of
the action, which imposes the constraints (3.13), and the
second line in (4.38) vanishes. Integrating out the other
components of the vector multiplets, V̂b, then imposes
(3.12) on the entire action, as well (3.10) and (3.11) on the
bulk action. Then, to find the explicit boundary action, one
needs to use parametrizations that satisfy (3.12) and
(3.13). The explicit boundary conditions are also found
using these parametrizations, together with (3.10) and
(3.11).
We can identify the first term in (4.38) as the Hermitian

connection,

AX
I dX

I ¼ −
n0

r0
i
2

XN
i¼1

ϕ̄i d
↔
ϕi; ð4:39Þ

of the holomorphic line bundle ⊗N−k
b¼1 OXð−n̂bÞ ¼

OXð
P

N−k
b¼1 ð−n̂bÞÞ over CN==Uð1ÞN−k, since it trans-

forms under Uð1ÞN−k gauge transformations (ϕi →

ei
P

N−k
b¼1

Q̂ibαbϕi) as

AX
I dX

I → AX
I dX

I −
XN−k

b¼1

ð−n̂bÞdαb; ð4:40Þ

and setting αb ¼ α, we retrieve the Uð1Þ gauge trans-
formation of the connection of ⊗N−k

b¼1 OXð−n̂bÞ. Both
supersymmetry invariance and gauge invariance under
the residual Uð1Þk gauge symmetry of the GNLSM would
then require that this line bundle has Uð1Þk-equivariant
structure. Moreover, we would be able to identify the
equivariant B-branes we have found as objects in
Db

ðC×ÞkðCohðXÞÞ, the bounded, derived category of

ðC×Þk-equivariant coherent sheaves on X.
The simplest example would be that of the Uð1Þ2-

equivariant holomorphic line bundle ⊗2
b¼1 OXð−n̂bÞ over

X ¼ CP1 × CP1, which just corresponds to two copies of

the boundary action given in (4.29), with N ¼ 2.15 One can
even consider equivariant B-branes on fibrations of CP1

over CP1 known as Hirzebruch surfaces, using GLSMs
with appropriately charged scalar fields. It is worth noting
that the derived categories of C×-equivariant coherent
sheaves over CP1, Hirzebruch surfaces, CP1 fibered over
Hirzebruch surfaces, etc., provide a construction of
Khovanov homology [25].

C. Alternative formulation

We shall now derive the alternative formulation of
Abelian equivariant B-branes, in terms of a boundary
action that generalizes (4.5), as well as the relevant
boundary conditions. To derive the boundary action for
a GNLSM with X ¼ CN==Uð1Þ, we start with the Uð1ÞN-
GLSM boundary action

S∂Σ ¼ θ̂

4πr̂

Z
∂Σ

dx0
XN
i

ðiD0ϕ̄iϕi − iϕ̄iD0ϕiÞ; ð4:41Þ

where the covariant derivatives of the scalar fields are
given by (3.9). B-type supersymmetry invariance of the
Uð1ÞN-GLSM at the boundaries of the world sheet first
requires that we impose

e−iγ̂DþΦi ¼ eiγ̂D−Φi; ð4:42Þ

eiγaΣa ¼ e−iγa Σ̄a ð4:43Þ

at B boundary, where D� ¼ e−
P

N
a
QiaVaD�e

P
N
a
QiaVa ,

while γ̂ and γa are the phases of t̂ ¼ jt̂jeiγ̂ and
ta ¼ jtajeiγa , respectively. Second, we also ought to impose

15In fact, for toric manifolds that are Cartesian products like
X ¼ CP1 × CP1, the complete decoupling of the two boundary
actions means that we no longer need the constraint (4.37).
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θ̂

r̂
¼ θa

ra
ð4:44Þ

and

γ̂ ¼ γa: ð4:45Þ

Then, in components, (4.42) and (4.43) become

e−iγ̂ψþi − eiγ̂ψ−i ¼ 0;

Fi ¼ 0;

cosðγ̂ÞD1ϕi − i sinðγ̂ÞD0ϕi ¼ 0;

cosðγ̂ÞD1ðψþi þ ψ−iÞ − i sinðγ̂ÞD0ðψþi þ ψ−iÞ − cosðγ̂Þ
XN
a

Qiaðλþa þ λ−aÞϕi ¼ 0; ð4:46Þ

and

Imðeiγ̂σaÞ ¼ 0;

e−iγ̂λþa þ eiγ̂λ−a ¼ 0;

∂1Reðeiγ̂σaÞ þ cosðγ̂ÞF01a − sinðγ̂ÞDa ¼ 0; ð4:47Þ

which includes the mixed Dirichlet-Neumann boundary
condition on the scalar fields ϕi. Finally, for complete
boundary B-type supersymmetry invariance, we must
impose the boundary condition

F01a

e2a
¼ −θa þ θ̂

P
N
i Qiajϕij2

r̂
; ð4:48Þ

as well as integrate Da out of the action to obtain its
algebraic equation of motion

Da

e2a
¼ ra −

XN
i

Qiajϕij2; ð4:49Þ

which holds on the entire world sheet.16 The condition
(4.48) further implies two more boundary conditions via B-
type supersymmetry. All the boundary conditions above
ensure the locality of the equations of motion derived from
the action.
Now, setting θ̂ ¼ 2πn, the relevant action that consists of

(4.41) together with the theta terms is

S∂Σ0 ¼
n
2r̂

Z
∂Σ

dx0
�XN

i

ði∂0ϕ̄iϕi − iϕ̄i∂0ϕiÞ

þ 2Â0

�XN
i

Q̂ijϕij2 − r̂
�

þ 2
XN−1

c

Ã0c

XN
i

Q̃icjϕij2
�
þ
XN−1

c

�
θ̃c
2π

Z
Σ
F̃01cd2x

�
:

ð4:50Þ

The term proportional to Â0 vanishes in the ê → ∞ limit
using the equation of motion for D̂ given in (4.49), while
the constraints that arise from subsequently integrating out
the rest of the vector multiplet V̂ do not affect the boundary
action. As before, we obtain the Hermitian connection
(4.17) of OXð−nÞ on the toric manifold X ¼ CN==Uð1Þ.
For X ¼ CPN−1, we can use the parametrizations (3.19),
and (4.50) becomes

S∂Σ0 ¼
Z
∂Σ

dx0
�
AX
j ∂0Xj þ AX

|̄ ∂0X̄|̄ −
XN−1

c

iRcÃc þ n∂0t

�

þ
XN−1

c

�
θ̃c
2π

Z
Σ
F̃01cd2x

�
; ð4:51Þ

with AI given in (4.22) and Rc given in (4.27). Then,
gauging away the n∂0t term, and setting θ̃c ¼ 2πnQ̃Nc, we
arrive at the boundary action

S∂Σ0 ¼
Z
∂Σ

dx0
�
AX
j ∂0Xj þ AX

|̄ ∂0X̄|̄ −
XN−1

c

iR̃cÃc

�
;

ð4:52Þ
where R̃c is the moment given by (4.30). The boundary
action can be rewritten concisely as

16The constraints (4.45), (4.48), and (4.49) result in the third
equation of (4.47) becoming ∂1Reðeiγ̂σaÞ ¼ 0.
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S∂Σ0 ¼
Z
∂Σ

dx0fAX
j ∂A

0X
j þ AX

|̄ ∂A
0 X̄

|̄g; ð4:53Þ

and gauge invariance follows since (4.32) is obeyed,
which implies that the line bundle OCPN−1ð−nÞ supported
by the equivariant B-brane has Uð1ÞN−1-equivariant
structure.
The boundary conditions for the GNLSM with the

CPN−1 target can similarly be found; for the Uð1ÞN−1

vector multiplets, the boundary conditions follow from
(4.47) and (4.48), while for the matter fields, the boundary
conditions are

g|̄iðψZi

− − ψZi

þ Þ þ 2πFX
|̄iðψZi

þ þ ψZi

− Þ ¼ 0;

g|̄i∂A
1Z

i − 2πFX
|̄i∂A

0Z
i ¼ 0;

ð4:54Þ

and their B-type supersymmetric completions, where
g is the Fubini-Study metric and F is the curvature of
OCPN−1ð−nÞ given in (4.23).
An alternative formulation also exists for Uð1Þk-

GNLSMs with X ¼ CN==Uð1ÞN−k, i.e., general Kähler
toric manifolds. The boundary action for the Uð1ÞN−k ×
Uð1Þk GLSM is

S∂Σ ¼ θ0

4πr0

Z
∂Σ

dx0
XN
i

ðiD0ϕ̄iϕi − iϕ̄iD0ϕiÞ; ð4:55Þ

where θ0 ¼ 2πn0 (n0 ∈ Z) and r0 ∈ R, together with the
theta terms

XN−k

b

�
θ̂b
2π

Z
Σ
F̂01bd2x

�
þ
Xk
c

�
θ̃c
2π

Z
Σ
F̃01cd2x

�
: ð4:56Þ

Setting

θ0

r0
¼ θ̂b

r̂b
¼ θ̃c

r̃c
ð4:57Þ

and

γ0 ¼ γ̂b ¼ γ̃c; ð4:58Þ

the relevant boundary conditions are (4.46), (4.47), and

(4.48), with θ̂
r̂ replaced by θ0

r0 and γ̂ replaced by γ0. In
addition, the Da equation of motion is also necessary for
complete B-type supersymmetry at the boundaries.
By taking the êb → ∞ limit and repeating the familiar

procedure, we can obtain the GNLSM boundary action
that includes the Hermitian connection of the Uð1Þk-
equivariant holomorphic line bundle ⊗N−k

b¼1 OXð−nbÞ over
CN==Uð1ÞN−k given by (4.39), as well as the relevant
GNLSM boundary conditions.

An important advantage of the alternative formulation of
equivariant B-branes over the first one is that because of the
constraints (4.44) and (4.57), the form of the GLSM
boundary action does not depend on which gauge sym-
metries we are breaking to obtain the GNLSM. This implies
the equivalence of equivariant B-branes in different toric
targets of GNLSMs obtained from a single GLSM. To
ensure that the first formulation also does not depend on
which gauge symmetries we are breaking, we can impose
the same constraints for it.

D. Quantum corrections

We have heretofore analyzed the boundary conditions of
the classical Uð1ÞN−k ×Uð1Þk GLSM, and the respective
GNLSM limits of these conditions, in two equivalent
formulations. We shall now investigate quantum effects
for the alternative formulation of equivariant B-branes
given in Sec. IV. C,17 since we shall use this formulation
for the proof of mirror symmetry in the following section.18

There are two quantum effects of the Uð1ÞN−k ×Uð1Þk
GLSM with

P
N
i¼1Qia ≠ 0 that are important. The first of

these is the running of the FI parameters

r0a ¼ raðμÞ þ
XN
i¼1

Qia log

�
ΛUV

μ

�
; ð4:59Þ

where r0a denotes bare parameters, ΛUV is an ultraviolet
cutoff, and μ is a finite energy scale. By integrating the beta
functions of the FI parameters, βa ¼ μ dra

dμ , the μ depend-
ence is found to be

raðμÞ ¼
XN
i¼1

Qia log

�
μ

Λ

�
; ð4:60Þ

where Λ is the renormalization group invariant dynamical
scale. The running of ra implies that the phase, eiγa ¼
ta=jtaj, which appears in the boundary conditions we have
used, changes with the renormalization group flow. The
second quantum effect is the anomaly of the Uð1Þ axial R
symmetry, whereby axial R rotations ψ�i → e�iβ=2ψ�i,
σa → e−iβσa, and λ�a → e�iβ=2λ�a no longer leave the
action invariant, but result in a shift of the theta angles, i.e.,

θa → θa þ
XN
i¼1

Qiaβ: ð4:61Þ

These effects should be apparent in a quantum effective
description, whereby the lowest components σa of the

17We shall not study the quantum effects for the first
formulation, since the main quantum correction is the running
of the FI parameters, and the FI parameters do not enter the
boundary conditions in that formalism.

18The following is a generalization of the analysis given in
Sec. 6 of [9] to the case of multiple Uð1Þ gauge groups.
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superfields Σa are chosen to be slowly varying and to be
large compared to the energy scale μ at which we look at
the effective theory. This imparts large masses to the
charged matter superfieldsΦi, which can then be integrated
out as long as we are studying the theory at some finite
energy scale μ. From a path integral computation [20], the
superpotential of the effective action, which corresponds to
a Landau-Ginzburg model,19 is

W̃ðeffÞ ¼ −
XN
a¼1

�XN
i

Qia

�
log

�PN
a0 Qia0Σa0

μ

�
− 1

��
Σa

−
XN
a¼1

taðμÞΣa; ð4:62Þ

where from the effective FI-theta parameter

tðeffÞa ¼ taðμÞ þ
XN
i

Qia

�
log

�PN
a0 Qia0Σa0

μ

��
ð4:63Þ

is obtained. Now, by performing an ordinary axial R
rotation Σa → e−iβΣa in (4.63), we can retrieve the
shift (4.61).
Now, it is known from [9] that a D-brane which preserves

the B-type supercharges QB ¼ Q̄þ þ Q̄− and Q†
B ¼ Qþ þ

Q− is a Lagrangian submanifold of the spaceCN defined by
the fields σa. In addition, this D-brane ought to be the
preimage of a horizontal straight line in the W̃ðeffÞ plane,
i.e., ImðW̃ðeffÞðσÞÞ ¼ const. If we were to solve these
constraints in terms of σa, then we will obtain the quantum
corrected boundary condition for σa. In general, these
constraints are difficult to solve. However, when the
parameters θa ¼ 0, then there is the solution σa ¼ jσaj,
which satisfies ImðσaÞ ¼ 0 and ImðW̃ðeffÞðσÞÞ ¼ 0.
To obtain a less trivial solution, we can perform an axial

R rotation, which includes the shift of θa ¼ 0 to
θa ¼

P
N
i¼1 Qiaβ, due to the aforementioned anomaly.

Then, we obtain the solution σa ¼ eiβjσaj, which satisfies
Imðe−iβσaÞ ¼ 0 and the straight line equation
Imðe−iβW̃ðeffÞðσÞÞ ¼ 0. These conditions are compatible
with the constraints of the B-type supercharges

QB ¼ Q̄þ þ eiβQ̄− ð4:64Þ

and Q†
B ¼ Qþ þ e−iβQ− found in [9]; i.e., the D-brane

ought to be a Lagrangian submanifold of the field space
CN , and it ought to be the preimage of a straight line in the
W̃ðeffÞ plane with slope tanðβÞ, i.e., Imðe−iβW̃ðeffÞðσÞÞ ¼
const.
Hence, we find that there is a family of explicit solutions

which include

σa ¼ eiβjσaj;
eiβ=2λþa þ e−iβ=2λ−a ¼ 0;

e−iβ=2λ̄þa þ eiβ=2λ̄−a ¼ 0; at ∂Σ; ð4:65Þ

parametrized by β ¼ θa=
P

N
i¼1Qia,

20 which preserve the
B-type supercharges QB¼ Q̄þþeiβQ̄− and Q†

B ¼ Qþ þ
e−iβQ−. Other solutions, including those with β ≠
θa=

P
N
i¼1 Qia, should exist, but in these cases the quantum

corrections are nontrivial, and therefore they are difficult to
determine, and we shall not consider them.
Now, note that we have β ¼ θa=

P
N
i¼1Qia for all

a ¼ 1;…; N. Using (4.59) and (4.60), we have
r0 ¼

P
N
i¼1 Qia logðΛUV

Λ Þ, which implies

θa
r0a

¼
P

N
i¼1QiaβP

N
i¼1Qia logðΛUV

Λ Þ ¼
β

logðΛUV
Λ Þ ; ð4:66Þ

i.e., we find that θa=r0a are equal for all values of a.
21 This

agrees with the constraints (4.44) and (4.57). In other
words, we find that these constraints, which we previously
imposed by hand at the classical level, emerge naturally as a
result of quantum effects.

E. Mirrors of equivariant B-branes

In this section, we shall use the alternative formulation
for equivariant B-branes, given in Sec. IV. C, to find the
Landau-Ginzburg mirrors of equivariant B-branes, follow-
ing the exposition in Sec. III, as well as the results of [9].
We shall assume in the following that

b1a ¼
XN
i

Qia > 0: ð4:67Þ

In particular, b̂1b ¼
P

N
i Q̂ib > 0 implies that we are study-

ing the mirrors of GNLSMs with Fano target spaces.
Let us start with the mirrors of equivariant B-branes on

Fano manifolds of the form X ¼ CN==Uð1Þ. We focus on
the family of boundary conditions (4.65). The correspond-
ing boundary conditions of the matter fields include

cosðγ̂0ÞD1ϕi − i sinðγ̂0ÞD0ϕi ¼ 0;

e−iγ̂0þiβ=2ψþi ¼ eiγ̂0−iβ=2ψ−i;

eiγ̂0−iβ=2ψ̄þi ¼ e−iγ̂0þiβ=2ψ̄−i; ð4:68Þ

where the axial R rotations on the fermionic fields have
been taken into account. These boundary conditions
preserve the B-type supercharge QB ¼ Q̄þ þ eiβQ̄− and

19To be precise, the theory involves a gauge field, whose only
effect is a vacuum energy [20].

