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This paper studies the complexity between states in quantum field theory by introducing a Finsler
structure based on ladder operators (the generalization of creation and annihilation operators). Two simple
models are shown as examples to clarify the differences between complexity and other conceptions such
as complexity of formation and entanglement entropy. When it is applied into thermofield double (TFD)
states in d-dimensional conformal field theory, results show that the complexity density between them
and corresponding vacuum states are finite and proportional to Td−1, where T is the temperature of TFD
state. Especially, a proof is given to show that fidelity susceptibility of a TFD state is equivalent to
the complexity between it and corresponding vacuum state, which gives an explanation why they may share
the same object in holographic duality. Some enlightenments to holographic conjectures of complexity are
also discussed.
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I. INTRODUCTION

In recent years, the conceptions in quantum information
theory are applying into the understanding about the high
energy and gravity physics. This leads to some surprising
discoveries about the connection of entanglement and
geometry [1–4]. Especially, the consideration about the
some aspects in the wormhole created by an Einstein-
Rosen (ER) bridge [5] and a pair of maximally entangled
black holes leads Leonard Susskind and Juan Maldacena to
propose a very interesting conjecture named “EPR ¼ ER”
[3]. Here EPR refers to quantum entanglement (EPR
paradox). The deeper consideration about EPR ¼ ER leads
to a quantity named “complexity” and its holographic
descriptions [6].
In this study, they consider an eternal AdS black hole

which is conjectured to dual to a thermofield double (TFD)
state,

jTFDi ≔ Z−1/2
X
α

exp½−Eα/ð2TÞ�jEαiLjEαiR: ð1Þ

The states jEαiL and jEαiR are defined in the two copy
CFTs at the two boundaries of the eternal AdS black
hole and T is the temperature. With the Hamiltonians HL

and HR at the left and right dual CFTs, the time evolution
of a TFD state is

jψðtL; tRÞi ≔ e−iðtLHLþtRHRÞjTFDi; ð2Þ

which can be characterized by two codimension-two
surfaces at the two boundaries of the AdS black hole with
left time t ¼ tL and right time t ¼ tR [7,8]. There are two
proposals to compute the complexity for jψðtL; tRÞi
holographically1: CVðcomplexity ¼ volumeÞ conjecture
[9,12,13] and CAðcomplexity ¼ actionÞ conjecture [8,14].
The CV conjecture [9,13] states that the complexity of

jψðtL; tRÞi is proportional to the maximal volume of the
space-like codimension-one surfaces which connect the
codimension-two timelike slices denoted by tL and tR at
the two AdS boundaries, i.e.,

CV ¼ max∂Σ¼tL∪tR

�
VðΣÞ
GNl

�
; ð3Þ

whereGN is the Newton’s constant. Σ is the possible space-
like codimension-one surface which connects tL and tR. l
is a length scale associated with the bulk geometry such as
horizon radius or AdS radius and so on. This conjecture
satisfies some properties of the quantum complexity.
However, there is an ambiguity coming from the choice
of a length scale l. This unsatisfactory feature motivated
the second conjecture: CA conjecture [8,14]. In this
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1There are also some other holographic proposals for complex-
ity, see Refs. [9–11] for examples.

PHYSICAL REVIEW D 97, 066004 (2018)

2470-0010=2018=97(6)=066004(24) 066004-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.066004&domain=pdf&date_stamp=2018-03-07
https://doi.org/10.1103/PhysRevD.97.066004
https://doi.org/10.1103/PhysRevD.97.066004
https://doi.org/10.1103/PhysRevD.97.066004
https://doi.org/10.1103/PhysRevD.97.066004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


conjecture, the complexity of a jψðtL; tRÞi is dual to the
action in the Wheeler-DeWitt (WDW) patch associated
with tL and tR, i.e.,

CA ¼ IWDW

πℏ
: ð4Þ

The WDW patch associated with tL and tR is the set of all
spacelike surfaces connecting tL and tR with the null sheets
coming from tL and tR. More precisely it is the domain of
dependence of any spacelike surface connecting tL and tR.
This conjecture has some advantages compared with the
CV conjecture. For example, it has no free parameter and
can satisfy Lloyd’s complexity growth bound in some cases
[15–18]. However, the CA conjecture has its own obstacle
in computing the action: it involves null boundaries and
joint terms. This problem has been overcome by carefully
analyzing the boundary term in null boundary [19,20].
Compared with the incessant progresses from gravity

duality (see Refs. [9,21,22] for some recent progresses by
gravity duality), it seems that we meet stiff obstacle in
giving a well definition about the complexity in pure field
theory framework. This difficulty partly comes from its
original idea. Roughly speaking, the complexity character-
izes how difficult it is to obtain a particular quantum state
from an appointed reference state. In a discrete system,
such as a quantum circuit, it is the minimal number of
required gates to convert the reference state into a particular
state [23–25]. This idea cannot directly be applied into the
continuous system.
In order to find a kind of generalization about gate

