
 

Lifshitz black branes and DC transport coefficients in massive
Einstein-Maxwell-dilaton gravity

Xiao-Mei Kuang,1,2,‡ Eleftherios Papantonopoulos,3,† Jian-Pin Wu,4,* and Zhenhua Zhou5,§
1Center for Gravitation and Cosmology, College of Physical Science and Technology,

Yangzhou University, Yangzhou 225009, China
2Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

3Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece
4Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics,

Bohai University, Jinzhou 121013, China
5School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China

(Received 5 January 2018; published 9 March 2018)

We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton
gravity theory. We also study the thermodynamics of these black brane solutions and obtain the
thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz
symmetry, we analytically compute the DC transport coefficients, including the electric conductivity,
thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive
term supports the Lifshitz black brane solutions with z ≠ 1 in such a way that the DC transport coefficients
in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field
theory is violated, which indicates that it may involve strong interactions.
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I. INTRODUCTION

In the study of the application of gauge-gravity duality
[1–3] to condensed matter physics, the introduction of
momentum relaxation plays an important role in the
development of this research field because systems with
momentum dissipation are more realistic. Many proposals
have been put forward in order to describe a dual field
theory with momentum relaxation contributing to finite
conductivities. They can be classified into two categories.
The first category introduces a spatial-dependent source,

so that the Ward identity is broken, which means that
momentum is not conserved in the boundary theory. An
obvious way to do this is to introduce a periodic scalar
source or chemical potential [4–6], called the scalar lattice
or ionic lattice structure. This involves solving partial
differential equations (PDEs) in the bulk. Another impor-
tant way is to break the translation invariance but hold the

homogeneity of the system, which involves solving
only ordinary differential equations (ODEs) in the bulk.
Outstanding examples of this include holographic
Q-lattices breaking the translational invariance via the
global phase of the complex scalar field [7–10], holo-
graphic helical lattices, where the translational invariance is
broken in one space direction but holds in the other two
space directions, possessing the non-Abelian Bianchi VII0
symmetry [11], and holographic axion models, for which a
pair of spatial-dependent scalar fields are introduced to
source the breaking of Ward identity [12–17]. In addition,
by turning on a higher-derivative interaction term between
the Uð1Þ gauge field and the scalar field, a spatially
dependent profile of the scalar field is generated sponta-
neously which leads to the breaking of the Ward identity
[18,19]. In a more general setup, gravitational models were
discussed in which, on the boundary, spontaneous modu-
lation of the electronic charge and spin density is generated
by charge and spin density waves [20–22].
The second category is to break the diffeomorphism

invariance, without additional fields, which leads to the
breaking of the conservation of the stress-energy tensor.
Modified gravity theorywhich breaks diffeomorphism invari-
ance is calledmassivegravity.Vegh first proposed to study the
holographicmomentumdissipation in this kindof theory [23],
which inspired remarkable progress in holographic studies
with momentum relaxation in massive gravity [24–36].
On the other hand, in order to holographically study the

nonperturbative dynamics of nonrelativistic systems with

*Corresponding author.
jianpinwu@mail.bnu.edu.cn

†lpapa@central.ntua.gr
‡xmeikuang@gmail.com
§dtplanck@163.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 066006 (2018)

2470-0010=2018=97(6)=066006(8) 066006-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.066006&domain=pdf&date_stamp=2018-03-09
https://doi.org/10.1103/PhysRevD.97.066006
https://doi.org/10.1103/PhysRevD.97.066006
https://doi.org/10.1103/PhysRevD.97.066006
https://doi.org/10.1103/PhysRevD.97.066006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


anisotropic scale invariance t → λzt, x → λxwith z ≠ 1, the
AdS=CFT duality was first generated in [37] to describe a
boundary theory with dynamical critical exponents which
shows the dynamical scaling. The background spacetime to
study the nonrelativistic quantum field theory with dynami-
cal (Lifshitz) scaling is given by the Lifshitz metric,