20σa ¼ eiβjσaj implies the boundary condition Imðe−iβσaÞ ¼ 0.
21Naively, it may seem that the boundary action (4.41)

vanishes in the continuum limit (ΛUV → ∞) due to (4.66).
However, this is not the case, at least for

P
N
i¼1 Qia > 0, as we

shall see in the next section.
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its conjugate. Now, in the continuum limit ΛUV → ∞
whereby r̂0 ¼ b̂1 logðΛUV=ΛÞ → ∞, we have γ̂0 → 0. As
a result, the mixed Dirichlet-Neumann boundary conditions
on ϕi reduce to pure Neumann boundary conditions.
With these facts in mind, let us shift our attention to the

boundary action

S∂Σ ¼ θ̂

4πr̂0

Z
∂Σ

XN
i¼1

ðiD0ϕ̄iϕi − iϕ̄iD0ϕiÞdx0

¼ θ̂

2πr̂0

Z
∂Σ

XN
i¼1

jϕij2
�
∂0φi þ

XN
a

QiaA0a

�
dx0:

ð4:69Þ

Now, by integrating over the modes of ϕi in the frequency
range μ ≤ jkj ≤ ΛUV in the path integral, jϕij2 is replaced
by hjϕij2i ¼ logðΛUV=μÞ. Since r̂0=b̂1 ¼ logðΛUV=μÞ þ
r̂=b̂1, taking the continuum limit ΛUV → ∞ gives us
jϕij2 ≈ r̂0=b̂1, which implies that

S∂Σ ¼ θ̂

2π

Z
∂Σ

�
1

b̂1

XN
i¼1

∂0φi þ Â0 þ
XN−1

c

b̃1c
b̂1

Ã0c

�
dx0:

ð4:70Þ

The relevant portion of the action with regard to the
dualization of mirror symmetry is then

Sφ ¼ 1

2π

Z
Σ

XN
i¼1

r̂0
b̂1

				dφi þ
XN
a

QiaAa

				
2

−
iθ̂
2π

Z
∂Σ

�
1

b̂1

XN
i¼1

dφi þ Âþ
XN−1

c

b̃1c
b̂1

Ãc

�
; ð4:71Þ

where we have considered the Euclidean signature on the world sheet for simplicity,22 and where the terms with fermionic
fields that are not essential in the present analysis have been ignored. Let us consider another action with one-form fields
Bi ¼ Biμdxμ given by

S0 ¼
XN
i¼1

�
b̂1
8πr̂0

Z
Σ
Bi ∧ �Bi þ

i
2π

Z
Σ
Bi ∧

�
dφi þ

XN
a

QiaAa

��
−

iθ̂
2π

Z
∂Σ

�
1

b̂1

XN
i¼1

dφi þ Âþ
XN−1

c

b̃1c
b̂1

Ãc

�
: ð4:72Þ

The one-form fields Bi have the boundary condition

Bij∂Σ ¼ 0; ð4:73Þ
i.e., their inner products with tangent vectors of the boundaries vanish. If we were to first integrate out Bi, the constraint
Bi ¼ i2ðr̂0=b̂1Þ � ðdφi þ

P
N
a QiaAaÞ is obtained [whereby the boundary condition (4.73) is consistent with the boundary

condition D1ϕi ¼ 0 obtained in the continuum limit] and the original action (4.71) is obtained. Alternatively, if we were to
first integrate out φi, the constraint

Bi ¼ dϑi ð4:74Þ

is obtained, where the fields ϑi are periodic with period 2π.23 The boundary conditions (4.73) then imply that ϑi are
constants at the boundaries of the world sheet. The boundary terms containing ∂2ðδφiÞ obtained when integrating out φi
cancel if these constants are

ϑi ¼ θ̂=b̂1 at ∂Σ; ð4:75Þ
for all i, where θ̂=b̂1 ¼ β ¼ θa=b1a. Now, using the constraint (4.74) in (4.72), the mirror action

Sϑ ¼
XN
i¼1

1

2π

�
b̂1
4r̂0

Z
Σ
jdϑij2 þ i

Z
Σ
dϑi ∧

�XN
a

QiaAa

��
−

iθ̂
2π

Z
∂Σ

�
Âþ

XN−1

c

b̃1c
b̂1

Ãc

�

¼
XN
i¼1

1

2π

�
b̂1
4r̂0

Z
Σ
jdϑij2 − i

Z
Σ

XN
a

QiaϑidAa

�

þ i
2π

Z
∂Σ

��XN
i¼1

Q̂iϑi − θ̂

�
Âþ

XN−1

c

�XN
i¼1

Q̃icϑi −
b̃1c
b̂1

θ̂

�
Ãc

�
ð4:76Þ

22In the following derivation, we use the notation jAj2 ¼ A ∧ ⋆A.
23For details on why ϑi ought to be periodic, see [20], page 250.
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is obtained. Finally, the boundary term in this action
vanishes when we use the boundary condition (4.75),
and the dualization process ends with only a bulk action.
In particular, the relationship (reviewed in Sec. III)

between the fields of the mirror theories, i.e.,

Yi þ Ȳi ¼ 2Φ̄ie
P

N
a
QiaVaΦi; ð4:77Þ

holds, and we have the following relationships between
superfield components:

yi¼ϱi− iϑi;�
ϱi¼jϕij2;
∂�ϑi¼�2ð−jϕij2ð∂�φiþ

P
N
a QiaA�aÞþ ψ̄�iψ�iÞ;

χiþ¼2ψ̄þiϕi; χi−¼−2ψ̄−iϕi;

χ̄þi¼2ϕ̄iψþi; χ̄−i¼−2ϕ̄iψ−i;

Ei¼−2ψ̄−iψþi−2jϕij2
X
a

Qiaσ̄a; ð4:78Þ

where ∂� ¼ ∂0 � ∂1, Yi ¼ yi þ θþχ̄þi þ θ̄−χ−i þ θþθ̄−Ei.
The relationship between the periodic fields ϑi and φi is, in
fact, evidence that mirror symmetry of the two theories
stems from T duality on the phase of the charged chiral
superfields Φi, whereby the neutral twisted chiral super-
fields Yi are periodic, i.e., Yi ≡ Yi þ 2πi [20].
Furthermore, the Kähler metric of the target space of the

mirror Landau-Ginzburg sigma model is given by

ds2 ¼ b̂1
4r̂0

XN
i¼1

ððdϱiÞ2 þ ðdϑiÞ2Þ; ð4:79Þ

which is the flat cylinder metric on ðC×ÞN . As in Sec. III,
taking the ê → ∞ limit allows us to integrate Σ̂ out of the
action and imposes the constraint

XN
j

Q̂jYj − t̂ ¼ 0; ð4:80Þ

giving us the gauged Landau-Ginzburg theory with hol-
omorphic twisted superpotential

W̃ ¼
XN−1

c

�XN
j¼1

Q̃jcYj − t̃c

�
Σ̃c þ

XN
j¼1

e−Yj : ð4:81Þ

We recall that the constraint (4.80) fixes the target space of
the gauged Landau-Ginzburg theory to be the algebraic
torus ðC×ÞN−1.
The boundary conditions (4.75) imply that e−yi have a

common phase that is fixed. In other words, the boundaries
of the world sheet are mapped by e−yi to a cycle γθ̂ in
ðC×ÞN−1 which has N − 1 real dimensions. This cycle is
given by

ðe−y1 ;…; e−yN Þ ¼ ðe−ϱ1þiθ̂=b1 ;…; e−ϱNþiθ̂=b1Þ; ð4:82Þ

where ϱi are constrained by
P

N
i¼1 Q̂iϱi ¼ r̂. In the con-

tinuum limit, the pure Neumann boundary condition we
obtain for ϕi from (4.68), implies the Neumann boundary
condition

∂1ϱi ¼ 0 ð4:83Þ
for the coordinates ϱi tangent to γθ̂. Using (4.78) and (4.68),
we may also obtain boundary conditions on the fermionic
dual fields, which are

e−iβ=2χþi þ eiβ=2χ−i ¼ 0;

eiβ=2χ̄þi þ e−iβ=2χ̄−i ¼ 0: ð4:84Þ

These boundary conditions correspond to a D-brane
wrapped on the cycle γθ̂.
The cycle γθ̂ is a Lagrangian submanifold of ðC×ÞN−1.

The A-brane wrapping this Lagrangian submanifold is the
mirror of the space-filling B-brane supporting the holo-
morphic line bundle OXð−nÞ with Uð1ÞN−1-equivariant
structure, where X is a Fano toric manifold of the
form CN==Uð1Þ.
Let us investigate this A-brane further, by studying the

image of the cycle γθ̂ in the W̃ plane. In particular, we
would like to find the mirror of the Uð1ÞN−1-equivariant
structure on the B-brane. The twisted superpotential (4.81)
can be rewritten as

W̃ ¼ W̃equiv þ W̃X; ð4:85Þ

where the first and second terms of (4.81) correspond,
respectively, to the first and second terms of (4.85). The
image of γθ̂ in the W̃X plane is

W̃Xj∂Σ ¼ eiβ
XN
i¼1

je−yi j; ð4:86Þ

which is the mirror condition found in [9] when studying
the mirrors of B-branes without equivariant structure. In
particular, it is a straight line that makes an angle β ¼ θ̂=b̂1
with respect to the real axis. Since we have set θ̂ ¼ 2πn
earlier, and

R
X c1ðOXð−nÞÞ ¼ −n, the slope of this straight

line depends on the first Chern class of the holomorphic
line bundle OXð−nÞ supported by the B-brane.
Shifting our focus to the boundary value of W̃equiv, we

find that it is given by

W̃equivj∂Σ ¼
XN−1

c

Reðe−iβσ̃cÞeiβ
�XN

j

Q̃jcϱj − r̃c

�

¼
XN−1

c

Reðe−iβσ̃cÞEqcðϱÞ; ð4:87Þ
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where we have used the boundary conditions ϑi ¼ θ̂=
b̂1 ¼ β and Imðe−iβσ̃cÞ ¼ 0 as well as the identity β ¼ θ̃c=P

N
i¼1 Q̃ic. Here, Eqc is a complex-valued map

Eq∶ γθ̂ → uð1ÞN−1; ð4:88Þ

where uð1ÞN−1 is the Lie algebra of Uð1ÞN−1. In particular,
for a given value of c, γθ is mapped to a straight line in the
Eqc plane, which makes an angle β with respect to the real
axis. Thus, this map Eq from the cycle γθ̂ (on which the
A-brane is wrapped) to uð1ÞN−1 is the mirror of Uð1ÞN−1-
equivariant structure on the B-brane. In addition, we note
that the boundary value of the total twisted superpotential is

W̃j∂Σ ¼ eiβ
�XN

i¼1

e−ϱi þ
XN−1

c

Reðe−iβσ̃cÞ
�XN

j

Q̃jcϱj− r̃c

��
;

ð4:89Þ

which is a map from Reðe−iβσ̃cÞ and ϱi to a straight line in
the W̃ plane which makes an angle β with respect to the
real axis.
The mirrors of equivariant B-branes on Fano toric

manifolds of the form X ¼ CN==Uð1ÞN−k can similarly
be found using the above method. These mirror A-branes
correspond to Lagrangian submanifolds (γθ0) of the cylinder
ðC×Þk, which is defined by

XN
j

Q̂jbYj − t̂b ¼ 0; ð4:90Þ

with the additional data of the superpotential

W̃ ¼
Xk
c

�XN
j¼1

Q̃jcYj − t̃c

�
Σ̃c þ

XN
j¼1

e−Yj : ð4:91Þ

The first term on the right-hand side of (4.91), when
restricted to its boundary value, contains the mirror data of
equivariant structure on ⊗N−k

b¼1 OXð−n̂bÞ (which is sup-
ported by the space-filling B-brane), which is a map

Eq∶ γθ0 → uð1Þk: ð4:92Þ

F. Non-Abelian equivariant B-branes

In this subsection, we shall use the insights obtained
from studying Abelian equivariant B-branes to find the
description of non-Abelian equivariant B-branes. This will
be achieved by generalizing the first formulation studied in
this section for Abelian gauge groups (cf. Secs. 4. A–4. B)
to non-Abelian gauge groups. Note that the GNLSM
notation of Sec. II is used in this subsection. For simplicity,
we shall consider only the case where the B field, C field,

and θ parameter of the GNLSM given in (2.5) and (2.6)
are zero.
We shall first investigate the boundary conditions

required for B-type supersymmetry, before proceeding to
discuss the admissible boundary action. Now, note that all
the terms in δðSgauge þ SrÞ [Eq. (2.17)] vanish using the
following boundary conditions:

ImðσaÞ ¼ 0;

λþa þ λ−a ¼ 0;

∂1ReðσaÞ ¼ 0;

A1a ¼ 0;

∂1A0a ¼ 0;

∂1ðλ−a − λþaÞ ¼ 0;

∂1ðDa þ ∂1ImðσaÞÞ ¼ 0: ð4:93Þ

These conditions are a generalization of the conditions
given in (4.20) for the example of CPN−1, except that the
boundary condition for F01a is replaced by the stricter
conditions A1a ¼ 0 and ∂1A0a ¼ 0, and the boundary
condition for ReðσaÞ becomes ∂1ReðσaÞ ¼ 0. These stricter
conditions are necessary since we now require that the
boundary conditions preserve the locality of the relevant
equations of motion when no additional boundary action is
added, and because the supersymmetry transformations
now contain non-Abelian terms, which causes B-type
supersymmetry invariance of the set of boundary condi-
tions to not hold unless we use the stricter conditions on the
gauge fields.24 The boundary conditions, in fact, imply that
gauge transformations have to be restricted such that the
transformation parameter αa has a vanishing derivative with
respect to x1 at the boundaries, in order for these boundary
conditions to be gauge invariant.
Next, we turn to the boundary conditions for the matter

fields. Let us first consider theN ¼ 1 subalgebra of B-type
supersymmetry, which corresponds to ϵþ ¼ iϵ̃, ϵ̄þ ¼ −iϵ̃,
ϵ− ¼ −iϵ̃, and ϵ̄− ¼ iϵ̃, where ϵ̃ is a real parameter. In this
case, after integrating out the auxiliary fields Fi and F̄{̄, we
find that (2.16) is

δSmatter

¼−
1

2π

iϵ̃
2

Z
∂Σ
dx0fgIJ∂A

0ϕ
IðψJ

− −ψJþÞþgIJ∂A
1ϕ

IðψJ
−þψJþÞ

þgIJðψ Iþ−ψ I
−ÞReðσaÞẽJaþωIJðψ Iþþψ I

−ÞImðσaÞẽJag;
ð4:94Þ

24If we relax the requirement of locality of equations of
motion, then the boundary conditions on A0a and ReðσaÞ become
∂1A0a ¼ τa and ∂1ReðσaÞ ¼ τa, where τ is a constant valued in
the center of g.
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where gIJXIYJ ¼ gi|̄ðXiY|̄ þ X|̄YiÞ and ωIJXIYJ ¼
igi|̄ðXiY|̄ − X|̄YiÞ, and where ðI; J; K;…Þ are indices
corresponding to real coordinates on X. In addition, if
we insist on locality of the matter equations of motion, we
require that

gIJδϕI∂A
1ϕ

J ¼ 0;

gIJðψ I
−δ∇ψJ

− − ψ Iþδ∇ψJþÞ ¼ 0 ð4:95Þ
at the boundaries, where δ∇ψJ ¼ δψJ þ ΓJ

KLδϕ
KψL. An

equivariant B-brane shall wrap a submanifold (denoted as
γ) of X, to which a boundary of the world sheet is mapped
via ðϕi; ϕ̄{̄Þ. Now, any allowed variation of ϕ (denoted δϕI

for the real coordinate ϕI) along the boundary, and the
derivative along the boundary, ∂0ϕ

I , ought to be tangent to
γ. The first constraint of (4.95) then implies that ∂1ϕ

J is
normal to γ, since A1a ¼ 0 at the boundaries. Then, taking
into account the facts that ImðσaÞ ¼ 0 and A1a ¼ 0 at the
boundaries, we find that (4.94) vanishes if ψ I

− − ψ Iþ and
ψ I
− þ ψ Iþ are, respectively, normal and tangent to γ, and ẽIa

is tangent to γ, which implies that γ is G invariant. In
addition, we note that ψ I

− − ψ Iþ being normal to γ and ψ I
− þ

ψ Iþ being tangent to γ implies that

ψ I
− − ψ Iþ ¼ 0; I∶ tangent to γ;

ψ I
− þ ψ Iþ ¼ 0; I∶ normal to γ ð4:96Þ

(for a choice of coordinates that separates the normal and
tangent directions), which satisfies the second constraint
of (4.95).
Next, the N ¼ ð2; 2Þ supersymmetry transformation of