complexity, Nielsen and collaborators [26–28] constructed
a continuum approximation to gate complexity which
involved a new kind of “complexity geometry.” In
Nielsen’s works, the complexity is geometrized by Finsler
geometry (some introduction about Finsler geometry can be
found in Refs. [29,30]). The Finsler geometry depends on the
choice of Finsler structure. Different choices on Finsler
structure may lead to different results. At current, it seems
that there is no any method to determine the Finsler structure
uniquely. Recently, Ref. [31] used some different Finsler
structures to compute the complexity for some systems and
showed some similarities compared with the CV and CA
conjectures. However, as the systems they checked are very
different fromTFDstates, their results andholographic results
have still some differences. Therefore, if we really want to
compare the complexity based on a field theory framework
and holography, we need apply the field theory framework
into TFD states. This is what this paper will focus on.
On the other hand, though some positive results have

been obtained from the CV and CA conjectures, the
understanding on them is still at the very preliminary
stage. It is still not clear that if CV and CA conjectures are
completely correct. As the complexity depends on the
reference state, it is an important and fundamental question
to clarify the reference state. However, CV and CA

conjectures themselves do not tell us what the reference
state is. It is possible that the disappearance of reference
state in these two conjectures is because they are not the
complete versions and some modifications may be needed.
These questions obviously cannot obtain the answers only
by CV and CA conjectures themselves. A well definition
and full study about complexity based on pure field theory
are needed. This is also one motivation of this paper.
There is also a very surprising coincidence in holography

complexity and the holographic conjecture about fidelity
susceptibility [32,33]. The fidelity is also a very important
conception in quantum information theory, which measures
similarity of two states (a brief introduction about the fidelity
and fidelity susceptibility will be shown in subsection IVC.
For more details, one can refer to Ref. [34]). The fidelity
susceptibility and complexity, in principle, are two different
conceptions. Reference [32] gives a holographic description
and says that its gravity dual is approximately given by the
maximal volume of time slice in an AdS spacetime, which
shares the same object with the holographic complexity in
CV conjecture. This coincidence seems to imply that, at least
for TFD states, the complexity and fidelity susceptibility
have some deep connection and may be equivalent to each
other. To answer this question and clarify why such coinci-
dence can happen, we also need a well defined quantum field
theory proposal for complexity.
This paper will study the complexity of states in quantum

field theory by introduce a Finsler structure based on the
ladder operators (the generalization of creation and anni-
hilation operators). In the Sec. II, some basic properties of
complexity will be proposed and a method to construct the
Finsler structure will be presented. Then this method will
be first applied into some simple examples in Sec. III.
Especially, the complexity of coherent states and entangle-
ment thermofield states are computed as examples to show
how to use this method. These examples will also clarify
some differences between complexity and other concep-
tions such as complexity of formation and entanglement
entropy. In Sec. IV, this method is applied to compute
complexity between thermofield double states. The results
show that the complexity density between a thermofield
double state and corresponding zero temperature ground
state is finite. In addition, it is found that complexity C and
temperature T in d-dimension free conformal field theory
shows the behavior of C ∝ Td−1, which is just the renor-
malized complexity predicted by CA and CV conjectures
[35]. Especially, an explicit proof will be given to show
fidelity susceptibility of a TFD state is equivalent to the
complexity between it and corresponding vacuum state,
which gives an explanation on why they may share the
same object in holography. In Sec. V, some physical
discussions will be found to explain why the complexity
between a TFD state and its corresponding zero temper-
ature vacuum state should be finite, and some comments on
understanding about CV and CA conjectures will also be
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given. A short summary and some outlooks will be given
in Sec. VI.

II. COMPLEXITY GEOMETRY

A. Geometrization of complexity

In the works of Refs. [26–28], instead of to directly
construct the complexity between states, they first defined
the complexity of operators.2 Here I will follow this idea
and propose some basic properties of complexity.
For the case that all the admitted operators form a

continuous manifold U, they introduced of a Finsler
structure F , which is a non-negative function defined on
its tangent bundle TU. For any piecewise C1 curve
ĉ∶ ½0; 1� ↦ U which satisfies ĉð0Þ ¼ I and ĉð1Þ ∈ U,
one can define its length L½ĉ� such that,

