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We describe supersymmetric A-branes and B-branes in open A = (2, 2) dynamically gauged nonlinear
sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds,
these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with
neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM
and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can
occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically
Becchi-Rouet-Stora-Tyutin quantize the mirror theory to analyze this phenomenon.
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I. INTRODUCTION

D-branes are crucial to the nonperturbative dynamics of
string theory, and their importance has been well under-
stood since Polchinski [1] identified them with black
p-brane solutions of supergravity. From the point of view
of mathematics, D-branes are essential objects of homologi-
cal mirror symmetry, first conjectured by Kontsevich [2].

In this paper, we investigate D-branes of dynamically
gauged nonlinear sigma models (GNLSMs) with N =
(2,2) supersymmetry, which we shall refer to as equivar-
iant branes. One motivation for this is that GNLSMs with
target space X and gauge group G flow in the IR limit to
nonlinear sigma models (NLSMs) with target space X//G,
and hence, we will obtain new descriptions of D-branes in
N =(2,2) NLSMs, including those with Calabi-Yau
targets useful for physical compactifications of string
theory. A more mathematically oriented motivation is
furnishing an equivariant generalization of homological
mirror symmetry. As we shall see, describing equivariant
branes will also allow us to define an open version of
the mathematical theory of Hamiltonian Gromov-Witten
invariants [3-5].

The N =(2,2) GNLSM governing maps from a
closed Riemann surface into a Kihler manifold X with
Hamiltonian isometry group G was studied in depth by
Baptista [6,7]. In particular, it was shown that the A-twisted
GNLSM localizes to the moduli space of symplectic
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vortices, and its correlation functions compute the
Hamiltonian Gromov-Witten invariants of X. Moreover,
for Abelian G, Baptista used mirror symmetry (as proven
by Hori and Vafa [8]) to describe the quantum equivariant
cohomology ring for toric X.

Also, D-branes in A/ = (2,2) NLSMs on open Riemann
surfaces have been studied by Hori, Igbal, and Vafa [9,10],
with the mirrors of these D-branes being identified. We
are thus led to attempt an understanding of equivariant
branes by combining the insights described above, that is,
by analyzing A = (2,2) GNLSMs on open Riemann
surfaces and their mirrors. Since only a subset of the ' =
(2,2) supersymmetry can be preserved at the boundaries of
these open Riemann surfaces, we are led to two types of
equivariant branes, namely, equivariant A-branes and
equivariant B-branes.

Equivariant B-branes have been previously studied by
Kapustin et al. [11] within the context of topologically
B-twisted GNLSMs, although the mirrors of these branes
were not elucidated. On the other hand, equivariant
A-branes have only been studied for G = U(1) by Setter
[12], using the topologically A-twisted nondynamical
U(1)-GNLSM; in this case, their mirrors were not eluci-
dated either. We shall study both types of equivariant
branes and provide the description of their mirrors in a
subset of toric target spaces, hence defining equivariant
homological mirror symmetry in these contexts. Other
proposals for equivariant homological mirror symmetry
of equivariant B-branes have appeared in the mathematical
literature [13,14]. In addition, understanding equivariant
A-branes allows us to define open Hamiltonian Gromov-
Witten invariants, which can be understood as integrals
over the moduli spaces of open symplectic vortices that
describe a map from an open Riemann surface X to a Kihler
and Hamiltonian G-manifold X, whereby the boundaries of
2 correspond to equivariant A-branes in X. We note that
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closed Hamiltonian Gromov-Witten invariants have been
studied extensively in the mathematical literature [3-5].
However, the open invariants have been largely unexplored,
with the exception of the work of Xu [15], which concerns
the compactification of the moduli space of open symplec-
tic vortices on the disk for G = U(1), as well as the work of
Wang and Xu [16] on the relationship between open
symplectic vortices for X and open world sheet instantons
for X//G (the open quantum Kirwan map).

A. An outline of the paper

In Sec. II, we introduce the A" = (2,2) supersymmetric
dynamically gauged nonlinear sigma model on the infinite
strip. In Sec. III, we review the mirror symmetry between
Abelian GNLSMs and gauged Landau-Ginzburg (LG)
models with neutral matter, and elucidate the explicit
reduction of open gauged linear sigma models (GLSMs)
to open GNLSMs, making use of the example of CPV~!. In
Sec. IV, we study equivariant B-branes, paying particular
attention to Abelian equivariant B-branes in toric manifolds
X, as well as the LG mirrors of these branes when X is
Fano. Non-Abelian equivariant B-branes in general G
manifolds are also analyzed. In Sec. V, Abelian equivariant
A-branes in toric manifolds X are introduced, and their LG
mirror description is shown for toric manifolds X with
¢;(X)>0. We also explore non-Abelian equivariant
A-branes for general G manifolds. In Sec. VI, we use
the data of equivariant A-branes to study open Hamiltonian
Gromov-Witten invariants. The open gauged A model is
first introduced, together with its bulk and boundary
observables. The path integrals of these observables are
given by classical integrals over the moduli spaces of

the dimension of these moduli spaces, as well as the related
boundary axial R anomaly. For Abelian invariants, we use
mirror symmetry to compute the Q% # 0 anomaly, which
implies supersymmetry breaking and indicates an obstruc-
tion to integration over the moduli spaces. We shall find the
condition whereby the anomaly vanishes and supersym-
metry is manifest. Finally, we show how mirror symmetry
can be used to compute the Abelian invariants themselves.

The reader who is interested in equivariant B-branes
should read Secs. II, III, and IV, whereas the reader who is
interested in equivariant A-branes and open Hamiltonian
Gromov-Witten invariants should read Secs. II, III, V, and
VI. Additional details are contained in the comprehensive
version of this paper [17].

II. THE GAUGED NONLINEAR SIGMA
MODEL WITH BOUNDARIES

We shall take the world sheet X to be the infinite strip
I x R (where the interval is I = [0, z]) equipped with a flat
Minkowski metric # = diag(—1, 1). The main fields of the
GNLSM are a connection, A, on a principal G-bundle
P — X, and a section

¢: T —>E (2.1)

of the associated bundle E := P x5 X, where X is a Kéhler
manifold. Locally on Z, E looks like the product X x X,
which implies that locally the section ¢ looks like a map
¢: X — X, as one finds in nongauged NLSMs.

The GNLSM action is

1
open symplectic vortices on a Riemann surface with S = Y (Smatter + Sgavge + S5 + o), (2.2)
boundaries, and these integrals are identified with the open
Hamiltonian Gromov-Witten invariants. Then, we compute ~ where
|
j 2k i -k *(_)A i i —k *(_)A J
Siater = | x| =gz 0ud MG + S gt ('Y )l + S 9@t (9V )
~] =b=k 1 —g~] =k . ~] — & —aq—-Fk
— 5 9i0 88" 8, = 5 93620 €, + ig;i(V12a) (6" WLyt + 6pLyl)
+ gp(Aaenpt —Jeelph — a9 ehyl + 198ky))
+ Ri]ki‘/’i‘/’]i‘/_’]—‘/_’zr + g (F/ - Tyl ) (FF - F?;m‘l_"zll/_/i)> : (2.3)
1 1
Sgauge = @/2 dzx <F81F01a - v;eo'avAﬂé-a + Z [0_7 (—7]11[6’ 5-]11 + DaDa - 262(45*:“:1 + ra)Da
N N = =
+3 () Vd + 2 (1), V24 + ko, 4], + 3405, ua), (2.4)
Sp=-— / ¢*B + / ¢*C, A%, (2.5)
b2 )
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and

Sy = / &2x(0, Fyy) (2.6)

with d2x = dx' A dx".! Here, F/ and D* are auxiliary
fields. The covariant derivatives are given explicitly as

NPt = 0,9F + Aset,
(V)" = O* + Ay 02 + T4 (997 )y,
Viot = 9,0 + [A,. 0],

Vf}la = 8,,/1“ A ﬂ,/l]“. (2.7)
We have also used the notations
v+ = VO + vl )
V_=V,-V,, (2.8)
as well as
AVB = AVB — VBA. (2.9)

Additional details regarding the GNLSM action can be
found in [6,17]. The main difference from the closed
GNLSM is the boundary term with a C field, where C
is an equivariant map X — ¢* that obeys

(2.10)

This term is required to cancel the nonzero gauge variation
of the B-field term, leaving the action invariant under the
following gauge transformations:

Sk = ek,

6(2)" =a e’,j,

&l/i =a Wiaiéﬁy

ot = a'y', 0:,

OFF = a®Fi9,ek,

SFF = g F 0.3k (2.11)
SAL = [a,A,]* — 90" = =V}
b0 = |a, c]?,
56 = [a, 6]%,
AL = [a, A%,
5/_11 = [a, Zi]“,
6D = [a, D]* (2.12)

'We consider only the case where G is compact, in order to
ensure positive definiteness of the gauge multiplet kinetic terms.

For a closed world sheet, the action (2.2) would be
invariant under the following N = (2,2) supersymmetry
transformations:

St = (€+1//li - 6—1//{1)’

5pF = —(epk —eyh),

Syt =ie (04 + 01)pr + e, F* + ie 598k,
ok = —ie (94 + Of)P* + &, F* -
Syk = —ie (04 — 01 )pr + e_F* — ie_o?&k,
Sk = ie (9 — ON)P* + e_FF + ie_5"Ek,

azk
ie, o€y,

SFF = —ie, (0_yk + A% (0l )y
—ie_(0yt + AL (085l ) +e 298k —e, 2%8h
i€,.6(02q )yl — ie_ “(3,?3§)w’+,
OFF = —ie, (0_yp* + A% (0;80)w,)
—ie_ (D, pF + A4 (0;2k) L) — e_ 19 &k + e, 193k
— e, 0%(0;85) ] — ie_5° (058, (2.13)

SAY = ie 2% + ie 24,
SAY = ie 2% + ie_“,
S0 = —ig, A% —ie_14,

56% = —ie A% — ie_1%,

1
824 =e_(V469) +e, | —-F4, + 3 [o,6]* + iD"),

- 1
o1 = (Vo) 2. (~F = onale - D7),
o1t = e, (VAo®) + e_(

1 -
D" =5 (=, (VA1) —&e_(V42%) + e, (VA2%)
+e_(VA14) + e lo, A )" +e_[5,A,]°
—e (6,4 —€_[o,A,]7), (2.14)
where Ai :AO :l:Al, (9i = (90 + 8], and
§=e,0_-eQ,—&0 +e 0, (2.15)

in terms of the supercharges of the V' = (2,2) supersym-
metry algebra. On the other hand, since our theory is
defined on / x R, supersymmetry is not preserved at the
boundaries, and we have
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1

1
5Smatter = Z . dxo{_€+ (E 9ij (83 + (9?

R T L T
VP + 5 950 8w’y = 595 F W + ggi,F}zwiw’_v/Q

_ (1 N R e N
+é, (Egi;(é"é +ONGWL 5955 8 + 5 95Ty = 291,1“’,1// ll/+ll/+>
1 9A AN 770, 0 1 ~az] i i 7] i J
—e-| 595(00 = )Py + 5 gpoteawt + 5 9 F L — 29,,F Wyl
_ (1 1 _
+é (591;7(38 M, + 950 “elipl — Egl,F’v/_ + 2gl,F’,w Pyt ) } (2.16)
11 0 A A 2 a i ~la D 2( ¥ . 2a
6(Sgauge+5r+59):Ez—e2 azdx €, 2 _a(V +V§)o" — A, 2F01+4[0 Gl +7 + e (P u, +ry —i6,)2%
' i i De
+é+ <5/1 a(VA—l—VA)a _A+a (ngl _1[6’5]0_7> —32(¢*//¢a+ra+iea>ﬂi>

te (L3, = e =i (LR 4 Lo e =20 C 2y + o+ i0,)70
2 2 4 2
e 5 A/ A P (%Fgl - % l6,5)% + %) b (P g+ Ty — i0,)2 ) } (2.17)
1 . _ ) ]
0Sp = 2_” 0{( ij P+ sza‘gflb Jewl —e_ l//+) (Bijaé¢l + B;00¢") (—e . +e_yr,)

+ % (€, 0% + 8,29 +e 1% + é_/la_)g{)*Ca}.

To restore supersymmetry at the boundaries, we need to
choose an appropriate set of boundary conditions on the fields,
and these conditions must themselves be supersymmetric. In
fact, only certain N = 2 subsets of the four supersymmetries
can be restored (A-type or B-type supersymmetry).
Furthermore, we can include compatible boundary inter-
actions. These boundary conditions/interactions shall corre-
spond to equivariant generalizations of D-branes. Note that
one can further generalize the action (2.2) by considering
quiver GNLSMs, i.e., with gauge group G; x G, x Gj...,
each factor G; having its own coupling constant, ¢;. In Secs. IV
and V, we shall focus on finding boundary conditions/
interactions for quiver Abelian GNLSMs on toric manifolds.

III. GNLSMS FROM GLSMS AND
MIRROR SYMMETRY

It is well known that A" = (2,2) NLSMs with target
spaces being toric manifolds can be obtained in the IR
limit of N' = (2, 2) quiver Abelian GLSMs [18]. Hori and
|

(2.18)

Vafa [8] made use of this to prove the mirror symmetry of
manifolds with non-negative first Chern class in terms of
Landau-Ginzburg theories. This proof of mirror symmetry
was later applied to world sheets with boundaries, whereby
the Landau-Ginzburg mirrors of B-branes [9] and A-branes
[10] were found.

As shown by Baptista [7], it is also possible to obtain
quiver Abelian GNLSMs on closed world sheets with toric
target spaces by taking a different limit of quiver Abelian
GLSMs. Moreover, Baptista found the mirror Landau-
Ginzburg theories of these GNLSMs. This then suggests a
natural generalization of Baptista’s proof to world sheets
with boundaries, in order to find equivariant A-branes and
B-branes in Abelian GNLSMs, as well as the Landau-
Ginzburg mirrors of these branes. We shall pursue this line
of thought in Secs. IV and V.

Before doing so, let us briefly review Baptista’s idea for
closed world sheets. In superfield language, the action of a
U(1)N GLSM with target space CV is

(3.1)
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where U(1)N =

U(1)N=0 x U(1)*, with the indices b = 1, ...,

N —k and ¢ =1, ..., k. The mirror of this theory is the

following Landau-Ginzburg sigma model with twisted chiral superfields Y’ (whose imaginary parts are periodic, with

period 2x) and action

Vg [ oun] 1IN o oo oz, 01 s
S gual :ﬂ/d x/d 9{—§Z(YJ+YJ)10g(Y-/+Y-/)—Z z—éiz”z” -> ggzczc

=

+——/d2x{/d29<(gbw — )%, + (05 - F)E, +Ze—y’> +c.c. }

Taking quantum effects into account, the target space for
this Landau-Ginzburg sigma model is the algebraic torus
(C*)N [8]. In deriving the duality between the two mirror
theories, it can be shown that

Yi 4 Vi = 28,6970 Ve, (3.3)
which is an explicit relationship between the fields of the
mirror theories.

To obtain a GNLSM from (3.1), we take the limit where
2, — . The £, kinetic terms vanishes, and the remaining
fields belonging to V), become auxiliary fields and are
integrated out. The resulting sigma model has CV//U(1)¥=*
as target space, but is still gauged, since the vector super-
fields V. are still present in the action. However, note that to
obtain a Kéhler target space with k complex dimensions, the
Fayet-Iliopoulos (FI) parameters 7, must be within a Kéhler
cone. In this way, we obtain the N = (2,2) U(1)*-GNLSM
with Kzhler CV//U(1)¥=* target space.

Taking the same limit &, — oo in the dual Landau-

Ginzburg sigma model (3.2) makes the 3, kinetic terms
|

. 1 e o
Sdual—_/dzx/d49 ——Z (8/ + 3 + (1/,0 + O)) log(3/ + 3/ + (1/,0 + O))
2r 2 =

e folzane

where (-,-) is the canonical inner product on R*. This
gauged Landau-Ginzburg theory has the holomorphic
twisted superpotential

0)+57) -

W(0.%) = (£.0;)((v/,

(3.7)
Baptista’s technique of obtaining GNLSMs from

GLSMs is an extremely powerful one, as it allows us
to obtain multiple GNLSMs from a single GLSM, by

b=1

(3.2)

J=

vanish. 3, is then an auxiliary superfield, which we can
integrate out to impose the constraints

0%yl - =0. (3.4)
These constraints have the solution
k .