ds2 ¼ −r−2zdt2 þ dr2

r2
þ r−2dx2i ; ð1Þ

where the spacial index i runs from 1 to D − 2. The
geometry (1) recovers anti–de Sitter(AdS) spacetime when
z ¼ 1 and the boundary is at r → 0.
In holographic fashion, it would be interesting to find the

bulk sector to dually describe the momentum relaxation of
a nonrelativistic boundary theory, which means we need to
add ingredients into the bulk theory to introduce Lifshitz
scaling and momentum dissipation. To this end, we will
construct Lifshitz black brane solutions in the massive
Einstein-Maxwell-dilaton (EMD) gravity theory proposed
in [28]. It is notable that in [28], the authors have studied
the dyonic Reissner-Nordström AdS(RN-AdS) black brane
as well as the hyperscaling violation AdS black brane and
then the DC electric and Hall effect in the dual field theory.
In this paper, we are interested in the analytical Lifshitz

black brane solutions in the massive EMD gravity theory.
We will focus on two different models distinguished by
different couplings in the action. In both cases, we find the
analytical black brane solutions by solving the equations of
motion, and briefly analyze their thermodynamics. We also
analytically compute the DC transport coefficients, includ-
ing electric, thermoelectric and thermal conductivities in the
dual boundary theory. We note that the gravitational
description of nonrelativistic theory with momentum relax-
ation has also been studied in [16,38–41], where the authors
introduced additional linear axion fields in the bulk to break
the translation symmetry on the boundary, belonging to the
first category involving momentum relaxation.
The structure of this paper is as follows. We review the

holographic massive EMD theory in Sec. II. Then we
construct the Lifshitz black brane solutions in this frame-
work and study their thermodynamics. We continue to
explore the DC transport coefficients in the dual theories of
two black branes in Sec. III. The last section is our
conclusion and discussion.

II. HOLOGRAPHIC MASSIVE
EINSTEIN-MAXWELL-DILATON THEORY

We start with a holographic massive EMD action [28],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

ZðϕÞ
4

F2 −
1

2
ð∂ϕÞ2 þ VðϕÞ

þ βðϕÞð½K�2 − ½K2�Þ
�
; ð2Þ

where ϕ is the dilaton field with potential VðϕÞ. ZðϕÞ and
βðϕÞ, where all are a function of ϕ, are the coupling
functions of the gauge field and massive term, respectively.
In the absence of themassive term, this action results froman
effective low-energy heterotic string theory after a con-
formal transformation of the metric. This transformation
introduces a coupling of the dilaton field with the gauge
field, and the dilaton electrically or magnetically charged
black holes are known [42]. In this work, we consider the
two massive terms ½K�2 ≔ ðKμ

μÞ2 and ½K2� ≔ ðK2Þμμ with
K satisfying Kμ

αKα
ν ¼ gμαfαν and ðK2Þμν ≔ KμαKα

ν. fμν is
the referencemetric, andwe are interested in the special case
with fμν ¼ diagð0; 0; 1; 1Þ, which breaks the symmetries
associated with reparametrizations of the spatial x, y
coordinates in the bulk. Correspondingly, it leads to the
dissipation of momentum in the dual boundary field
theory [23].
Applying the variational approach to the action (2), one

can derive the Einstein equation, Maxwell equation, and
scalar equation as follows:

∇μðZðϕÞFμνÞ ¼ 0; ð3Þ

□ϕ −
1

4

∂Z
∂ϕF2 þ ∂V

∂ϕ þ ∂β
∂ϕ ð½K�2 − ½K2�Þ ¼ 0; ð4Þ

Rμν −
1

2
gμν

�
R −

Z
4
F2 −

1

2
ð∂ϕÞ2 þ V

�

−
1

2
∂μϕ∂νϕ −

1

2
ZFμρFν

ρ þ Xμν ¼ 0; ð5Þ

where

Xμν¼−βðϕÞ
�
ðK2Þμν− ½K�Kμνþ

1

2
gμνð½K�2− ½K2�Þ

�
: ð6Þ

For some specific forms of VðϕÞ, ZðϕÞ, and βðϕÞ, we
can obtain the analytical black brane solutions. In this
work, we are interested in the Lifshitz black brane solution.
So we shall take the following ansatz to solve the above
equations of motion,