L½ĉ� ≔
Z

1

0

dtF ½ĉðtÞ; ˙̂cðtÞ�: ð5Þ

Here ˙̂cðtÞ ≔ d
dt ĉðtÞ ¼ T̂ðtÞĉðtÞ. Then Nielsen defined the

complexity of Û by,3

CðÛÞ ¼ min fL½ĉ�j ∀ ĉ∶ ½0; 1� ↦ U; ∃λ ≠ 0;

s:t:; ĉð0Þ ¼ Î; ĉð1Þ ¼ λÛg: ð6Þ

Here Î is the identity of U. This definition leads to
following two properties: ∀ Û; Û1; Û2 ∈ U
(1a) CðÛÞ ¼ 0 ⇔ ∃λ ≠ 0; :s:t:; Û ¼ λÎ;
(2a) Subadditivity: CðÛ1Þ þ CðÛ2Þ ≥ CðÛ1Û2Þ if

Û1Û2 ∈ U.
The complexity of states then can be defined based on the
complexity of operators. For any two states jψ1i and jψ2i,
the complexity from jψ1i to jψ2i can be defined by
following way,

Cðjψ2i; jψ1iÞ ¼minfCðÛiÞj ∀ Ûi ∈ U; s:t:; jψ2i∼ Ûijψ1ig:
ð7Þ

Here notation “∼” means that the two sides can differ from
each other up to any nonzero complex number. This
definition leads to following two properties,4

(1b) Cðjψ2i; jψ1iÞ ¼ 0 if and only if jψ2i ∼ jψ1i;
(2b) Triangle inequality: Cðjψ2i; jRiÞ þ CðjRi; jψ1iÞ ≥

Cðjψ2i; jψ1iÞ for any state jRi.
One understanding and proof for (2b) can be found in
Fig. 1. The complexity does not have reversibility in
general, i.e., Cðjψ2i; jψ1iÞ ≠ Cðjψ1i; jψ2iÞ.
There is also a useful conception named “complexity of

formation” proposed by Ref. [39]. It describes what is the
additional complexity arising in preparing state jψ1i
compared with jψ2i from a reference state jRi. This can
be defined by ΔCRðjψ2i; jψ1iÞ in following way,

ΔCRðjψ2i; jψ1iÞ ≔ Cðjψ2i; jRiÞ − Cðjψ1i; jRiÞ: ð8Þ

In general, the complexity of formation between the two
states depends on the choice of reference state. Especially,
when we choose that the reference state jRi to be state jψ1i,
then “complexity of formation” just gives the complexity
from jψ1i to jψ2i. In general cases, the property (2b) shows
that,

Cðjψ2i; jψ1iÞ ≥ ΔCRðjψ1i; jψ2iÞ for ∀ jRi: ð9Þ

The inequality (9) cannot be strengthened into the
Cðjψ2i; jψ1iÞ ≥ jΔCRðjψ1i; jψ2iÞj in general as the com-
plexity may not have reversibility. In general, the complex-
ity of formation and complexity from one to the other are
different. However, it will be shown in the subsection III B
that they can be equivalent in some special cases.
It needs to emphasis three properties based on the

definitions (6) and (7). The first one is that we must first
state what is the admitted operators set U as the value of

FIG. 1. The schematic explanations about the triangle inequal-
ity. ϕ1R is one quantum circuit of minimal gates to realize
jψ1i → jRi, ϕR2 is one quantum circuit of minimal gates to
realize jRi → jψ2i, and ϕ12 is one quantum circuit of minimal
gates to realize jψ1i → jψ2i. As the combination ϕR2∘ϕ1R
is a possible quantum circuit to realize jψ1i → jψ2i with the
gates number Cðjψ2i; jRiÞ þ CðjRi; jψ1iÞ which should be larger
than or equal to the gates number of ϕ12, we see that
Cðjψ2i; jRiÞ þ CðjRi; jψ1iÞ ≥ Cðjψ2i; jψ1iÞ.

2The other idea was proposed by Ref. [36], which defined a
line element in Hilbert space by Fubini-Study metric [37].

3In the original definition of Nielsen’s, the λ has to be 1.
However, it can be relaxed that λ is any nonzero complex number
in this paper, as we here only consider the operators which
are acted on quantum states. For any quantum state jψi, Ûjψi
and λÛjψi describe the same state.

4These two properties seem to be the necessary requirements
for any well-defined complexity. However, the property (1b) is
violated by CA conjecture and the generalized path-integral
complexity for general metrics and actions in Ref. [38].
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CðÛÞ defined by (6) depends on the choice of U (see Fig. 2
as an example). The second one is that in general we can
not say Cðjψ2i; jψ1iÞ ¼ Cðjψ1i; jψ2iÞ. In fact, this point
emerges from the physical intuition very naturally, as we
can feel that the costs for many processes and their inverses
are different. The third point is that there may be many
different operators Ûi which can satisfy the relationship
jψ2i ∼ Ûijψ1i. We should compare the complexities of all
these operators by using Eq. (6) and find the minimal value
of them to determine the complexity from jψ1i to jψ2i.
References [26–28] studied the complexity in special

operators set UE, where all the curves can be generated by
some “time-dependent Hamiltonians” T̂ðtÞ such that,

ĉðsÞ ¼ P⃖ exp
Z

s

0

T̂ðtÞdt ð10Þ

and the P⃖ indicates a time ordering such that the
Hamiltonian at earlier times is applied to the state first.
Any “time-dependent Hamiltonian” T̂ðtÞ should be
expanded in the basis E ¼ fM̂1; M̂2;…g such that,

T̂ðtÞ ¼ YiðtÞM̂i: ð11Þ

The basis E, which can be treated as the generators of
operators set UE and plays the role of universal set (minimal
complete gates set) in the quantum gates, determines the
operators set UE.