ϕI is

δϕI ¼ iðϵþ2ψ
I
− − ϵþ1JIKψ

K
− − ϵ−2ψ

Iþ þ ϵ−1JIKψ
KþÞ;

ð4:97Þ

where ϵþ ¼ ϵþ1 þ iϵþ2 and ϵ− ¼ ϵ−1 þ iϵ−2, and where J
is the almost complex structure of X locally given by Jik ¼
iδik and J{̄

k̄
¼ −iδ{̄

k̄
. B-type supersymmetry corresponds to

ϵþ1 ¼ −ϵ−1 and ϵþ2 ¼ −ϵ−2, whereby

δϕI ¼ iðϵþ2ðψ I
− þ ψ IþÞ − ϵþ1JIKðψK

− þ ψKþÞÞ: ð4:98Þ

Hence, ψ I
− þ ψ Iþ and JIKðψK

− þ ψKþÞ are tangent to γ, which
implies that the application of the almost complex structure,
J, preserves the tangent space of γ. Therefore, γ is a
holomorphically embedded complex submanifold of X.
This complex submanifold also happens to be G invariant,
which we know from the previous paragraph.
Indeed, (2.16) vanishes under this boundary condition;

integrating out the auxiliary fields Fi and F̄{̄, (2.16) can be
rewritten (for ϵþ ¼ −ϵ− ¼ ϵ) as

δSmatter ¼
1

2π

1

4

Z
∂Σ

dx0fϵð−gð∂A
0ϕ;ψ− − ψþÞ − iωð∂A

0ϕ;ψ− − ψþÞ

− gð∂A
1ϕ;ψ− þ ψþÞ − iωð∂A

1ϕ;ψ− þ ψþÞ
− ReðσaÞgðẽa;ψþ − ψ−Þ − iReðσaÞωðẽa;ψþ − ψ−Þ
− iImðσaÞgðẽa;ψþ þ ψ−Þ þ ImðσaÞωðẽa;ψþ þ ψ−ÞÞ þ c:c:g ð4:99Þ

[where gðX; YÞ ¼ gIJXIYJ and ωðX; YÞ ¼ ωIJXIYJ], which vanishes using ImðσaÞ ¼ 0 and A1a ¼ 0 as well as the
conditions that ∂0ϕ

I , ψ I
− þ ψ Iþ, and ẽIa are tangent to γ while ∂1ϕ

I and ψ I
− − ψ Iþ are normal to γ.25

We may add the B-type supersymmetric boundary action

S∂Σ0 ¼
Z
∂Σ

dx0
�
AX
m∂A

0ϕ
m þ AX

m̄∂A
0 ϕ̄

m̄ þ R̃a
ðσa þ σ̄aÞ

2
−
i
2
FX
mn̄ðψmþ þ ψm

−Þðψ̄ n̄þ þ ψ̄ n̄
−Þ
�

¼
Z
∂Σ

dx0
�
AX
m∂0ϕ

m þ AX
m̄∂0ϕ̄

m̄ − iR̃aAa −
i
2
FX
mn̄ðψmþ þ ψm

−Þðψ̄ n̄þ þ ψ̄ n̄
−Þ
�
; ð4:100Þ

where we use (m; m̄; n; n̄) as coordinate indices on the B-branes, where the curvature of AX satisfies FX
mn ¼ FX

m̄ n̄ ¼ 0, and

where Aa ¼ −iðA0a −
ðσaþσ̄aÞ

2
Þ and

R̃a ¼ −AX
mẽma − AX

m̄
¯̃em̄a

¼ −{ẽaA
X: ð4:101Þ

25Recall that for a tangent vector, T, and normal vector, N, of a holomorphically embedded complex submanifold, γ, of the Kähler
manifold X, we have ωðT; NÞ ¼ gðJT;NÞ ¼ 0.
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B-type supersymmetry invariance and gauge invariance of
this action require the equivariant Bianchi identity

dR̃ ¼ {ẽFX; ð4:102Þ

and this implies that each B-brane supports a G-equivariant
holomorphic line bundle (cf. footnote 12), for which R̃a is

the moment.26 The inclusion of this boundary action results
in some of the equations of motion being modified by
boundary terms. One may generalize this even further, as
shown by Kapustin et al. [11] (cf. Sec. IV. A), by instead
including a Wilson line that represents a G-equivariant
graded holomorphic vector bundle.
In conclusion, we find that in general,

EquivariantB-branes areG-invariant holomorphically embedded complex submanifolds of X; which

supportG-equivariant holomorphic vector bundles ðwhichmay be gradedÞ:

As discussed in Sec. IV. A, at least in some cases, this
implies that they are objects in the bounded, derived
category of GC-equivariant coherent sheaves on X.

V. EQUIVARIANT A-BRANES
AND THEIR MIRRORS

In this section, we study the A-type supersymmetric
boundary actions and boundary conditions in Abelian
GNLSMs on I ×R with toric target spaces, X, as well
as their mirror descriptions. These boundary actions and
boundary conditions correspond to equivariant A-branes
wrapping submanifolds of X. Then, with the insights
we find from analyzing these abelian equivariant A-branes,
we shall proceed to study equivariant A-branes for non-
Abelian GNLSMs.
A-type supersymmetry is defined by the combination of

supercharges

QA ¼ Q̄þ þ eiβQ−;

Q†
A ¼ Qþ þ e−iβQ̄−; ð5:1Þ

where β ∈ R. In what follows, we shall set β ¼ 0 for
simplicity, though it is straightforward to study the β ≠ 0

generalization using the same techniques. From (2.15), it
can be seen that the corresponding relations among the
supersymmetry transformation parameters are

ϵ ¼ ϵþ ¼ ϵ̄−;

ϵ̄ ¼ ϵ̄þ ¼ ϵ−: ð5:2Þ

We shall also make use of superfields when discussing
boundary conditions and boundary actions, and to this
end, we shall make use of the concept of boundaries in
superspace [10]. For A-type supersymmetry, the relevant
boundary in superspace is known as “A boundary”27; and
corresponds to

θ ¼ θþ ¼ −θ̄−;

θ̄ ¼ θ̄þ ¼ −θ−: ð5:3Þ

Let us first briefly review what is known of ordinary
A-branes. For N ¼ ð2; 2Þ NLSMs, the boundary condition
needed to preserve A-type supersymmetry at the boundaries
maps each boundary to a middle-dimensional Lagrangian
submanifold of the target space [9]. In addition, we may
include the following boundary action:

S∂Σ ¼
Z
∂Σ

dx0AX
M∂0XM ¼

Z
x1¼π

dx0∂0ϕ
MbAXðbÞ

Mb
−
Z
x1¼0

dx0∂0ϕ
MaAXðaÞ

Ma
; ð5:4Þ

where AXðaÞ and AXðbÞ are the connections of Uð1Þ line
bundles on the A-branes γa and γb on which the boundaries
x1 ¼ 0 and x1 ¼ π end [we shall use (M;N;…) as
coordinate indices on the Lagrangian submanifold branes].
This boundary action is A-type supersymmetric if FX

MN ¼
∂MAX

N − ∂NAX
M ¼ 0, i.e., if the line bundles are flat.

We are interested in the generalizations of Lagrangian
boundary conditions and the boundary action (5.4) for
GNLSMs. These shall be obtained from a GLSM boundary
action, using the methods of Sec. III. No boundary
conditions shall be imposed by hand at the GLSM level,
but rather they shall be understood as being derived through
boundary interactions involving “boundary superfields.”
The advantage of this formulation is that the geometric
parameters of the D-brane enter a “boundary F term,” and
this aids our understanding of quantum corrections. In the
following, we shall attempt to generalize the NLSM

26Note that gauge invariance of the boundary action requires
the use of the identity αbLẽb R̃a ¼ ½α; R̃�a.

27We shall extensively use the concept of A-boundary super-
space, which is reviewed in [10,17].
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Lagrangian boundary conditions and boundary action
(5.4) to the case of Uð1Þk-GNLSMs with Kähler toric
target space.

A. Equivariant A-branes on CN==Uð1Þ from GLSM

We shall first consider toric target spaces of the form
CN==Uð1Þ. The Uð1ÞN-GLSM boundary action consists of

S1 ¼
1

2π

Z
∂Σ

dx0
�
1

2

XN
i

∂1jϕij2 þ
i
2

XN
i

ðF̄iϕi − ϕ̄iFiÞ þ
XN
a

i
4ea2

ðλ−aλþa − λ̄þaλ̄−aÞ þ
XN
a

θaA0a

�
ð5:5Þ

and

S2 ¼
1

2π

XN
i

Z
∂Σ

dx0
�Z

dθdθ̄Φ̄ie
P

N
a
QiaVaΦiðUi − Im logΦiÞ þ Re

Z
dθsiϒi

þ
XN
a

1

2e2a

Z
dθdθ̄Re½ΞaðDþΣa − D̄−ΣaÞ�

�
; ð5:6Þ

where Ui is a real, bosonic, boundary auxiliary superfield
expanded as

Ui ¼ ui þ θX̄ i − θ̄X i þ θθ̄Ei ð5:7Þ

(with the lowest component ui being a periodic (multi-
valued) scalar field defined on the boundaries),ϒi ¼ D̄U is
the “field strength” of Ui, expanded as

ϒi ≔ D̄Ui ¼ X i þ θðEi þ i∂0uiÞ − iθθ̄∂0X i; ð5:8Þ

and is a boundary Fermi superfield satisfying D̄ϒi ¼ 0,
while the parameter

si ¼ ci − iai ð5:9Þ

is the boundary analogue of the complex FI-theta param-
eter. Although both ui and φi are periodic, multivalued

functions, the presence of the term
R
dθdθ̄Φ̄ie

P
N
a
QiaVa ×

Φiðui − φiÞ in (5.6) requires that ui − φi is single valued.
We have also introduced an A-type supersymmetry invari-
ant boundary D term for the vector superfields, which
contains the complex boundary Fermi superfields

Ξa ¼ ξa þ θGa þ θ̄Ha þ θθ̄Ka;

Ξ̄a ¼ ξ̄a þ θ̄Ḡa þ θH̄a þ θθ̄K̄a; ð5:10Þ

where ξa and Ka are fermionic auxiliary fields while Ga
and Ha are bosonic auxiliary fields, all defined along the
boundaries. The A-type supersymmetry transformations of
these fields may be found using the differential operator
δ ¼ ϵQ̄ − ϵ̄Q defined in [10] on the superfields Ξa and Ξ̄a.
In addition, they are defined to be invariant under gauge
transformations. The form of (5.6) is chosen such that the
boundary conditions

Φ̄ie
P

N
a
QiaVaΦi ¼ ci;

DþΣa ¼ D̄−Σa;

DþΣa ¼ D̄−Σa; ð5:11Þ

are effectively imposed via boundary interactions. In
components, these are

jϕij2 ¼ ci;

ϕ̄iψ−i þ ψ̄þiϕi ¼ 0;

ψ̄−iϕi þ ϕ̄iψþi ¼ 0;

iϕ̄iD
↔

1ϕi þ ψ̄þiψþi − ψ̄−iψ−i þ F̄iϕi þ ϕ̄iFi ¼ 0; ð5:12Þ

and

λþa − λ̄−a ¼ 0;

∂1σa ¼ 0;

F01a ¼ 0;

Da ¼ 0;

∂1ðλþa þ λ̄−aÞ ¼ 0; ð5:13Þ

and the complex conjugates of the conditions in (5.13).
The supersymmetry transformation of the bulk GLSM

action together with (5.5) is

δðSþ S1Þ ¼
XN
a

ra
4π

Z
∂Σ

dx0fϵðλ̄þa þ λ−aÞ− ϵ̄ðλ̄−a þ λþaÞg:

ð5:14Þ

Now, the Uð1ÞN gauge invariance of the first term in (5.6)
requires that Ui transforms under Uð1ÞN gauge trans-
formations as
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Ui → Ui þ
XN
a

Qia

2
ðAa þ ĀaÞ; ð5:15Þ

in order to cancel the gauge variation of Im logΦi. This implies the following modification of the supersymmetry
transformations of the components of Ui in order to preserve the Wess-Zumino gauge:

δui ¼ ϵX i − ϵ̄X̄ i;

δX i ¼ −ϵ̄
�
Ei þ i

�
∂0ui þ

XN
a

QiaA0a

��
− iϵ

XN
a

Qiaσa;

δX̄ i ¼ −ϵ
�
Ei − i

�
∂0ui þ

XN
a

QiaA0a

��
þ iϵ̄

XN
a

Qiaσ̄a;

δEi ¼ iϵ∂0X i þ iϵ̄∂0X̄ i −
1

2
ϵ
XN
a

Qiaðλ−a þ λ̄þaÞ þ
1

2
ϵ̄
XN
a

Qiaðλ̄−a þ λþaÞ: ð5:16Þ

The boundary superpotential term in (5.6) is not invariant under supersymmetry,28 but rather varies as

δ

�
1

2π

XN
i

Z
∂Σ

dx0Re
Z

dθsiϒi

�
¼ −

P
N
a

P
N
i Qiaci
4π

Z
∂Σ

dx0fϵðλ̄þa þ λ−aÞ − ϵ̄ðλ̄−a þ λþaÞg: ð5:17Þ

Hence, supersymmetry invariance of the entire action requires that (5.14) and (5.17) cancel, which is possible if and only if

XN
i

Qiaci ¼ ra: ð5:18Þ

Likewise, the first part (5.5) of the boundary action is not Uð1ÞN-gauge invariant, but varies as

δS1 ¼
1

2π

Z
∂Σ

dx0
XN
a

θað−∂0αaÞ; ð5:19Þ

while the boundary superpotential term varies under gauge transformations as

δ

�
1

2π

XN
i

Z
∂Σ

dx0Re
Z

dθsiϒi

�
¼

P
N
a

P
N
i Qiaai
2π

Z
∂Σ

dx0∂0αa; ð5:20Þ

since the residual gauge transformation Aa ¼ αaðxÞ of the Wess-Zumino gauge shifts ui → ui þ
P

N
a Qiaαa, while leaving

X i and Ei invariant. Therefore, gauge invariance of the boundary action follows if 29

XN
i

Qiaai ¼ θa: ð5:21Þ

Combining (5.18) and (5.21), we find that we need

XN
i

Qiasi ¼ ta ð5:22Þ

for gauge invariance and A-type supersymmetry invariance of the action.

28This nonzero variation occurs because the boundary Fermi superfield ϒ is not invariant under the gauge transformation (5.15).
29In fact, (5.21) only needs to hold up to the additional term 2πm, where m ∈ Z, since the path integral remains gauge invariant in

such cases. However, we shall set m ¼ 0 in the following for simplicity.
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Expanding the boundary action in components, we have

S∂Σ ¼ S1 þ S2

¼ 1

2π

Z
∂Σ

dx0
�XN

a

i
4ea2

ðλ−aλþa − λ̄þaλ̄−aÞ þ
XN
a

θaA0a

�

þ 1

2π

XN
i

Z
∂Σ

dx0
�
ðiϕ̄iD

↔

1ϕi þ ψ̄þiψþi − ψ̄−iψ−i þ F̄iϕi þ ϕ̄iFiÞu0i

þ ðϕ̄iψ−i þ ψ̄þiϕiÞX̄ i þ X iðψ̄−iϕi þ ϕ̄iψþiÞ − i
3

2

ϕ̄i

ϕi
ψþiψ−i þ i

3

2

ϕi

ϕ̄i
ψ̄−iψ̄þi

− ðjϕij2 − ciÞEi þ ai∂0ui

�

þ
XN
a

1

2e2a

Z
∂Σ

dx0
1

2
ðξað∂0ðλ−a − λ̄þaÞ þ 2∂1ðλ−a þ λ̄þaÞÞ

þ i2Gað∂1σaÞ − 2HaðDa − iF01aÞ þ iKaðλ−a − λ̄þaÞ þ c:c:Þ; ð5:23Þ

where the covariant derivative of the scalar fields is given in (3.9). First, we note that Stoke’s theorem implies

ai
2π

Z
∂Σ

∂0uidx0 ¼
ai
2π

Z
∂Σ
f∂0φi þ ∂0ðui − φiÞgdx0 ¼

ai
2π

Z
∂Σ

∂0φidx0; ð5:24Þ

since ui − φi is single valued. Then, taking the ê → ∞
limit, and subsequently integrating out the boundary
auxiliary fields, we obtain the boundary action

S∂Σ ¼ 1

2π

Z
∂Σ

dx0
�XN

i

ai∂0φi þ θ̂Â0 þ
XN−1

c

θ̃cÃ0c

�
;

ð5:25Þ
together with the boundary conditions (5.12) on the matter
fields, as well as boundary conditions

λ̃þc −
¯̃λ−c ¼ 0;

∂1σ̃c ¼ 0;

F̃01c ¼ 0;

D̃c ¼ 0;

∂1ðλ̃þc þ ¯̃λ−cÞ ¼ 0; ð5:26Þ
on vector multiplet fields, and their complex conjugates.
Before proceeding, we note that the boundary conditions
on the matter fermion fields in (5.12) ensure that the
spurious boundary term (3.28) vanishes.
Now, we shall rewrite (5.25) as

1

2π

Z
∂Σ

dx0
�XN

i

aiD̃0φi þ θ̂Â0

�
; ð5:27Þ

where we have used
P

N
i Q̃icai ¼ θ̃c and where the

covariant derivative of φi is

D̃0φi ¼ ∂0φi þ
XN−1

c

Q̃icÃ0c; ð5:28Þ

which agrees with the general definition for scalar fields
given in (2.7). By integrating the vector multiplet out of the
bulk action [cf. (3.15)], we obtain

Â0 ¼
1

2

P
N
i¼1 Q̂iðiϕ̄iD̃

↔

0ϕi þ ψ̄−iψ−i þ ψ̄þiψþiÞP
N
j¼1 Q̂

2
j jϕjj2

¼ −
P

N
i¼1 Q̂iciD̃0φiP

N
j¼1 Q̂

2
jcj

; ð5:29Þ

at the boundaries,30 where (5.12) has been used in the last
step. Hence, the final boundary action is31

S∂Σ ¼ 1

2π

Z
∂Σ

dx0
�XN
i¼1

aiD̃0φi − θ̂

P
N
i¼1 Q̂iciD̃0φiP

N
j¼1 Q̂

2
jcj

�
:

ð5:30Þ

30The presence of the boundary term proportional to θ̂Â0

ensures that the algebraic equation of motion for Â0 does not
contain a boundary term; see footnote 3.