Yi=3 4> vlee, (3.5)

where ©!,...,®% are new twisted chiral fields, the
complex constants §!,...,5V € C are any solution of the
algebraic relation Q’,’ 3 =1, and v’; are N primitive
vectors v',...,v" € Z* [which generate the regular fan
associated with CV//U(1)N=*] that span Z* and satisfy
>¥ 0%/ = 0. Thus, the ¢, — oo limit gives the following
U(1)k-gauged Landau-Ginzburg sigma model with neutral
matter and with target (C*)*

Ei”

N
—i—Ze (v/.0)- )—i—c.c.},

(3.6)

choosing which coupling constants we wish to send to
infinity. This implies the equivalence of several GNLSMs
with different Kdhler target manifolds, as well as the
equivalence of equivariant branes contained in these
manifolds. These branes will be the main objective of
our study in the following sections. Furthermore, once a
particular GNLSM is obtained, even its gauge group can be
modified, by demoting some of its U(1) gauge symmetries
to global symmetries. These points shall be useful to keep
in mind when reading the following sections, where we
attempt to study Abelian equivariant branes in as much
generality as possible.
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A. Explicit reduction of GLSMs to GNLSMs in the case with boundaries

We have only discussed the method of obtaining GNLSMs from GLSMs in superfield language for closed world sheets
thus far. We would now like to understand this reduction method in component form for an open world sheet, so that we
may eventually find explicit boundary actions and boundary conditions in GNLSMs. The U(1)¥ = U(1)¥=* x U(1)*
GLSM action with boundaries is given explicitly as’

1 N _ i _ < pas i _ <~ <~
ScLsm = ﬁz / d*x{~D,¢;D"¢; + EW—i<DO + Dy + §W+i<D0 =Dy

N—k ko Nok kN
- (X 0utn+ Y0t ) (X Qub + Y 0 i
b c b c
& ko
Z Qi (GpW Wi + B i) — Z Qic(OW W —i + 8-y i)
b c

Nk x x koo = =
- Z 1Qup®i(A-pW i = AypW—i) — Z iQichi(A-cW i — AW —i)

Nk R koo )
= iQui(Woits —wiides) = D iQsethi Wik —wiidoe) + |Fi*}

c

+%/d2 {Nzk<Dh <Z Oundith: — Vb) +9,,F01,,> - Z( (i Qichihi — ?c> + iécﬁ‘()“.)}

b i c

S

1 Nk . - “ i = <~ <~ = <~ A
+ZZ / { Fo1p)? = 0,6,0'8;, + (Dy)? +5/1+b(30 — 01 A +§/1 »(0o + al)i—h}
b
k i= RES < I= <~ <~
27[22 2/d x{ (Fore)* = 8,8.0"5 + (D,.)? +§/1+c(ao— 01)Aye +§/1—c(80+ 31)/1—c}v (3.8)

where the covariant derivatives are

N—-k k
Dy¢i = <a;4 + lz QibAﬂb + ZZ QicA;w> ¢iv
b c

N—k k
Dy = (@; + iz QipAup + iz QicAﬂc> Wi (3.9)
b c

We shall now take the &, — co limit in (3.8), whereby the vector multiplet kinetic terms as well as the term (D,)? vanish.
This means that all the components of the vector superfields V, = {Aﬂb, o-b,/lb, Db} become auxﬂlary
Consequently, the equations of motion of Aﬂb and 6, give the following constraints on themselves™:

N
Z Qi[i(¢iDogp; — $iDodi) + W_iw_i + Wy ;] =0,

Z le ¢ D1¢1 ¢1 1¢ ) Yoy + W-HW-H] = 0’ (310)

Itis important to keep in mind that the superfield action (3.1) is only equal to this action upon integration by parts, which give rise to
boundary terms. However, we shall be concerned with this action (which has the standard kinetic terms), as well as the GNLSMs we can
obtain from it, and their mirrors. )

To be precise, the equation of motion for A, [which is the first equation in (3.10)] will be modified by a boundary term proportional
to 6, unless appropriate boundary conditions and/or boundary terms are used. We shall assume that this is the case for now, and in the
following sections we will study boundary actions whereby the A, equation of motion in (3.10) is precise both in the bulk and at the
boundaries.
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1

while integrating out the gauginos (/Alb) gives the constraints

N
Z Qi+ =0, (3.12)
and finally, integrating out D, gives
N A -
> Qubithi — =0, (3.13)

i

forb=1,...N—k*

To derive the explicit action for the U(1)*-GNLSM with
a Kiihler target space CV//U(1)¥=*, we need to set the FI
parameters 7, to be in a particular Kéhler cone, before
taking the e, — oo limit. Next, we need to find para-
metrizations for the scalar fields ¢; that satisfy (3.13), as
well as parametrizations for . that satisfy (3.12). Then,
Aﬂb and 6, must be integrated out of the action using (3.10)
and (3.11). Finally, we need to replace the matter auxiliary
field term

(3.14)

N
Z|Fi|2

with the matter auxiliary field term of the GNLSM in (2.3).
This procedure is simplest for the case of N —k =1,
where (3.10) and (3.11) reduce to

_ SV Oili(¢iDogi — ¢iDodi) + W_iw_i + Wiy ]

A 2 bl
' 25 Ol
A = SV Oili(¢:D1g; - ¢iD£§_bi) — W W)
25,0717 ’
(3.15)
and
5= N =0k 06, )i — Qi aw ]
o N A2 3 )
=1 950;9;
N —A< k~<: 4_._,\._, .
é — izl[ Qz(Zc glc(ﬁc;qﬁz?z Qzl//—zl//Jrz] ) (316)
=1 Qibie;
where

“These constraints are consistent with the N = (2,2) super-
symmetry of the GLSM action.

N N—k k
Z |:_Qih <Z Qi+ Z Qu&-) bihi — Qihl/_/—il//+i:| =0,
d c

N N—k k
> |:_Qib <Z Quba+ > Qic5c> bihi — Qibl/_/+il//—i:| =0,
b c

(3.11)

k
Dy¢i = (aﬂ + lz QicAﬂc) (.bia
~ - k ~ ~ -
D[l¢i = (ay - lz QicA/,tc> ¢i'

A good example is that of X = CPV~!, which corresponds
to the quotient CV//U(1) with charges Q; = 1, and the FI
parameter 7 > 0, which is the Kiihler cone of CPV~!. Thus,
we should begin with the GLSM (3.8) with N —k =1,
Q,- =1, and 7 > 0. In this case, the constraint (3.13) is

(3.17)

N -
> i =+ (3.18)
and is solved by
Zi PN
bi = Ve ., i=1,.,N-1,
1+ SNz
\/56”
Py = : (3.19)
VIS e
where
O
7l =-— 3.20
o (3.20)

correspond to the inhomogeneous coordinates that para-
metrize a local patch of CPV~!. Furthermore, the fermionic
constraint (3.12) can be solved by

vy = VEVE  ZI(N R Vel
i+ = _ 1 — 3
(L+Z¥ZP): (L 2 24Py
i=1,...N—-1,
_ N-1 Zij ﬂeit
Wys = Z] (l//i ) , (321)

(1+ 33 124y

where w% correspond to Grassmann-valued vector fields
defined on the aforementioned patch of CPN~!,

Using (3.15) and (3.19), we can show that the terms
containing only bosonic fields in the scalar kinetic term of
the GLSM (- Y_¥ D, ¢;D*¢;) are
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T opZiomZh) RSV 20,2 (oY 2R oMz

(1+3MZ'P)

(3.22)

(L+ 3Nz Py ’

where

N-1
Nz =0,7) + iZ(QjC — One)A,Z) (nosumover j).
(3.23)

In (3.22), we find the scalar kinetic term given in (2.3) for
X =CP"!and G = U(1)"~!, with the metric on CPN~!
being the standard Fubini-Study metric. Comparing the
covariant derivative (3.23) with the general form given
in (2.7), we find that the holomorphic Killing vector
fields corresponding to the U(1)N~! isometry on CPV~!
are given by

el = i(Q). — O ). (3.24)
The term proportional to D, in the GLSM is found to
contain the moment map for the U(1)"~! isometry of
C PN_l,

— (N 0iclZ' + One)
SRS VD

via (3.19), and thereby we retrieve the moment map term of

(2.4). Similarly, using (3.15) and (3.19), we find that the 0
term gives rise to the B-field and C-field terms of the
GNLSM, with

(3.25)

0
r
(where w is the Fubini-Study Kihler form) and
0
C.=——j,, (3.27)
7

as well as the boundary term

1 [0S, _
_ﬂ/GZEZ(W—iW—i VW 1i), (3.28)

where we have maintained its GLSM form for convenience.
We shall comment more on this term below.

*Here, the FI parameter plays the role of the modulus that
parametrizes the size of CPV~!.

®The fact that the U(1)¥~! charges of the inhomogeneous
coordinates Z/ are given by (Qjc — Qy.) can also be deduced
from (3.20).

In a similar manner, we may continue the procedure
explained below (3.13) with the help of (3.15), (3.16),
(3.19), and (3.21) in order to obtain the complete GNLSM
action given in (2.2) for X = CPN=! and G = U(1)N~!,
together with the (spurious) boundary term (3.28). This
boundary term also occurs in the well-known reduction of
GLSMs to NLSMs [19] and can be removed in several
ways, including the addition of a boundary term to the
GLSM we start with [19], or by a judicious choice of
boundary conditions on the fermionic fields. In the follow-
ing sections, we shall explain how this term is removed
when investigating the cases of A-type and B-type super-
symmetry at the boundaries.

Before ending this section, we would like to point out
that the classical procedure of obtaining GNLSMs from
GLSMs which we have explained above is valid at the
quantum level, since the &, — oo limit can be taken for the
path integral of the GLSM, and functional integration over
the auxiliary components of V, is equivalent to imposing
their algebraic equations of motion as constraints.
However, taking renormalization of the FI parameters into
account, it can be shown that we may only obtain quantum
GNLSMs for Kihler targets with ¢(X) > 0. This is
because the renormalization group flow at the one-loop
level of the bare FI parameters 7, is

N

N A A

Fop = Tp(p) + Z Q;p log <%> (3.29)
i=l

(where Ayy is an ultraviolet cutoff and y is a finite energy
scale). As shown in [20], for a basis e, of H,(X,Z),
we have SV 0, = ¢;(X) - ;. Then, for a holomorphic
curve m = Zg‘k mpe, in X (i.e., an element of the Mori
cone of X)

N—k N=k N=k Aoy
Zmb%b = Zmb?b(ﬂ) + Zmb(cl (X)-ep)log <7> :

b b b
(3.30)

For the bare FI parameters to be in the Kihler cone of X, the
left-hand side of (3.30) ought to be greater than zero. In
the continuum limit (Ayy — o0), this is impossible if
c1(X) > 0 is not satisfied.

IV. EQUIVARIANT B-BRANES
AND THEIR MIRRORS

We shall apply the techniques discussed above to find
boundary actions and boundary conditions in Abelian
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GNLSMs with toric target spaces, X, as well as their
mirror descriptions. These boundary actions and boundary
conditions will correspond to branes in X, which we refer
to as equivariant branes. We first study the case where B-
type supersymmetry is preserved at the boundaries of the
I x R world sheet, since this leads us to make contact with
aresult found previously by Kapustin et al. [11,21], while
in the next section, we shall use similar techniques to
study equivariant A-branes. After gaining insights from
the study of Abelian equivariant B-branes, we shall then
proceed to analyze equivariant B-branes for non-Abelian
GNLSMs.

The combination of supercharges that define B-type
supersymmetry are

QB = Q+ + eiﬁQ—v

0p =0 +e70, (4.1)
where € R. In the following, we shall set f =0 for
simplicity, though it is straightforward to study the f # 0
generalization by the same techniques. From (2.15), we
find that the corresponding relations among the supersym-
metry transformation parameters are

E=¢e, = —¢_. (4.2)

We shall also make use of superfields when discussing
boundary conditions, and to this end, the concept of
“boundaries” in superspace [10] is useful. For the case
at hand, the relevant boundary in superspace is known as
“B boundary” and corresponds to

(4.3)

Let us briefly review what is known of ordinary
B-branes. For ' = (2,2) NLSMs, the boundary condi-
tion needed to preserve B-type supersymmetry at the
boundaries maps each boundary to a holomorphically
embedded complex submanifold of the target space [9].
Such submanifolds can support a holomorphic line bundle,
described by the following boundary action:

i
Sox = /ﬂdxo{%@oXM —Fa W +u)(wl +w¥)}y
(4.4)

which is B-type supersymmetric if FX, = FX; = 0 [here,
we use (M, N, ...) as coordinate indices on the holomorph-
ically embedded branes], where Af, corresponds to a
connection of a line [U(1)] bundle on each B-brane,
and F7, is the corresponding curvature. Alternatively,

when mixed Dirichlet-Neumann boundary conditions are
imposed instead of Neumann ones, the boundary action is

SOZ == / deAi(,la()XM. (45)
[0

We are interested in the generalizations of (4.4) and
(4.5) (and their corresponding boundary conditions) for
GNLSMs. These shall be obtained from GLSM boundary
conditions and boundary actions, using the methods of
Sec. III. In the following, we shall attempt to generalize the
boundary action (4.4) to the case of U(1)*-GNLSMs with
Kihler toric target space, before proceeding to do the same
for the boundary action (4.5).

A. Equivariant B-branes on
CN//U(1) from GLSM

We shall first proceed to obtain the B-type super-
symmetric boundary action and boundary conditions for
Abelian GNLSMs with toric target spaces of the form
CN//U(1). We shall focus on obtaining GNLSM boun-
dary conditions corresponding to space-filling branes.
To this end, we must impose B-type supersymmetric
boundary conditions at the GLSM level that include
Neumann boundary conditions on the chiral superfields.
Hence, we impose the following boundary conditions,
which are invariant under U(1)N gauge symmetry:

D"l‘@i = D—¢i’

s, =5, (4.6)

N N
at B boundary, where D, = e~ ) Q"”V“Dieza Q""V“, as
well as

Foia = _eazea' (47)
In components, these boundary conditions are
vii—wo; =0,
Fi = 0,
D1¢i - 0’
Dy(yyi+w_i) =0, (4.8)
and
Im(s,) =0,
Aya +4_, =0,
aII{e(aa) = euzea’
Foio = _eazea’
a1 (l+a - A—a) - 07
(91 (Da + 8lIm(0a)) =0. (49)
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It is crucial to note that these boundary conditions
are compatible with the constraints (3.15) and (3.16)
which are imposed when taking the & — oo limit. We
also need to add boundary terms to cancel the B-type
supersymmetry variations of the bulk theta terms, which
gives the B-type supersymmetry invariant expression

bl 0 [ (545
- / FOI dzx +— M dxo
2r > 2z o 2

N-1 2 = ~ =
0 - 0 (6. +6.)
| Foed®x+25 | ———Ldx0 ).
+2(2ﬂ/>; el rt o 2 x)
(4.10)

With the above boundary conditions and boundary
terms, the GLSM action is B-type supersymmetric at
the boundaries.

In addition, we include a boundary action for the
U(1)Y-GLSM given in (3.8), with N —k = 1. This is
given by

A

0 R A
50224];? 8de zi:(lDoébi(ﬁi—l‘ﬁiDOd’i

N
) s+ ) —ZQm<aa+aa>|¢,-rZ)

a

(4.11)

[where the covariant derivatives of the scalar fields are
given by (3.9)] and is B-type supersymmetric on its own. Its
inclusion is necessary to obtain the generalization of the
boundary action (4.4), which plays the role of elucidating
the geometry of the branes.

Now, recall from [9] that the bulk theta term can be
converted into a boundary term in some circumstances. In
particular, we have

~ A

. 0 .
d*xFy = —5- dx"Ay, (4.12)

27 Jx 7T Jox

via Stoke’s theorem, but this violates gauge invariance. The
violation is

~

) 5
dx"0ya = —/a’a = —27rm (4.13)

271’ oy

where m € Z However, if 0 e 2nZ, then (4.13) implies

that exp( 12” f 9% is gauge invariant, and hence,

the path integral remains gauge invariant. We shall

assume that § € 277 hereafter, by setting 6 = 2zn, where
neZz.

This allows us to write (4.10) and (4.11) as

Sos’ =

ZA | ax (Z(zaoqs b;—i:Oogh:)
+ Z(WH Fw) Wi+ w-)
A N A - N A
+2AO(ZQ,~|¢,~|2—%)—(6+&><ZQ,-|¢,-|2—?>
N—l~ N B N-1 _ N B
+2ZAOCZQI-C|¢,-|2—Z(m&»ZQicw)

N—-1 2] ~ =
0, 0. [ (6.+6.)
For.d® e 0 gx0 ),
. <2ﬂ/ Ol x+2ﬂ/az 2 x)

(4.14)

+

Taking the ¢ — oo limit results in the corresponding vector
multiplet components becoming auxiliary (see Sec. III).
Integrating D out of the bulk action imposes the condition

N A
Z Qi|¢i|2 -7=0

and this results in the second line of (4.14) vanishing.
Integrating out the rest of the components in the vector
multiplet gives several more constraints, the one relevant to
the boundary action being7

(4.15)

N
Z Qi@il//ii =0. (4-16)

As explained in [9], the first term in (4.14) is nothing but
the Hermitian connection

S W g dd
AXdx' = —ni% (4.17)
23 Qileil
of Ox(-n) on the toric manifold X =CV//U(1),

since it transforms under U(1l) gauge transformations
(¢ — e'%¢;) as

AXax! — A¥dX! - (-n)da. (4.18)

Here, Ox(—n) is the holomorphic line bundle on X
with [y ¢;(Ox(=n)) = —n.

Next, to find the explicit B-type GNLSM boundary
conditions and boundary action, we must find parametri-
zations that satisfy (4.15) and (4.16). Let us study our usual
example of CPV~!. Using the parametrizations (3.19) and

"It is important to integrate out D before integrating out Ay;
otherwise, the algebraic equation of motion of Ay given in (3.15)
will be modified by a boundary term (see footnote 3).
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(3.21), as well as the constraints (3.15) and (3.16), the
boundary conditions become

y? —y? =0,
FZ =0,
. 4.19
o (4.19)
¢ VA wZ +yZ) =0,
and
Im(6.) =0,
Jie + . =0,
dRe(5,.) = 2.20.,
1Re(@.) Sl (420)
FOlc = —€. 901
0 (j'+c - j’—c) =0,
91 (D + 9,Im(5,)) = 0,
|
N-1

; o o i j N
Shy = /92 de{Aj?aOXJ + A¥9,X7 - Z iR. A, + ndyt — EF;‘,-((z//ﬂr + ) (P +

c

N-1 /7% b ~
0. [ - 0 (6.+ ¢
Ye [ pxyle ¢ 10
+Z<2nL Y o e 2

where X/ = 7/, ', = y?,

P 7

P = —n— s

’ 2(1+ 358712
« i VAl

ETED S SIr 2

are the components of the connection of O¢pv-1(—n), while
its curvature is

where w;; = ig;; are the components of the normalized®
Fubini-Study Kihler form of CPV~!,

(CN-1dz) A dZ)

(1+ 1z

(V1 Z0azly A (Y Z1dZ))
- (1+ ¥z P2

w=1I

(4.24)

Besides the supersymmetrized @ terms, the only other term
with vector multiplet fields is

$Unlike (4.24), the Fubini-Study metric that appears in the
bulk GNLSM action contains the FI parameter, 7, which is the
size modulus of the Fubini-Study metric; see (3.22).

which are invariant under the U(1)V~! gauge symmetry
and satisfy the B-type supersymmetry transformations
obtained from (2.13) and (2.14). Moreover, these boun-
dary conditions result in the vanishing of the expressions
(2.16) and (2.17), thus ensuring the preservation of B-
type supersymmetry at the boundaries. Note that the
expression (2.18) does not occur when performing a
supersymmetry variation, since the B-field and C-field
terms do not appear in the action of the GNLSM, as we
have used the bulk & term of the corresponding GLSM in
the construction of our boundary action via (4.12). The
spurious boundary term (3.28) also does not occur, for
the same reason. In addition, the Neumann boundary
conditions on Z' imply that the equivariant B-brane
wraps the entire target space, CPN~!; ie., it is space
filling.

Next, let us find the explicit form of the boundary action.
The parametrizations (3.19) and (3.21) give

| =
N——

)dx()), (4.21)
N-1 ~
=Y iR.A.. (4.25)
where
Y A (6-c + EL)
'Ac = —1 AOC - 3 s (426)
and
_ N-1 7 7112 1§
R, = ML Qi+ One) o

(1+321ZP)

The expression (4.21) is gauge invariant under the un-
broken U(1)N=! symmetry.” The ndyt term reflects the fact
that a U(1) gauge symmetry is broken at the boundaries,
and it can be removed via the gauge transformation (4.18),
with @ = —t. Now, we must remove this term, since ¢ is not
a coordinate of the CPV~! target space, but rather locally
parametrizes the Hopf fiber over CPV~!, which gives rise to
the sphere S¥*! defined by Eq. (3.18). Furthermore, it is
not a field that appears in the bulk theory, and has no
supersymmetry transformation, leaving us unable to test the

“Note that, from the local parametrizations (3.19) and (3.21),
we can see that the U(1)M-! gauge transformation of ¢ is
8t = Qy.a, since we know that the U(1)¥~! charge of Z' is

le - QNc~
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supersymmetry of the boundary action. Thus, we shall gauge away ndyt. However, doing so will break the U(1)V~!

symmetry of our GNLSM at the boundaries."’ ~ B 5
The cure to this broken symmetry is via the supersymmetrized 6 terms, as follows. Setting 8, = 2znQy,., we have

N-1 /7 ~ =
0, 0, (Gc + 06) 0
Z(z \/F()lcdx—i‘ﬂ de)
N—-1 . B .
= Z(—nQNC / Apedx® + nQy, / e 0
p 0T
N—-1 B B
— Z(—inQNC / Acdx0> (4.28)
- 0%

since both n and the charge Qy, are integers, as explained below (4.12). Then, the final boundary action takes the form

N-1

Sps! = /a ) de{Aj?aOXf +AX0,X7 - Z iR.A, — FX ()P + l/_/]_i)} (4.29)

where!!