ds2 ¼ −fðrÞ
r2z

dt2 þ dr2

fðrÞr2 þ r−2ðdx2 þ dy2Þ; ð7Þ

A ¼ AtðrÞdt; ϕ ¼ ϕðrÞ; ð8Þ

where z is the Lifshitz dynamical exponent.
In this paper, we shall focus on two kinds of models:
(i) Model I: The potential and the coupling functions

have the exponential forms as

ZðϕÞ¼Z0rλ; βðϕÞ¼ β0rσ; VðϕÞ¼V0rγ; ð9Þ
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where ðλ; Z0; σ; β0; γ; V0Þ are the parameters in
this model.

(ii) Model II: The forms of the potential and the
coupling functions are

ZðϕÞ¼Z0eð−2zþ2Þϕ=α; βðϕÞ¼ β0e−2ϕ=αþβ1;

VðϕÞ¼V0þV1e2ϕ=α; ð10Þ

where ðZ0; α; β0; β1; V0; V1Þ are the parameters of
the model.

Before proceeding, we would like to present some
comments. First, when we take β1 ¼ 0, the model II
reduces to model I as will be shown later. From this point
of view, the potential and coupling functions of model II are
more general than those of model I, and so we will mainly
present how to obtain the black hole solution and its
thermodynamics in model II. Then we briefly discuss the
results in model I. However, there are two important
differences between these two models. One is that z ¼ 2
is forbidden in the black brane solution of model II, but it
can be obtained in model I. The other comment is that when
z ¼ 1, the black brane solution of model I reduces to the
RN-AdS one, while model II reduces to that of standard
massive gravity proposed in [23] with α ¼ 0, β ¼ β1, and
F ¼ m2 ¼ 1. These two different points can be clearly seen
in what follows. Finally, we emphasize that the models we
propose here are different from those for the dyonic
hyperscaling violation AdS black brane in [28]. We believe
that more interesting models in EMD gravity theory can be
analytically solved by adding higher-curvature terms and
various couplings of Maxwell fields; see, for example,
[43–46] and therein for the holographic applications.

A. The black brane solution

In model II with (10), the Einstein equation reduction
Et
t − Er

r gives

ϕ0 ¼ α=r; with α≡ 2
ffiffiffiffiffiffiffiffiffiffi
z − 1

p
; ð11Þ

with which the potential and coupling functions (10) can be
rewritten as

ZðϕÞ ¼ Z0r−2zþ2; βðϕÞ ¼ β0r−2 þ β1;

VðϕÞ ¼ V0 þ V1r2: ð12Þ

Meanwhile, we solve the Maxwell equation and obtain

AtðrÞ ¼ μ −
Q
zZ0

rz; ð13Þ

where the constants μ and Q are identified as the chemical
potential and the charge of the dual boundary theory,
respectively.

With the determined fields (11) and (13), we solve fðrÞ
from the reduced Einstein equations as

fðrÞ ¼ Q2r2zþ2

4Z0z
þ V0 þ 2β0

2ðzþ 2Þ þ V1 þ 2β1
2z

−Mrzþ2; ð14Þ

where M is an integration constant. Then, the equation of
motion for the dilaton (4) becomes

V0ð1−zÞ−2zβ0þ r2ðð2−zÞV1−2ðz−1Þβ1Þ¼ 0: ð15Þ

Similarly, in order to obtain an asymptotic Lifshitz solution,
we find that the parameters should satisfy the following
relations:

β0 ¼ −ðz − 1Þðzþ 2Þ; V0 ¼ 2zðzþ 2Þ;

V1 ¼
2ðz − 1Þ
2 − z

β1: ð16Þ

Consequently, our model here admits the Lifshitz black
brane solution as follows:

fðrÞ ¼ 1 −Mrzþ2 þQ2r2zþ2

4Z0z
þ β1r2

zð2 − zÞ ;