31To be precise, the complete boundary action includes the
C-field term given in (2.5). However, to simplify the following
arguments, we shall consider the C-field term to be part of the
bulk action, by using Stoke’s theorem to promote it to a bulk
term.
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Now, let us investigate the example of X ¼ CPN−1. First, the inhomogeneous coordinates (3.20) that parametrize a local
patch of CPN−1 can be written as

jZijeiγi ¼ jϕijeiφi

jϕN jeiφN
: ð5:31Þ

In other words, the argument of Zi is

γi ¼ φi − φN: ð5:32Þ

We then derive the following A-type supersymmetric boundary conditions of the GNLSM matter fields from (5.12)
using the parametrizations (3.19) and (3.21)32:

jZij2 ¼ ci
cN
;

Z̄iψZi

− þ Ziψ̄ Z̄i

þ ¼ 0;

Z̄iψZi

þ þ Ziψ̄ Z̄i

− ¼ 0;

iðZ̄i∂A
1Z

i − Zi∂A
1 Z̄

iÞ þ ψ̄ Z̄i

þψZi

þ − ψ̄ Z̄i

− ψ
Zi

− þ FZi
Z̄i þ F̄Z̄i

Zi ¼ 0;

ð5:33Þ

where the last condition is, in fact, a Neumann boundary condition on γi, since Z̄i∂A
1Z

i − Zi∂A
1 Z̄

i ¼ 2jZij2i∂A
1 γ

i, where

∂A
μ γ

i ¼ ∂μγ
i þ

XN−1

c

ðQ̃ic − Q̃NcÞÃμc ¼ ∂μγ
i þ

XN−1

c

ẽγ
i

c Ãμc; ð5:34Þ

with ẽγ
i

c being the Killing vector field that generates the Uð1ÞN−1 isometry of the torus, TN−1, parametrized by γi. The
Neumann boundary condition on γi together with the Dirichlet boundary condition on jZij implies that the equivariant A-brane
wraps this torus.33 Furthermore, this torus is a Lagrangian submanifold ofCPN−1 with respect to the Fubini-Study Kähler form
given by (4.24). The remaining boundary conditions, i.e., for the fields in the vector multiplet of the GNLSM, are given by
(5.26). The complete set of GNLSM boundary conditions is invariant under the Uð1ÞN−1 gauge symmetry and satisfies the
supersymmetry transformations given in (2.13) and (2.14) for ϵþ ¼ ϵ̄−. In addition, the boundary conditions also ensure the
locality of the classical equations of motion, i.e., that they contain no boundary terms.
Next, with the aid of (5.21), we can rewrite the boundary action (5.30) as

S∂Σ ¼ 1

2π

Z
∂Σ

dx0
XN
i¼1

�
ai − θ̂

ciP
N
j¼1 cj

�
D̃0φi

¼ 1

2π

Z
∂Σ

dx0
�XN−1

i¼1

�
ai −

�XN
k¼1

ak

�
ciP
N
j¼1 cj

�
D̃0φi þ

�
aN −

�XN
k¼1

ak

�
cNP
N
j¼1 cj

�
D̃0φN

�

¼ 1

2π

Z
∂Σ

dx0
�XN−1

i¼1

�
ai −

�XN
k¼1

ak

�
ciP
N
j¼1 cj

��
∂0ðφi − φNÞ þ

XN−1

c

ðQ̃ic − Q̃NcÞÃ0c

��
; ð5:35Þ

or

S∂Σ ¼
Z
∂Σ

dx0
�XN−1

i¼1

AX
i ∂0γ

i −
XN−1

c¼1

R̃cÃ0c

�
; ð5:36Þ

32The last condition of (5.12) is actually trivialized using the algebraic equation of motion of Â1 in (3.15). The last condition of (5.33)
is obtained via A-type supersymmetry transformations of the fermionic boundary conditions.

33Here, both boundaries are mapped to the same A-brane. If the boundaries are assigned unique parameters sπi and s0i in (5.6), then
each boundary is mapped to a different A-brane. However, for simplicity, in most of what follows in this section, we shall assume that
both boundaries are assigned the same parameter si.
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where AX
i ¼ 1

2π



ai − ðPN

k¼1 akÞ ciP
N
j¼1

cj

�
is the connection

of a flat Uð1Þ bundle on the Lagrangian torus TN−1

parametrized by γi, and where

R̃c ¼ −
XN−1

i

ðQ̃ic − Q̃NcÞAX
i

¼ −
XN−1

i

ẽγ
i

c AX
i

¼ −{ẽcA
X: ð5:37Þ

As we explain below, A-type supersymmetry invariance
holds since

dR̃ ¼ {ẽFX; ð5:38Þ

which is equal to zero because FX ¼ 0. This is known as
the equivariant Bianchi identity and implies that the flat
Uð1Þ bundle has Uð1ÞN−1-equivariant structure,34 for
which R̃c is the moment [22,23].
Now, the boundary action (5.36) is not invariant under

the supersymmetry transformations (2.13) and (2.14) for
ϵþ ¼ ϵ̄−. Instead, the total action Sþ S∂Σ is invariant under
these transformations at the boundaries, using the boundary
conditions (5.33) and (5.26), and therefore the sum of the
expressions (2.16), (2.17), and (2.18) with the supersym-
metry variation of the boundary action vanishes. The proof
of this involves the supersymmetry invariance of the
constant moment R̃c, which is essentially the equivariant
Bianchi identity (5.38), as well as the boundary constraint

μ̃c ¼ −r̃c ð5:39Þ

on the moment map, which can be derived from (5.18)
using ci ¼ jϕij2 and the parametrization (3.19). Further-
more, the first term of the boundary action (5.36) is
supersymmetry invariant via Stoke’s theorem since the
fermionic superpartners of γi are not periodic nor multi-
valued ([20], page 307), and the nonzero supersymmetry
variation of the boundary action is canceled by the C term
in (2.18) and the θ̃c term in (2.17) via

2πR̃c ¼ −θ̃c þ Cc; ð5:40Þ

which can be shown to hold via (3.27), (5.39), and (5.22).
Finally, the B-field terms in (2.18) (where the B field is
proportional to the Kähler form) vanish using the boundary
conditions given in (5.33).

Next, writing the boundary action as

S∂Σ ¼
Z
∂Σ

dx0
�XN−1

i¼1

AX
i ∂A

0 γ
i

�
; ð5:41Þ

it becomes obvious that it is invariant under the gauge
transformations given in (2.11) and (2.12), since AX

i is a
constant and the expression ∂A

0 γ
i is invariant under gauge

transformations.
We have thus found A-type supersymmetric and

Uð1ÞN−1 gauge invariant boundary conditions and boun-
dary interactions corresponding to an equivariant A-brane
in CPN−1, which wraps a Lagrangian submanifold TN−1

that supports a Uð1ÞN−1-equivariant flat Uð1Þ bundle.
We may follow a procedure analogous to that presented
above for CPN−1 in order to describe an equivariant
A-brane in a toric manifold X ¼ CN==Uð1Þ (by choosing
different values for Q̂i), which would again be a
Lagrangian submanifold TN−1 supporting a flat Uð1Þ
bundle with Uð1ÞN−1-equivariant structure.

B. Equivariant A-branes on CN==Uð1ÞN − k
from GLSM

We can generalize further, since the examples above have
been solely for equivariant A-branes on X ¼ CN==Uð1ÞN−k

where N − k ¼ 1. For general values of N − k, we may
derive the relevant boundary conditions and boundary action
from the GLSM boundary action (5.23), but instead of
taking the ê → ∞ limit for a single gauge group, we take
êb → ∞, where b ¼ 1;…; N − k. Integrating out auxiliary
fields, and using parametrizations analogous to (3.19) and
(3.21), we will be able to derive the Uð1Þk-GNLSM
boundary conditions and boundary action that represent an
equivariant A-brane wrapping a Lagrangian torus Tk, which
supports a flatUð1Þ bundlewithUð1Þk-equivariant structure.
Kapustin et al. ([11], page 58) have conjectured that

the category of G-equivariant A-branes is some sort of
G-equivariant version of the Fukaya category (which
includes Lagrangian submanifolds that support flat unitary
vector bundles as objects). Indeed, if we generalize the
definition of the equivariant Fukaya category given for finite
groups by Cho and Hong ([26], page 68) to G ¼ Uð1Þk, we
see that the equivariant A-branes that we have found are
objects in the Uð1Þk-equivariant Fukaya category, and
therefore, we have partially verified the conjecture of
Kapustin et al. The other objects in the category that we
have not constructed correspond to Lagrangian submani-
folds that support equivariant flat unitary vector bundles.

C. Quantum corrections

There are two important quantum effects of the bulk
Uð1ÞN−k × Uð1Þk GLSM, which affect the FI parameters ra
and theta angles θa [20]. The first effect is the renormal-
ization of the FI parameters,

34The G-equivariant Bianchi identity is equivalent to the G
invariance of the connection, A, of the bundle (LẽA ¼ 0), which
implies that the covariant derivative dþ A is G invariant, and this
defines a G-equivariant bundle; see [22], Sec. 3.2.
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r0a ¼ raðμÞ þ
XN
i¼1

Qia log

�
ΛUV

μ

�
; ð5:42Þ

where r0a denotes bare parameters, ΛUV is an ultraviolet
cutoff, and μ is a finite energy scale. Via integration of the
beta functions of the FI parameters, βa ¼ μ dra

dμ , the μ

dependence is found to be

raðμÞ ¼
XN
i¼1

Qia log

�
μ

Λ

�
; ð5:43Þ

where Λ is the renormalization group invariant dynamical
scale. The second quantum effect is the anomaly of the
bulk Uð1Þ axial R symmetry, whereby axial R rotations
ψ�i → e∓iβψ�i, σa → e2iβσa, and λ�a → e∓iβλ�a no
longer leave the action invariant, but result in a shift of
the theta angles, i.e.,

θa → θa − 2
XN
i¼1

Qiaβ: ð5:44Þ

The FI parameters are closely related to the boundary
parameters ci, via (5.18), and the latter undergo similar
renormalization to that of (5.42) [10], i.e., the parameters ci
run as

ciðμÞ ¼ log

�
μ

Λ

�
: ð5:45Þ

Note that this quantum effect is nontrivial even whenP
N
i¼1Qia ¼ 0, unlike the running of raðμÞ. In particular,

(5.45) implies that the size of the equivariant A-brane in the
toric manifold X could depend on the energy scale μ. How-
ever, for CPN−1, this is not the case, because the Dirichlet
boundary condition is jZij2¼ci=cN , and hence the equiv-
ariant A-brane stays the same size regardless of the energy
scale. On the other hand, when

P
N
i¼1Qia > 0, the manifold

X becomes large at high energies due to (5.43), since r̂b are
the size moduli of X [for CPN−1, this is obvious from
(3.22)]. Finally, it is expected that in addition to the bulk
axial R anomaly, a boundary axial R anomaly also
occurs [20].

D. Mirrors of equivariant A-branes

Having described equivariant A-branes in toric mani-
folds, we shall now use mirror symmetry to find the
Landau-Ginzburg mirrors of these branes, following the
exposition in Sec. III, as well as the results of [10]. We shall
obtain the mirrors of branes in toric manifolds that obey
c1ðXÞ ≥ 0, since mirror symmetry is a quantum duality
(which holds after taking all perturbative and nonperturba-
tive quantum effects into account), and we can only obtain
quantum GNLSMs for Kähler targets with c1ðXÞ ≥ 0 from
GLSMs (cf. Sec. III).
The boundary action of the Uð1ÞN GLSM that we wish

to dualize is given by (5.23), with
P

N
i ai∂0ui replaced byP

N
i ai∂0φi via (5.24).

35 The terms in the fullUð1ÞN GLSM
action relevant for the dualization are those that involve φi,

Sφ ¼ −
1

2π

XN
i¼1

Z
Σ
jϕij2

�
∂μφi þ

XN
a

QiaAμa

��
∂μφi þ

XN
a

QiaA
μ
a

�
d2x

þ 1

2π

Z
∂Σ

�XN
i¼1

�
−2u0ijϕij2

�
∂1φi þ

XN
a

QiaA1a

�
þ ai∂0φi

�
þ
XN
a

θaA0a

�
dx0; ð5:46Þ

where −2jϕij2ð∂1φi þ
P

N
a QiaA1aÞ ¼ iϕ̄iD

↔

1ϕi.
36 Here, the boundary theta term

P
N
a

θa
2π

R
∂Σ A0adx0 has been included in

order to maintain the gauge invariance; i.e., the gauge transformations φi → φi þ
P

N
a Qiaαa, Aμa → Aμa − ∂μαa leave the

expression (5.46) invariant [as long as (5.21) holds]. All other terms, including those involving fermions, have been
suppressed for simplicity.
Now, let us consider a system of N one-form fields ðBiÞμ, as well as N þ N periodic scalar fields consisting of ϑi and ũi

with the action

S0 ¼ 1

2π

XN
i¼1

�Z
Σ

�
−jϕij2BiμB

μ
i d

2x − Bi ∧ dϑi þ
XN
a

QiaϑiFa

�
þ
Z
∂Σ
ðai − ϑiÞ∂0ũidx0

�
; ð5:47Þ

where Fa is the curvature of Aa ¼ Aμadxμ, Fa ¼ dAa. In addition, the boundary condition

ðBiÞ1 ¼ 0 ð5:48Þ

35In the following analysis, we shall take jϕij2 to be nonzero, and φi ¼ Im logϕi is understood to be well defined, permitting us to set
Ui ¼ φi þ U0

i, whereby U0
i is a boundary superfield that is single valued.

36The subsequent dualization analysis follows from that given in [10], the only difference being that we have generalized the gauge
group from Uð1Þ to Uð1ÞN .
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is imposed. Integrating out ϑi gives rise to the constraints

dBi ¼
XN
a

QiaFa onΣ;

ðBiÞ0 ¼ ∂0ũi along ∂Σ: ð5:49Þ

The first of these constraints is solved by Bi ¼ dφi þP
N
a QiaAa, where φi is a periodic scalar field of

period 2π.37 Then, the second constraint together with the
boundary condition (5.48) implies the relations

∂0φi þ
XN
a

QiaA0a ¼ ∂0ũi;

∂1φi þ
XN
a

QiaA1a ¼ 0; ð5:50Þ

on the boundaries. Inserting the first expression of (5.50)
into (5.47) we obtain the action (5.46) without the u0i-
dependent terms (using

P
N
i¼1Qiaai ¼ θa). The second

condition in (5.50) is equivalent to the presence of the
u0i-dependent terms, since integrating out u0i imposes the
second equation of (5.50).
Alternatively, integrating out the fields Bi imposes

ðBiÞ0 ¼
−∂1ϑi
2jϕij2

; ð5:51Þ

ðBiÞ1 ¼
−∂0ϑi
2jϕij2

; ð5:52Þ

and we obtain

Sϑ ¼ 1

2π

XN
i¼1

�Z
Σ

�
−

1

4jϕij2
∂μϑi∂μϑid2xþ

XN
a

QiaϑiFa

�
þ
Z
∂Σ
ðai − ϑiÞ∂0ũidx0

�
: ð5:53Þ

Following Hori [10], the bulk portion of the full mirror action is given by (3.2) [modulo boundary terms that arise from
putting the scalar kinetic terms in (3.2) in their standard form], while the mirror boundary action takes the form38

S∂Σ ¼ 1

2π

XN
i¼1

Z
∂Σ

dx0Re
Z

dθðsi − YiÞϒ̃i

þ ðadditional boundary terms required to cancel bulk SUSY variationÞ

þ
XN
a

1

2e2a

Z
dθdθ̄Re½ΞaðDþΣa − D̄−ΣaÞ�; ð5:54Þ

where the boundary term in (5.53) is contained in the first
term.
Here, ϒ̃i is the “field strength” D̄Ũi of the boundary

superfield Ũi, whose only difference from Ui is that its
lowest component is ũi. Integrating out ϒ̃i, we find the
boundary condition

Yi ¼ si; ð5:55Þ

at A boundary, which is

yi ¼ si;

χ̄þi − χ−i ¼ 0 ð5:56Þ

in components. In fact, integrating out all the boundary
auxiliary fields in (5.54) imposes the boundary conditions
(5.55) and (5.13), which result in the entire boundary action
vanishing.
As in Sec. III, taking the êb → ∞ limit allows us to

integrate Σ̂b out of the action and imposes the constraint

XN
j

Q̂jbYj − t̂b ¼ 0; ð5:57Þ

giving us the gauged Landau-Ginzburg theory with hol-
omorphic twisted superpotential

W̃ ¼
Xk
c

�XN
j¼1

Q̃jcYj − t̃c

�
Σ̃c þ

XN
j¼1

e−Yj : ð5:58Þ

We recall that the constraint (5.57) fixes the target space of
the gauged Landau-Ginzburg theory to be the algebraic
torus ðC×Þk. It is solved (cf. Sec. III) by

37For details on why φi ought to be periodic, see [20],
page 250.