Ro— _n(Zf'v_l(Qic - QNC)|Zi|2)

‘ (1+ 22 ZEP)
= —AXgl A?é{
i (430)

Invariance of the boundary action (4.29) under the B-type supersymmetry transformations [given by (2.13) and (2.14) for
€, = —e_] holds since

dR = 1,FX. (4.31)

This is known as the equivariant Bianchi identity and implies that the line bundle Ogpv-1(—n) has U(1)N='-equivariant
structure,12 for which RC is the moment [22,23].

The equivariant Bianchi identity is, in fact, a restatement of the U (l)N -1 invariance of the connection,
L;AX = 0. (4.32)
Now, rewriting the boundary action (4.29) as
X ¥ (Bo+6c) 0y, A
Sox' = | dx"d AXONX + AXORXT + ZR Tl FX () (i 4+t (4.33)
ox 2 2 Jk

facilitates the proof that it is invariant under the gauge transformations given in (2.11) and (2.12) for G = U(1)N~!. The
variation is

N-1 i

- (6.+6.) i P -
6‘902/:20%/ dx {E AxaAX/+£ AxaAX/+Zl dR T 2£é“ij(l//++l//])( ﬁ{»[//]i) (434)

"This U (1)¥~! gauge symmetry is not broken if we only require that it holds for the path integral and not necessarily the action. Even
in that case, the following steps help make the geometric properties of the brane obvious.

'The boundary conditions (4.20) and the boundary action (4.29) result in equations of motion that are modified by boundary terms,
for some of the fields.

"The G-equivariant Bianchi identity is equivalent to the G invariance of the connection, A, of the bundle [Eq. (4.32)], which implies
that the covariant derivative d 4+ A is G invariant, and this defines a G-equivariant bundle; see [22], Sec. 3.2.
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which vanishes using (4.32), as well as the identities
L;FX =0 and L,R = 1,dR = 0."

We have thus found B-type supersymmetric and
U(1)N-! gauge invariant boundary conditions and boun-
dary interactions corresponding to an equivariant B-brane
in CPN~!, which is a space-filling brane supporting
the holomorphic line bundle Ogpv-1(—n) with U(1)N~!-
equivariant structure. We may follow a procedure analo-
gous to that presented above for CPV~! in order to describe
an equivariant B-brane in a toric manifold X = CV//U(1)
(by choosing different values for Qi), which would be a
space-filling brane supporting the holomorphic line bundle
Ox(—n) with U(1)N~!-equivariant structure.

The GNLSM boundary action (4.29) that we have
derived from the GLSM expressions (4.10) and (4.11) is
a special case of the more general boundary Wilson line
found by Kapustin et al [11,21], using a B-twisted
topological non-Abelian GNLSM, with gauge group G
and target space X, i.e., a gauged B model. This boundary
Wilson line corresponds to a graded G-equivariant hol-
omorphic vector bundle. As explained in [11,21], in some
cases, the category of branes defined by the boundary
Wilson line is equivalent to Dg,_(Coh(X)), the bounded,
derived category of G-equivariant coherent sheaves on the
target space, X. This occurs if X has a G-resolution
property; i.e., any G-equivariant coherent sheaf on X has
a G-equivariant resolution by G-equivariant holomorphic
vector bundles. This property, however, does not hold for
general complex manifolds. Nevertheless, even for such
spaces where it does not hold, it is believed that the full
category of equivariant B-branes is still D’(’;C (Coh(X)),
where the GNLSMs for these spaces require more general
boundary actions corresponding to differential graded (DG)

|

0 0,
E < b/F01bdx+—
2

; oz 2

(6 + 8)) k é./~ 0,
270 707 X0 < | Fo .d? <
* +Z 2 b Ote x+2ﬂ'

modules over the Dolbeault DG algebra of X, instead of
holomorphic bundles.

In our construction, we have found Abelian equivariant
B-branes that wrap toric manifolds given by the quotient
X =CN//U(1), and that support the U(1)¥~!-equivariant
holomorphic line bundle Ox(—n). In the language of
algebraic geometry, Ox(—n) is a locally free sheaf of rank
1 and is, in fact, one of the simplest objects of D?(Coh(X))
([24], page 56). The additional U(1)N~'-equivariant
structure then implies that the equivariant B-branes we
have found are objects in D(CX)N 1 (Coh(X)), the bounded,

derived category of (C*)N~!-equivariant coherent sheaves
on X."* Of course, we have not constructed all the objects in
the category.

In particular, we have not constructed non-space-filling
equivariant B-branes. The latter, i.e., equivariant B-branes
of lower dimension, should exist, in analogy with the
NLSM case, although we shall not attempt to derive them
from GLSMs here. The path to doing so is via Hori’s
construction of non-space-filling ordinary B-branes from
GLSMs [10]. Using the same GLSM used there, but with
gauge group generalized to U(1)"Y, we should be able to
derive the relevant GNLSM boundary action and boundary
conditions, as we have done for space-filling equivariant
B-branes in this section.

B. Equivariant B-branes on CV//U(1)"~* from GLSM

The prior discussion can be generalized to the case of
general Kihler toric manifolds, ie., X = CV//U(1)V=*
We impose the B-type supersymmetric boundary condi-
tions (4.6) and (4.7) on the GLSM (for N — k > 1), which
include the purely Neumann boundary conditions on ¢;,
while also supersymmetrizing the GLSM theta terms

(4.35)

This preserves B-type supersymmetry at the boundaries. In addition, the B-type supersymmetric GLSM boundary action

needed is

/

S —
T 4nr

N
//az dx° Z (iD0¢i¢i — i Do + (Wi +w i)Wy +W_;) Z Qiu(o

(4.36)

W)

where 0 = 2zn’ (0’ € Z) and ¥ € R. In addition, we ought to set 9,] = 2ni,, where 71, € Z, and we need to impose the

condition

for all values of b

PIf we require only U(1)N~

Oy (4.37)

! gauge invariance of the path integral, then we are free to choose 96 = 2zm,. for any integer m,., and we

would still derive a boundary action which is B-type supersymmetry invariant, as well as gauge invariant mod 2zZ.. This freedom is
merely a reflection of the fact that the moment in the equivariant Bianchi identity (4.31) is defined only up to a constant.

"“The algebraic torus (C*)V~! is the complexification of U(1)N-!
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This allows us to write (4.36) and (4.35) as

N
Sos' = —, ( (i0opichi — ihiOoepi) + Z(V/H Ty )W )

+22A0 (
k . N k
ZAOC Z Qic|¢i|2 Z

+2
c
+

0. - 0.
< | F, .d? <
> (55 [ Fonces + 5

Taking the &, — oo limit allows us to integrate D, out of
the action, which imposes the constraints (3.13), and the
second line in (4.38) vanishes. Integrating out the other
components of the vector multiplets, \7,,, then imposes
(3.12) on the entire action, as well (3.10) and (3.11) on the
bulk action. Then, to find the explicit boundary action, one
needs to use parametrizations that satisfy (3.12) and
(3.13). The explicit boundary conditions are also found
using these parametrizations, together with (3.10) and
(3.11).

We can identify the first term in (4.38) as the Hermitian
connection,

AXdx! = (4.39)

niga - e
___E: do:.
r/2i:1 ¢l ¢l

of the holomorphic line bundle Q®Y=f Ox(-#,) =
Ox(>_N¥=K(-ny)) over CN//U(1)N7*, since it trans-
forms under U(1)N-%  gauge transformations (¢; —

e ZQ’;I’{ Oua, ¢;) as

N—-k

— AYdX! = "(=hy)day,,

b=1

AXdx! (4.40)

and setting a, = a, we retrieve the U(1) gauge trans-
formation of the connection of ®Y=FOx(—#,). Both
supersymmetry invariance and gauge invariance under
the residual U(1)* gauge symmetry of the GNLSM would
then require that this line bundle has U(1)*-equivariant
structure. Moreover, we would be able to identify the
equivariant B-branes we have found as objects in
D<Cx>k(C0h(X)), the bounded, derived -category of
(C*)k-equivariant coherent sheaves on X.

The simplest example would be that of the U(1)-
equivariant holomorphic line bundle ®2_, Ox(—7,,) over
X = CP' x CP!, which just corresponds to two copies of

(GC ;66) dx0> .

N—k _ N .
> Ouldil? - n) =Y (6 +a—b>(2 Qulil* - n)
s .

é Z Ql(,|¢l >

(4.38)

[

the boundary action given in (4.29), with N = 2."° One can
even consider equivariant B-branes on fibrations of CP!
over CP! known as Hirzebruch surfaces, using GLSMs
with appropriately charged scalar fields. It is worth noting
that the derived categories of C*-equivariant coherent
sheaves over CP!, Hirzebruch surfaces, CP! fibered over
Hirzebruch surfaces, etc., provide a construction of
Khovanov homology [25].

C. Alternative formulation

We shall now derive the alternative formulation of
Abelian equivariant B-branes, in terms of a boundary
action that generalizes (4.5), as well as the relevant
boundary conditions. To derive the boundary action for
a GNLSM with X = CV//U(1), we start with the U(1)"-
GLSM boundary action

N
dx’ Z(iDoMi - i<Z>,~Do¢,-), (4.41)

o — ~
Arr oz

where the covariant derivatives of the scalar fields are
given by (3.9). B-type supersymmetry invariance of the
U(1)¥-GLSM at the boundaries of the world sheet first
requires that we impose

e_i}AﬂD_i_q)l’ = ein_Qi, (442)

ey, = e7a%, (4.43)

N N
at B boundary, where D, = e‘za Q"“V"Dieza QiaVa

while 7 and y, are the phases of 7= |f|e/ and
t, = |t,|e'«, respectively. Second, we also ought to impose

Bn fact, for toric manifolds that are Cartesian products like
X = CP' x CP!, the complete decoupling of the two boundary
actions means that we no longer need the constraint (4.37).
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| >

and

~>

Then, in components, (4.42) and (4.43) become

cos(7)D

and

Im(e6,) =0,
i, + eI, =
01Re(e6,) + cos(§)Fo1, — sin(7)D, = 0, (4.47)

which includes the mixed Dirichlet-Neumann boundary
condition on the scalar fields ¢);. Finally, for complete
boundary B-type supersymmetry invariance, we must
impose the boundary condition

ZN Qlu|¢ |2

Foia _
p

-0, + o= =Tl (4.48)

a

as well as integrate D, out of the action to obtain its
algebraic equation of motion

—}" _ZQlald)l

(4.49)

w\w

which holds on the entire world sheet.'® The condition
(4.48) further implies two more boundary conditions via B-
type supersymmetry. All the boundary conditions above
ensure the locality of the equations of motion derived from
the action.

Now, setting 0= 27n, the relevant action that consists of
(4.41) together with the theta terms is

'“The constraints (4.45), (4.48), and (4.49) result in the third
equation of (4.47) becoming 9,Re(es,) = 0.

~ |§b

<

1wy +w) —isin(7)Do(y; +y_;) — cos(7

(4.44)
a (4.45)
ey —ely_; =0,
Fi — O,
COS( ) 1¢1 - lS]n( )D0¢i = 01
Z Qia(Aia + Aa)pi =0, (4.46)

Sos' = Er . dx” (i(ia()(i’id)i — igh;0oh:)
N
+ 24, (Z 0ileil* - ?>
N-1 ~l N N-1 /g
+2ZA0L-ZQ¢|¢I'|2> + d (é/zFoudzx)

(4.50)

The term proportional to AO vanishes in the ¢ — oo limit

using the equation of motion for D given in (4.49), while
the constraints that arise from subsequently integrating out

the rest of the vector multiplet V do not affect the boundary
action. As before, we obtain the Hermitian connection
(4.17) of Ox(—n) on the toric manifold X = CV//U(1).
For X = CPV~!, we can use the parametrizations (3.19),
and (4.50) becomes

N-1
Sps = / dx° {Axaoxf + AX9, X7 — ZZR A, +n80t}
[

16, /-
+XC:<2—7[AF01CGQX>,

with A; given in (4.22) and R, given in (4.27). Then,
gauging away the ndyt term, and setting 6, = 2znQy., we
arrive at the boundary action

(4.51)

N-1
Saz/ = AZ de{Aj((%Xf + A;(ao}_(j - Z iRc“th}’
c

(4.52)

where R, is the moment given by (4.30). The boundary
action can be rewritten concisely as
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Sor' = [ (afop + aop). (@453

and gauge invariance follows since (4.32) is obeyed,
which implies that the line bundle Ogpr-1(—n) supported
by the equivariant B-brane has U(1)V~!-equivariant
structure.

The boundary conditions for the GNLSM with the
CPN! target can similarly be found; for the U(1)V~!
vector multiplets, the boundary conditions follow from
(4.47) and (4.48), while for the matter fields, the boundary
conditions are

gi(w? — %) + 22FX(y% +y?) =0,

S (4.54)
90071 — 22 X871 = 0,

and their B-type supersymmetric completions, where
g is the Fubini-Study metric and F is the curvature of
Ocpr-1(—n) given in (4.23).

An alternative formulation also exists for U(1)*-
GNLSMs with X = CV//U(1)¥7*, i.e., general Kihler
toric manifolds. The boundary action for the U(1)N=* x
U(1)* GLSM is

/

N
/az dx° Z(iDoﬁ;ﬁi(lﬁi - ifZ’iDo¢i)» (4.55)

A ),

where @ =2zn’ (0’ € Z) and ¥ € R, together with the
theta terms

Nk g, K /p
L | Fopd? < | Fod?x). (4.
;(2’[/}: o1pd x> + Zc:<2”[“- o1cd x) (4.56)

Setting
o 6, 0
—=—=== 4.57
r' ?‘h ?c ( )
and
Y= =7 (4.58)

the relevant boundary conditions are (4.46), (4.47), and
(4.48), with %f replaced by & and 7 replaced by 7. In

addition, the D, equation of motion is also necessary for
complete B-type supersymmetry at the boundaries.

By taking the ¢, — oo limit and repeating the familiar
procedure, we can obtain the GNLSM boundary action
that includes the Hermitian connection of the U(1)*-
equivariant holomorphic line bundle ®Y=F Ox(-n,) over
CN//U(1)N=* given by (4.39), as well as the relevant
GNLSM boundary conditions.

An important advantage of the alternative formulation of
equivariant B-branes over the first one is that because of the
constraints (4.44) and (4.57), the form of the GLSM
boundary action does not depend on which gauge sym-
metries we are breaking to obtain the GNLSM. This implies
the equivalence of equivariant B-branes in different toric
targets of GNLSMs obtained from a single GLSM. To
ensure that the first formulation also does not depend on
which gauge symmetries we are breaking, we can impose
the same constraints for it.

D. Quantum corrections

We have heretofore analyzed the boundary conditions of
the classical U(1)V=% x U(1)* GLSM, and the respective
GNLSM limits of these conditions, in two equivalent
formulations. We shall now investigate quantum effects
for the alternative formulation of equivariant B-branes
given in Sec. IV. C," since we shall use this formulation
for the proof of mirror symmetry in the following section.'®

There are two quantum effects of the U(1)N=* x U(1)*
GLSM with >-¥, Q;, # 0 that are important. The first of
these is the running of the FI parameters

N A
oo =)+ 3 Qutog (M), (459
i=1

where r(, denotes bare parameters, Ayy is an ultraviolet
cutoff, and y is a finite energy scale. By integrating the beta
functions of the FI parameters, f, = ;4‘2—:;’, the x4 depend-
ence is found to be

N
ra(/”) = Z Qia IOg <%) P
i=1

where A is the renormalization group invariant dynamical
scale. The running of r, implies that the phase, e« =
t./|t4|, which appears in the boundary conditions we have
used, changes with the renormalization group flow. The
second quantum effect is the anomaly of the U(1) axial R
symmetry, whereby axial R rotations w,; — ey,
o, = e Po,, and A,, — e*P/?},, no longer leave the
action invariant, but result in a shift of the theta angles, i.e.,

(4.60)

N
0. = 0o+ Y Qiab. (4.61)
i=1

These effects should be apparent in a quantum effective
description, whereby the lowest components o, of the

"We shall not study the quantum effects for the first
formulation, since the main quantum correction is the running
of the FI parameters, and the FI parameters do not enter the
boundary conditions in that formalism.

®The following is a generalization of the analysis given in
Sec. 6 of [9] to the case of multiple U(1) gauge groups.
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superfields X, are chosen to be slowly varying and to be
large compared to the energy scale u at which we look at
the effective theory. This imparts large masses to the
charged matter superfields ®;, which can then be integrated
out as long as we are studying the theory at some finite
energy scale y. From a path integral computation [20], the
superpotential of the effective action, which corresponds to
a Landau-Ginzburg model," is

bS[0 ((F22) )
(4.62)

where from the effective Fl-theta parameter

Fettya = Ta(i) + Z Qi <log (ZN ﬂ"”z )) (4.63)

is obtained. Now, by performing an ordinary axial R
rotation ¥, — ¢ /%, in (4.63), we can retrieve the
shift (4.61).

Now, it is known from [9] that a D-brane which preserves
the B-type supercharges Oz = O, + O_ and QB =0, +
Q_ is a Lagrangian submanifold of the space CV defined by
the fields o,. In addition, this D-brane ought to be the
preimage of a horizontal straight line in the W(eff) plane,
ie., Im(W(eff)(o-)) = const. If we were to solve these
constraints in terms of o,, then we will obtain the quantum
corrected boundary condition for ¢, In general, these
constraints are difficult to solve. However, when the
parameters 6, = 0, then there is the solution ¢, = |o,],
which satisfies Im(s,) = 0 and Im(W(eff>(0)) =0.

To obtain a less trivial solution, we can perform an axial
R rotation which includes the shift of 6, =0 to
0,=>", 0B, due to the aforementioned anomaly.
Then, we obtain the solution 6, = ¢”|c,|, which satisfies
Im(e7#6,) =0 and the straight line equation
Im(e‘iﬁW(eff>(a)) = 0. These conditions are compatible
with the constraints of the B-type supercharges

Op =0, +e’0_

and Q) = Q, + e #Q_ found in [9]; i.., the D-brane
ought to be a Lagrangian submanifold of the field space
C", and it ought to be the preimage of a straight line in the
W ety plane with slope tan(f), i.e., Im(e "W (o)) =
const.

Hence, we find that there is a family of explicit solutions
which include

(4.64)

PTo be precise, the theory involves a gauge field, whose only
effect is a vacuum energy [20].

o, = e‘
elﬂ/2/1+a + e_iﬁ/zﬂ_a —

e P2)  +ePi_, =0, atdx, (4.65)

parametrized by =6,/ >Y inzo which preserve the
B-type supercharges Q=0 +¢”Q_ and Q, = Q, +
e PQ_. Other solutions, including those with p #
0,/ Zf’: 1 Qiq» should exist, but in these cases the quantum
corrections are nontrivial, and therefore they are difficult to
determine, and we shall not consider them.