AðrÞ ¼ μ −
Q
zZ0

rz;

ϕ0 ¼ α=r; with α ¼ 2
ffiffiffiffiffiffiffiffiffiffi
z − 1

p
: ð17Þ

Since fðrhÞ¼0, M can be determined as M¼ 1
rzþ2
h

þ
Q2rzh
4zZ0

− β1
zðz−2Þrzh. The temperature of the black brane is

calculated as

T ¼ 1

4πrzh

�
zþ 2 −

Q2r2þ2z
h

4Z0

þ β1r2h
2 − z

�
: ð18Þ

Note that the Lifshitz exponent z ¼ 2 is not allowed in
the solution (17) of model II because the blackness function
fðrÞ, the mass, and the temperature of the black brane are
divergent in this case. We can, however, require β1 ¼ 0 for
z ¼ 2 in model II. Immediately, we note that model II with
β1 ¼ 0 recovers model I (9) with

λ ¼ −2zþ 2; σ ¼ −2; γ ¼ 0;

β0 ¼ −ðz − 1Þðzþ 2Þ; V0 ¼ 2zðzþ 2Þ: ð19Þ

When z ¼ 1, model II is just the standard massive
gravity proposed in [23] and Eq. (17) goes back to the
one with α ¼ 0, β ¼ β1, and F ¼ m2 ¼ 1. For model I,
z ¼ 1 gives β0 ¼ 0. It means that when z ¼ 1, model I
reduces to Einstein-Hilbert gravity and the solution is
nothing but the RN-AdS black brane.
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B. The black brane thermodynamics

Furthermore, we analyze the thermodynamics of the
black brane solution of mode II. For simplification, we can
set Z0 ¼ 1 without loss of generalization because in both
models (9) and (10), the constant Z0 in action (2) can be
absorbed into the gauge field, as does the charge Q or the
chemical potential μ. To study the thermodynamical quan-
tities, we write down the Euclidian on-shell action1

Sonshell ¼
Z

d4x

�
Q2rz−1

2
−
2zðzþ 2Þ

rzþ3
þ 2ðz − 1Þβ1
ðz − 2Þrzþ1

�

¼ V2

T

�
Q2rz

2z
þ 2z
rzþ2

þ 2ð1 − zÞβ1
zðz − 2Þrz

�����
rh

0

; ð20Þ

where V2 ¼
R
dxdy. In order to cancel the divergence in the

on-shell action, we should add the boundary term [47–50]

Sbdy ¼ SGH þ SCT ¼ −
Z
r→0

dx3
ffiffiffiffiffiffi
−γ

p ð−2K þ 4Þ; ð21Þ

where SGH and SCT are Gibbs-Hawking term and counter
term, respectively, and γ is the determinant of the boundary
induced metric γab. Then, we deduce the renormalized on-
shell action:

SRNonshell≡SonshellþSbdy ¼
V2

T

�ð2− zÞQ2rzh
4z

þ z

rzþ2
h

−
β1
zrzh

�
:

ð22Þ

So far, we are ready to calculate the thermodynamical
quantities. The free energy of the system is

F≡ −TSRNonshell ¼ −V2

�ð2 − zÞz2μ2
4zrzh

þ z

rzþ2
h

−
β1
zrzh

�
; ð23Þ

where we have used Q ¼ μz=rzh because of the regular
condition AtðrhÞ ¼ 0. Then, we have the pressure

P≡ −
� ∂F
∂V2

�
μ;rh

¼ ð2 − zÞz2μ2
4zrzh

þ z

rzþ2
h

−
β1
zrzh

ð24Þ

and the entropy

S≡
�∂F
∂T

�
μ;V2

¼ ð∂F=∂rhÞμ;V2

ð∂T=∂rhÞμ;V2

¼ 4πV2

r2h
: ð25Þ

According to the first law of thermodynamics, i.e.,
ϵV2 þ PV2 ¼ ST þ μQ, we can deduce the energy density:

ϵ ¼ zμ2

2rzh
þ 2

rzþ2
h

þ 2β1
zð2 − zÞrzh

: ð26Þ

Then, the specific heat is

cV ≡
�∂ϵ
∂T

�
μ

¼ 4π
z2μ2

2
þ 2ðzþ 2Þr−2h þ 2β1

2−z

zðzþ 2Þ þ z2ð2−zÞμ2r2h
4

þ β1r2h
: ð27Þ

Thus, the condition of the thermodynamical stability of the
black brane is

zðzþ 2Þ þ
�
z2ð2 − zÞμ2

4
þ β1

�
r2h > 0; ð28Þ

which implies positive specific heat.
We note that all the thermodynamic properties for the

black brane in model I can be reduced by putting β1 ¼ 0 in
all the thermodynamic quantities above.

III. THE DC TRANSPORT COEFFICIENTS

We will explore the DC transport coefficients, including
the DC electric σ, thermoelectric α, and thermal conduc-
tivities κ̄, of the boundary field theory dual to the black
brane solution of model II, while the DC transport
coefficients of model I can be extracted by taking
β1 ¼ 0. The method we adopted here is the one developed
in [51] which is a powerful tool to calculate the DC
transport coefficients. To this end, we turn on the following
consistent perturbations at the linearized level, which
source the electric and heat currents,

Ax≔attþax; δgtx≔htxtþHtx; δgrx≔Hrx=r2; ð29Þ

where at, ax, htx, Htx, and Hrx are all functions of r. Then,
the Maxwell equation for the perturbation are

fr2ða00x þ a00t tÞ þ ½r2f0 − 3frðz − 1Þ�ða0x þ a0ttÞ
−Qr3z½rðH0

tx þ h0txtÞ þ 2ðHtx þ htxtÞ� ¼ 0: ð30Þ

The nonvanishing linear Einstein equations for perturba-
tions are the rx component,

Hrx þ
rzþ1ðQr2at − rzðrh0tx þ 2htxÞÞ

2fðz2 þ z − 2 − β1r2Þ
¼ 0; ð31Þ

and the tx one

1The Euclidian on-shell action is obtained via an imaginary
time replacement t → it and its period is the inverse of the
temperature 1=T.
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fr1−zðH00
tx þ h00txtÞ þ fr−zðzþ 1ÞðH0

tx þ h0txtÞ
− fQr2−2zða0x þ a0ttÞ

þ
�
2zþ 4 − 2ðz2 þ zþ 2Þf þ 3rðzþ 1Þf0 − r2f00

þQ2r2ðzþ1Þ

2
−
2β1r2

z − 2

�
Htx þ htxt

rzþ1
¼ 0: ð32Þ

The key point of the method in [51] is to find the
conserved electric current JðrÞ and the conserved heat
currentQðrÞ such that we can evaluate them at the horizon.
In our present model, we find that Eqs. (30) and (32) can be

written as the integral forms dJðrÞ
dr ¼ 0 and dQðrÞ

dr ¼ 0 with

JðrÞ ¼ Qr3zðHtx þ htxtÞ − frða0x þ a0ttÞ
r3z−2

; ð33Þ

QðrÞ¼r1−z
�
fðH0

txþh0txtÞ−
�
f0−

2z
r
f

�
ðHtxþhtxtÞ

�
−AtJ:

ð34Þ

We then further assume htx¼−ξr−2zfðrÞ and at¼−Eþ
ξAtðrÞ, where the constants E and ξ parametrize the sources
for the electric current and heat current, respectively [51].
Subsequently, we obtain the time-independent terms of the
conserved currents:

J̄ ¼ Qr3zHtx − fra0x
r3z−2

; ð35Þ

Q̄ ¼ r1−z
�
fH0

tx −
�
f0 −

2z
r
f

�
Htx

�
− AtJ̄: ð36Þ

According to the AdS=CFT dictionary, the DC con-
ductivities are determined by the conserved currents in
the asymptotical boundary accompanying the regularity
conditions at the horizon for the perturbations. As men-
tioned above, since J̄ and Q̄ are conserved quantities
in the bulk and are r independent, we shall evaluate them
at the horizon. In addition, to impose the regularity
conditions at the horizon for perturbations, it is convenient
to transfer to Eddington-Finklestein coordinates ðv; rÞ with
v ¼ tþ R

rz−1
f dr. Thus, the regular condition for the gauge

field denotes that, at the future horizon Ax ∝ v, and
recalling Ax in (29) and at ¼ −Eþ ξAtðrÞ, we obtain

ax ¼ −E
Z

rz−1

f
dr ð37Þ

near the horizon. Besides, in order to avoid the singularity
in the metric,

2Htxdvdx −
2rz−1

f
Htxdrdxþ

2Hrx

r2
drdx; ð38Þ

we have to impose the following relation between the
perturbations near the horizon,

Htx ¼
f

rzþ1
Hrx; ð39Þ

where Hrx satisfies Eq. (31). Recalling that, near the
horizon, we have fjr→rh ∼ 4πTrz−1h ðr − rhÞ and consider-
ing (37) and (39), we obtain the currents evaluated at the
horizon:

J̄¼EðQ2r2zþ2
h þ2ðz2þ z−2− r2hβ1ÞÞ−4πTQξr2zh

2r2z−2h ðz2þ z−2− r2hβ1Þ
; ð40Þ

Q̄ ¼ −
2πTEQr2h − 8π2T2ξ

z2 þ z − 2 − r2hβ1
: ð41Þ

Subsequently, we are ready to compute the DC transport
coefficients as addressed in [51]. The DC electric conduc-
tivity is

σDC ¼ ∂J̄
∂E ¼ r2−2zh −

Q2r4h
4 − 2z − 2z2 þ 2r2hβ1

: ð42Þ

The two thermoelectric conductivities are

αDC ¼ 1

T
∂J̄
∂ξ ¼ 2πQr2h

r2hβ1 − ðz2 þ z − 2Þ ; ð43Þ

ᾱDC ¼ 1

T
∂Q̄
∂E ¼ 2πQr2h

r2hβ1 − ðz2 þ z − 2Þ ¼ αDC: ð44Þ

And the thermal conductivity is

κ̄DC ¼ 1

T
∂Q̄
∂ξ ¼ 8π2T

ðz2 þ z − 2Þ − r2hβ1
: ð45Þ

Note that the DC electric conductivity (42) with z ¼ 1
recovers the result obtained in [25] for massive Einstein
gravity. All the DC transport coefficients are affected by the
Lifshitz exponent and the massive parameters. Explicitly,
larger z suppresses both σDC and κDC=T while large β1
enhances them; however, their affects on αDCðᾱDCÞ behave
in an opposite way.
It is easy to check that the conductivities for model I can

be obtained when we let β1 ¼ 0 for model II. Here, we
would like to point out the properties of the DC transport
coefficients in these two models:

(i) All the conductivities become divergent when the
condition 2 − z − z2 þ r2hβ1 ¼ 0 is satisfied. The
effective mass of the graviton βðϕÞ ¼ β0r−2 þ β1
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with β0 ¼ −ðz − 1Þðzþ 2Þ in (16) vanishes at the
horizon when 2 − z − z2 þ r2hβ1 ¼ 0, which means
that the translational symmetry is recovered in the
IR limit.

(ii) When z ¼ 1, the DC conductivities are divergent for
β1 ¼ 0, while they are finite for β1 ≠ 0. In this case,
β0 vanishes [see Eq. (16)], and so the massive term,
which is responsible for the momentum dissipation,
only depends on the parameter β1.

(iii) When the system has the Lifshitz symmetry,
i.e., z ≠ 1, the DC conductivities are finite even
though β1 ¼ 0. This is because z ≠ 1 implies β0 ≠ 0
in (16), so that the massive term still survives.2 This
property in our models is novel because our solution
with z ≠ 1 presents holographic momentum relax-
ation; in usual Lifshitz gravity, it cannot be fulfilled.