38As explained in [10], unlike the bulk superpotentialP
N
i¼1 e

−Yi , which is generated by vortices, no boundary F terms
can be generated by such effects.
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Yj ¼ ŝj þ
Xk
c¼1

vcjΘc; ð5:59Þ

where ŝj is any solution of Q̂b
j ŝ

j ¼ t̂b. Note that with Θc ¼ θc þ θþχ̄θþc þ θ̄−χθ−c þ θþθ̄−Eθ
c, the full mirror action,

expanded in components, is

S ¼ 1

2π

Z
d2x

�Xk
c

Xk
d

�
−gcd∂μθc∂μθ̄d þ

i
2
gcdχ̄θ−cð∂

↔

þÞχθ−d þ
i
2
gcdχ̄θþcð∂

↔

−Þχθþd þ gcdEθ
cĒθ

d

�

þ
Xk
c

1

2ẽ2c

�
ðF̃01cÞ2 − ∂μσ̃c∂μ ¯̃σc þ ðD̃cÞ2 þ

i
2
¯̃λþcð∂

↔

−Þλ̃þc þ
i
2
¯̃λ−cð∂

↔

þÞλ̃−c
�

þ 1

2

�XN
j

Xk
c

Xk
d

Q̃jcv
j
dðσ̃cEθ

d − i ¯̃λþcχ
θ
−d − iλ̃−cχ̄θþd þ ðD̃c − iF̃01cÞθdÞ

þ
Xk
c

�XN
j

Q̃jcŝj − t̃c

�
ðD̃c − iF̃01cÞ þ

XN
j

e−
P

c
vjcθc−ŝj

�
−
Xk
c

vjcχ̄θþc

Xk
d

vjdχ
θ
−d −

Xk
c

vjcEθ
c

�
þ c:c:

��
; ð5:60Þ

where (θc,θ̄d) [the lowest components of ðΘc; Θ̄d)] para-
metrize the mirror target space ðC×Þk, on which the flat
Kähler metric is

ds2 ¼
Xk
c

Xk
d

1

4

P
N
j vjcv

j
d

logðΛUV=μÞ
dθcdθ̄d ¼

Xk
c

Xk
d

gcddθcdθ̄d:

ð5:61Þ
Now, the boundary condition (5.55) on Yi implies the

boundary condition

Xk
c¼1

vcjΘc ¼ sj − ŝj; ð5:62Þ

and this means that the Uð1Þk-equivariant A-brane in X ¼
CN==Uð1ÞN−k is mapped to a B-brane that is a D0-brane in
the mirror Landau-Ginzburg model located at θc, where θc
is a solution of

P
k
c¼1 vcjθc ¼ sj − ŝj.

39 Let us investigate
this D0-brane further, by studying how it is described in the
W̃ plane. In particular, we would like to find the mirror of
the Uð1Þk-equivariant structure on the A-brane.
First, we note that the twisted superpotential (5.58) can

be rewritten as

W̃ ¼ W̃equiv þ W̃X; ð5:63Þ

where the first and second terms of (5.58) correspond,
respectively, to the first and second terms of (5.63). The
image of the D0-brane in the W̃X plane is

W̃X ¼
XN
i¼1

e−si ; ð5:64Þ

which is the mirror condition found in [10] when studying
the mirrors of A-branes without equivariant structure.
However, turning to W̃equiv, we find that the boundary
condition (5.55) implies that the image of the D0-brane in
the W̃equiv plane is W̃equiv ¼ 0, and thus we require further
analysis to identify the mirror of the Uð1Þk-equivariant
structure on the A-brane.
Now, for the D0-brane mirrors of ordinary A-branes,

there is an additional requirement that is necessary to
prevent spontaneous supersymmetry breaking; that is,
the D0-brane should be at a critical point of the twisted

superpotential W̃XðθÞ¼
P

N
j¼1e

−ŝj−
P

k
c¼1

vcjθc [10,20,27,28].
This condition is necessary for the potential energy of the
mirror Landau-Ginzburg model (with twisted superpoten-
tial W̃X) to have a vanishing vacuum expectation value. We
shall generalize this analysis to the gauged Landau-
Ginzburg model with neutral matter (5.60), which we
are presently concerned with. Here, the twisted super-
potential terms can be expanded as

1

2π

Z
d2x

1

2

�Z
d2θ̃ W̃ðΘ; Σ̃Þþ c:c:

�

¼ 1

2π

Z
d2x

1

2

�Xk
c

�
Eθ
c
∂W̃
∂θc þðD̃c− iF̃01cÞ

∂W̃
∂σ̃c

�
þ c:c:

þ
Xk
c

Xk
d

�
χθ−cχ̄

θ
þd

∂2W̃
∂θc∂θdþ λ̃−c

¯̃λþd
∂2W̃

∂σ̃c∂σ̃d
þ iχ̄θþcλ̃−d

∂2W̃
∂θc∂σ̃dþ iχθ−c

¯̃λþd
∂2W̃

∂θc∂σ̃d
�
þ c:c:

�
; ð5:65Þ

39In the case where the two boundaries of the strip are mapped
to different equivariant A-branes, labeled by sπj and s0j , the
positions of the mirror D0-branes are determined byP

k
c¼1 vcjθc ¼ sπj − ŝj and

P
k
c¼1 vcjθc ¼ s0j − ŝj, respectively.
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where W̃ is given by (3.7). Taking into account the presence of the auxiliary field terms

1

2π

Z
d2x

�Xk
c

Xk
d

gcdEθ
cĒθ

d þ
Xk
c

1

2ẽ2c
D̃cD̃c

�
ð5:66Þ

in the action, upon integrating out the auxiliary fields D̃c and Eθ
c, the potential energy becomes

V ¼ 1

2π

Z
dx1

�
1

4
gcd

∂W̃
∂θc

∂ ¯̃W

∂θ̄d þ
1

2

Xk
c

ẽ2cRe

�∂W̃
∂σ̃c

�
Re

�∂ ¯̃W
∂ ¯̃σc

��
: ð5:67Þ

Now, in the nongauged case, ∂W̃X∂θc is a constant at the boundaries, and therefore supersymmetry would be broken for any

classical configuration unless the D0-brane is located at the critical point ∂W̃X∂θc ¼ 0. However, in (5.67),

∂W̃
∂θc ¼

XN
j

hσ̃; Q̃jivjc −
XN
j

vjce−hv
j;θi−ŝj ð5:68Þ

is not a constant at the boundaries [since σ̃c obeys a Neumann boundary condition (∂1σ̃c ¼ 0), unlike θc], and hence
classical configurations where ∂W̃

∂θc ¼ 0 at the boundaries can be achieved without any additional constraint on the position of

the D0-brane. Next, the second term in (5.67) implies that Reð∂W̃∂σ̃cÞ ought to vanish at each boundary in order to prevent
spontaneous breaking of supersymmetry. Indeed,

Re

�∂W̃
∂σ̃c

�
¼ Re

�XN
j

Q̃jcsj − t̃c

�
ð5:69Þ

at the boundaries, which is identically zero because it is the real part of the condition
P

N
j Q̃jcsj − t̃c ¼ 0, which is implied

by
P

N
j Qjasj − ta ¼ 0. The latter holds since it was necessary for the A-type supersymmetry and gauge symmetry of the

Uð1ÞN−k × Uð1Þk GLSM [see (5.22)]. Therefore, spontaneous supersymmetry breaking does not occur in the mirror theory,
since zero-energy classical configurations can always be achieved at the boundaries. The condition

P
N
j Q̃jcsj − t̃c ¼ 0 is a

new condition that did not appear in the nongauged case and, in fact, constrains the position of the D0-brane [defined by sj

via (5.62)]. In conclusion, unlike the mirrors of ordinary A-branes, we have found the following:

Themirrors of Uð1Þk-equivariantA-branes onCN==Uð1ÞN−k do not need to satisfy the critical point

condition ∂W̃X∂θc ¼ 0; but instead their positionmust be further constrained by
P

N
j Q̃jcsj − t̃c ¼ 0:

In this section, we have restricted ourselves to equivar-
iant A-branes whose mirrors are D0-branes. However, there
are A-branes whose mirrors are higher-dimensional branes
holomorphically embedded in the mirror target space. In
Hori’s construction [10], these can be studied by promoting
the parameter si to a superfield Si. It would be interesting to
study equivariant structure on these branes.

E. Non-Abelian equivariant A-branes

We may use the insights obtained from analyzing the
equivariant A-branes for Abelian groups to find the
description of equivariant A-branes for general non-
Abelian groups. We shall use the GNLSM notation of
Sec. II in this subsection.
First, the terms in (2.17) [except the terms proportional to

(ϕ�μa þ ra) and θa] vanish using the boundary conditions

λþa − λ̄−a ¼ 0;

∂1σa ¼ 0;

A1a ¼ 0;

∂1A0a ¼ 0;

Da ¼ 0;

∂1ðλ−a þ λ̄þaÞ ¼ 0. ð5:70Þ

Note that these conditions are a direct generalization of the
conditions given for the example of CPN−1, except that
F01a ¼ 0 is replaced by the stricter conditions A1a ¼ 0 and
∂1A0a ¼ 0. This is necessary since the supersymmetry
transformations now contain non-Abelian terms, and this
causes A-type supersymmetry invariance of the set of
boundary conditions to not hold unless we use the stricter
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conditions. The boundary conditions, in fact, imply that
gauge transformations have to be restricted such that the
transformation parameter αa has a vanishing derivative with
respect to x1 at the boundaries, in order for these boundary
conditions to be gauge invariant.
Next, we turn to the boundary conditions for the matter

fields. We first recall that for CPN−1, the equivariant
A-brane corresponded to a Lagrangian torus TN−1, which
was invariant under theUð1ÞN−1 isometry of CPN−1. Let us
consider the N ¼ 1 subalgebra of A-type supersymmetry,
which corresponds to ϵþ ¼ iϵ̃, ϵ̄þ ¼ −iϵ̃, ϵ− ¼ −iϵ̃, and
ϵ̄− ¼ iϵ̃, where ϵ̃ is a real parameter. In this case, after
integrating out the auxiliary fields Fi and F̄{̄, we find that
(2.16) and the B-field terms in (2.18) are

−
1

2π

iϵ̃
2

Z
∂Σ

dx0fðgIJðψJ
− − ψJþÞ − BIJðψJ

− þ ψJþÞÞ∂A
0ϕ

I

þ ðgIJ∂A
1ϕ

I þ BJI∂A
0ϕ

IÞðψJ
− þ ψJþÞ

þ gIJðψ Iþ − ψ I
−ÞReðσaÞẽJa þ ωIJðψ Iþ þ ψ I

−ÞImðσaÞẽJag;
ð5:71Þ

where gIJXIYJ ¼ gi|̄ðXiY|̄ þ X|̄YiÞ and ωIJXIYJ ¼
igi|̄ðXiY|̄ − X|̄YiÞ, and where ðI; J; K;…Þ are indices
corresponding to real coordinates on X. In addition, if
we insist on locality of the matter equations of motion (as in
the CPN−1 case), we require that

δϕIðgIJ∂A
1ϕ

J þ BIJ∂A
0ϕ

JÞ ¼ 0;

gIJðψ I
−δ∇ψJ

− − ψ Iþδ∇ψJþÞ ¼ 0 ð5:72Þ

at the boundaries, where δ∇ψJ ¼ δψJ þ ΓJ
KLδϕ

KψL. An
equivariant A-brane shall wrap a submanifold (denoted as
γ) of X, to which a boundary of the world sheet is
mapped via ðϕi; ϕ̄{̄Þ. Now, any allowed variation of ϕ
(denoted δϕI for the real coordinate ϕI) along the
boundary, and the derivative along the boundary, ∂0ϕ

I ,
ought to be tangent to γ. Hence, taking into account the
fact that A1a ¼ 0 at the boundaries, we find that (5.71)
vanishes while satisfying the first constraint of (5.72) if
∂1ϕ

J is normal to γ, ψ I
− − ψ Iþ and ψ I

− þ ψ Iþ are,
respectively, normal and tangent to γ, ẽIa is tangent to
γ, the Kähler form vanishes against tangent vectors of γ,
and the B field vanishes against tangent vectors of γ.
These last three conditions, respectively, imply that γ is G
invariant, that it is an isotropic submanifold of X, and
that the restriction of the two-form B to γ vanishes. In
addition, we note that ψ I

− − ψ Iþ being normal to γ and
ψ I
− þ ψ Iþ being tangent to γ implies that

ψ I
− − ψ Iþ ¼ 0; I∶ tangent to γ;

ψ I
− þ ψ Iþ ¼ 0; I∶ normal to γ ð5:73Þ

(for a choice of coordinates that separates the normal and
tangent directions), which satisfies the second constraint
of (5.72).
Next, the N ¼ ð2; 2Þ supersymmetry transformation of

ϕI is

δϕI ¼ iðϵþ2ψ
I
− − ϵþ1JIKψ

K
− − ϵ−2ψ

Iþþ ϵ−1JIKψ
KþÞ; ð5:74Þ

where ϵþ ¼ ϵþ1 þ iϵþ2 and ϵ− ¼ ϵ−1 þ iϵ−2, and where
J is the almost complex structure of X locally given by
Jik ¼ iδik and J{̄

k̄
¼ −iδ{̄

k̄
. A-type supersymmetry corre-

sponds to ϵþ1 ¼ ϵ−1 and ϵþ2 ¼ −ϵ−2, whereby

δϕI ¼ iðϵþ2ðψ I
− þ ψ IþÞ − ϵþ1JIKðψK

− − ψKþÞÞ: ð5:75Þ
Hence, ψ I

− þ ψ Iþ and JIKðψK
− − ψKþÞ are tangent to γ.

However, from the previous paragraph, we know that
ψ I
− − ψ Iþ is normal to γ. In addition, JMIJIK ¼ −δMK .