Now, note that we have f=40,/> ",
a=1,....,N. Using (4.59) and (4.60),
ro =N, Qi log(¥), which implies

ea ZN:I Qiaﬂ ﬂ
o TN ¢ = L (466
"0a Zi\;l Q,’a IOg(AXV) IOg(AUV) ( )

i.e., we find that 0,/ r,, are equal for all values of a.*' This
agrees with the constraints (4.44) and (4.57). In other
words, we find that these constraints, which we previously
imposed by hand at the classical level, emerge naturally as a
result of quantum effects.

Q,, for all
we have

E. Mirrors of equivariant B-branes

In this section, we shall use the alternative formulation
for equivariant B-branes, given in Sec. IV.C, to find the
Landau-Ginzburg mirrors of equivariant B-branes, follow-
ing the exposition in Sec. III, as well as the results of [9].
We shall assume in the following that

N
:ZQia>0'

In particular, b =N Qib > ( implies that we are study-
ing the mirrors of GNLSMs with Fano target spaces.

Let us start with the mirrors of equivariant B-branes on
Fano manifolds of the form X = CV//U(1). We focus on
the family of boundary conditions (4.65). The correspond-
ing boundary conditions of the matter fields include

(4.67)

cos(7o)Dy¢p; — isin(79)Dogp; = 0,

e_l?0+lﬁ/2y/+l — ei?()_iﬂ/zl//_i’

ePiBI2g = oilotiBI2g . (4.68)

where the axial R rotations on the fermionic fields have
been taken into account. These boundary conditions
preserve the B-type supercharge Qp = Q. + ¢#Q_ and

20

10a= e'’|6,,| implies the boundary condition Im(e~#¢,) = 0.

Naively, it may seem that the boundary action (4.41)
vanishes in the continuum limit (Agy — oo0) due to (4.66).
However, this is not the case, at least for Zf’: 1 Qia >0, as we
shall see in the next section.
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its conjugate. Now, in the continuum limit Ayy — o0 Now, by integrating over the modes of ¢; in the frequency
whereby 7, = b, log(Ayy/A) — oo, we have 7, — 0. As  range u < |k| < Ayy in the path integral, |¢;|* is replaced
aresult, the mixed Dirichlet-Neumann boundary conditions by (|¢,-|2> = log(Ayy/u). Since 7o/ l;l = log(Ayv/u) +

on ¢; reduce to pure Neumann boundary conditions. #/b,, taking the continuum limit Ayy — oo gives us
With these facts in mind, let us shift our attention to the | ¢'|2 ~ 7o/ 1;1 which implies that
i ~ s

boundary action

Soy = ——
P 4ary Jos —

271'}" / Z |¢1|2 <80§01 + Z QlaAOa>

N
(iDO(}"(bi - i(}iDOqﬁi)de Sox = ( Z Oop; + Ao + z bic A0c>
(4.70)

The relevant portion of the action with regard to the

(4.69) dualization of mirror symmetry is then

N 2
dp; + > QiAq
a

_zl_n/;i:z:_? ﬁ/( Zd(p,—i—A—i—Z bie 4 ) (4.71)

where we have considered the Euclidean signature on the world sheet for simplicity, and where the terms with fermionic
fields that are not essential in the present analysis have been ignored. Let us consider another action with one-form fields
B, = B,-ﬂdx" given by

isnro/B nBit o /B A <d¢’z+ZQmA )] Zﬂ/az(b12d¢,+A+Z ‘CA) (4.72)

1

The one-form fields B; have the boundary condition
Bilss = 05 (4.73)

i.e., their inner products with tangent vectors of the boundaries vanish. If we were to first integrate out 15;, the constraint

B; = i2(%/ 131) * (dp; + >N 0,,A,) is obtained [whereby the boundary condition (4.73) is consistent with the boundary
condition D;¢; = 0 obtained in the continuum limit] and the original action (4.71) is obtained. Alternatively, if we were to
first integrate out ¢;, the constraint

is obtained, where the fields 9; are periodic with period 27.” The boundary conditions (4.73) then imply that 9; are

constants at the boundaries of the world sheet. The boundary terms containing 9, (5¢;) obtained when integrating out ¢;
cancel if these constants are

9, =0/b, atdz, (4.75)

for all i, where 8/b, = # = 6,/b,,. Now, using the constraint (4.74) in (4.72), the mirror action

s&:zj:;ﬂ L{’} /d&,-|2+z/d19 A (Z Q,uAa>] ;i/ <A+§ Bl}c&)
:i%{fgoéd@,»|2—iLZth9idAa}
KZQ& —6>A+Z<ZQ,L ,—b)‘ > ] (4.76)

In the following derivation, we use the notation |[A]> = A A xA.
ZFor details on why 9, ought to be periodic, see [20], page 250.

066010-18



EQUIVARIANT BRANES AND EQUIVARIANT ...

PHYS. REV. D 97, 066010 (2018)

is obtained. Finally, the boundary term in this action
vanishes when we use the boundary condition (4.75),
and the dualization process ends with only a bulk action.
In particular, the relationship (reviewed in Sec. III)
between the fields of the mirror theories, i.e.,
Y, + 7, = 2B,e2 Qv (4.77)

holds, and we have the following relationships between
superfield components:

yi=0;—iY;,

il
{ 01.9; =£2(—|pi* (04 + >N QiAsn) + Wi ii)
Xiv =20 1i@is  xio =—2W_i;,
Ti=20w. i Ii=-2¢w_,

E; :—2¢'—iW+i—2|¢i|zzQia5a, (4.78)

where 0, = 0y £ 0., Y, =y, + 0, +0 y_, +0T0"E,.
The relationship between the periodic fields d; and ¢; is, in
fact, evidence that mirror symmetry of the two theories
stems from T duality on the phase of the charged chiral
superfields ®;, whereby the neutral twisted chiral super-
fields Y; are periodic, i.e., Y; =Y, + 2zi [20].

Furthermore, the Kéhler metric of the target space of the
mirror Landau-Ginzburg sigma model is given by

@‘)
=

dQ,)z d9;)?). (4.79)

which is the flat cylinder metric on (C*)V. As in Sec. III,

taking the ¢ — oo limit allows us to integrate % out of the
action and imposes the constraint

N

>0y

J

N)
H

(4.80)

giving us the gauged Landau-Ginzburg theory with hol-
omorphic twisted superpotential

N—1 N N
W= (S0 i )5 e
¢ \j=l j=1

We recall that the constraint (4.80) fixes the target space of
the gauged Landau-Ginzburg theory to be the algebraic
torus (C*)V-1.

The boundary conditions (4.75) imply that ¢ have a
common phase that is fixed. In other words, the boundaries
of the world sheet are mapped by ¢™i to a cycle y, in
(C)N=! which has N — 1 real dimensions. This cycle is
given by

(4.81)

(e, ... e™) = (e~@ti/bi | emen+id/br)  (4.82)
where g; are constrained by Y ¥, Q[Qi = 7. In the con-
tinuum limit, the pure Neumann boundary condition we
obtain for ¢; from (4.68), implies the Neumann boundary

condition

910, =0 (4.83)

for the coordinates g; tangent to y;. Using (4.78) and (4.68),
we may also obtain boundary conditions on the fermionic
dual fields, which are

eBl2y 4 &by =0,

Py +e P2 =0. (4.84)
These boundary conditions correspond to a D-brane
wrapped on the cycle yj.

The cycle y, is a Lagrangian submanifold of (C*)V~!
The A-brane wrapping this Lagrangian submanifold is the
mirror of the space-filling B-brane supporting the holo-
morphic line bundle Ox(—n) with U(1)"~!-equivariant
structure, where X is a Fano toric manifold of the
form CV//U(1).

Let us investigate this A-brane further, by studying the
image of the cycle y; in the W plane. In particular, we
would like to find the mirror of the U(1)¥~!-equivariant
structure on the B-brane. The twisted superpotential (4.81)
can be rewritten as

W= Wequiv + Wy, (485)
where the first and second terms of (4.81) correspond,
respectively, to the first and second terms of (4.85). The
image of y; in the Wy plane is

N
Wylos = €? Z le7], (4.86)
i=1

which is the mirror condition found in [9] when studying
the mirrors of B-branes without equivariant structure. In
particular, it is a straight line that makes an angle f = 9/ 131
with respect to the real axis. Since we have set 0 = 27n
earlier, and [y ¢;(Ox(—n)) = —n, the slope of this straight
line depends on the first Chern class of the holomorphic
line bundle Ox(—n) supported by the B-brane.

Shifting our focus to the boundary value of chuiv, we
find that it is given by

_lﬁU lﬁ <Z Q]CQ] C)

e 5,.)Eq.(0).

N—-

equnv |()2 Z
N—

(4.87)
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where we have used the boundary conditions §; = 0/
b, = p and Im(e~#5,) = 0 as well as the identity = 6,/
Zf\’: ! Q... Here, Eq. is a complex-valued map

)N—l

(4.88)

‘Eq: ye — u(l

where 1(1)¥~! is the Lie algebra of U(1)"¥~!. In particular,
for a given value of ¢, yy is mapped to a straight line in the
Eq. plane, which makes an angle f with respect to the real
axis. Thus, this map Eg from the cycle y; (on which the
A-brane is wrapped) to 1(1)V~! is the mirror of U(1)¥~!-
equivariant structure on the B-brane. In addition, we note
that the boundary value of the total twisted superpotential is

N N-1 N
W=t (S e+ et 00-1) ),
1 c J

i=

(4.89)

which is a map from Re(e~#&,) and ¢, to a straight line in
the W plane which makes an angle  with respect to the
real axis.

The mirrors of equivariant B-branes on Fano toric
manifolds of the form X = CV//U(1)=* can similarly
be found using the above method. These mirror A-branes
correspond to Lagrangian submanifolds (y4) of the cylinder
(C)X, which is defined by

N
ZthYj —1, =0,

J

(4.90)

with the additional data of the superpotential
. k /N 5 N
W= Z(Z Q.Y — ?C> S+ el (491)
¢ \j=I j=1
The first term on the right-hand side of (4.91), when
restricted to its boundary value, contains the mirror data of

equivariant structure on ®2’:‘{‘ Ox(-#,) (which is sup-
ported by the space-filling B-brane), which is a map

Eq: yg — u(1)~ (4.92)

F. Non-Abelian equivariant B-branes

In this subsection, we shall use the insights obtained
from studying Abelian equivariant B-branes to find the
description of non-Abelian equivariant B-branes. This will
be achieved by generalizing the first formulation studied in
this section for Abelian gauge groups (cf. Secs. 4. A—4.B)
to non-Abelian gauge groups. Note that the GNLSM
notation of Sec. Il is used in this subsection. For simplicity,
we shall consider only the case where the B field, C field,

and 6 parameter of the GNLSM given in (2.5) and (2.6)
are zero.

We shall first investigate the boundary conditions
required for B-type supersymmetry, before proceeding to
discuss the admissible boundary action. Now, note that all
the terms in §(Sgauee +S,) [Eq. (2.17)] vanish using the
following boundary conditions:

Im(c,) =0,
Apat+4_,=0,
dRe(o,) =0,

Ay, =0,
01Ap, =0,

0y (/1—11 - /1-&-11) =0,

61 (Da + 811m(aa)) =0. (493)
These conditions are a generalization of the conditions
given in (4.20) for the example of CPV~!, except that the
boundary condition for Fy;, is replaced by the stricter
conditions A, =0 and 0;Ay, =0, and the boundary
condition for Re(s,) becomes 9;Re(s,) = 0. These stricter
conditions are necessary since we now require that the
boundary conditions preserve the locality of the relevant
equations of motion when no additional boundary action is
added, and because the supersymmetry transformations
now contain non-Abelian terms, which causes B-type
supersymmetry invariance of the set of boundary condi-
tions to not hold unless we use the stricter conditions on the
gauge fields.* The boundary conditions, in fact, imply that
gauge transformations have to be restricted such that the
transformation parameter @“ has a vanishing derivative with
respect to x! at the boundaries, in order for these boundary
conditions to be gauge invariant.

Next, we turn to the boundary conditions for the matter
fields. Let us first consider the " = 1 subalgebra of B-type
supersymmetry, which corresponds to €, = i€, €, = —i€,
€_ = —i€, and €_ = i€, where € is a real parameter. In this
case, after integrating out the auxiliary fields F and F?, we
find that (2.16) is

6Smatter
1 ie
=——— [ dx"{g 04" (Wl —wl)+g,0{" (Wl +y)
272 oz
+ 91 (W' —ywL)Re(0*)e] + @y (v! +yl)Im(c*)e) }.

(4.94)

*If we relax the requirement of locality of equations of
motion, then the boundary conditions on A, and Re(s, ) become
01Ao, = 7, and 9\Re(0,) = 7,, Where 7 is a constant valued in
the center of g.
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where g, XY = g;(X'Y + X7Y')  and o XY =
ig;;(X'Y7 — X7Y"), and where (I,J,K,...) are indices
corresponding to real coordinates on X. In addition, if
we insist on locality of the matter equations of motion, we
require that

91,69' 01 ¢’ =0,

g (Wlogyl =yl soyl) =0 (4.95)

at the boundaries, where Sgy’ = sy’ + I'%; 6¢pXwr. An
equivariant B-brane shall wrap a submanifold (denoted as
y) of X, to which a boundary of the world sheet is mapped
via (¢, ¢"). Now, any allowed variation of ¢ (denoted 5¢’
for the real coordinate ¢') along the boundary, and the
derivative along the boundary, 9y¢’, ought to be tangent to
y. The first constraint of (4.95) then implies that 0,¢’ is
normal to y, since A;, = 0 at the boundaries. Then, taking
into account the facts that Im(s,) = 0 and A, = 0 at the
boundaries, we find that (4.94) vanishes if y! —y/ and
wl + ' are, respectively, normal and tangent to y, and &/,
is tangent to y, which implies that y is G invariant. In
addition, we note thatw’ — y/, being normal to y and y’ +
w'! being tangent to y implies that
yl—yl =0, I: tangenttoy,
wl +yl =0, (4.96)
|

I: normaltoy

11

(for a choice of coordinates that separates the normal and
tangent directions), which satisfies the second constraint
of (4.95).

Next, the NV = (2,2) supersymmetry transformation of

@' is

8" = iyl — e JiyX — eyl + e Ty k),
(4.97)

where €, =€, +ie, and e_ = €_| + ie_,, and where J
is the almost complex structure of X locally given by J;, =
i6, and J% = —i&;. B-type supersymmetry corresponds to
€., = —€_; and €,, = —e_,, whereby

o' = i(ea(wl +yl) —ep Tt +yk)).  (4.98)

Hence, y! + y/, and J% (wX + wX) are tangent to y, which
implies that the application of the almost complex structure,
J, preserves the tangent space of y. Therefore, y is a
holomorphically embedded complex submanifold of X.
This complex submanifold also happens to be G invariant,
which we know from the previous paragraph.

Indeed, (2.16) vanishes under this boundary condition;
integrating out the auxiliary fields F' and F?, (2.16) can be
rewritten (for e, = —e_ =€) as

Bmaee = 553 || A el=0(@8y- = v) = 0@~ v,)

24

-9 NP w_+w,) =iy +y.)

—Re(0")g(es.y —y_) —iRe(c")w (2. —y_)

—ilm(c*)g(é, vy +y_) + Im(c")w (2. +w_)) +c.c.} (4.99)

[where g(X,Y) = g, X'Y’ and w(X,Y) = w;;X'Y’], which vanishes using Im(s,) =0 and A, =0 as well as the
conditions that 9y¢’!, wl + !, and &/ are tangent to y while 9,¢' and w! — ! are normal to y.

We may add the B-type supersymmetric boundary action

(0" +5°)
2

_ - i _ _
Sox' = /a ) de{Aiiééqﬁ'" +A5000™ + R, =5 Fna(w +y) (W + 117’1)}

- / de{Ai;aoqu+Ai-zaoéw—iieaAa—gFﬁﬁwmw)mwi) , (4.100)
[

where we use (m, 711, n, i1) as coordinate indices on the B-branes, where the curvature of AX satisfies F%, = FX, =0, and

where A, = —i(Ay, — W) and

D _ X >m X zm
R, = —Ajel — Ageéel

= i AX. (4.101)

PRecall that for a tangent vector, 7, and normal vector, N, of a holomorphically embedded complex submanifold, y, of the Kéhler
manifold X, we have o(T,N) = g(JT,N) = 0.
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B-type supersymmetry invariance and gauge invariance of
this action require the equivariant Bianchi identity

dR = 1,F¥X, (4.102)
and this implies that each B-brane supports a G-equivariant

holomorphic line bundle (cf. footnote 12), for which R, is
|

the moment.” The inclusion of this boundary action results
in some of the equations of motion being modified by
boundary terms. One may generalize this even further, as
shown by Kapustin et al. [11] (cf. Sec. IV. A), by instead
including a Wilson line that represents a G-equivariant
graded holomorphic vector bundle.

In conclusion, we find that in general,

Equivariant B-branes are G-invariant holomorphically embedded complex submanifolds of X, which

support G-equivariant holomorphic vector bundles (which may be graded).

As discussed in Sec. IV. A, at least in some cases, this
implies that they are objects in the bounded, derived
category of G¢-equivariant coherent sheaves on X.

V. EQUIVARIANT A-BRANES
AND THEIR MIRRORS

In this section, we study the A-type supersymmetric
boundary actions and boundary conditions in Abelian
GNLSMs on I x R with toric target spaces, X, as well
as their mirror descriptions. These boundary actions and
boundary conditions correspond to equivariant A-branes
wrapping submanifolds of X. Then, with the insights
we find from analyzing these abelian equivariant A-branes,
we shall proceed to study equivariant A-branes for non-
Abelian GNLSMs.

A-type supersymmetry is defined by the combination of
supercharges

04 = Q+ —+ eiﬁQ—,
Qi =0, +e "0, (5.1)

where f € R. In what follows, we shall set =0 for
simplicity, though it is straightforward to study the f # 0
|

Sos = / dxPAX, 9o XM = / dx0dpMe AN — /
> xl=zx

where AX(@) and AX(*) are the connections of U(1) line
bundles on the A-branes y, and y;, on which the boundaries
x; =0 and x; =7z end [we shall use (M,N,...) as
coordinate indices on the Lagrangian submanifold branes].
This boundary action is A-type supersymmetric if Fj =
OyAX — OyA%, = 0, i.e., if the line bundles are flat.

*Note that gauge invariance of the boundary action requires
the use of the identity a”L; R, = [a. R],.

*"We shall extensively use the concept of A-boundary super-
space, which is reviewed in [10,17].

I
generalization using the same techniques. From (2.15), it
can be seen that the corresponding relations among the
supersymmetry transformation parameters are

o
I
o)
I

o

+

—

ml
I
mI

(5.2)

I
o

+ .