5 Then the Finsler structure F in Eq. (5)
can be given by a basis-dependent function F in this way,

F ½ĉðtÞ; ˙̂cðtÞ� ¼ F½ĉðtÞ;YIðtÞ�: ð12Þ

Here the Finsler structure and its function form expressed in
a basis, i.e., F and F, should be distinguished. The reason
will be explained later on. Reference [27] studied different

types of Finsler structure F and compared their advantages
and disadvantages. We will return to it in the Sec. II B.
In general, one can choose different bases and obtain

different admitted operators sets. Let us assume E0 ¼
fM̂01; M̂02;…g and E ¼ fM̂1; M̂2;…g. One important
case is that E0 ⊃ E so that E0 generate a larger operators
set UE0 and some new curves. Then we see that
CðÛÞjUE

≥ CðÛÞjUE0
. This means that it will decrease the

complexity when we extend the generators set. The other
important case is that E and E0 can be associated by a linear
transformation, i.e., there is a matrix Aα

I such that,6

M̂0α ¼ Aα
IM̂

I: ð13Þ

Here Aα
I may be not an invertible matrix. We can see that

UE0 ⊆ UE in this case. If the generator T̂ðtÞ is also one
generator of UE0 , then it can be expanded by the new basis
E0 such as T̂ðtÞ ¼ Y 0

αM̂
0α. The coefficients Y 0

α and YI will
have following relationship,

YI ¼ Aα
IY 0

α: ð14Þ

Assume F 0 to be the Finsler structure in UE0 and F0 is its
function form defined in the basis E0. As UE0 ⊆ UE, we can
compute the lenght for any curve ĉðtÞ generated by T̂ðtÞ
with two different Finsler structuresF 0 andF . If we require
that two Finsler structures can give the same length for this
curve, then their function forms in the odd and new bases
should satisfy following condition,

F0½ĉðtÞ;Y 0
α� ¼ F½ĉðtÞ;Aα

IY 0
α�; ∀ Y 0

α: ð15Þ

This gives the transformation rule for function form of
Finsler structure under the basis transformation (13). We
see that, for a given Finsler structure F , its function form
depends on the choice of basis. Because of this reason,
we have to distinguish Finsler structure F and its function
form F. In the Appendix A, I will give an example about
how to use this transformation rule to obtain the function
forms of Finsler structure in new bases.
To give the definition (6) a well meaning, we have to first

appoint the basis (i.e., the generators set) E and Finsler
structure function form F corresponding to this basis. Then
the pair ðE;FÞ determines the complexity of any operator
in set UE and the complexity between two states in set SE,
where SE is the states set in which any two states can be
transformed by the operators in UE. In general, the states set
SE is not the whole Hilbert space H, as there may be two
states in H which cannot be transformed from one to the
other by the operators in UE.

FIG. 2. The schematic example that the value of CðÛÞ depends
on the choice of U. The operators set U is a subset of a larger
operators set U 0. The curve length is just given by Euclidean
metric. For the operators set U, the shortest curve from Î to Û is
given by ĉ1. However, if one extend the operators set U to U 0, the
shortest curve from Î to Û becomes ĉ2. This shows that the
complexity of Û depends on the choice of operators set.

5Here it does not need that UE forms any group.

6In this paper, the Einstein summation rule has been used for
upper and lower indexes, i.e., it needs to make a summation if the
same index notation appears in the upper and lower indexes.
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Let us make a short argument on why the Finsler
geometry is a natural generalization of gates complexity
in the continuous system. Finding the complexity of an
operator Û in both the classical and quantum circuits can be
concluded in following steps. First, one has to choose a
universal gates set (the fundamental components in con-
structing the circuit) E ¼ fê1; ê2;…g. By repeating to use
these components, one can find ways to construct some
quantum/classical circuits to realize the operator Û. There
may be many different ways to construct different circuits
to realize the same operator Û. To determine which design
is optimal, one has to appoint the “cost” Fi > 0 for every
element êi ∈ E. Then the total cost of the design is the
summation of the cost of every element, i.e.,

P
Fi. If we

appoint that Fi is 1 for all the components, then the total
cost is just the gates number in the circuit. In general, the
optimal design is the one which can make

P
Fi minimal,

and this minimal value is the complexity of operator Û. The
pair ðE; FÞ in continuous case is almost the continuous
version of pair ðE;FiÞ in classical/quantum circuit.