Hence, the application of the almost complex structure,
J, converts normal vectors of γ into tangent vectors of γ,
and vice versa. Thus, γ is a middle-dimensional Lagrangian
submanifold of X. This Lagrangian submanifold also
happens to be G invariant, which we know from the
previous paragraph.
Indeed, (2.16) and the B-field terms in (2.18) vanish

under this boundary condition; integrating out the auxiliary
fields Fi and F̄{̄, (2.16) and the B-field terms in (2.18) can
be rewritten (for ϵþ ¼ ϵ̄− ¼ ϵ) as

1

2π

1

4

Z
∂Σ

dx0fϵð−gð∂A
0ϕ;ψ− − ψþÞ − iωð∂A

0ϕ;ψ− þ ψþÞ

− gð∂A
1ϕ;ψ− þ ψþÞ − iωð∂A

1ϕ;ψ− − ψþÞ
− ReðσaÞgðẽa;ψþ − ψ−Þ − iReðσaÞωðẽa;ψþ þ ψ−Þ
− iImðσaÞgðẽa;ψþ − ψ−Þ þ ImðσaÞωðẽa;ψþ þ ψ−Þ
þ 2Bð∂A

0ϕ;ψ− þ ψþÞ − 2iω−1ðgðψ− − ψþÞ; B∂A
0ϕÞÞ

þ c:c:g ð5:76Þ
[where gðX;YÞ¼ gIJXIYJ, ωðX; YÞ ¼ ωIJXIYJ, BðX; YÞ ¼
BIJXIYJ, and ω−1ðX;YÞ¼ωIJXIYJ], which vanishes using
A1a ¼ 0 as well as the conditions that ∂0ϕ

I , ψ I
− þ ψ Iþ, and

ẽIa are tangent to γ while ∂1ϕ
I and ψ I

− − ψ Iþ are normal
to γ, together with the condition that Bjγ ¼ 0.40

Next, we consider the terms proportional to (ϕ�μa þ ra)
and θa in (2.17), as well as the term proportional to ϕ�Ca
in (2.18). Now, on a G-invariant Lagrangian submanifold,
we have ωIJẽIaTJ ¼ 0 for any tangent vector T. Using

40Recall that for a tangent vector, T, and normal vector, N, of a
Lagrangian submanifold, γ, of the Kähler manifold X, we have
ωðT; TÞ ¼ ωðN;NÞ ¼ 0. Also, ω−1ðgN; BTÞ ¼ 0 means that the
restriction of B to ðTγÞ∘ × Tγ vanishes, where ðTγÞ∘ is the
subspace of TX orthogonal to Tγ with respect to ω. When γ
is a Lagrangian submanifold, then ðTγÞ∘ ¼ Tγ, and B vanishes
when restricted to γ.
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dμa ¼ {ẽaω, this implies ∂JμaTJ ¼ 0; i.e., μ ought to be a
constant along γ. Moreover, gauge invariance of the pull-
back of this condition to ∂Σ requires that the constant be an
element of ½g; g�0, via the identity αbLẽbμa ¼ ½α; μ�a [3].
Choosing the constant to be

μa ¼ −ra; ð5:77Þ

we find that the terms proportional to (ϕ�μa þ ra) in (2.17)
vanish. Analogously, the fact that BIJẽIaTJ ¼ 0 along γ
implies that C ought to be a constant element of ½g; g�0
along γ. Choosing the constant to be

Ca ¼ θa; ð5:78Þ

we find that the remaining term in (2.17) and the remaining
term in (2.18) cancel. Note that the boundary conditions
(5.70) together with the constraint (5.78) preserve the
locality of the equations of motion for vector multiplet
components.
Finally, we consider a boundary action. We note that the

boundary action (5.41) for CPN−1 is an example of the
GNLSM generalization of the NLSM boundaryWilson line
(5.4). Hence, for general GNLSMs the boundary action
ought to be

S∂Σ ¼
Z
∂Σ

dx0AX
M∂A

0ϕ
M

¼
Z
∂Σ

dx0ðAX
M∂0ϕ

M − R̃aAa
0Þ; ð5:79Þ

where AX corresponds to a G-invariant (LẽAX ¼ 0)
connection of a flat (FX

MN ¼ 0) Uð1Þ bundle on each
A-brane, and where R̃a ¼ −{ẽaA

X (we shall use
(M;N;…) as coordinate indices on the A-branes).41

Gauge invariance of this boundary action follows from
the equivariant Bianchi identity

dR̃ ¼ {ẽFX; ð5:80Þ

and this implies that each A-brane supports a flat,
G-equivariant Uð1Þ bundle, for which R̃a is the moment.42

Its supersymmetry variation is

δS∂Σ ¼ −
Z
∂Σ

dx0R̃a

�
i
2
ðϵðλ̄aþ þ λa−Þ þ ϵ̄ðλaþ þ λ̄a−ÞÞ

�
;

ð5:81Þ

where we have used (5.80). Just as in the CPN−1 case, we
require that this cancels the C term in (2.18) and the θa term
in (2.17); i.e., we require that

2πR̃a ¼ −θa þ Ca ð5:82Þ

on γ, the pullback of which is a gauge invariant condition
on ∂Σ. This modification of (5.78) [together with the
boundary conditions (5.70)] also preserves the locality of
the equations of motion for vector multiplet components,
just as in the example of CPN−1. In conclusion, we find that
in general,

EquivariantA-branes areG-invariant Lagrangian submanifolds ofX; which supportG-equivariant

flatUð1Þ bundles ; and on which the restriction of theB-field vanishes:

This implies that they are objects in the G-equivariant
Fukaya category of X, by generalizing the definition of the
equivariant Fukaya category for finite groups ([26],
page 68) to any compact Lie group G. Hence, we have
further verified the conjecture of Kapustin et al. ([11],
page 58) for non-Abelian G. Fully proving their conjecture
would require constructing the other objects in the cat-
egory, which correspond to Lagrangian submanifolds that
support equivariant flat unitary vector bundles, and these
should correspond to the insertion of certain G-invariant
Wilson lines in the path integral.

VI. OPEN HAMILTONIAN GROMOV-WITTEN
INVARIANTS

In this section, we shall use equivariant A-branes to
define open Hamiltonian Gromov-Witten invariants. We
shall first study the non-Abelian invariants via the open
topological gauged Amodel, using the boundary conditions
and boundary term we have found in Sec. V. E. In the final
two subsections, we shall focus on investigating the
Abelian open Hamiltonian Gromov-Witten invariants via
mirror symmetry.

A. Open topological gauged A model

The closed topological gauged A model was introduced
by Baptista [6], and in the following we shall generalize it
to the case with boundaries, i.e., the open topological
gauged A model. This involves analytically continuing
the Minkowski strip to the Euclidean one, subsequently

41Note that the inclusion of this boundary action does not
modify the constraints (5.72), since it vanishes under arbitrary
variations of ϕM because FMN ¼ 0.

42Note that gauge invariance of the boundary action requires
the use of the identity αbLẽb R̃a ¼ ½α; R̃�a.

EQUIVARIANT BRANES AND EQUIVARIANT … PHYS. REV. D 97, 066010 (2018)

066010-33



twisting the fields in the action (2.2) as well as its supercharges using their vector R charges, and imposing the appropriate
boundary conditions (found in Sec. V. E) that are supersymmetric with respect to the scalar supercharge QA ¼ Q− þ Q̄þ.
We also include the gauge invariant boundary term (5.79).
The twisted fields are redefined as follows:

χk ¼
ffiffiffi
2

p
ψk
−; ψa

z ¼ ð−iλa−Þ=
ffiffiffi
2

p
;

χ̄k̄ ¼
ffiffiffi
2

p
ψ̄ k̄þ; ψa

z̄ ¼ ðiλ̄aþÞ=
ffiffiffi
2

p
;

φa ¼ −i2σa; ρkz̄ ¼
ffiffiffi
2

p
ψkþ;

ξa ¼ σ̄a=4; ρ̄k̄z ¼
ffiffiffi
2

p
ψ̄ k̄
−;

ηa ¼ −iðλ̄a− þ λaþÞ=ð2
ffiffiffi
2

p
Þ; κa ¼ iðλ̄a− − λaþÞ=

ffiffiffi
2

p
;

Hk
z̄ ¼ 4idAz̄ϕ

k þ 2ðFk − Γk
ijψ

iþψ j
−Þ; Ca ¼ 2ðFAÞa12 þ 2Da; ð6:1Þ

and further details on the twisting are given in [6,17]. The action of the open gauged A model is then43

SA ¼ 1

2π

Z
Σ

�
1

2e2
jFAj2 þ jdAϕj2 þ 1

2
e2jμ∘ϕþ rj2 þ i

e2
ð∇Aφ;∇AξÞ þ 1

2e2
j½φ; ξ�j2

þ 1

2e2
½φ; η�aηa −

1

8e2
½φ; κ�aκa −

1

2e2
j 1
2
C − �FA − e2ðμ∘ϕþ rÞj2

−
1

4
jH − 4i∂̄Aϕj2 þ igjk̄ðφaξb þ φbξaÞẽja ¯̃ek̄b þ 2igjk̄ð∇lẽ

j
aÞξaχlχ̄k̄

þ igjk̄

�
ηa þ 1

2
κa
�
¯̃ek̄aχj þ igjk̄

�
ηa −

1

2
κa
�
ẽjaχ̄k̄

�
volΣ

þ 1

2π

Z
Σ

�
i
e2

ηa∇A � ψa −
1

2e2
κa∇Aψa −

i
8
Ri|̄km̄ðρi ∧ ρ̄|̄Þχkχ̄m̄

þ i
e2

ξa½ψ ; �ψ �a þ
1

2
gjk̄ρ

j ∧ ðϕ�∇AÞχ̄k̄ þ 1

2
gjk̄ρ̄

k̄ ∧ ðϕ�∇AÞχj

þ i
8
gjk̄φ

að∇lẽjÞρl ∧ ρ̄k̄ þ 1

2
gjk̄ẽ

j
aψa ∧ ρ̄k̄ þ 1

2
gjk̄ ¯̃e

k̄
aψ

a ∧ ρj
�

þ 1

2π
i

�Z
Σ
ϕ�B −

Z
∂Σ

ϕ�CaAa

�
þ 1

2π
i
Z
Σ
ðθ; FAÞ − i

Z
∂Σ

AX
Md

AϕM; ð6:2Þ

where FA is the curvature two-form of the connection A ¼ Aμdxμ, and the measure on the world sheet is
volΣ ¼ dx ∧ dτ ¼ i

2
dz ∧ dz̄.44,45 The fields C and H are auxiliary fields, which can be integrated out of the action using

their equations of motion

Ca ¼ 2 � Fa
A þ 2e2ðμa∘ϕþ raÞ; ð6:3Þ

Hk
z̄ ¼ 4idAz̄ϕ

k: ð6:4Þ

The supersymmetry transformations generated by the scalar supercharge QA ¼ Q− þ Q̄þ on the new fields follow from
the supersymmetry transformations (2.13) and (2.14), with ϵþ ¼ ϵ̄− ¼ ffiffiffi

2
p

and ϵ− ¼ ϵ̄þ ¼ 0, which gives

43Here, we follow the notation of [6].
44Recall that when G ¼ G1 × G2 ×G3…, each factor Gi has its own coupling constant, ei, e.g., for G ¼ Uð1Þk, each Uð1Þ factor had

its own coupling constant ẽc.
45Note that we have performed integration by parts to undo the symmetrized form of the fermionic kinetic terms present in (2.2),

which is no longer necessary since a Euclidean action is not real. The resulting boundary terms vanish using boundary conditions found
in Sec. V. E.
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QAϕ
k ¼ χk; QAA ¼ ψ ;

QAχ
k ¼ φaẽka; QAψ ¼ −∇Aφ;

QAξ ¼ η QAκ ¼ C

QAη ¼ ½φ; ξ�; QAC ¼ ½φ; κ�;
QAρ

k ¼ Hk − Γk
ijχ

iρj; QAφ ¼ 0;

QAHk ¼ −Ri|̄lm̄gk|̄χlχ̄m̄ρi − Γk
jlH

jχl þ φað∇jẽkaÞρj: ð6:5Þ

The action (6.2) is, in fact, QA exact up to topological terms,

SA ¼ QAΨþ 1

2π

Z
Σ
ϕ�ð½ηω� þ i½ηB�Þ þ

1

2π
i
Z
Σ
ðθ; FAÞ − i

Z
∂Σ

AX
Md

AϕM ð6:6Þ

with gauge fermion

Ψ ¼ 1

2π

Z
Σ

�
1

2e2
κað�FA þ e2ðμ∘ϕþ rÞÞa − 1

8e2
κaCa þ

1

2e2
ηa½φ; ξ�a þ igjk̄ξ

aðẽjaχ̄k̄ þ ¯̃ek̄aχjÞ
�
volΣ

þ 1

2π

Z
Σ

�
i
e2

ξað∇A � ψaÞ − i
16

gjk̄ρ̄
k̄ ∧ ðH − 8i∂̄AϕÞj þ i

16
gjk̄ρ

j ∧ ¯ðH − 8i∂̄AϕÞk
�
;

where we have performed integration by parts in (6.2)
such that ∇A

μφa∇Aμξa becomes −ξa∇A
μ∇Aμφa. The result-

ing boundary term vanishes using the boundary conditions
∂1φa ¼ 0 and A1a ¼ 0 found in Sec. V. E.
Let us elucidate the first topological term of (6.6).

Here, ½ηω� and ½ηB� are the cohomology classes in H2ðEÞ
represented by the two-forms

ηωðAÞ ¼ ω − dððμa þ raÞAaÞ ∈ Ω2ðP × XÞ;
ηBðAÞ ¼ B − dðCaAaÞ ∈ Ω2ðP × XÞ; ð6:7Þ

both of which descend to E ¼ P ×G X. In particular, this
term is topological since

R
Σ ϕ

�½ηω� and
R
Σ ϕ

�½ηB� do not
change under deformations of the map ϕ, since the pullback
map is always homotopy invariant. In addition, the coho-
mology classes ½ηω� and ½ηB� are the pullbacks of the
equivariant cohomology classes in H2

GðXÞ represented by
ω − ðμþ rÞ and B − C.46

The open gauged A model is topological as a quantum
theory,47 and in order to consistently quantize such a gauge
theory, one ought to perform Becchi-Rouet-Stora-Tyutin
(BRST) gauge fixing, which involves the inclusion of
Faddeev-Popov ghost fields in the action. This can be
done straightforwardly, and we shall not write down the
gauge-fixing action, SBRST, explicitly. However, the open

gauged A model is anomalous, and in Sec. VI. D, we shall
compute this anomaly by canonically quantizing the
gauged Landau-Ginzburg mirror of the Abelian open
gauged A model. Notably, in the process we shall describe
SBRST for Abelian gauge groups in detail.

B. Observables and open Hamiltonian
Gromov-Witten invariants

A canonical set of bulk observables of the closed gauged
A model were described in [6], with the path integrals over
these observables eventually argued to be equal to the
Hamiltonian Gromov-Witten invariants. In this section, we
shall recall the description of these bulk observables, as
well as introduce boundary observables that are defined
with respect to the topology of the equivariant A-branes.
In the ordinary open A model, one can construct bulk

observables from the de Rham cohomology classes of the
target X, as well as construct boundary observables from
the de Rham cohomology classes of the A-branes, which
wrap the subspaces of X (i.e., Lagrangian submanifolds) to
which boundaries of the world sheet are mapped. For the
open gauged A model, one uses the G-equivariant coho-
mology classes of X to define bulk operators, as well as the
G-equivariant cohomology classes of the equivariant
A-branes to define boundary operators.
TheG-equivariant cohomology classes of a manifold,M,

are defined using the G-equivariant complex Ω•
GðMÞ,

which is the set of G-invariant elements in the tensor
product S•ðg�Þ ⊗ Ω•ðMÞ, with S•ðg�Þ being the symmetric
algebra of the dual of g.
For M ¼ X, an equivariant form, α, can be written on a

local patch of X as

46This follows because H2
GðXÞ ¼ H2ðEG ×G XÞ, and since

P ×G X → Σ is the pullback bundle of EG ×G X → BG via a map
Ū∶ Σ → BG, where EG → BG is the universal bundle [29].

47In particular, the correlation functions of the theory are
invariant under diffeomorphisms of the world sheet, e.g., trans-
forming it from a strip to a disk.
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α ¼ αa1…ark1…kpl̄1…l̄qðwÞξa1…ξardwk1 ∧ … ∧ dwkp ∧ dw̄l̄1 ∧ … ∧ dw̄l̄q ; ð6:8Þ

where ðwki ; w̄l̄iÞ are the coordinates on the patch. The coefficients αa1…ark1…kpl̄1…l̄q are symmetric with respect to the indices

ai and antisymmetric with respect to the indices ki and l̄i. Such a local form can be associated with a bulk operatorOα in the
open gauged A model,

Oα ¼ ðαa1…ark1…kpl̄1…l̄q∘ϕÞ
�Yr
j¼1

ðφþ ψ − FAÞaj
��Yp

i¼1

ðχki − dAϕkiÞ
��Yq

i¼1

ðχ̄ l̄i − dAϕ̄l̄iÞ
�
: ð6:9Þ

This correspondence holds globally on X. Moreover, we have

ðdΣ þQAÞOα ¼ OdGα; ð6:10Þ

where dΣ is the exterior derivative on the open world sheet, Σ, while dG ¼ 1 ⊗ dþ ea ⊗ {ẽa is the Cartan operator defined
on Ω•

GðXÞ. Oα can be decomposed with respect to the form degree on the world sheet,

Oα ¼ Oð0Þ
α þOð1Þ

α þOð2Þ
α ;

where, in particular,

Oð0Þ
α ¼ ðαa1…ark1…kpl̄1…l̄q∘ϕÞ

�Yr
j¼1

φaj

��Yp
i¼1

χki
��Yq

i¼1

χ̄ l̄i
�

ð6:11Þ

is a local operator.
If we assume that dGα ¼ 0, then (6.10) splits into the

descent equations

dΣO
ð2Þ
α ¼ 0; ð6:12Þ

dΣO
ð1Þ
α ¼ −QAO

ð2Þ
α ; ð6:13Þ

dΣO
ð0Þ
α ¼ −QAO

ð1Þ
α ; ð6:14Þ

QAO
ð0Þ
α ¼ 0. ð6:15Þ

For a closed world sheet, Σ, if β is a j-dimensional
homology cycle in Σ, one could define the QA-invariant
operators

Wðα; βÞ ≔
Z
β
OðjÞ

α :

However, there are no 2-cycles on an open world sheet.