We shall also make use of superfields when discussing
boundary conditions and boundary actions, and to this
end, we shall make use of the concept of boundaries in
superspace [10]. For A-type supersymmetry, the relevant
boundary in superspace is known as “A boundary”27; and

corresponds to

0=0"=—-06",
(5.3)

Let us first briefly review what is known of ordinary
A-branes. For N' = (2,2) NLSMs, the boundary condition
needed to preserve A-type supersymmetry at the boundaries
maps each boundary to a middle-dimensional Lagrangian
submanifold of the target space [9]. In addition, we may
include the following boundary action:

dx0dpMe Ay, (5.4)

x'=0

|

We are interested in the generalizations of Lagrangian
boundary conditions and the boundary action (5.4) for
GNLSMs. These shall be obtained from a GLSM boundary
action, using the methods of Sec. III. No boundary
conditions shall be imposed by hand at the GLSM level,
but rather they shall be understood as being derived through
boundary interactions involving “boundary superfields.”
The advantage of this formulation is that the geometric
parameters of the D-brane enter a “boundary F term,” and
this aids our understanding of quantum corrections. In the
following, we shall attempt to generalize the NLSM
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Lagrangian boundary conditions and boundary action
(5.4) to the case of U(1)"-GNLSMs with Kihler toric
target space.

A. Equivariant A-branes on CV//U(1) from GLSM

We shall first consider toric target spaces of the form
CN//U(1). The U(1)N-GLSM boundary action consists of

1 1 PN ) N B N
_ 0 2
S1 =5, ) & [EZ O +3 2 JFdhi =) + 35 (osea = Auada) 3 eaAOa} (53)
and
1 & 0 o S Qv
= —Z/ dx /dadecb,-e o %Va® (U; — Imlog ®;) + Re/d@si'fi
2~ Jos
Mo _ _
+ Zg / d0doRe|E, (D, %, — D_%,)] |, (5.6)
where U; is a real, bosonic, boundary auxiliary superfield d. ez[’f QiVap. —
expanded as l b
D.X,=D_%,,
Uy =u; +0X; - 0X; + 00E; (5.7) D.¥,=D_%,, (5.11)

(with the lowest component u; being a periodic (multi-
valued) scalar field defined on the boundaries), Y; = DU is
the “field strength” of U;, expanded as
Y;:=DU; = X; + 0(E; + iOyu;) — i000,X;,  (5.8)
and is a boundary Fermi superfield satisfying DY; = 0,
while the parameter
s,»:C,-—ia,» (59)
is the boundary analogue of the complex Fl-theta param-
eter. Although both u; and ¢; are periodic, multivalued

- = N
functions, the presence of the term f deGCD,»eZu QiaVa
D, (u; — ;) in (5.6) requires that u; — ¢; is single valued.
We have also introduced an A-type supersymmetry invari-
ant boundary D term for the vector superfields, which
contains the complex boundary Fermi superfields

g2, =¢&,+6G,+0H, + 00K,
E, =&, +0G,+0H, + 00K,, (5.10)
where £, and K, are fermionic auxiliary fields while G,
and H, are bosonic auxiliary fields, all defined along the
boundaries. The A-type supersymmetry transformations of
these fields may be found using the differential operator
6 = €Q — €Q defined in [10] on the superfields Z, and Z,,.
In addition, they are defined to be invariant under gauge
transformations. The form of (5.6) is chosen such that the
boundary conditions

are effectively imposed via boundary interactions. In
components, these are

|¢i|2 = Cis
Gy i + i =0,
W_ii + piy i = 0,

ipiD\ + Wi — Wi+ Fipi + iF; = (5.12)
and
/1+a - z_a - O7
alda = O,
FOla = Ov
D, =0,
01(Aig +1_4) =0, (5.13)

and the complex conjugates of the conditions in (5.13).
The supersymmetry transformation of the bulk GLSM
action together with (5.5) is

S+ Sl 247[/ de{S j'+a +i—a) E‘(Z—a +/1+a>}'
(5.14)
Now, the U(1)" gauge invariance of the first term in (5.6)

requires that U; transforms under U(1)Y gauge trans-
formations as
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N
U - U,-+ZQ2’” (A, +A,), (5.15)

in order to cancel the gauge variation of Imlog ®;. This implies the following modification of the supersymmetry
transformations of the components of U, in order to preserve the Wess-Zumino gauge:

ou; = eX; —eX,,
N
0X; = —€<E + l<60u + Z QmAOa)) —ie Z
) N
(SX[ = —€ (El — i(@oui + Z QiaA0a>> Z
. NN . 1_ .
= iedoX; + iEyX; — 5 Z Qia(Aea + A1a) + 58 Z Qia(Aca + Ara)- (5.16)
The boundary superpotential term in (5.6) is not invariant under supersymmetry,” but rather varies as
1 S OR T ZN ZN iaCi 0 3 —/7 1
B ZZ N dx°Re [ dbs;Y; - N dX{e(iy +Ay) = (g + Aia)}- (5.17)
Hence, supersymmetry invariance of the entire action requires that (5.14) and (5.17) cancel, which is possible if and only if
N
> Qiati = ra- (5.18)
Likewise, the first part (5.5) of the boundary action is not U(1)N-gauge invariant, but varies as
58, = dxo Z 0,(—0pa,), (5.19)
while the boundary superpotential term varies under gauge transformations as

N N
{ Z / dx"Re / desr} 2 2 Qialh / dx*0ya,, (5.20)
oz 2n s

since the residual gauge transformation A, = a,(x) of the Wess-Zumino gauge shifts u; — u; + Y.~ Q,,a,, while leaving
X; and E; invariant. Therefore, gauge invariance of the boundary action follows if 2’

N
> Qia; =0, (5.21)
Combining (5.18) and (5.21), we find that we need
N
Z Qiasi = 1, (5.22)

for gauge invariance and A-type supersymmetry invariance of the action.

28Th1s nonzero variation occurs because the boundary Fermi superfield Y is not invariant under the gauge transformation (5. 15)
*In fact, (5.21) only needs to hold up to the additional term 2zm, where m € Z, since the path integral remains gauge invariant in
such cases. However, we shall set m = 0 in the following for simplicity.
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Expanding the boundary action in components, we have

SaZ:Sl +S2

1 N
=— | dx"
5 [ (Y

2 ()“—a/tra - a —a + Z 0 A0a>

1 & o ) ) i} a
+ ZZ Lz dx’ <(l¢iD1¢i W — oo+ Figi + §iFu;
i

<¢ll// z+y/+z¢ )X +X(

— (|pi|* = /) E; + aiaoui>

l¢l + ¢ll//+l) -

3(25 L3¢
i
2¢ YW 2¢ll// zl//-H

N 1 1 _ -
+ ZH:EAZ dx0§ (fa(ao(ﬂ—a _’1+a) + 281 (ﬂ—a + /1+a>)

+i2G,(0y0,) — 2H (D

- iFOla) + ilca(’l—a

where the covariant derivative of the scalar fields is given in (3.9). First, we note that Stoke’s theorem implies

a; a;
_t dx0 = L .
27[/6)2 Oou;dx 27[/82{30(/’1 + 0y(

since u; — ¢, is single valued. Then, taking the ¢ — o
limit, and subsequently integrating out the boundary
auxiliary fields, we obtain the boundary action

1 N o N-1 o
S()Z = % d)CO <Z (liao(p,' + 9A0 + Z QCAOC> s
(5.25)

together with the boundary conditions (5.12) on the matter
fields, as well as boundary conditions

z+c - z—c =0,
016, =0,
Foie =0,

D, =0.

01 (s +i_p) =0, (5.26)

on vector multiplet fields, and their complex conjugates.
Before proceeding, we note that the boundary conditions
on the matter fermion fields in (5.12) ensure that the
spurious boundary term (3.28) vanishes.

Now, we shall rewrite (5.25) as

1
o dx (Z a;Dyp; + QAO)

where we have used YN Q,.a; =0,
covariant derivative of ¢; is

(5.27)

and where the

—Ayq) +cc), (5.23)

u — (pi>}d)€0 - &/ 60¢idx0’ (524)
2w o

Dop; = Oog; + Z QicAoc (5.28)

which agrees with the general definition for scalar fields
given in (2.7). By integrating the vector multiplet out of the
bulk action [cf. (3.15)], we obtain

AO — 125\7:1 Qi(i(}iboqﬁi + l1[_/—il//—i + ll_,+ill,+i)

2 N, O3l
o vazl Qicibo%‘
=1 9j¢;

at the boundaries,30 where (5.12) has been used in the last
step. Hence, the final boundary action is!

Z, 1 ch D0§01

1
Sdz—— dx [ a;Dygp; — 0
2n Z QJ ;

(5.30)

*The presence of the boundary term proportional to 9A0
ensures that the algebraic equation of motion for 1210 does not
contain a boundary term; see footnote 3.

To be precise, the complete boundary action includes the
C-field term given in (2.5). However, to simplify the following
arguments, we shall consider the C-field term to be part of the
bulk action, by using Stoke’s theorem to promote it to a bulk
term.
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Now, let us investigate the example of X = CPV~!. First, the inhomogeneous coordinates (3.20) that parametrize a local
patch of CPN~! can be written as

\Zi|ei” _ il (5.31)
pylen '
In other words, the argument of Z' is
r'= @i = on (5.32)

We then derive the following A-type supersymmetric boundary conditions of the GNLSM matter fields from (5.12)
) .. 32
using the parametrizations (3.19) and (3.21)™":

|Zi|2 _ Cc_;/
Ziy? + 707 =0,
Ziy? + 7% =0,
(2172 = ZINZ) + 7% — gl y? + FZZ + FZ 7 =0,

(5.33)

where the last condition is, in fact, a Neumann boundary condition on y', since Z'0{Z! — ZI4 Z! = 2|Z|?i04y’, where
. . N-1 ~ ~ ~ . N-1 i~
827/1 = auyl + Z (Qic - QNC)AﬂL' = ;ﬂ/l + Z E}é A,uc’ (534)
C C

with &/ being the Killing vector field that generates the U(1)¥~! isometry of the torus, T7V~!, parametrized by y;. The
Neumann boundary condition on ' together with the Dirichlet boundary condition on | Z!| implies that the equivariant A-brane
wraps this torus.” Furthermore, this torus is a Lagrangian submanifold of CPV~! with respect to the Fubini-Study Kihler form
given by (4.24). The remaining boundary conditions, i.e., for the fields in the vector multiplet of the GNLSM, are given by
(5.26). The complete set of GNLSM boundary conditions is invariant under the U(1)V~! gauge symmetry and satisfies the
supersymmetry transformations given in (2.13) and (2.14) for e, = €_. In addition, the boundary conditions also ensure the
locality of the classical equations of motion, i.e., that they contain no boundary terms.
Next, with the aid of (5.21), we can rewrite the boundary action (5.30) as

N

1 A C
Soy =— [ dx° [w -6 !
2w o ; ’ o1 €

- 21_” dx” {g (ai - (ZN: ak) e )Docp,- - (aN - (Z ak) %)Dofﬂz\/]

] Dof/’i

[

i—=1 k=1 j=1%j k=1 J
| N-1 N .. Nl
=— [ ax° {Z (ai - <Z ak) N—l) (ao((ﬂi —on)+ ) (Qic - QNC)AOC>:| ; (5.35)
2z Jos i=1 =1 j=1€i c

or

N-1 N-1
S :/ dx0< AX0yy =Y R,A ) 5.36
)y s ; (14 ; 0 ( )

32The last condition of (5.12) is actually trivialized using the algebraic equation of motion of Al in (3.15). The last condition of (5.33)
is obtained via A-type supersymmetry transformations of the fermionic boundary conditions.

““Here, both boundaries are mapped to the same A-brane. If the boundaries are assigned unique parameters s7 and s? in (5.6), then
each boundary is mapped to a different A-brane. However, for simplicity, in most of what follows in this section, we shall assume that
both boundaries are assigned the same parameter s;.
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X _ 1 N (9] 3 3
where A} = 5- <a,- - (OoN, ar) —+ C_) is the connection

j=1 €
of a flat U(1) bundle on the Lagrangian torus 7V~!
parametrized by y;, and where

N-1
Rc = - Z(Qic - QNc)Azx

1

N-1
— S aax
i

= —1; AX. (5.37)
As we explain below, A-type supersymmetry invariance
holds since

dR = 1, FX, (5.38)
which is equal to zero because FX = 0. This is known as
the equivariant Bianchi identity and implies that the flat
U(1) bundle has U(1)N~'-equivariant structure,® for
which R, is the moment [22,23].

Now, the boundary action (5.36) is not invariant under
the supersymmetry transformations (2.13) and (2.14) for
e, = €_. Instead, the fotal action S + Sys is invariant under
these transformations at the boundaries, using the boundary
conditions (5.33) and (5.26), and therefore the sum of the
expressions (2.16), (2.17), and (2.18) with the supersym-
metry variation of the boundary action vanishes. The proof
of this involves the supersymmetry invariance of the
constant moment R., which is essentially the equivariant
Bianchi identity (5.38), as well as the boundary constraint

fe=—T, (539)

on the moment map, which can be derived from (5.18)
using ¢; = |¢;|> and the parametrization (3.19). Further-
more, the first term of the boundary action (5.36) is
supersymmetry invariant via Stoke’s theorem since the
fermionic superpartners of ¥’ are not periodic nor multi-
valued ([20], page 307), and the nonzero supersymmetry
variation of the boundary action is canceled by the C term
in (2.18) and the @, term in (2.17) via

27R. = -0, + C,, (5.40)
which can be shown to hold via (3.27), (5.39), and (5.22).
Finally, the B-field terms in (2.18) (where the B field is
proportional to the Kéhler form) vanish using the boundary
conditions given in (5.33).

*The G-equivariant Bianchi identity is equivalent to the G
invariance of the connection, A, of the bundle (£;A = 0), which
implies that the covariant derivative d + A is G invariant, and this
defines a G-equivariant bundle; see [22], Sec. 3.2.

Next, writing the boundary action as

N-1
S :/ dx0< Al).(aAy[),
w= | ; i

it becomes obvious that it is invariant under the gauge
transformations given in (2.11) and (2.12), since Af( is a
constant and the expression diy’ is invariant under gauge
transformations.

We have thus found A-type supersymmetric and
U(1)¥=! gauge invariant boundary conditions and boun-
dary interactions corresponding to an equivariant A-brane
in CPV~!, which wraps a Lagrangian submanifold 7V~!
that supports a U(1)¥~!-equivariant flat U(1) bundle.
We may follow a procedure analogous to that presented
above for CPN~! in order to describe an equivariant
A-brane in a toric manifold X = CV//U(1) (by choosing
different values for Qi), which would again be a
Lagrangian submanifold 7V~! supporting a flat U(1)
bundle with U(1)N~!-equivariant structure.

(5.41)

B. Equivariant A-branes on CV//U(1)N-*
from GLSM

We can generalize further, since the examples above have
been solely for equivariant A-branes on X = CV//U(1)Nk
where N — k = 1. For general values of N —k, we may
derive the relevant boundary conditions and boundary action
from the GLSM boundary action (5.23), but instead of
taking the ¢ — oo limit for a single gauge group, we take
e, — oo, where b =1, ..., N — k. Integrating out auxiliary
fields, and using parametrizations analogous to (3.19) and
(3.21), we will be able to derive the U(1)*-GNLSM
boundary conditions and boundary action that represent an
equivariant A-brane wrapping a Lagrangian torus 7%, which
supports a flat U(1) bundle with U(1)*-equivariant structure.

Kapustin et al. ([11], page 58) have conjectured that
the category of G-equivariant A-branes is some sort of
G-equivariant version of the Fukaya category (which
includes Lagrangian submanifolds that support flat unitary
vector bundles as objects). Indeed, if we generalize the
definition of the equivariant Fukaya category given for finite
groups by Cho and Hong ([26], page 68) to G = U(1)¥, we
see that the equivariant A-branes that we have found are
objects in the U(1)k-equivariant Fukaya category, and
therefore, we have partially verified the conjecture of
Kapustin er al. The other objects in the category that we
have not constructed correspond to Lagrangian submani-
folds that support equivariant flat unitary vector bundles.

C. Quantum corrections

There are two important quantum effects of the bulk
U(1)N=F x U(1)k GLSM, which affect the FI parameters r,,
and theta angles 6, [20]. The first effect is the renormal-
ization of the FI parameters,
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> A
oo =)+ 3 Qutog (M), (542
i=1

where r(, denotes bare parameters, Ayy is an ultraviolet
cutoff, and y is a finite energy scale. Via integration of the

beta functions of the FI parameters, f, = y‘fi:;', the p
dependence is found to be
= u
r.(p) = Q,, log( =), 5.43
=3 Qutor(}) (5.43)

where A is the renormalization group invariant dynamical
scale. The second quantum effect is the anomaly of the
bulk U(1) axial R symmetry, whereby axial R rotations
wi = e Py, 0, > o, and Ay, - TP, no
longer leave the action invariant, but result in a shift of
the theta angles, i.e.,

N
0, = 0,-2>  Quf. (5.44)
i=1

The FI parameters are closely related to the boundary
parameters c;, via (5.18), and the latter undergo similar
renormalization to that of (5.42) [10], i.e., the parameters c;

run as
¢;(u) = log (%) . (5.45)

Note that this quantum effect is nontrivial even when

N, Qis =0, unlike the running of r,(u). In particular,
(5.45) implies that the size of the equivariant A-brane in the
toric manifold X could depend on the energy scale x. How-
ever, for CPV~!, this is not the case, because the Dirichlet
boundary condition is |Z|>=c;/cy, and hence the equiv-
ariant A-brane stays the same size regardless of the energy
scale. On the other hand, when Zf’: 1 Qiq > 0, the manifold
X becomes large at high energies due to (5.43), since 7, are
the size moduli of X [for CPY~!, this is obvious from
(3.22)]. Finally, it is expected that in addition to the bulk
axial R anomaly, a boundary axial R anomaly also
occurs [20].

D. Mirrors of equivariant A-branes

Having described equivariant A-branes in toric mani-
folds, we shall now use mirror symmetry to find the
Landau-Ginzburg mirrors of these branes, following the
exposition in Sec. III, as well as the results of [10]. We shall
obtain the mirrors of branes in toric manifolds that obey
¢ (X) >0, since mirror symmetry is a quantum duality
(which holds after taking all perturbative and nonperturba-
tive quantum effects into account), and we can only obtain
quantum GNLSMs for Kihler targets with ¢;(X) > 0 from
GLSMs (cf. Sec. III).

The boundary action of the U(1)N GLSM that we wish
to dualize is given by (5.23), with >V a;0yu; replaced by
SV a;00; via (5.24).”° The terms in the full U(1)N GLSM
action relevant for the dualization are those that involve ¢;,

1 N N N
S(/} = _§Z/Z |¢i|2 (8/4(pi =+ Z QiaA/m) <aﬂ¢i + Z QiaAZ> d2X
i=1 a a

1 N N N
+ 27 Jox [Z (_2’4;‘|¢i|2 (alfﬂi + ; QiuA1u> + aiaofp,») + ; GuAOa:| dx®,

i=1

(5.46)

where —2|¢;[2(010; + SN QA1) = ig?ﬁ,Bld)i.% Here, the boundary theta term Zyg—;faz Ap.dx° has been included in
order to maintain the gauge invariance; i.e., the gauge transformations @; = ¢; + >~ Q;,a,, Ay = Ay — 0,a, leave the
expression (5.46) invariant [as long as (5.21) holds]. All other terms, including those involving fermions, have been
suppressed for simplicity.