B. Finsler structure and generators

In Ref. [31] (and also in the previous works of Nielsen’s),
the Finsler structures were constructed by paying more
attention to the group structure itself. In this paper, I will try
to consider the problem from how to construct the states in
Hilbert space. One will see later that this viewpoint will be
very suitable to study the complexity between quantum
states, especially for the TFD states.
Let us consider a bosonic Hilbert space H. For conven-

ience, let us assume the system has discrete momentum. To
describe a state in H, we need to choose a representation,
i.e., a series of basic vectors. One common choice in free
theory is the particle number operator,

N̂ ≔ â†â: ð16Þ

Here operator â† and â are the creation and annihilation
operators. In most cases, there are some different creation
and annihilation operators, which are commutative to each
others. To distinguish such different particles created by
different creation operators, we can add some indexes. For
example, let us consider the case that particles can carry
different momentum. Then the particle number density
operators corresponding to momentum k⃗i is,

N̂k⃗i
≔ â†

k⃗i
âk⃗i : ð17Þ

Here operators â†
k⃗
and âk⃗ are the creation and annihilation

operators, which can add a particle of momentum k⃗ or
annihilate a particle of momentum k⃗. Let us use the
notation,

Y
i¼0

jni; k⃗ii ≔ jn0; k⃗0ijn1; k⃗1ijn2; k⃗2i… ð18Þ

to stand for the state that there are n0 particles of
momentum k⃗0, n1 particles of momentum k⃗1, n2 particles
of momentum k⃗2;…. The state in Eq. (18) is the common
eigenvector of all the particle number density operators and
can form a complete basis in Hilbert space H. Any state in
the Hilbert space H can be presented as,

jψi ¼
X∞

n0;n1;…¼0

cn0n1…
Y
i¼0

jni; k⃗ii

¼
X∞

n0;n1;…¼0

cn0n1…jn0; k⃗0ijn1; k⃗1i…: ð19Þ

This is the occupation number representation of a state in
Hilbert space, which is one basic representation in canoni-
cal quantization in quantum field theory and second
quantization in quantum many-body systems. The coef-
ficient matrix cn0n1n2… can be reorganized into the matrix
product state presentation [40] or multiscale entanglement
renormalization ansatz (MERA) [41].
The physical meanings of operators âk⃗ and â†

k⃗
are very

clear: they stand for deleting or adding one particle of
momentum k⃗ in the system. If the bosonic field is the
fundamental field rather then an effective field, then
particles are indivisible. It is very naturally to regard that
the fundamental operators are adding and deleting one
particle. This advises us to choose following generators set,

E0 ≔ ⋃
i

n
â†
k⃗i
; âk⃗i ; Î

o
ð20Þ

Here Î satisfies Î ê ¼ ê for ∀ ê ∈ E0 and Îδij ¼ ½âk⃗i ; â
†
k⃗j
�.

The generator set E0 forms an infinite dimensional
Heisenberg-Weyl Lie algebra. In general, this basis is
not big enough for the physical interesting questions, so
let us extend the basis in this way,

E ≔ ⋃
∞

n¼1

ðE0Þn; ð21Þ

with,

ðE0Þn ≔ fM̂i1i2…in ≕ êi1 êi2…êin∶j ∀ êi1 ;…; êin ∈ E0g:
ð22Þ

Here the “∶∶”means that annihilation operators will always
appear at the right of corresponding creation operator, e.g.,
∶âk⃗i â

†
k⃗i
≔ â†

k⃗i
âk⃗i . In the definition (21), êi1 ; êi2 ;…; êin do

not need to be different from each others. Such extended
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basis in fact is nothing but the universal enveloping algebra
of Heisenberg-Weyl Lie algebra.7

For free field theory, the particle number is conversed
and very convenient to characterize the quantum states.
However, in interacted field theories, the total Hamiltonian
H and the particle number density operator N̂k⃗i

defined in
Eq. (17) are not commutative, so the particle number is
not conversed. In this case, we can use ladder operators
fl̂k⃗i ; l̂

†
k⃗i
g (the generalization creation/anihinlation operators)

to replace the creation/annihilation operators fâ†
k⃗i
; âk⃗ig. For

arbitrary field theory, let Ĥ be its Hamilton which has
discreted eigenvalues En (it is assumed that Enþ1 ≥ En) and
is commutative to momentum operator. In the Appendix B,
I will prove that there is a unique operators set fl̂k⃗i ; l̂

†
k⃗i
g

which can satisfies,h
l̂k⃗0 ; l̂k⃗

i
¼

h
l̂†
k⃗0
; l̂†

k⃗

i
¼ 0;

h
l̂k⃗0 ; l̂

†
k⃗

i
¼ Îδk⃗0;k⃗;

l̂k⃗jEn; k⃗i ¼ αn;k⃗jEn−1; k⃗i ð23Þ

with αn;k⃗ > 0 if n > 0 and α
0;k⃗ ¼ 0. The vacuum state

corresponding to this Hamilton then is j0i ≔ Q
i¼0jE0; k⃗ii.