Hence, Oð2Þ
α ought to be integrated over the entire open

world sheet, and it is necessary for QA invariance of Oð2Þ
α

that Oð1Þ
α ¼ 0 at the boundaries.

ForM ¼ L, where L is an equivariant A-brane (to which
a boundary component ∂ΣL is mapped), an equivariant
form, ζ, can be written on a local patch of L as

ζ ¼ ζa1…arm1…ms
ðuÞξa1…ξardum1 ∧ … ∧ dums; ð6:16Þ

where umi are the coordinates on the patch. The coefficients
ζa1…arm1…ms

are symmetric with respect to the indices ai
and antisymmetric with respect to the indices mi. Such a
local form can be associated with a boundary operator
Oζj∂ΣL

in the open gauged A model,

Oζj∂ΣL
¼ ðζa1…arm1…ms

∘γÞ
�Yr
j¼1

ðφþ ψ j∂ΣL
Þaj

�

×

�Ys
i¼1

ððQAγÞmi − dAγmiÞ
�
; ð6:17Þ

where γ is a section γ∶ ∂ΣL → EL of the associated bundle
EL ¼ P∂ΣL

×G L (which looks like a map γ∶ ∂ΣL → L
locally on ∂ΣL), where P∂ΣL

is the principal G bundle over
∂ΣL, and where ψ j∂ΣL

is the restriction of ψ to the boundary
in question. In particular, we have

ðd∂ΣL
þQAÞOζ ¼ OdGζ; ð6:18Þ

where d∂ΣL
is the exterior derivative on the world sheet

boundary ∂ΣL, while dG is the Cartan operator defined
on Ω•

GðLÞ. Just as bulk operators, Oζ can be decomposed
with respect to the form degree on the world sheet
boundary,
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Oζ ¼ Oð0Þ
ζ þOð1Þ

ζ :

If it is assumed that dGζ ¼ 0, then (6.18) splits into the
descent equations

d∂ΣL
Oð1Þ

ζ ¼ 0; ð6:19Þ

d∂ΣL
Oð0Þ

ζ ¼ −QAO
ð1Þ
ζ ; ð6:20Þ

QAO
ð0Þ
ζ ¼ 0; ð6:21Þ

where, for example,

Oð0Þ
ζ ¼ ðζa1…arm1…ms

∘γÞ
�Yr

j¼1

φaj

��Ys
i¼1

ðQAγÞmi

�
: ð6:22Þ

Thus, if ν is a j-dimensional homology cycle in ∂ΣL,
48 one

can then define the QA-invariant operators

W∂ΣL
ðζ; νÞ ≔

Z
ν
OðjÞ

ζ : ð6:23Þ

The most general correlation function based on the above
bulk and boundary operators can then be written down (for
Σ ¼ I ×R) as the following path integral:

Z
DðA;ϕ;φ; ξ; ρ; η; κ;ψ ; χ; b; cÞe−ðSAþSBRSTÞ

Y
i

Wðαi; γiÞ
Y
j

W∂Σ0
ðζj; νjÞ

Y
k

W∂Σπ
ðζ0k; ν0kÞ; ð6:24Þ

where b and c are ghost fields that appear in SBRST.
Now, any supersymmetric path integral localizes to the

bosonic field configurations that are fixed points of the
supersymmetry [20]. For the open gauged A model, these
field configurations can be read from the QA variations of
the fermionic fields in (6.5), after integrating out the
auxiliary fields. They correspond to the solutions of

∂̄Aϕ ¼ 0;

�FA þ e2ðμ∘ϕþ rÞ ¼ 0;

∇Aφ ¼ φaðẽa∘ϕÞ ¼ 0: ð6:25Þ
The first two equations are known as the symplectic vortex

equations on an infinite strip, and were introduced by
Cieliebak et al. in [3], and they are a generalization of the
typical Nielsen-Olsen vortex equations on a strip. In what
follows, we shall refer to them as the open symplectic vortex
equations. The last two equations are nontrivial, but in the
most interesting cases that we will consider have the trivial
solution φ ¼ 0 [6], and thereforewe can ignore them in these
cases. For the first two equations of (6.25), the boundary
condition used by Cieliebak et al. on the strip was that each
boundary component of the stripwasmapped to aG-invariant
Lagrangian submanifold of X, and this is precisely the
boundary condition we found in Sec. V. E. In addition, for
the second equation, we have found the boundary conditions
A1a ¼ 0, ∂1A0a ¼ 0, and μa ¼ −ra. For the example of
X ¼ CPN−1, the open symplectic vortex equations read

∂A
z̄ Z

i ¼ 0;

�F̃Ac þ ẽ2cðμ̃c∘Z þ r̃cÞ ¼ 0: ð6:26Þ

Recall that theboundaryconditions in this caseareLagrangian
boundary conditions for Zi that map each boundary to a
Uð1ÞN−1-invariant Lagrangian torus TN−1 as well as μ̃c ¼
−r̃c and �F̃Ac ¼ 0.
The localization of supersymmetric path integrals of the

form (6.24) thus reduce them to ordinary integrals of dif-
ferential forms over the moduli spaces of open symplectic
vortices, which are the spaces of solutions to the open
symplectic vortex equations up to gauge equivalence. As
we shall show in the next subsection, these moduli spaces
are finite dimensional, though they may be noncompact
and contain singularities. The (infinite-dimensional) path
integrals thus reduce to finite-dimensional integrals,
which are well-defined mathematically (modulo issues
related to the aforementioned noncompactness and singu-
larities of the moduli spaces). These finite-dimensional
integrals give us numbers that can be identified with the
open version of the Hamiltonian Gromov-Witten invariants
of X in [3–5].
We note that in the limit where e2 → þ∞, a dynamically

gauged sigma model with target X flows to an ordinary
sigma model with target X==G [6]. Hence, in analogy with
the closed case [30], it is predicted that there is a relation-
ship between the open Hamiltonian Gromov-Witten invar-
iants of X and the open Gromov-Witten invariants of
X==G [16].

C. Dimension of moduli space of open symplectic
vortices and R anomaly

We may attempt to compute the boundary axial R
anomaly of the open gauged A model and find the
dimension of a moduli space of open symplectic vortices.
In what follows, we shall assume that we have a compact
open Riemann surface, Σ, with arbitrary genus, g, and an
arbitrary number of boundary circles, h.

48For j ¼ 1, ν is taken to be ∂ΣL, which is also the appropriate
choice for noncompact boundaries.
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To evaluate the anomaly, we ought to double the open
world sheet as well as the bundles on it, as in [20], in order
to form a closed world sheet, on which the indices of the
relevant operators can be evaluated. This is done by taking
the metric on the world sheet close to each component of
∂Σ to be that of a flat cylinder, and gluing Σ with its

orientation reversal, Σ�. The resulting closed Riemann
surface is denoted Σ#Σ�. The corresponding bundles over
Σ and Σ� are glued using the relevant boundary conditions
found in Sec. V. E. The details of the evaluation can be
found in [17], and we shall state only the result here. For
compact G, the axial R anomaly is

A ¼ μðϕ� ker dπð1;0ÞE ;ϕ�½ker dπEL
�ð1;0ÞÞ þ ðdimCðXÞ þ dimðGÞÞð2 − 2g − hÞ; ð6:27Þ

where the first term on the right-hand side is the equivariant Maslov index for the pair (X,L) (L being the relevant
Lagrangian submanifold). Hence, in order for correlation functions to be nonzero, an appropriate number of boundary
operators whose axial R charges sum toA should be inserted into the path integral, such that axial R symmetry is preserved
at the boundaries.
In addition, the virtual real dimension of the moduli spaces of open symplectic vortices (for compact G) is given by

μðϕ� ker dπð1;0ÞE ;ϕ�½ker dπEL
�ð1;0ÞÞ þ ðdimCðXÞ − dimðGÞÞð2 − 2g − hÞ: ð6:28Þ

This is obtained from the index of the linearized operator
[whose index gives the dimension of the moduli spaces
([31], page 142)] one derives from the symplectic vortex
equations.

D. Q̂2
A ≠ 0 anomaly

We have previously defined open Hamiltonian Gromov-
Witten invariants as integrals over the moduli spaces of
open symplectic vortices. However, as mentioned, we have,
in fact, ignored problems related to singularities in such a
moduli space. In particular, we have ignored the singular
boundary strata that have codimension one in the moduli
space, which occur due to disk bubbling [15]. This
phenomenon obstructs integration over the moduli space.
This is also a problem for ordinary open Gromov-Witten

invariants, since disk bubbling also causes singular codi-
mension one boundary strata in the moduli spaces of open
world sheet instantons of the nongauged open A model [32].
Disk bubbling manifests itself in the open A model as a
nonperturbative instanton effect, which causes the violation
of the nilpotency of the scalar supercharge, i.e., Q2

A ≠ 0
([20], page 833). Moreover, this anomaly of the supersym-
metry algebra also spoils the cohomological structure of the
space of supersymmetric ground states of the open A model,
which are identified with elements of the Floer cohomology
group for a pair of intersecting Lagrangian submanifolds. In
fact, the anomaly implies that there are no supersymmetric
ground states, and therefore supersymmetry is broken.
Now, the fact that open symplectic vortices are open

world sheet instantons when G is trivial means that open
symplectic vortices cause Q2

A ≠ 0 and therefore supersym-
metry breaking, for trivial G. Thus, for nontrivial G, we
expect that open symplectic vortices will cause an analo-
gous effect in the open G-gauged A model, i.e., Q̂2

A ≠ 0

(where Q̂A ¼ QA þQBRST, with QBRST being the BRST

charge), indicating singular codimension one boundary
strata in the moduli spaces of open symplectic vortices,
and implying that the space of supersymmetric ground
states of the open gauged A model (which we expect to be
elements of the vortex Floer cohomology group [3,33] for a
pair of G-invariant Lagrangian submanifolds) would not
only lose their cohomological structure, but would cease to
be supersymmetric, implying supersymmetry breaking.
For the nongauged open Amodel, it is difficult to directly

compute the violation of Q2
A ¼ 0 in general; one can only

do so for specific examples, e.g., X ¼ S2 [27]. Fortunately,
at least for toric manifolds with c1ðXÞ ≥ 0, one is able to
use the mirror theory, which does not contain solitonic
objects, to compute this violation in general (and identify
the condition whereby it vanishes) via canonical quantiza-
tion, as shown by Hori [20,27]. The condition found was
that for a pair of Lagrangian submanifolds supporting flat
Uð1Þ bundles, the Q2

A ≠ 0 anomaly vanishes if and only if
the values of the superpotential on the mirror B-branes
match each other, and in such a case supersymmetry is
manifest.
It is thus natural to investigate the Q̂2

A ≠ 0 anomaly due
to open symplectic vortices in the open gauged Amodel via
canonical quantization of its mirror theory. We shall do this
for toric target spaces X ¼ CN==Uð1ÞN−k, i.e., by topo-
logically A twisting the Uð1Þk-GNLSM on an infinite strip
whose boundaries are mapped to different equivariant
A-branes in X.49 Performing the topological A twist for
the mirror theory (cf. Sec. V.D) on a Euclidean world sheet
(with measure d2x ¼ dx1dx2) amounts to the following
field redefinitions:

49These equivariant A-branes are labeled by the GLSM
parameters sπj and s0j , which determine the position of their
respective mirror D0-branes (see footnote 39).
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φ̃c ¼ −i2σ̃c; ξ̃c ¼ ¯̃σc=4;

λ̃c ¼ λ̃þc;
¯̃λc ¼ ¯̃λ−c;

ψ̃þc ¼
2iffiffiffi
2

p ¯̃λþc; ψ̃−c ¼
2iffiffiffi
2

p λ̃−c;

χθc ¼ χθcþ ; χ̄θc ¼ χ̄θc− ;

X θcþ ¼ 2χ̄θcþ ; X θc
− ¼ 2χθc− ; ð6:29Þ

where λ̃c,
¯̃λc, χθc, and χ̄θc are scalars, while ψ̃�c ¼ iψ̃2 � ψ̃1 and X θc

� ¼ iX θc
2 � X θc

1 are one-forms. Hence, the mirror
action of the open Uð1Þk-gauged A model with toric target X ¼ CN==Uð1ÞN−k is

SE ¼ 1

2π

Z
d2x

�Xk
c

Xk
d

�
gcd∂μθc∂μθ̄d −

i
4
gcdχ̄θcð∂

↔

þÞX θ
−d −

i
4
gcdX θþcð∂

↔

−Þχθd − gcdEθ
cĒθ

d

�

þ
Xk
c

1

2ẽ2c

�
ðF̃12cÞ2 þ i2∂μφ̃c∂μξ̃c − ðD̃cÞ2 −

ffiffiffi
2

p

4
ψ̃þcð∂

↔

−Þλ̃c −
ffiffiffi
2

p

4
¯̃λcð∂

↔

þÞψ̃−c

�

−
1

2

�XN
j

Xk
c

Xk
d

Q̃jcv
j
d

�
i
2
φ̃cEθ

d −
ffiffiffi
2

p

4
ψ̃þcX θ

−d −
ffiffiffi
2

p

4
ψ̃−cX θ

þd þ ðD̃c − F̃12cÞθd
�

þ
Xk
c

�XN
j

Q̃jcŝj − t̃c

�
ðD̃c − F̃12cÞ þ

XN
j

e−
P

c
vjcθc−ŝj

�
−
1

4

Xk
c

vjcX θþc

Xk
d

vjdX
θ
−d −

Xk
c

vjcEθ
c

�

þ
XN
j

Xk
c

Xk
d

Q̃jcv
j
dð4ξ̃cĒθ

d − iλ̃cχ̄θd − i ¯̃λcχθd þ ðD̃c þ F̃12cÞθ̄dÞ

þ
Xk
c

�XN
j

Q̃jc
¯̂sj − ¯̃tc

�
ðD̃c þ F̃12cÞ þ

XN
j

e−
P

c
vjcθ̄c−ŝj

�
−
Xk
c

vjcχ̄θc
Xk
d

vjdχ
θ
d −

Xk
c

vjcĒθ
c

���
ð6:30Þ

(where ∂� ¼ i∂2 � ∂1), which is invariant under the supersymmetry transformations

δQA
Ã1c ¼

ffiffiffi
2

p

2
ϵψ̃1c; δQA

ψ̃−c ¼ −
1ffiffiffi
2

p ϵ∂−φ̃c;

δQA
Ã2c ¼

ffiffiffi
2

p

2
ϵψ̃2c; δQA

ψ̃þc ¼ −
1ffiffiffi
2

p ϵ∂þφ̃c;

δQA
φ̃c ¼ 0; δQA

¯̃λc ¼ −iϵðF̃12c þ D̃cÞ;

δQA
ξ̃c ¼ −

iϵð ¯̃λc þ λ̃cÞ
4

; δQA
λ̃c ¼ iϵðF̃12c þ D̃cÞ;

δQA
D̃c ¼ −

ffiffiffi
2

p

2
ϵð∂1ψ̃2c − ∂2ψ̃1cÞ; δQA

X θc
− ¼ −2iϵ∂−θ

c;

δQA
θc ¼ 0; δQA

X θcþ ¼ 2iϵ∂þθc;

δQA
θ̄c ¼ ϵðχθc − χ̄θcÞ; δQA

χ̄θc ¼ ϵĒθc;

δQA
Eθc ¼ iϵ∂μX θc

μ ; δQA
χθc ¼ ϵĒθc;

δQA
Ēθc ¼ 0; ð6:31Þ

generated by the supercharge QA. However, this mirror theory is, in fact, a gauge theory, and any consistent quantization
procedure should include gauge fixing, in order to remove unphysical degrees of freedom.
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To this end, we shall choose the Lorentz gauge

hψ 0j∂μÃ
μ
cjψi ¼ 0 ð6:32Þ

(where jψi and jψ 0i are physical states), which is
effected by including the following BRST gauge fixing
action:

SBRST ¼ 1

2π

Xk
c

1

2ẽ2c

Z
d2x

�
−iBc∂μÃ

μ
c − ðBcÞ2

þ ∂μb̃c∂μc̃c − i

ffiffiffi
2

p

2
∂μb̃cψ̃

μ
c

�
; ð6:33Þ

where b̃c and c̃c are fermionic ghost fields, while Bc is
a bosonic auxiliary field. As expected, the first term
explicitly breaks the Uð1Þk gauge symmetry of the gauged
LG model.
Now, note that the gauge fixing action (6.33) can be

rewritten as

SBRST ¼ ϵ−1ðδQA
þ δBRSTÞ

×

�Xk
c

1

2ẽ2c

Z
d2xð−ib̃c∂μÃ

μ
c þ b̃cBcÞ

�
; ð6:34Þ

where we have performed integration by parts and used the

boundary condition ðλ̃−c − ¯̃λþcÞ ¼ 0 (which is equivalent
to ψ̃1c ¼ 0) that we have previously imposed, as well as the
boundary condition