Now, let us consider a system of N one-form fields (B;),, as well as N + N periodic scalar fields consisting of 9; and #
with the action

1 N |: ( N
S/ = — / —|P; 2Bi B’:aax - Bi A\ dlgl + legiFa + / Cli - 191' 8 ﬁidxo s 547
3| [ (s, > [ (a0, (547
where F, is the curvature of A, = A,,dx", F, = dA,. In addition, the boundary condition
(B;)); =0 (5.48)

*In the following analysis, we shall take |¢;|? to be nonzero, and ¢; = Imlog ¢; is understood to be well defined, permitting us to set
U; = ¢; + U}, whereby U’ is a boundary superfield that is single valued.

*The subsequent dualization analysis follows from that given in [10], the only difference being that we have generalized the gauge
group from U(1) to U(1)V.
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is imposed. Integrating out 9; gives rise to the constraints

N
dB; = Q;,F,onX,
(B;)o = Opit; along 0. (5.49)

The first of these constraints is solved by B; = dg; +
SNQ,,A,, where @; is a periodic scalar field of
period 227 Then, the second constraint together with the
boundary condition (5.48) implies the relations

N
Dog; + z QiuAoa = o,

N
Ovg; + Z QiA1= 0, (5.50)

1 & 1 N
So 2”2 [/}: < PIPaE 0,,8;0"9;d’x + ; Q,a8,Fa> + /‘)z(al 9,)00it;dx" | .

i=1

on the boundaries. Inserting the first expression of (5.50)
into (5.47) we obtain the action (5.46) without the u/-
dependent terms (using Y Y, Q;,a; =0,). The second
condition in (5.50) is equivalent to the presence of the
u-dependent terms, since integrating out u imposes the
second equation of (5.50).

Alternatively, integrating out the fields B; imposes

—0,9,
By =——, 5.51
( )0 2|¢l|2 ( )

—0p¥;
B;), = , 5.52
( )l 2|¢l|2 ( )

and we obtain

(5.53)

Following Hori [10], the bulk portion of the full mirror action is given by (3.2) [modulo boundary terms that arise from
putting the scalar kinetic terms in (3.2) in their standard form], while the mirror boundary action takes the form™

1< i
Sos = = dx"Re [ dO(s;—Y;)Y
= 5g 3 [ axtre [aots =)

+ (additional boundary terms required to cancel bulk SUSY variation)

N
1 _ i
+) / dfdbRe[E, (D, %, — D_%,)].

2
2e;,

where the boundary term in (5.53) is contained in the first
term.

Here, Ti is the “field strength” DU, of the boundary
superfield U;, whose only difference from U; is that its
lowest component is ;. Integrating out Ti, we find the
boundary condition

Yi =S, (555)

at A boundary, which is

Yi =S8

Xvi—Xx-i=0 (5.56)

For details on why ¢; ought to be periodic, see [20],
page 250.

FAs explained in [10], unlike the bulk superpotential

N, e7Yi, which is generated by vortices, no boundary F terms

can be generated by such effects.

(5.54)

|
in components. In fact, integrating out all the boundary
auxiliary fields in (5.54) imposes the boundary conditions
(5.55) and (5.13), which result in the entire boundary action
vanishing.

As in Sec. III, taking the &, — oo limit allows us to
integrate 3, out of the action and imposes the constraint

N
> 0uY; -1, =0, (5.57)
J

giving us the gauged Landau-Ginzburg theory with hol-
omorphic twisted superpotential

k N N
=3 (S0 a5 e e
¢ \j=l =1

(5.58)

We recall that the constraint (5.57) fixes the target space of
the gauged Landau-Ginzburg theory to be the algebraic
torus (C*)K. It is solved (cf. Sec. III) by
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where §; is any solution of Q?@
expanded in components, is

/=1, Note that with ©, =0, + 079, + 0

(5.59)

. +6070"E? the full mirror action,

<~ i B <~ _
S=— / d*x {ZZ( 9ca0,0.0"0, + gcdx_c(&)x‘id + 5 0cal% (0 + gchfEZ)
k

G EG = idyon?y =

where (6.,0,) [the lowest components of (8,,®,)] para-
metrize the mirror target space (C*)X, on which the flat
Kihler metric is

k 1 ZN k k ~
=> ZZ 2o / )d9 (0= ) goqd0.do,.

k
c d c d
(5.61)

Now, the boundary condition (5.55) on Y; implies the
boundary condition

k

E ’ch®c :Sj—Sj,

c=1

(5.62)

and this means that the U(1)*-equivariant A-brane in X =
CN//U(1)N=* is mapped to a B-brane that is a DO-brane in
the mirror Landau-Ginzburg model located at 6., where 6,
is a solution of > *_, v.;0, = =s5;—5; * Let us investigate
this DO-brane further, by studymg how it is described in the
W plane. In particular, we would like to find the mirror of
the U(1)*-equivariant structure on the A-brane.

First, we note that the twisted superpotential (5.58) can
be rewritten as

W = Wequv + Wy, (5.63)

where the first and second terms of (5.58) correspond,
respectively, to the first and second terms of (5.63). The
image of the DO-brane in the Wy plane is

*In the case where the two boundaries of the strip are mapped
to different equivariant A-branes, labeled by s7 and sjo-, the
positions of the mirror DO-branes are determined by

k — TR k — 0 _3
Zc:l chgc - sj =S and E(?:l chec - Sj =S

, respectively.

iz—cﬂ?id =+ (Dc -

Iz

Y o (Fu? = 0,00, + (02 + 3100+ 510,01

iFOlc)ed)

N
=> e, (5.64)
i=1

which is the mirror condition found in [10] when studying
the mirrors of A-branes without equivariant structure.
However, turning to Wequiv, we find that the boundary
condition (5.55) implies that the image of the DO-brane in
the Wequiv plane is Wequiv = 0, and thus we require further
analysis to identify the mirror of the U(1)*-equivariant
structure on the A-brane.

Now, for the DO-brane mirrors of ordinary A-branes,
there is an additional requirement that is necessary to
prevent spontaneous supersymmetry breaking; that is,
the DO-brane should be at a critical point of the twisted
superpotential Wy (6)=>"Y | =872 v [10,20,27,28).
This condition is necessary for the potential energy of the
mirror Landau-Ginzburg model (with twisted superpoten-
tial Wy) to have a vanishing vacuum expectation value. We
shall generalize this analysis to the gauged Landau-
Ginzburg model with neutral matter (5.60), which we
are presently concerned with. Here, the twisted super-
potential terms can be expanded as

i | o
Lo O
=3:/ 4 2(Z<E <0,

k k 21X,
PV s PW
0 =0
+Z:Zd:<’(‘0"+daecaed+ 95 06,

> + c.c.> . (5.65)

(D lFO]C)gW> —+c.c.

>PwW = O*W

+l)(+L dae a~ )( L/erag 95
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where W is given by (3.7). Taking into account the presence of the auxiliary field terms

1 ko k . koo
2 0 0
- / d (Z D 0EE + ZFDD> (5.66)
in the action, upon integrating out the auxiliary fields D, and E?, the potential energy becomes
1 1 OWoW 1 oW\ [OW
V - d = cd = = ~2}{ R = . 567
2;:/ ! <49 aacaeﬁzgec e(aac) e(aa)) (5.67)

Now, in the nongauged case, %vgx is a constant at the boundaries, and therefore supersymmetry would be broken for any

38‘2’5 = 0. However, in (5.67),

oW N, . N
55 = 280t =) wle”" 0¥

J J

classical configuration unless the DO-brane is located at the critical point

(5.68)

is not a constant at the boundaries [since &, obeys a Neumann boundary condition (0,6, = 0), unlike 0.], and hence
classical configurations where 3TW = 0 at the boundaries can be achieved without any additional constraint on the position of

the DO-brane. Next, the second term in (5.67) implies that Re(%) ought to vanish at each boundary in order to prevent
spontaneous breaking of supersymmetry. Indeed,

ow N
o(38) (001

at the boundaries, which is identically zero because it is the real part of the condition Z?’ 0 e8! =1, = 0, which is implied

(5.69)

by Zjv a8’ — 1, = 0. The latter holds since it was necessary for the A-type supersymmetry and gauge symmetry of the
U(1)N=% x U(1)k GLSM [see (5.22)]. Therefore, spontaneous supersymmetry breaking does not occur in the mirror theory,
since zero-energy classical configurations can always be achieved at the boundaries. The condition Zf’ 0 jcsf -7, =0isa

new condition that did not appear in the nongauged case and, in fact, constrains the position of the DO-brane [defined by s/
via (5.62)]. In conclusion, unlike the mirrors of ordinary A-branes, we have found the following:

The mirrors of U(1)*-equivariant A-branes on CV//U(1)¥~* do not need to satisfy the critical point

condition 03% = 0, butinstead their position must be further constrained by Zﬁ\' Q,-Csj -7, =0.

In this section, we have restricted ourselves to equivar- Aia—A_q =0,

iant A-branes whose mirrors are DO-branes. However, there
. . . . 0,0, =0,

are A-branes whose mirrors are higher-dimensional branes
holomorphically embedded in the mirror target space. In A, =0,

Hori’s construction [10], these can be studied by promoting o

. . lAOa - O,

the parameter s; to a superfield S;. It would be interesting to
study equivariant structure on these branes. D, =0,

01(A_g +Ayq) = 0. (5.70)

E. Non-Abelian equivariant A-branes

We may use the insights obtained from analyzing the
equivariant A-branes for Abelian groups to find the
description of equivariant A-branes for general non-
Abelian groups. We shall use the GNLSM notation of
Sec. II in this subsection.

First, the terms in (2.17) [except the terms proportional to
(¢*pu, + r,) and 0,,] vanish using the boundary conditions

Note that these conditions are a direct generalization of the
conditions given for the example of CPN~!, except that
Fy1. = 0is replaced by the stricter conditions A, = 0 and
01Ap, = 0. This is necessary since the supersymmetry
transformations now contain non-Abelian terms, and this
causes A-type supersymmetry invariance of the set of
boundary conditions to not hold unless we use the stricter
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conditions. The boundary conditions, in fact, imply that
gauge transformations have to be restricted such that the
transformation parameter a“ has a vanishing derivative with
respect to x! at the boundaries, in order for these boundary
conditions to be gauge invariant.

Next, we turn to the boundary conditions for the matter
fields. We first recall that for CPN~!, the equivariant
A-brane corresponded to a Lagrangian torus 7"~!, which
was invariant under the U(1)¥~! isometry of CPV~!. Let us
consider the N/ = 1 subalgebra of A-type supersymmetry,
which corresponds to e, = i€, €, = —i€, €. = —i€, and
€_ = i€, where € is a real parameter. In this case, after
integrating out the auxiliary fields F' and F’, we find that
(2.16) and the B-field terms in (2.18) are

1 ie

dxo{(g”(zp{ - l//i) - BIJ(‘//{ + wi))@éqﬁ’
27 2 oz

+ (91,00 ¢" + B 105" (Wl + )
+ 91, (W', —wl)Re(6")e) + o (y' +wl)Im(c)e)},
(5.71)

where g, XY = g5 (XY + X7Y')  and o XY =
igi;(X'Y7 = X7Y"), and where (I,J,K,...) are indices
corresponding to real coordinates on X. In addition, if
we insist on locality of the matter equations of motion (as in
the CPN~! case), we require that

5" (91,01’ + B1,04¢") =0,

91wyl —ylsgywl) =0 (5.72)
at the boundaries, where Sy’ = Sy’ + ', 6¢Fwt. An
equivariant A-brane shall wrap a submanifold (denoted as
y) of X, to which a boundary of the world sheet is
mapped via (¢',¢'). Now, any allowed variation of ¢
(denoted 6¢' for the real coordinate ') along the
boundary, and the derivative along the boundary, 9y¢’,
ought to be tangent to y. Hence, taking into account the
fact that A;, = 0 at the boundaries, we find that (5.71)
vanishes while satisfying the first constraint of (5.72) if
01¢’ is normal to y, ywl —y! and !l +yl are,
respectively, normal and tangent to y, &) is tangent to
v, the Kihler form vanishes against tangent vectors of y,
and the B field vanishes against tangent vectors of y.
These last three conditions, respectively, imply that y is G
invariant, that it is an isotropic submanifold of X, and
that the restriction of the two-form B to y vanishes. In
addition, we note that w’ —y’ being normal to y and
w! + ! being tangent to y implies that

wl—yl =0, I: tangenttoy,

wl+yl =0, I: normaltoy (5.73)

(for a choice of coordinates that separates the normal and
tangent directions), which satisfies the second constraint
of (5.72).

Next, the NV = (2,2) supersymmetry transformation of

@' is

6¢' =i(eayl —e JiwX —e oyl +e Jiwk),  (5.74)
where €, =€, +ie;, and e_ =¢€_| + ie_,, and where
J is the almost complex structure of X locally given by
Ji =16, and Jt = —ibl. A-type supersymmetry corre-
sponds to €,; = €_; and €,, = —e_,, whereby

6¢" = i(ea (Wl +vh) —e Ik (wh —yh)).  (5.75)

Hence, y! +y! and Ji(yX —yX) are tangent to .
However, from the previous paragraph, we know that
wl —yl is normal to y. In addition, JY J = —&¥.
Hence, the application of the almost complex structure,
J, converts normal vectors of y into tangent vectors of y,
and vice versa. Thus, y is a middle-dimensional Lagrangian
submanifold of X. This Lagrangian submanifold also
happens to be G invariant, which we know from the
previous paragraph.

Indeed, (2.16) and the B-field terms in (2.18) vanish
under this boundary condition; integrating out the auxiliary
fields F? and F7, (2.16) and the B-field terms in (2.18) can
be rewritten (for e, = €_ =¢) as

11

o /0 A9y — ) — iyt vr)

-9 pw_ +wi) —iw(dpw_—y.)
—Re(0)g(2,. v —y_) — iRe(c")0(8,. 1 +y_)
—ilm(o*)g(e, vy —y-) +Im(c")w (e, vy +y-)
+2B(0p.w- +yy) =20~ (9(w_ — ). BOj))
+c.c.} (5.76)

[where g(X,Y) = g, X'Y, (X.Y) = 0, X'Y’, B(X.Y) =
B, XY/, and ™' (X,Y) = 0" X,Y,], which vanishes using
Ay, = 0 as well as the conditions that 9y¢’, w’ + v/, and
¢!, are tangent to y while 9,¢' and w’ — ' are normal
to y, together with the condition that B|y =0.%

Next, we consider the terms proportional to (¢*u, + r,)
and 6, in (2.17), as well as the term proportional to ¢*C,
in (2.18). Now, on a G-invariant Lagrangian submanifold,
we have w;;&/T/ =0 for any tangent vector 7. Using

“ORecall that for a tangent vector, 7, and normal vector, N, of a
Lagrangian submanifold, y, of the Kéhler manifold X, we have
o(T,T) = o(N,N) = 0. Also, ™' (gN, BT) = 0 means that the
restriction of B to (Ty)° x Ty vanishes, where (Ty)° is the
subspace of TX orthogonal to Ty with respect to w. When y
is a Lagrangian submanifold, then (Ty)° = Ty, and B vanishes
when restricted to y.
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du, = 13,0, this implies 9,u,T’ = 0; i.e., u ought to be a
constant along y. Moreover, gauge invariance of the pull-
back of this condition to X requires that the constant be an
element of [g, g]°, via the identity a”L;,u, = [a. ], [3].
Choosing the constant to be

Ha = —Tqg, (577)
we find that the terms proportional to (¢*u, + r,) in (2.17)
vanish. Analogously, the fact that B;;&/T/ = 0 along y
implies that C ought to be a constant element of [g, g]°
along y. Choosing the constant to be

C,=96, (5.78)
we find that the remaining term in (2.17) and the remaining
term in (2.18) cancel. Note that the boundary conditions
(5.70) together with the constraint (5.78) preserve the
locality of the equations of motion for vector multiplet
components.

Finally, we consider a boundary action. We note that the
boundary action (5.41) for CPN~! is an example of the
GNLSM generalization of the NLSM boundary Wilson line
(5.4). Hence, for general GNLSMs the boundary action
ought to be

Sz = [_dxayae”
[

= / dx* (A%, 00p™ — R,AL), (5.79)
0%

where AX corresponds to a G-invariant (L£;AX = 0)
connection of a flat (F§, =0) U(1) bundle on each
A-brane, and where R, = —téaAX (we shall use
(M,N,...) as coordinate indices on the A-branes).41
Gauge invariance of this boundary action follows from
the equivariant Bianchi identity
dR = 1,FX, (5.80)
and this implies that each A-brane supports a flat,

G-equivariant U(1) bundle, for which R, is the moment.**
Its supersymmetry variation is

8Sps = — AZ dx"R, (é (e(24 +29) +&(A4 + Zi))),
(5.81)

where we have used (5.80). Just as in the CPN~! case, we
require that this cancels the C term in (2.18) and the ,, term
in (2.17); i.e., we require that

2zR, = -0, + C, (5.82)
on y, the pullback of which is a gauge invariant condition
on JX. This modification of (5.78) [together with the
boundary conditions (5.70)] also preserves the locality of
the equations of motion for vector multiplet components,

just as in the example of CPV~!. In conclusion, we find that
in general,

Equivariant A-branes are G-invariant Lagrangian submanifolds of X, which support G-equivariant
flat U(1) bundles, and on which the restriction of the B-field vanishes.

This implies that they are objects in the G-equivariant
Fukaya category of X, by generalizing the definition of the
equivariant Fukaya category for finite groups ([26],
page 68) to any compact Lie group G. Hence, we have
further verified the conjecture of Kapustin et al. ([11],
page 58) for non-Abelian G. Fully proving their conjecture
would require constructing the other objects in the cat-
egory, which correspond to Lagrangian submanifolds that
support equivariant flat unitary vector bundles, and these
should correspond to the insertion of certain G-invariant
Wilson lines in the path integral.

*Note that the inclusion of this boundary action does not
modify the constraints (5.72), since it vanishes under arbitrary
variations of ¢ because Fy = 0.

“Note that gauge invariance of the boundary action requires
the use of the identity a’L; R, = [a, R]

a

VI. OPEN HAMILTONIAN GROMOV-WITTEN
INVARIANTS

In this section, we shall use equivariant A-branes to
define open Hamiltonian Gromov-Witten invariants. We
shall first study the non-Abelian invariants via the open
topological gauged A model, using the boundary conditions
and boundary term we have found in Sec. V. E. In the final
two subsections, we shall focus on investigating the
Abelian open Hamiltonian Gromov-Witten invariants via
mirror symmetry.