The operator l̂†
k⃗i

can change the energy at momentum k⃗

from En to Enþ1. By applying the l̂
†
k⃗i
, we can create the any

state
Q

k⃗i
jEni ; k⃗ii from vacuum state and the set ∪fnig

fQi¼0jEni ; k⃗iig forms a complete basis in Hilbert spaceH.

The operators fl̂k⃗i ; l̂
†
k⃗i
g are called the ladder operators

corresponding to Hamilton Ĥ. l̂k⃗i is the lowering operator

(the generalized annihilation operator) and l̂†
k⃗i
is the raising

operator (the generalized creation operator). One can also
find that the generalized particle number density operator

N̂0
k⃗
≔ l̂†

k⃗
l̂k⃗

is commutative to the Hamilton Ĥ. Thus, in general system,
we can use the ladder operators to replace the creation and
annihilation operators and define,

E0 ≔ ⋃
i

n
l̂†
k⃗i
; l̂k⃗i ; Î

o
: ð24Þ

It still forms an infinite dimensional Heisenberg-Weyl Lie
algebra. If the system is given by a free theory, then the
ladder operators are just the creation and annihilation

operators. For convenience, we will still use the notation
fâ†

k⃗i
; âk⃗ig to stand for ladder operators and jni to stand

for the energy eigenstate jEni in interacted systems. The
readers should keep in mind that fâ†

k⃗i
; âk⃗ig stands for the

ladder operators corresponding to total Hamilton when we
discuss the interacted theory.
After we have prepared the basis already, then the

generator T̂ðtÞ can be decomposed in this way,

T̂ðtÞ ¼ T0ðtÞÎþ
X
i

YiðtÞM̂i þ
X
ij

YijðtÞM̂ij þ � � �

þ
X

i1i2…in

Yi1i2…inðtÞM̂i1i2…in þ � � � : ð25Þ

Here T0ðtÞ; YiðtÞ; YijðtÞ;… are complex numbers,
M̂i; M̂ij;… are the generators given by Eq. (21) except
for Î. In addition, we can require that the tangent operator
T̂ðtÞ should be anti-Hermitian, i.e., T̂ðtÞ† ¼ −T̂ðtÞ, so that
the operator generated by it is unitary. This requirement is
natural in physics. However, as this paper is going to
explain the basic idea about how to construct the complex-
ity in quantum field theory, we will not add this
requirement.
Now we have to appoint the function form of Finsler

structure in this basis. Four different types of F have
been studied in Ref. [27] and also been checked in recent
paper [31], which are,

F1 ¼
X
I

kYIk; Fp ¼ pIkYIk

F2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

jYIj2
r

; Fq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qIjYIj2

q
: ð26Þ

The summation includes all the indexes of Y in Eq. (25). In
the two Finsler structures on the right side, pI and qI are
penalty factors which can be chosen to favour certain ones
in the fundamental generators/gates over others, i.e., to give
a higher cost to certain classes of gates. For real numbers,
the notation k · k is defined as kYIk ≔ jYIj, i.e., the usual
absolute value of real number. As what have been com-
pared in quantum circuits formed by spin chain in Ref. [27],
F1 is the best motivated of all the four local Finsler
structures. One physical interpretation for such preference
is as follow. Suppose Û to be generated by applying
sequentially the discrete fundamental operators (logic
gates) which are generated by σ̂1; σ̂2;… at the time
t1; t2;…. Then we can use δ-function to write these discrete
operators into a generator as following form,

T̂ðtÞ ¼ δðt − t1Þσ̂1 þ δðt − t2Þσ̂2 þ � � � ¼
X
n¼0

δðt − tnÞσ̂n:

ð27Þ

7In mathematics, the universal enveloping algebra of set E
defined by Eq. (21) can be induced by Heisenberg-Weyl Lie
algebra, i.e., the basic commutative relationship ½âk⃗; â†k⃗0 � ¼ δk⃗k⃗0 Î.
Thus it also forms a Lie algebra and the corresponding operators
set is also a Lie group.
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F1 leads that the length defined by Eq. (5) for this “curve”
is just the total number of fundamental operators, so the
curve of minimal length just corresponds to the design of
minimal required gates. In this sense, F1 is the most natural
generalization of the gate complexity for continuous
system. Fp is a modified version of F1 in which we
introduce a penalty for some generators. But functions F1

and Fp cannot give Finsler structures in strict sense.
However, Ref. [27] shows that this can be overcome by
treating them as the limit of some continuous function.
Thus, this subtlety will not be important in physics.
When the coefficients YI in Eq. (25) are complex