∂1c̃c ¼ 0; ð6:35Þ

which we impose at present. Here, δBRST is the standard
BRST symmetry variation given by

δBRSTÃμc ¼ iϵ∂μc̃c;

δBRSTb̃c ¼ ϵBc;

δBRSTc̃c ¼ 0;

δBRSTBc ¼ 0; ð6:36Þ

with the BRST variations of all other fields being equal
to zero. For the unphysical fields used for gauge fixing,
the supersymmetry transformations are δQA

b̃c ¼ 0 and
δQA

Bc ¼ 0 while50

δQA
c̃c ¼ −

i
2
ϵφ̃c: ð6:37Þ

Now, δ2QA
∝ δGðφ̃Þ and δ2BRST ¼ 0 on all fields.51 In

addition, we can show that

ðδQA
þ δBRSTÞ2 ¼ 0 ð6:38Þ

on all fields. This implies that the BRST gauge fixing
action (6.34) is, in fact, invariant under δ̂ ¼ δQA

þ δBRST.
Since the physical action (6.30) is also invariant under
δBRST, this further implies that the entire action SE þ SBRST
is invariant under δ̂ ¼ δQA

þ δBRST. This suggests that the
relevant symmetry of the action after gauge fixing is that
which is generated by Q̂A ¼ QA þQBRST.
The nonvanishing canonical commutation and anticom-

mutation relations are

½θcðx1Þ; gde∂2θ̄
eðy1Þ� ¼ 2πδcdδðx1 − y1Þ;

½θ̄cðx1Þ; gde∂2θ
eðy1Þ� ¼ 2πδcdδðx1 − y1Þ;

fχθcðx1Þ;X θdþ ðy1Þg ¼ 4πgcdδðx1 − y1Þ;
fX θc

− ðx1Þ; χ̄θdðy1Þg ¼ 4πgcdδðx1 − y1Þ;�
φ̃cðx1Þ;

1

2ẽ2d
i2∂2ξ̃dðy1Þ

�
¼ 2πδcdδðx1 − y1Þ;

�
ξ̃cðx1Þ;

1

2ẽ2d
i2∂2φ̃dðy1Þ

�
¼ 2πδcdδðx1 − y1Þ;

�
λ̃cðx1Þ;

1

2ẽ2d

ffiffiffi
2

p

2i
ψ̃þdðy1Þ

�
¼ 2πδcdδðx1 − y1Þ;

�
ψ̃−cðx1Þ;

1

2ẽ2d

ffiffiffi
2

p

2i
¯̃λdðy1Þ

�
¼ 2πδcdδðx1 − y1Þ;

�
Ã1cðx1Þ;−

�
1

ẽ2c
F̃12cðy1Þ

��
¼ 2πδcdδðx1 − y1Þ;

�
Ã2cðx1Þ;

1

2ẽ2d
ð−iBdðy1ÞÞ

�
¼ 2πδcdδðx1 − y1Þ;

�
b̃cðx1Þ;

1

2ẽ2d
ð∂2c̃dðy1ÞÞ

�
¼ 2πδcdδðx1 − y1Þ;

�
c̃cðx1Þ;

1

2ẽ2d
ð∂2b̃dðy1ÞÞ

�
¼ 2πδcdδðx1 − y1Þ: ð6:39Þ

The explicit form of the supercharge Q̂A is52

50Note that with respect to (6.37), the boundary condition
(6.35) obeys A-type supersymmetry, since the boundary con-
dition on φ̃c is ∂1φ̃c ¼ 0.

51The transformation δGðφ̃Þ is a Uð1Þk gauge transformation
whose local parameter is φ̃c.

52Charge conservation follows from ∂2Q̂A ¼ R
dx1∂2Ĵ

2
A ¼

−
R
dx1∂1Ĵ

1
A, which can be shown to be zero using the boundary

conditions we have previously imposed on the fields, as well as
the boundary condition ∂1b̃c ¼ 0.
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Q̂A ¼ 1

2π

Z
dx1

�
gcd∂2θ

cðχθd − χ̄θdÞ − igcd∂1θ
cðχθd þ χ̄θdÞ −

Xk
c

ffiffiffi
2

p

4ẽ2c
F̃12cðψ̃þc − ψ̃−cÞ

−
Xk
c

i
ẽ2c

F̃12c∂1c̃c þ
Xk
c

1

4ẽ2c
ðλ̃c þ ¯̃λcÞ∂2φ̃c þ

Xk
c

i
4ẽ2c

ð ¯̃λc − λ̃cÞ∂1φ̃c

þ 1

4

Xk
c

ðX θcþ þ X θc
− Þ ∂W̃∂θc þ

Xk
c

ffiffiffi
2

p

4
ðψ̃þc − ψ̃−cÞ

1

2

�
2

i
∂W̃
∂φ̃c

þ 1

4

∂ ¯̃W

∂ξ̃c
�

þ
Xk
c

∂1c̃c
1

2i

�
2

i
∂W̃
∂φ̃c

−
1

4

∂ ¯̃W

∂ξ̃c
�

−
Xk
c

1

2ẽ2c

ffiffiffi
2

p

4
Bcðψ̃þc þ ψ̃−cÞ þ

Xk
c

1

2ẽ2c
Bc∂2c̃c þ

Xk
c

i
4ẽ2c

∂2b̃cφ̃c

�
; ð6:40Þ

where

∂W̃
∂θc ¼

i
2

XN
j

hφ̃; Q̃jivjc −
XN
j¼1

vjce−hv
j;θi−ŝj ;

2

i
∂W̃
∂φ̃c

¼
XN
j

Q̃jcðhvj; θi þ ŝjÞ − t̃c;

1

4

∂ ¯̃W

∂ξ̃c ¼
XN
j

Q̃jcðhvj; θ̄i þ ¯̂sjÞ − ¯̃tc: ð6:41Þ

Then,

Q̂2
A ¼ 1

2
fQ̂A; Q̂Ag ¼ 1

2π

Z
dx1

�
ð−iÞ

Xk
c

∂1θ
c ∂W̃
∂θc þ ð−iÞ

Xk
c

∂1φ̃c
∂W̃
∂φ̃c

−
Xk
c

�
i

4ẽ2c

�
∂2φ̃cBc

−
Xk
c

Xk
d

∂2 ¯̃W

∂θ̄d∂ξ̃c ðχ
θd − χ̄θdÞ

�
i
8

�� ffiffiffi
2

p

4i
ðψ̃þc − ψ̃−cÞ þ ∂1c̃c

��
; ð6:42Þ

where we have used the boundary conditions F̃12c ¼ 0 and
P

k
c¼1 vcjΘc ¼ sj − ŝj (where sj ¼ sπj at x

1 ¼ π and sj ¼ s0j at

x1 ¼ 0), as well as the constraint
P

N
j Q̃jcsj − t̃c ¼ 0.

The terms with first-order derivatives of the superpotential can be written as

ð−iÞ
2π

Z
dx1

�Xk
c

∂1θ
c ∂W̃
∂θc þ

Xk
c

∂1φ̃c
∂W̃
∂φ̃c

�

¼ ð−iÞ
2π

Z
dx1∂1W̃ðθ; φ̃Þ

¼ ð−iÞ
2π

ðW̃ðθ; φ̃Þπ − W̃ðθ; φ̃Þ0Þ: ð6:43Þ

From the analysis below (5.63), we know that this is equal to ð−iÞ
2π ðPN

i¼1 e
−sπi −

P
N
i¼1 e

−s0i Þ.
The remaining terms to consider are then

1

2π

Z
dx1

�
−
Xk
c

�
i

4ẽ2c

�
∂2φ̃cBc −

Xk
c

Xk
d

∂2 ¯̃W

∂θ̄d∂ξ̃c ðχ
θd − χ̄θdÞ

�
i
8

�� ffiffiffi
2

p

4i
ðψ̃þc − ψ̃−cÞ þ ∂1c̃c

��
: ð6:44Þ
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Unlike (6.43), these cannot be written in terms of
boundary data, and hence are bulk terms that occur
even for closed world sheets. However, as in the
nonanomalous closed case, these bulk terms ought to
be equal to zero. The vanishing of these terms can also
be understood as follows. The auxiliary field Bc obeys
its equation of motion Bc ¼ − i

2
∂μÃ

μ
c as an operator

equation due to Ehrenfest’s theorem, and hence the
matrix elements of the first term in the integrand with

respect to the physical Hilbert space vanish due to the
Lorentz gauge condition (6.32).53 Next, note that we
are dealing with an A-twisted theory, whose topological
correlation functions are invariant under Q̂A-exact
deformations of the action. Therefore, we should be
able to deform the action such that the second term
in (6.44) vanishes. Indeed, this can be achieved by
adding the following term that is Q̂A exact to the
action, i.e.,

ϵ−1δQ̂A

�
1

2π

Z
d2x

1

2

�Xk
c

iλ̃c

�XN
j

Q̃jc

�X
d

vjdθ̄
d þ ¯̂sj

�
− ¯̃tc

�
þ
Xk
c

4ξ̃c

�XN
j

Xk
d

Q̃jcv
j
dχ̄d

���

¼ 1

2π

Z
d2x

1

2

�XN
j

Xk
c

Xk
d

Q̃jcv
j
dð4ξ̃cĒθ

d − iλ̃cχ̄θd − i ¯̃λcχθd þ ðD̃c þ F̃12cÞθ̄dÞ

þ
Xk
c

�XN
j

Q̃jc
¯̂sj − ¯̃tc

�
ðD̃c þ F̃12cÞ

�
; ð6:45Þ

which upon doing so, the terms proportional to
∂ ¯̃Wðθ̄; ξ̃Þ=∂ξ̃c in (6.40) vanish, whence the second term
in (6.44) also vanishes.
Hence, we find that

Q̂2
A ¼ ð−iÞ

2π
ðW̃ðθ; φ̃Þπ − W̃ðθ; φ̃Þ0Þ; ð6:46Þ

i.e., the Q̂2
A ≠ 0 anomaly (which occurs due to the

nonperturbative quantum effects of open symplectic
vortices in the open gauged A model) vanishes when
the value of the superpotential W̃ðθ; φ̃Þ is equal on both
boundaries, i.e.,

P
N
i¼1 e

−sπi ¼ P
N
i¼1 e

−s0i . In other words,
there is no anomaly when each boundary ends on a
D0-brane such that both D0-branes are mapped to the
same value of W̃ðθ; φ̃Þ. One way this can occur is when
the boundaries end on coincident D0-branes. Although
the condition

P
N
i¼1 e

−sπi ¼ P
N
i¼1 e

−s0i seems identical
to the condition (found by Hori [20,27]) for the
vanishing of the Q2

A ≠ 0 anomaly of the open A model,
the D0-branes do not have to be located at a critical
point where ∂θcW̃X ¼ 0 in our case (where W̃X is the
superpotential in the nongauged case, which depends
only on θ in the bulk), and the position of each
D0-brane [defined by si via (5.62)] is in our case
constrained by

P
N
i Qi

asi − ta ¼ 0 instead of just

P
N
i Q̂i

bsi − t̂b ¼ 0. In conclusion, for Abelian G, we
have found that for a pair of G-invariant Lagrangian tori
of a toric manifold supporting flat G-equivariant Uð1Þ
bundles, the quantum anomaly of Q̂2

A ≠ 0 (which indi-
cates an obstruction to integration over the moduli
spaces of open symplectic vortices) vanishes if and
only if the values of the superpotential W̃ðθ; φ̃Þ on the
mirror B-branes are the same, and in this case, super-
symmetry is manifest.

E. Mirror computation of Abelian invariants

In principle, it is simpler to use the mirror gauged
Landau-Ginzburg description of the open gauged A model
to compute open Hamiltonian Gromov-Witten invariants
for Abelian gauge groups and toric target spaces with
c1ðXÞ ≥ 0, since there are no open symplectic vortices in
this gauged LG model.
We shall focus on the mirror computation of invar-

iants that come from path integrals over the QA-invariant
local observables associated with equivariant cohomol-
ogy classes, i.e., those given by (6.11) (where dGα ¼ 0)
and (6.22) (where dGζ ¼ 0).54 After integrating out the
auxiliary fields, the supersymmetry transformations
(generated by Q̂A) of the physical fields of the mirror
theory on a Euclidean world sheet parametrized by
complex coordinates (z, z̄) are (with ϵ ¼ ffiffiffi

2
p

)55

53This statement follows from the fact that the Lorentz gauge
condition can equivalently be written as ∂μðÃμ

cÞþjψi ¼ 0 or
hψ j∂μðÃμ

cÞ− ¼ 0 [where Ãμ
c ¼ ðÃμ

cÞþ þ ðÃμ
cÞ− is the decomposi-

tion with respect to positive and negative momenta], as well as the
fact that ∂μÃ

μ
c commutes with ∂2φ̃c.

54Note that the G invariance of these physical observables
implies that they are invariant under QBRST, and therefore also
invariant under Q̂A.55The fermionic fields η̃c and κ̃c are each linear combinations
of the fields λ̃c and ¯̃λc defined in the previous section.
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δQ̂A
Ãzc ¼ ψ̃ zc þ i

ffiffiffi
2

p ∂zc̃c; δQ̂A
ψ̃ zc ¼ −∂zφ̃c;

δQ̂A
Ãz̄c ¼ ψ̃ z̄c þ i

ffiffiffi
2

p ∂ z̄c̃c; δQ̂A
ψ̃ z̄c ¼ −∂ z̄φ̃c;

δQ̂A
φ̃c ¼ 0; δQ̂A

η̃c ¼ 0;

δQ̂A
ξ̃c ¼ η̃c; δQ̂A

κ̃c ¼ 2½�F̃Ac − ẽ2cð−i∂φ̃c
W̃ þ ð1=8Þ∂ ξ̃c

¯̃WÞ�;
δQ̂A

θc ¼ 0; δQ̂A
X θc

z ¼ −2
ffiffiffi
2

p
i∂zθ

c;

δQ̂A
θ̄c ¼

ffiffiffi
2

p
ðχθc − χ̄θcÞ; δQ̂A

X θc
z̄ ¼ 2

ffiffiffi
2

p
i∂ z̄θ

c;

δQ̂A
ðχθc − χ̄θcÞ ¼ 0; δQ̂A

½gcdðχθd þ χ̄θdÞ� ¼ −
ffiffiffi
2

p ∂θcW̃: ð6:47Þ

The bulk physical operators of this theory were studied by Baptista [7], where he showed that the bulk chiral ring is
given by

C½φ̃1;…; φ̃k; ðx1Þ�1;…; ðxkÞ�1�=DðW̃Þ; ð6:48Þ

i.e., holomorphic functions of φ̃c and ðxcÞ�1 ≔ exp ð∓ θcÞ, modulo the ideal DðW̃Þ, where DðW̃Þ is generated by the
derivatives

∂θcW̃ ¼ −xc∂xcW̃ ¼
Xn
j¼1

Q̃c
j

�
i
2
hφ̃; vji − e−ŝ

j
Yk
d¼1

ðxdÞvjd
�
: ð6:49Þ

In addition, one ought to restrict the bulk physical operators to finite-degree polynomials, since in the equivariant de
Rham complex one considers only finite-degree forms and polynomials in the Lie algebra.
Aided by the boundary conditions and (6.47), it can be deduced that the boundary chiral ring at a particular boundary

component ∂ΣL is given by

C½φ̃1;…; φ̃k�=ðDðW̃Þj∂ΣL
Þ: ð6:50Þ

Here, we have taken into account the fact that ∂θcW̃ is a Q̂A-exact function of φ̃c at the boundaries. Moreover, we ought to
restrict the boundary physical operators to finite-degree polynomials, as we did for the bulk physical operators. Note that in
the nonequivariant case, the critical point condition ∂θcW̃ ¼ 0 at the boundaries implies that the k fermionic fields χθc þ χ̄θc

areQA invariant at each boundary and, in fact, form the boundary chiral ring [10]. However, recall from Sec. V. D that we do
not have such a critical point condition, implying that χθc þ χ̄θc is not Q̂A invariant at the boundaries, and therefore is not an
element of the boundary chiral ring (6.50).
Denoting an arbitrary element of the bulk chiral ring (6.48) asWmirror, and an arbitrary element of a boundary chiral ring

(6.50) as Wmirror∂ΣL
, the most general correlation function of local bulk and boundary observables in the gauged Landau-

Ginzburg model is therefore written (for Σ ¼ I × R) as

Z
DðÃ; θ; φ̃; ξ̃; η̃; κ̃; ψ̃ ; χθ; b̃; c̃Þe−ðSAþSBRSTÞ

Y
i

Wmirror
i

Y
j

Wmirror∂Σ0jj
Y
k

Wmirror∂Σπ jk : ð6:51Þ

This is the mirror correlation function that computes (6.24) for local observables.
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