A. Open topological gauged A model

The closed topological gauged A model was introduced
by Baptista [6], and in the following we shall generalize it
to the case with boundaries, i.e., the open topological
gauged A model. This involves analytically continuing
the Minkowski strip to the Euclidean one, subsequently
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twisting the fields in the action (2.2) as well as its supercharges using their vector R charges, and imposing the appropriate

boundary conditions (found in Sec. V. E) that are supersymmetric with respect to the scalar supercharge Oy = O_ + Q..
We also include the gauge invariant boundary term (5.79).
The twisted fields are redefined as follows:

=Vak, oyt = (-iae)/ V2,

=Vt oyt =(i9)/V2,

9t =—i20%,  pk=V2yk,

g =54, pk= 2k,

nt=—i(2% +29)/(2V2), k@ =i(%-29)/V2,

HE = 4idA gk + 2(F* —Thylyl),  C"=2(F,)f, +2D°, (6.1)

and further details on the twisting are given in [6,17]. The action of the open gauged A model is then®

_ 1 2 A 1|2 2 2 I A 2
$1= 55 [ {5 AP + 1% + 3 lucgr o1 e( 0.4 + 55 lp.2)
1 o
+@[fﬂ7’7]a’1 —@[ K] k¢ ——| A= € (uog + 1)

— 7 [H =40 P +ig(e"€" + ¢"&")2ue, + 2ig;u(Vi2a) &% 7"

: a 1 a \zk,,j : a 1 a \»J ok
+ig;x(n +§K e’ +igip\m — 5k et voly
1

i 1 i R,
T2 ), {62 NV p — TezkaVAw“ =g Ripn (0" A P

1 - )
—gjiabk A (@ VA )y

1 , E
S9! A (@ VY + 5

i a

1 =k, a J
5 Jjilaw A p

1 1
— *B — *C A4 —i [ (0,F)—i | AXd*¢M, 6.2
+2ﬂz(/z¢ [ we. >+2”,/Z( 0-i [ aga's (62)

where F, is the curvature two-form of the connection A = A,dx*, and the measure on the world sheet is

voly = dx A dr = %dz A dz.*** The fields C and H are auxiliary fields, which can be integrated out of the action using
their equations of motion

i » o By
+ 597" (Vigh)p! APt + S gpeaw® A pt+

C" =2 F§ +2e*(uoqp + r), (6.3)
HE = didd pk. (6.4)

The supersymmetry transformations generated by the scalar supercharge O, = Q_ + Q. on the new fields follow from
the supersymmetry transformations (2.13) and (2.14), with e, = €_ = V2and e. =¢ . =0, which gives

43 Here we follow the notation of [6].
*Recall that when G = G, X G, X Gj..., each factor G; has its own coupling constant, e;, e.g., for G = U(1)*, each U(1) factor had
its own coupling constant &,
“Note that we have performed integration by parts to undo the symmetrized form of the fermionic kinetic terms present in (2.2),

which is no longer necessary since a Euclidean action is not real. The resulting boundary terms vanish using boundary conditions found
in Sec. V.E.
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Oudt =x". QuA=wy.
0wt =oe.  Qay =-Vig,
Oaé=n  Qax=C
Qun = [w.&.  QaC=lp.x].
Oup* =H =Tlxipl,  Qap =0,
OaH* = =RigindIx'7"p' = Ui Hix + 9 (V25)p (6.5)
The action (6.2) is, in fact, Q4 exact up to topological terms,
S0 = 0¥+ 5 [ @il + i)+ 570 [OF) =i [ afars (6
nJx 2z Js 0%

with gauge fermion

— o [ {amaleFa+ s+ -

3 L u -

where we have performed integration by parts in (6.2)
such that Vi, V4#& becomes —¢£,VaVA4¢®. The result-
ing boundary term vanishes using the boundary conditions
019, =0 and A, = 0 found in Sec. V.E.

Let us elucidate the first topological term of (6.6).
Here, [5,] and [n3] are the cohomology classes in H?(E)
represented by the two-forms

8e

+ 16

_d((ﬂa+ra)Aa) EQZ(PXX)’

-d(C,AY) € Q*(P xX), (6.7)
both of which descend to E = P xs X. In particular, this
term is topological since |5 ¢*[n,] and fz ¢*[np) do not
change under deformations of the map ¢, since the pullback
map is always homotopy invariant. In addition, the coho-
mology classes [i,] and [ng] are the pullbacks of the
equlvanant cohomology classes in Hz(X) represented by
—(u+r)and B—C.*

The open gauged A model is topological as a quantum
theory,47 and in order to consistently quantize such a gauge
theory, one ought to perform Becchi-Rouet-Stora-Tyutin
(BRST) gauge fixing, which involves the inclusion of
Faddeev-Popov ghost fields in the action. This can be
done straightforwardly, and we shall not write down the
gauge-fixing action, Sgrgr, explicitly. However, the open

“This follows because HZ(X) = H*(EG x; X), and since
P ><G X — Zis the pullback bundle of EG x5 X — BG viaamap
Z — BG, where EG — BG is the universal bundle [29].

“In particular, the correlation functions of the theory are
invariant under diffeomorphisms of the world sheet, e.g., trans-
forming it from a strip to a disk.

L gt A (H = 8iDAp) +

1 1 o
g7 KaC! 5l & + ige (@l +e’;)(1)}volz

6gjkp A(H- 816A¢)k}

|

gauged A model is anomalous, and in Sec. VI. D, we shall
compute this anomaly by canonically quantizing the
gauged Landau-Ginzburg mirror of the Abelian open
gauged A model. Notably, in the process we shall describe
Sgrst for Abelian gauge groups in detail.

B. Observables and open Hamiltonian
Gromov-Witten invariants

A canonical set of bulk observables of the closed gauged
A model were described in [6], with the path integrals over
these observables eventually argued to be equal to the
Hamiltonian Gromov-Witten invariants. In this section, we
shall recall the description of these bulk observables, as
well as introduce boundary observables that are defined
with respect to the topology of the equivariant A-branes.

In the ordinary open A model, one can construct bulk
observables from the de Rham cohomology classes of the
target X, as well as construct boundary observables from
the de Rham cohomology classes of the A-branes, which
wrap the subspaces of X (i.e., Lagrangian submanifolds) to
which boundaries of the world sheet are mapped. For the
open gauged A model, one uses the G-equivariant coho-
mology classes of X to define bulk operators, as well as the
G-equivariant cohomology classes of the equivariant
A-branes to define boundary operators.

The G-equivariant cohomology classes of a manifold, M,
are defined using the G-equivariant complex Qg (M),
which is the set of G-invariant elements in the tensor
product S*(g*) ® Q*(M), with S*(g*) being the symmetric
algebra of the dual of g.

For M = X, an equivariant form, a, can be written on a
local patch of X as
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FAUDISNS

A=Ay, aky.. k..

k

where (wk, wl) are the coordinates on the patch. The coefficients o

Lhrdwki AL

A dwke A divh A LA dih, (6.8)

ar...a k. k,T...[, AT€ symmetric with respect to the indices

a; and antisymmetric with respect to the indices k; and /;. Such a local form can be associated with a bulk operator O, in the

open gauged A model,

r q B
Oa = (aal...a,kl...k[,l_] .l_qoqb) |:H((p + V= FA :| l:H()(k dA¢k :| |:H ¢l :| (69)
j=1 =1
This correspondence holds globally on X. Moreover, we have
(ds + 04)O4 = Oyyas (6.10)

where dy is the exterior derivative on the open world sheet, £, while dg = 1 ® d + ¢ ® 15, is the Cartan operator defined
on Q(X). O, can be decomposed with respect to the form degree on the world sheet,

0, =00 + 0V + 0P,

where, in particular,

is a local operator.
If we assume that dga = 0, then (6.10) splits into the
descent equations

ds 0% =0, (6.12)
ds0Y) = 0,0, (6.13)
;0 = -0,0Y. (6.14)

0,0Y =0 (6.15)

For a closed world sheet, X, if # is a j-dimensional
homology cycle in X, one could define the Q,-invariant

operators
W(a,p) :=/(’)((,j)
p

However, there are no 2-cycles on an open world sheet.
Hence, (’)E,z)
world sheet, and it is necessary for Q4 invariance of (9((12)
that (’)((11) = 0 at the boundaries.

For M = L, where L is an equivariant A-brane (to which

a boundary component J%; is mapped), an equivariant
form, £, can be written on a local patch of L as

ought to be integrated over the entire open

r P q

1) 1) 1
=1 i=1 i=1

[

C="Ca aymy..m, (W)EN . Erdu™ A LA du™, (6.16)

where u are the coordinates on the patch. The coefficients
Cay...am,..m, are symmetric with respect to the indices a;
and antisymmetric with respect to the indices m;. Such a
local form can be associated with a boundary operator
O¢lgs, in the open gauged A model,

OC|E)ZL = (Cal...a,ml...mxoy) [H((P + W|32,‘)aj:|

J=1

< [T —aty)].

i=1

(6.17)

where y is a section y: 0X; — E; of the associated bundle
E; = Pys, X L (which looks like a map y: 0%, — L
locally on 9%;), where Py, is the principal G bundle over
0%, and where y/| oz, 18 the restriction of y to the boundary
in question. In particular, we have

(das, + Qa)Or = Oz, (6.18)
where dps, is the exterior derivative on the world sheet
boundary 0%;, while d; is the Cartan operator defined
on Q;(L). Just as bulk operators, O, can be decomposed
with respect to the form degree on the world sheet
boundary,
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0, =0 + 0

If it is assumed that d;{ = 0, then (6.18) splits into the
descent equations

daELOf:” =0, (6.19)
dazL =—0.0;", (6.20)
0,0 =0, (6.21)

where, for example,

= Goammn)([Tom ) (IT0i ). (022

Thus, if v is a j-dimensional homology cycle in GZL,48 one
can then define the Q-invariant operators

Wos, (C.0) = / oY) (6.23)

The most general correlation function based on the above
bulk and boundary operators can then be written down (for
Y =1 x R) as the following path integral:

/ D(A’ ¢7 ()09 55 p’ 777 K’ l//7/},/7 b’ c)e_(SA+SBRST)HW(ai’ yi)HWOZ(l (€]9 I/j)HWOEM (é,;(’ I/;f)’
i Ji k

(6.24)

where b and c are ghost fields that appear in Sgggr-
Now, any supersymmetric path integral localizes to the
bosonic field configurations that are fixed points of the
supersymmetry [20]. For the open gauged A model, these
field configurations can be read from the Q, variations of
the fermionic fields in (6.5), after integrating out the
auxiliary fields. They correspond to the solutions of

¢ =0,
*Fy + e*(pogp + 1) = 0,
VAp = ¢*(e,0¢) = 0.

The first two equations are known as the symplectic vortex
equations on an infinite strip, and were introduced by
Cieliebak et al. in [3], and they are a generalization of the
typical Nielsen-Olsen vortex equations on a strip. In what
follows, we shall refer to them as the open symplectic vortex
equations. The last two equations are nontrivial, but in the
most interesting cases that we will consider have the trivial
solution ¢ = 0 [6], and therefore we can ignore them in these
cases. For the first two equations of (6.25), the boundary
condition used by Cieliebak et al. on the strip was that each
boundary component of the strip was mapped to a G-invariant
Lagrangian submanifold of X, and this is precisely the
boundary condition we found in Sec. V. E. In addition, for
the second equation, we have found the boundary conditions
A, =0, 01Ap, =0, and u, = —r,. For the example of
X = CPN~!, the open symplectic vortex equations read

0471 =0,
«Fqo + 2(ji,0Z +7.) = 0.

(6.25)

(6.26)

*®For Jj = 1, vis taken to be 9%; , which is also the appropriate
choice for noncompact boundaries.

|

Recall that the boundary conditions in this case are Lagrangian
boundary conditions for Z’ that map each boundary to a
U(1)N~!-invariant Lagrangian torus 7"~! as well as ji, =
—7,. and *F 4, = 0.

The localization of supersymmetric path integrals of the
form (6.24) thus reduce them to ordinary integrals of dif-
ferential forms over the moduli spaces of open symplectic
vortices, which are the spaces of solutions to the open
symplectic vortex equations up to gauge equivalence. As
we shall show in the next subsection, these moduli spaces
are finite dimensional, though they may be noncompact
and contain singularities. The (infinite-dimensional) path
integrals thus reduce to finite-dimensional integrals,
which are well-defined mathematically (modulo issues
related to the aforementioned noncompactness and singu-
larities of the moduli spaces). These finite-dimensional
integrals give us numbers that can be identified with the
open version of the Hamiltonian Gromov-Witten invariants
of X in [3-5].

We note that in the limit where e> — 400, a dynamically
gauged sigma model with target X flows to an ordinary
sigma model with target X//G [6]. Hence, in analogy with
the closed case [30], it is predicted that there is a relation-
ship between the open Hamiltonian Gromov-Witten invar-
iants of X and the open Gromov-Witten invariants of
X//G [16].

C. Dimension of moduli space of open symplectic
vortices and R anomaly

We may attempt to compute the boundary axial R
anomaly of the open gauged A model and find the
dimension of a moduli space of open symplectic vortices.
In what follows, we shall assume that we have a compact
open Riemann surface, X, with arbitrary genus, g, and an
arbitrary number of boundary circles, #.

066010-37



MEER ASHWINKUMAR and MENG-CHWAN TAN

PHYS. REV. D 97, 066010 (2018)

To evaluate the anomaly, we ought to double the open
world sheet as well as the bundles on it, as in [20], in order
to form a closed world sheet, on which the indices of the
relevant operators can be evaluated. This is done by taking
the metric on the world sheet close to each component of
0X to be that of a flat cylinder, and gluing X with its

|

orientation reversal, X*. The resulting closed Riemann
surface is denoted Z#X*. The corresponding bundles over
% and X* are glued using the relevant boundary conditions
found in Sec. V.E. The details of the evaluation can be
found in [17], and we shall state only the result here. For
compact G, the axial R anomaly is

A = (¢ kerdnll®), ¢ [ker dr, |0:0)) + (dime(X) + dim(G)) (2 — 29 — h),

(6.27)

where the first term on the right-hand side is the equivariant Maslov index for the pair (X,L) (L being the relevant
Lagrangian submanifold). Hence, in order for correlation functions to be nonzero, an appropriate number of boundary
operators whose axial R charges sum to .A should be inserted into the path integral, such that axial R symmetry is preserved
at the boundaries.

In addition, the virtual real dimension of the moduli spaces of open symplectic vortices (for compact G) is given by

(¢ kerdry ¥, ¢ [ker dry, ) 9) + (dime (X) — dim(G))(2 — 29 — h).| (6.28)

This is obtained from the index of the linearized operator
[whose index gives the dimension of the moduli spaces
([31], page 142)] one derives from the symplectic vortex
equations.

D. 0% # 0 anomaly

We have previously defined open Hamiltonian Gromov-
Witten invariants as integrals over the moduli spaces of
open symplectic vortices. However, as mentioned, we have,
in fact, ignored problems related to singularities in such a
moduli space. In particular, we have ignored the singular
boundary strata that have codimension one in the moduli
space, which occur due to disk bubbling [15]. This
phenomenon obstructs integration over the moduli space.

This is also a problem for ordinary open Gromov-Witten
invariants, since disk bubbling also causes singular codi-
mension one boundary strata in the moduli spaces of open
world sheet instantons of the nongauged open A model [32].
Disk bubbling manifests itself in the open A model as a
nonperturbative instanton effect, which causes the violation
of the nilpotency of the scalar supercharge, i.e., Qﬁ #0
([20], page 833). Moreover, this anomaly of the supersym-
metry algebra also spoils the cohomological structure of the
space of supersymmetric ground states of the open A model,
which are identified with elements of the Floer cohomology
group for a pair of intersecting Lagrangian submanifolds. In
fact, the anomaly implies that there are no supersymmetric
ground states, and therefore supersymmetry is broken.

Now, the fact that open symplectic vortices are open
world sheet instantons when G is trivial means that open
symplectic vortices cause Q3 # 0 and therefore supersym-
metry breaking, for trivial G. Thus, for nontrivial G, we
expect that open symplectic vortices will cause an analo-
gous effect in the open G-gauged A model, i.e., O3 # 0
(where Q4 = Q4 + Opgrst» With Oprsr being the BRST

|

charge), indicating singular codimension one boundary
strata in the moduli spaces of open symplectic vortices,
and implying that the space of supersymmetric ground
states of the open gauged A model (which we expect to be
elements of the vortex Floer cohomology group [3,33] for a
pair of G-invariant Lagrangian submanifolds) would not
only lose their cohomological structure, but would cease to
be supersymmetric, implying supersymmetry breaking.

For the nongauged open A model, it is difficult to directly
compute the violation of Q3 = 0 in general; one can only
do so for specific examples, e.g., X = S? [27]. Fortunately,
at least for toric manifolds with ¢;(X) > 0, one is able to
use the mirror theory, which does not contain solitonic
objects, to compute this violation in general (and identify
the condition whereby it vanishes) via canonical quantiza-
tion, as shown by Hori [20,27]. The condition found was
that for a pair of Lagrangian submanifolds supporting flat
U(1) bundles, the Q% # 0 anomaly vanishes if and only if
the values of the superpotential on the mirror B-branes
match each other, and in such a case supersymmetry is
manifest.

It is thus natural to investigate the Qf, # 0 anomaly due
to open symplectic vortices in the open gauged A model via
canonical quantization of its mirror theory. We shall do this
for toric target spaces X = CV//U(1)"*, i.e., by topo-
logically A twisting the U(1)¥*~GNLSM on an infinite strip
whose boundaries are mapped to different equivariant
A-branes in X.* Performing the topological A twist for
the mirror theory (cf. Sec. V.D) on a Euclidean world sheet
(with measure d’x = dx'dx*) amounts to the following
field redefinitions:

“These equivariant A-branes are labeled by the GLSM
parameters s7 and s(;, which determine the position of their
respective mirror DO-branes (see footnote 39).
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. = —i2o,, Ec = 30/4’
;1(; - /~1+C, jc - z_c,

- 2i = - 2i ~

Yice = 75/1—0—67 V= %’1—07

)(Hc :)(ic’ )—(60 :)—(gc’

X% = 27%, X0e = 2y0¢ (6.29)

where 7., L., ¥, and 7% are scalars, while .. = ir, + 7, and X9 = X5 + X{° are one-forms. Hence, the mirror
action of the open U(1)*-gauged A model with toric target X = CV//U(1)N*

| Kk o - ; .
Sg = 5/ d’x {Z Z <9cd3y9c3”9d - chd;'(f(8+)/\,’fd - chdX?H(a e 9ch9E9>
c 4
k
1 ~ ~ ~ \/Z - <> - \/z: <~ 5
=+ Z:Zé% <(F126‘) =+ i20 (pca fc - (Dc>2 - TW+C(8—)/1C - Tlc(a—k)lp—c)
1 N k k _ /i y \/i 3 \/E
) <ZZZQchii(E(PcEZ_TWﬂng_T X%+ (De F12c)9d>
Jj ¢ d

N N k k k
~ . ~ ~ _ vie . —s5i 1 j j j
(Z Qjcsj _tc‘) (Dc _FIZC) +Ze Zf e (_ZZH{XiCZUéng—ZU{Eg)
J J c d c
ko ko 5 o
ZZQjcvii(élchd l’icxd M’c)(5+ (Dc +F12C)9d)
d
N ok koo
'y (Z 0.5 -1 ) (B, + Fia) + z FOSLE ( S -3 v'éEf> )] (6.30)
J d
(where 0, = i0, + 0,), which is invariant under the supersymmetry transformations

- V2 o N 1 s
60, A1 = 761//10’ Oo,W—c = _7§€a—€0c’

- V2 o N 1 3
80,Azc = 761//26’ 80, Wic = —568_‘.@0,

5Q,\¢c =0, 5Q,\j’c = _ie(FIZC + Dc)’

- ie /:10 + ZC ~ L= ~
0.8 =~V TR 5 < iel+ Do),
~ 2
5QADC = _§€<8ll/~/26 - 82ll71c)7 5QAX€C = _21.56—96,

5,05 =0. 8o, X =2ied, 0",
80,0° = e(x% — 7%), 80, 7% = eE™,
g, E = ied X0, 8o, 1% = €eE%,
5o, E% =0, (6.31)

generated by the supercharge Q,. However, this mirror theory is, in fact, a gauge theory, and any consistent quantization
procedure should include gauge fixing, in order to remove unphysical degrees of freedom.
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To this end, we shall choose the Lorentz gauge

(w0, Atlw) =0 (6.32)

(where |w) and |yp’) are physical states), which is
effected by including the following BRST gauge fixing
action:

k

1 1 2 : AH 2
SBRST = ﬂzzé% / d x<—chaﬂAc - (BL)

\fc’?bw“>

+0,b.0¢, —i (6.33)

where b, and ¢, are fermionic ghost fields, while B, is
a bosonic auxiliary field. As expected, the first term
explicitly breaks the U(1)* gauge symmetry of the gauged
LG model.