Furthermore, we will briefly check the Wiedemann-
Franz (WF) law. It states in [52] that the ratio of the
electronic contribution of the thermal conductivity to the
electrical conductivity in a conventional metal is propor-
tional to the temperature,3 i.e., L ¼ κ

σT ¼ π2e2

3k2B
where κ is the

thermal conductivity at vanishing electric current. In our
model, we have

κ ¼ κ̄ −
αᾱT
σ

¼ 16π2T

Q2r2zþ2
h þ 2ðz2 þ z − 2Þ − 2β1r2h

: ð46Þ

Then, the Lorenz ratios are

L̄ ¼ κ̄

σT
¼ 16π2r2z−2h

Q2r2zþ2
h þ 2ðz2 þ z − 2Þ − 2β1r2h

; ð47Þ

L ¼ κ

σT
¼ 32π2r2z−2h ððz2 þ z − 2Þ − β1r2hÞ

½Q2r2zþ2
h − 2β1r2h þ 2ðz2 þ z − 2Þ�2 ; ð48Þ

which are not constant and explicitly depend on the Lifshitz
exponent and the massive parameters. Therefore, in our
models, the WF law is violated, which indicates that our
dual systems may involve strong interactions as discussed
in [51].

IV. CONCLUSION AND DISCUSSION

In this paper, we constructed analytical Lifshitz black
brane solutions in the massive EMD gravity and obtained
their thermodynamical stability condition by studying
black brane thermodynamics. We then analytically calcu-
lated the DC transport coefficients, including electric,

thermoelectric, and thermal conductivities in the dual
boundary field theory.
Our results are summarized as follows:
(i) In model I, when the Lifshitz exponent z ¼ 1, the

model recovers Einstein-Hilbert gravity and the
DC transport coefficients are divergent as ex-
pected. While when z ≠ 1, model I admits a
Lifshitz massive black brane solution. The DC
conductivities in the dual boundary field theory
are finite because z ≠ 1 causes the massive term
in the action to survive. This observation in our
model is novel because the usual Lifshitz black
brane with z ≠ 1, which has no mechanism for
momentum relaxation, cannot produce finite con-
ductivities.

(ii) In model II, when the Lifshitz exponent is z ¼ 1, the
model reproduces the massive gravity proposed in
[23] with the parameters α ¼ 0, β ¼ β1, and
F ¼ m2 ¼ 1. The DC transport coefficients are all
finite in both cases with z ¼ 1 and z ≠ 1 because
β1 ≠ 0 corresponds to the nonvanished massive
term. Moreover, from the expressions (42)–(45), it
is obvious that when 2 − z − z2 þ r2hβ1 ¼ 0, the
conductivities are divergent because 2 − z − z2 þ
r2hβ1 ¼ 0 implies that the massive term in the action
vanishes at the horizon and the translational sym-
metry is not broken in the dual IR theory.

(iii) Our model II with β1 ¼ 0 goes back to model I. This
happens because putting the value z ¼ 2 in model II,
the finite blackness function, mass, and temperature
of the solution forces β1 ¼ 0 and V1 ¼ 0, which
leads to model I.

(iv) Finally, we found the Wiedemann-Franz (WF) law is
violated in our models by studying the Lorenz ratios.
This implies that the dual systems of the models may
involve strong interactions.

It shall be very interesting to compare the features we
found in the boundary field theory with momentum relax-
ation dual to our gravitational models with the experimental
observables in the real materials, such as the condensed
matter systems governed by nonrelativistic conformal field
theories [53]. In the future, we shall further explore this and
mimic the possible materials that possess the properties in
our nonrelativistic studies.
The Lifshitz massive black branes we found are new, and

it is natural to extend them to wider holographic applica-
tions. We believe that more interesting analytical black
brane solutions can be found in the EMD gravity.
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