number, the notation k · k is a little ambiguous as
YI ¼ ρIeiθI in fact stands for two numbers ðρI; θIÞ rather
than one number. Naively thinking, we should use
kYIk ¼ ρI . However, this naive idea in fact is against with
the original intention of F1, as the “rotation” caused by θI is
not counted into the complexity. One way to generalize F1

for complex number YI ¼ ρIeiθI is,

kYIk ≔ ρIðj cos θIj þ j sin θIjÞ: ð28Þ

This generalization has simple physical picture: as YIMI ¼
ρI cosθIM̂

IþρI sinθI ·ði ·M̂IÞ, we can treat M̂I and ði · M̂IÞ
as different generators. The other simple method to take
the “rotation” into account is that we define,

kYIk ≔ ρI

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ2I

q
: ð29Þ

In this formula, we decompose the complex number YIðtÞ
into two steps. First, we find the point ρIðtÞ at the real axis.
Then we make a rotation to angle θIðtÞ and this leads to an
arc length ρIθI. Then the total “cost” for this complex
number is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2I þ ðρIθIÞ2

p
. This gives the result in

Eq. (29). For a given YIðtÞ, the value of θIðtÞ is not unique.
To avoid this ambiguous, we can require that θI ∈ ½0; ; πÞ
for constant θI. If θIðtÞ is not a constant, then we require
θIð0Þ ∈ ½0; ; πÞ and θIðtÞ is continuous when t ∈ ½0; 1�. By
this convention, the complex number YIðtÞ can correspond
to a unique phase angle θIðtÞ.
In fact, except for these two ways to give the meaning of

k · k, there are also many other ways. However, in order to
make the optimization problem (6) is well defined, it needs
that k · k satisfies the requirement kxk þ kyk ≥ kxþ yk
for ∀ x; y ∈ C. One can easy see that the definition (28)
satisfies this requirement. In the Appendix E, it will be
shown that definition (29) also satisfies this requirement.
The fact that we have infinite choices on Finsler structure
reflects the difficult position in this approach: we do not
have a dynamic equation to connect the Finsler structure
and the operators set. However, we can base on some
physical considerations to try some possible Finsler struc-
tures and study what it will bring to us. This is helpful for
understanding complexity itself.

In this paper, we will use Fp Finsler structure function
form. For the tangent vector T̂ðtÞ shown in Eq. (25), it is
naturally to introduce function F in the basis E in this way,

F ¼ l
�
pkT0ðtÞk þ

X
i

kYiðtÞk þ 2
X
ij

kYijðtÞk þ � � �

þ n
X

i1i2…in

kYi1i2…inðtÞk þ � � �
�
: ð30Þ

Here l is a free parameters and positive. One can prove that
in order to match the requirement that CðÎÞ ¼ 0, we have to
set that

p ¼ 0:

It is every naturally to choose the weight factors for other
coefficients as Eq. (30), as the generator M̂i only contains
the operators which can create or annihilate one particle,
generator M̂i1i2…in only contains the operators which can
create or annihilate n particles. The decomposition Eq. (25)
can be generalized into the continuous cases. The discrete
annihilation operator âk⃗i and its continuous form have the
relation,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

ð2πÞd−1
s

âk⃗i → âðk⃗Þ: ð31Þ

as well as the relationship between the summation and
integration,

X
k⃗i

→
Vol

ð2πÞd−1
Z

dd−1k: ð32Þ

Here Vol stands for the volume of the space where the
field can distribute and d is the spatial dimensions of
corresponding quantum field theory. The function form of
Finsler structure then becomes,

l−1F ¼
�

Vol
ð2πÞd−1

� Z
dd−1kkYk⃗ðtÞk

þ 2

�
Vol

ð2πÞd−1
�
2
ZZ

dd−1k1dd−1k2kYk⃗1k⃗2
ðtÞk þ � � �

þ n

�
Vol

ð2πÞd−1
�
n
�Yn

i¼1

Z
dd−1ki

�
kYk⃗1…k⃗n

ðtÞk þ � � �

ð33Þ

After we have prepared the pair ðE;FÞ, then we can
compute the complexity of any operators in UE and
complexity between the states in SE. It is not clear that
if the states set SE can contain the all the states in the whole
Hilbert space H. However, it will be show that the TFD
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states, which are the main targets in the holographic duality,
are contained in the states set SE. In addition, the states
studied by Ref. [36] are also contained in SE. For
convenience, the following sections of this paper will take
l ¼ 1. While the work in this paper is by no means
exhaustive, I hope to provide a starting point for more
systematic studies of framework by using Finsler geometry
to construct the complexity in quantum field theory.