Now, note that the gauge fixing action (6.33) can be
rewritten as

Sgrst = €' (80, + SpRrsT)
k
1 ~ - -
X {2253 / d?x(=ib.0,AL + chc)}, (6.34)

where we have performed integration by parts and used the

boundary condition (A_. —A,,) = 0 (which is equivalent
to 7, = 0) that we have previously imposed, as well as the
boundary condition

(6.35)

which we impose at present. Here, dgrgr i the standard
BRST symmetry variation given by

§BRSTAﬂL' = ied Ces
Oprstb. = €B.,

OprstCe = 0,
5BRSTBL' = 0’ (636)
with the BRST variations of all other fields being equal
to zero. For the unphysical fields used for gauge fixing,
the supersymmetry transformations are &g, b. =0 and
80,B. = 0 while”

g, Cc ) erpL (6.37)

¥Note that with respect to (6.37), the boundary condition
(6.35) obeys A-type supersymmetry, since the boundary con-
dition on ¢, is 9,p, = 0.

Now, & o«36(p) and &fper =0 on all fields” In
addition, we can show that

(5QA + SBRST)Z — O (638)

on all fields. This implies that the BRST gauge fixing
action (6.34) is, in fact, invariant under & = 0¢, + OBRrsT
Since the physical action (6.30) is also invariant under
Oprst, this further implies that the entire action Sg + Sgrst
is invariant under & = 09, + Oprst- This suggests that the
relevant symmetry of the action after gauge fixing is that

which is generated by QA = Q4 + OprsT-
The nonvanishing canonical commutation and anticom-
mutation relations are

[6°(x"), 9aeD20°(y")] = 2286(x" = y'),
[éc(xl) 9ae020°(y )] = 27636 (x —)’])a
{7 (), XY ()} = dmgls(x' = ")
{22, 7 ()} = dmgls(x' = ")

1 ,Tzizazéd@l)] — 26! - y).
d

El

s

22
- 1 V2.
{lc(xl)’z_ézz_i"“rd(yl)} = 276.46(x" = y'),
d
_ 1 V2=
{0 5 5 a0 | = 20808001 =51,
d

The explicit form of the supercharge 0, is™

>IThe transformation 6¢(@) is a U(1)* gauge transformation
whose local parameter is Q..

Charge conservation follows from 9,0, = = [dx'0,J Ji =
- [dx'0, J}, which can be shown to be zero using the boundary
conditions we have previously imposed on the fields, as well as
the boundary condition 9,b, = 0.
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.1 o _ .
Os = ﬂ/ dx! (gcdazec()(ed =77 = i9.q0,6° (% + 77) — Z
k k

= ~ L = ~ ~
Z 2F120816 +Z4 2 J’_l )82(/76 + Z?(’Ic _lc)al(pc

c

4
1 20W  10W
—E XGC XGC E -— -
4 + agc + (l//-&-c —c) (l 8600 + 4 afg)

zk: oz L 20W  10W
21 z&pL 46§C

L ﬁ
Z é%T (l//JrL +l//—c +z2 2 +Z4€C a2 L¢L> (640)
where
oW idL . N ;
g =5 2@ 0t =Y wlem 0T,
J J=1
20 L. )
78"’ = ZQJC(<’U ,9> +S]) —tc,
P 7
1owW N
4OE Z Qjc((¢/.0) +¥) —1.. (6.41)
¢ J
Then,

03 =300 01} =5 [ av ((—i)ialecgg+ D0 g =3 (1)
—ZZ%% W~ )(é) (g(l/?—kc_’/?—c)""_alz‘c))’ (6.42)

where we have used the boundary conditions F,. = 0 and Sk e O =5; — 5§ (wWhere s;
x! = 0), as well as the constraint Y Y 0.5, —7, = 0.
The terms with first-order derivatives of the superpotential can be written as

@/ (S oo
R 20:8“9 896+261%a

= (2_—;)/ dx131W(9, @)

=2 (W(0.9), — W(0.0)o)- (6.43)

:s;?atxl :fcandsj:s?at

From the analysis below (5.63), we know that this is equal to G2 (3N =7 = SN o).
The remaining terms to consider are then

21” dx( i( ')azwc ZZW% ™ - )(é) (g(vhc—vxcnaléc)). (6.44)
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Unlike (6.43), these cannot be written in terms of
boundary data, and hence are bulk terms that occur
even for closed world sheets. However, as in the
nonanomalous closed case, these bulk terms ought to
be equal to zero. The vanishing of these terms can also
be understood as follows. The auxiliary field B, obeys
its equation of motion B, = —%0,/\’0‘ as an operator
equation due to Ehrenfest’s theorem, and hence the
matrix elements of the first term in the integrand with

|

i, [ [ ey (S5 (S50 (Sl ) 1) + 34 (S50l

1 1 N k k . o
—x [y (XY 0eE -
J d

which upon doing so, the terms proportional to

(?VZV(@, &)/0E, in (6.40) vanish, whence the second term
in (6.44) also vanishes.
Hence, we find that

03 =0

(0.9), = W(0.9)y);  (6.46)

i.e., the Qﬁ # 0 anomaly (which occurs due to the
nonperturbative quantum effects of open symplectic
vortices in the open gauged A model) vanishes when
the value of the superpotential W(G (7)) is equal on both
boundaries, i.e., SV, e = SV ¢, In other words,
there is no anomaly when each boundary ends on a
DO-brane such that both DO-branes are mapped to the
same value of W(6, ). One way this can occur is when
the boundaries end on coincident DO-branes. Although
the condition YN =7 =3V ¢~ seems identical
to the condition (found by Hori [20,27]) for the
vanishing of the Q3 # 0 anomaly of the open A model,
the DO-branes do not have to be located at a critical
point where Jy, Wy =0 in our case (where Wy is the
superpotential in the nongauged case, which depends
only on € in the bulk), and the position of each
DO-brane [defined by s; via (5.62)] is in our case
constrained by > N Qis;—1,=0 instead of just

>This statement follows from the fact that the Lorentz gauge
condition can equivalently be written as 9,(A%)"[w) =0 or
(|0, (A%)~ = 0 [where A = (Af)* + (A)~ is the decomposi-
tion with respect to positive and negative momenta], as well as the

fact that 9,A% commutes with 9,,.

iAcg -

respect to the physical Hilbert space vanish due to the
Lorentz gauge condition (6.32).”" Next, note that we
are dealing with an A-twisted theory, whose topological
correlation functions are invariant under QA—exact
deformations of the action. Therefore, we should be
able to deform the action such that the second term
in (6.44) vanishes. Indeed, this can be achieved by
adding the following term that is Q. exact to the

action, i.e.,

c

lzc)fz + (Dc + Fl2c)9d)

(6.45)

Zf\’ Q};si—?b = 0. In conclusion, for Abelian G, we
have found that for a pair of G-invariant Lagrangian tori
of a toric manifold supporting flat G-equivariant U(1)
bundles, the quantum anomaly of Qi # 0 (which indi-
cates an obstruction to integration over the moduli
spaces of open symplectic vortices) vanishes if and
only if the values of the superpotential W (6, ) on the
mirror B-branes are the same, and in this case, super-
symmetry is manifest.

E. Mirror computation of Abelian invariants

In principle, it is simpler to use the mirror gauged
Landau-Ginzburg description of the open gauged A model
to compute open Hamiltonian Gromov-Witten invariants
for Abelian gauge groups and toric target spaces with
c1(X) >0, since there are no open symplectic vortices in
this gauged LG model.

We shall focus on the mirror computation of invar-
iants that come from path integrals over the Q,-invariant
local observables associated with equivariant cohomol-
ogy classes, i.e., those given by (6.11) (where dga = 0)
and (6.22) (where dg;¢ = O).54 After integrating out the
auxiliary fields, the supersymmetry transformations
(generated by 0,) of the physical fields of the mirror
theory on a Euclidean world sheet parametrized by

complex coordinates (z, 7) are (with € = \/5)55

*Note that the G invariance of these physical observables
implies that they are invariant under Qggsy, and therefore also

invariant under Q.
“The fermionic fields 7, and &, are each linear combinations

of the fields 4, and 4. defined in the previous section.
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8pAre =W +iV20.C.. 8y W =—0...
8p,Aze = Wz + V2020, 8y ze = —0:cs
69,Pc =0, ¢ 71 =0,
5y, =T 8y Re = 2[xFy, — 22(=i05 W+ (1/8)0: W)].
85,00 =0, 8y X0 =-22i0,6°,
85,0 = V207 = 7%). 85, X% =2V2i0.6°,
8o, 0% =7%) =0, 8y [9.a(x™ + 7)) = —V205 W (6.47)

The bulk physical operators of this theory were studied by Baptista [7], where he showed that the bulk chiral ring is
given by

C3's ..., 3%, (x5, .., () 1]/ D(W), (6.43)

i.e., holomorphic functions of ¢, and (x°)*! := exp (F 6¢), modulo the ideal D(W), where D(W) is generated by the
derivatives

k
g W = =x°0 W = Z 05 [ P.vl) — e H } (6.49)

d=1

In addition, one ought to restrict the bulk physical operators to finite-degree polynomials, since in the equivariant de
Rham complex one considers only finite-degree forms and polynomials in the Lie algebra.

Aided by the boundary conditions and (6.47), it can be deduced that the boundary chiral ring at a particular boundary
component J%; is given by

Cg". ... 8"/ (DW)|os, )| (6.50)

Here, we have taken into account the fact that Jy W is a Q 4-exact function of (. at the boundaries. Moreover, we ought to
restrict the boundary physical operators to finite-degree polynomials, as we did for the bulk physical operators. Note that in
the nonequivariant case, the critical point condition W = 0 at the boundaries implies that the k fermionic fields y?¢ + 7%
are Q4 invariant at each boundary and, in fact, form the boundary chiral ring [10]. However, recall from Sec. V. D that we do
not have such a critical point condition, implying that ¢ + 7 is not Q, invariant at the boundaries, and therefore is not an
element of the boundary chiral ring (6.50).

Denoting an arbitrary element of the bulk chiral ring (6.48) as W™™" and an arbitrary element of a boundary chiral ring
(6.50) as Wg‘é‘;“’r, the most general correlation function of local bulk and boundary observables in the gauged Landau-
Ginzburg model is therefore written (for X = I x R) as

/ D(A.0.p.&.71. %, . 1" 13,a)e—<sA+s,;RST>HW;.nirrorHWg;rrlt;rl'[Wg;rgcr (6.51)
i k

! J

This is the mirror correlation function that computes (6.24) for local observables.

ACKNOWLEDGMENTS

We would like to thank Sushmita Venugopalan for explaining to us many relevant mathematical points regarding the
moduli space of open symplectic vortices. We would also like to thank Jodo Manuel Baptista, Sebastian Goette, Suresh
Govindarajan, Yuan Luo, Daniel S. Park, Petr Vasko, Junya Yagi, Masaya Yata, and Qin Zhao for helpful comments and
discussions. This work is supported by NUS Tier 1 FRC Grant No. R-144-000-316-112.

066010-43



MEER ASHWINKUMAR and MENG-CHWAN TAN

PHYS. REV. D 97, 066010 (2018)

[1] J. Polchinski, Dirichlet Branes and Ramond-Ramond
Charges, Phys. Rev. Lett. 75, 4724 (1995).

[2] M. Kontsevich, Homological algebra of mirror symmetry, in
Proceedings of the International Congress of Mathemati-
cians, Zurich, 1994 (Birkhauser, Boston, 1995), pp. 120—139.

[3] K. Cieliebak, A.R. Gaio, and D. A. Salamon, J-holomorphic
curves, moment maps, and invariants of Hamiltonian group
actions, Int. Math. Res. Not. 16, 831 (2000).

[4] 1. Mundet i Riera, Hamiltonian Gromov-Witten invariants,
Topology 42, 525 (2003).

[5] K. Cieliebak, A.R. Gaio, I. Mundet i Riera, and D. A.
Salamon, The symplectic vortex equations and invariants
of Hamiltonian group actions, J. Symplectic Geom. 1, 543
(2002).

[6] J. M. Baptista, Twisting gauged non-linear sigma-models,
J. High Energy Phys. 02 (2008) 096.

[7] J. M. Baptista, The quantum equivariant cohomology of
toric manifolds through mirror symmetry, J. High Energy
Phys. 04 (2009) 017.

[8] K. Hori and C. Vafa, Mirror symmetry, arXiv:hep-th/
0002222.

[9] K. Hori, A. Igbal, and C. Vafa, D-branes and mirror
symmetry, arXiv:hep-th/0005247.

[10] K. Hori, Linear models of supersymmetric D-branes, in
Symplectic Geometry and Mirror Symmetry, Seoul, 2000,
edited by K. Fukaya er al. (World Scientific, River Edge, NJ,
2001), pp. 111-186.

[11] A. Kapustin, K. Setter, and K. Vyas, Surface operators in
four-dimensional topological gauge theory and Langlands
duality, arXiv:1002.0385.

[12] K. Setter, Doctoral dissertation, California Institute of
Technology, 2013.

[13] B. Fang, C.-C.M. Liu, D. Treumann, and E. Zaslow,
T-duality and homological mirror symmetry for toric vari-
eties, Adv. Math. 229, 1873 (2012).

[14] M. Futaki and K. Ueda, Tropical coamoeba and torus-
equivariant homological mirror symmetry for the projective
space, Commun. Math. Phys. 332, 53 (2014).

[15] G. Xu, The moduli space of twisted holomorphic maps with
Lagrangian boundary condition: Compactness, Adv. Math.
242, 1 (2013).

[16] D. Wang and G. Xu, Compactness in the adiabatic limit of
disk vortices, arXiv:1505.05945.

[17] M. Ashwinkumar and M.-C. Tan, Open gauged sigma
models, equivariant branes and equivariant homological
mirror symmetry, arXiv:1612.09191.

[18] E. Witten, Phases of N = 2 theories in two dimensions,
Nucl. Phys. B403, 159 (1993).

[19] S. Govindarajan, T. Jayaraman, and T. Sarkar, On D-branes
from gauged linear sigma models, Nucl. Phys. B593, 155
(2001).

[20] K. Hori et al., Mirror Symmetry, Clay Mathematics
Monographs 1 (AMS, Providence, RI, 2003).

[21] K. Vyas, Doctoral dissertation, California Institute of
Technology, 2010.

[22] R.J. Szabo, Equivariant Cohomology and Localization of
Path Integrals, Springer Science and Business Media
(Springer, New York, 2003).

[23] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and
Dirac Operators, Springer Science and Business Media
(Springer, New York, 1992).

[24] P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in
Progress in String Theory: TASI 2003, edited by .
Maldacena (World Scientific, Singapore, 2005), pp. 1-152.

[25] S. Cautis and J Kamnitzer, Knot homology via derived
categories of coherent sheaves, I: The 31(2)-case, Duke
Math. J. 142, 511 (2008).

[26] C.H. Cho and H. Hong, Finite group actions on
Lagrangian Floer theory, J. Symplectic Geom. 15, 307
(2017).

[27] K. Hori, Mirror symmetry and quantum geometry,
in Proceedings of ICM 2002, Vol. I, edited by T. Li
(Higher Education Press, Beijing, 2002), pp. 431-443.

[28] A. Kapustin and Y. Li, D-branes in Landau-Ginzburg
models and algebraic geometry, J. High Energy Phys. 12
(2003) 005.

[29] J. M. Figueroa-O’Farrill and S. Stanciu, Equivariant coho-
mology and gauged bosonic sigma-models, arXiv:hep-th/
9407149.

[30] A.R. Gaio and D. A. Salamon, Gromov-Witten invariants of
symplectic quotients and adiabatic limits, J. Symplectic
Geom. 3, 55 (2005).

[31] D. McDuff and D.A. Salamon, Introduction to
Symplectic Topology (Oxford University Press, Oxford,
UK, 1998).

[32] P. V. Georgieva, Doctoral dissertation, Stanford University,
2011.

[33] G. Xu, Gauged Hamiltonian Floer homology I: Definition of
the Floer homology groups, Trans. Am. Math. Soc. 368,
2967 (2016).

066010-44


https://doi.org/10.1103/PhysRevLett.75.4724
https://doi.org/10.1016/S0040-9383(02)00023-X
https://doi.org/10.1088/1126-6708/2008/02/096
https://doi.org/10.1088/1126-6708/2009/04/017
https://doi.org/10.1088/1126-6708/2009/04/017
http://arXiv.org/abs/hep-th/0002222
http://arXiv.org/abs/hep-th/0002222
http://arXiv.org/abs/hep-th/0005247
http://arXiv.org/abs/1002.0385
https://doi.org/10.1016/j.aim.2011.10.022
https://doi.org/10.1007/s00220-014-2155-1
https://doi.org/10.1016/j.aim.2013.04.011
https://doi.org/10.1016/j.aim.2013.04.011
http://arXiv.org/abs/1505.05945
http://arXiv.org/abs/1612.09191
https://doi.org/10.1016/0550-3213(93)90033-L
https://doi.org/10.1016/S0550-3213(00)00611-8
https://doi.org/10.1016/S0550-3213(00)00611-8
https://doi.org/10.1215/00127094-2008-012
https://doi.org/10.1215/00127094-2008-012
https://doi.org/10.4310/JSG.2017.v15.n2.a1
https://doi.org/10.4310/JSG.2017.v15.n2.a1
https://doi.org/10.1088/1126-6708/2003/12/005
https://doi.org/10.1088/1126-6708/2003/12/005
http://arXiv.org/abs/hep-th/9407149
http://arXiv.org/abs/hep-th/9407149
https://doi.org/10.4310/JSG.2005.v3.n1.a3
https://doi.org/10.4310/JSG.2005.v3.n1.a3
https://doi.org/10.1090/tran/6643
https://doi.org/10.1090/tran/6643