III. COMPLEXITY IN SOME SIMPLE EXAMPLES

A. Complexity between coherent states

Before we discuss how to use the framework in the
previous section to study the complexity in TFD states, let
us first try to study a useful model in quantum mechanics.
As lots of new definitions and clarifications were made in
previous sections, it is better to use some simple examples
to familiarize the readers with them. In this subsection, let
us assume that the momentum has only one possible value
so that we can neglect the momentum index. Then the
Hilbert space is spanned by fjnig. We choose that states set
SE is the collection of all the coherent states,

SE ≔ fjcohðαÞij ∀ jcohðαÞi ∈ H; s:t:; âjcohðαÞi
¼ αjcohðαÞig: ð34Þ

We see that SE is the collection of all the eigenstates
of lowering/annihilation operator.8 This state can be gen-
erated from vacuum state j0i by displacement operator
D̂α ≔ expðαâ† − α�âÞ,

jcohðαÞi ¼ D̂αj0i: ð35Þ

It is obvious that displacement operators are the elements of
UE. In order to use our method to compute the complexity
between any two states in SE, we have to check that if there
is at least one operator in UE to convert each other of any
two states in SE. This can be done as follows. Firstly, one
can prove that the displacement operator D̂α and D̂β satisfy,

D̂αD̂β ¼ eαβ
�−βα�D̂αþβ: ð36Þ

This equation implies that D̂αjcohðβÞi ¼
eαβ

�−βα� jcohðαþ βÞi ∼ jcohðαþ βÞi, so any two elements
in set (34) can be converted to each other by at least one
operator in UE.
Now let us try to compute the complexity from j0i to

jcohðαÞi according to Eq. (7). To do that we have to find all
the operators Û such that jcohðαÞi ∼ Ûj0i. Displacement
operator D̂α of course is one of such operators but is not the
one of minimal complexity. In fact, all operators Ûf with

the form of exp½αâ† þ fâ� for arbitrary constant f can
satisfy that jcohðαÞi ∼ Ûfj0i.
Let us first show how to compute the complexity of

Û0 ¼ exp½αâ†�. The general curve in UE is generated by
following generator,

T̂ðtÞ ¼ T0ðtÞÎþ Y1ðtÞâþ þ Y2ðtÞâþ
X
i1;i2

Yi1i2 b̂i1 b̂i2 þ � � �

þ
X

i1;…;in

Yi1…in b̂i1…b̂in þ � � � : ð37Þ

Here b̂i1 ;…; b̂in ∈ fâ; â†g. As the curve generated by
T̂ðtÞ should satisfy condition Û0 ¼ exp½αâ†� ¼ ĉð1Þ ¼
λP⃖ exp

R
1
0 T̂ðtÞdt, so we obtain the restricted extremum

problem,

CðÛ0Þ ¼ min

�Z
1

0

dt

�
kY1ðtÞk þ kY2ðtÞk

þ 2
X
i1;i2

kYi1i2k þ � � � þ � � �
��

ð38Þ

with the constraint,

expðαâ†Þ ¼ λP⃖ exp

�Z
1

0

dt

�
T0ðtÞÎþ Y1ðtÞâþ

þ Y2ðtÞâþ
X
i1;i2

Yi1i2 b̂i1 b̂i2 þ � � �

þ
X

i1;…;in

Yi1…in b̂i1…b̂in þ � � �
��

ð39Þ

for a nonzero complex number λ.
It seems to be a high challenge to solve optimization

problem Eqs. (38) and (39) strictly. As the first attempt to
investigate the complexity in this manner, in order to avoid
sinking into verbose math, let us reduce the elements in
generators set. Here it is assumed that

E ¼ Eð0Þ ¼ fâ; â†; Îg: ð40Þ

Under this reduced generators set, the optimization prob-
lem Eqs. (38) and (39) then becomes,

CðU0Þ ¼ min

�Z
1

0

dt½kY1ðtÞk þ kY2ðtÞk�
�

ð41Þ

with the constraint,

expðαâ†Þ ¼ λP⃖ exp

�Z
1

0

dt½T0ðtÞÎþ Y1ðtÞâþ þ Y2ðtÞâ�
�

ð42Þ
8All the results in this subsection can be used into the both of

free and interacted systems.
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for a nonzero complex number λ. Using the results in the
Appendix C, we can find that the complexity of Û0 is,

CðÛ0Þ ¼ Cðexp½αâ†�Þ ¼ kαk: ð43Þ

The complexity between the coherent state and vacuum
state is [see Eq. (C16) in Appendix C],

CðjcohðαÞi; j0iÞ ¼ kαk: ð44Þ

If someone directly uses the complexity of displacement
operator D̂α to stand for the complexity j0i → jcohðαÞi
then he will find that its a value is 2kαk, which is larger than
the result in Eq. (44). Of course, if one insist that the
operators we can use to convert states are unitary, then
displacement operator D̂α is one of which give the minimal
complexity. Just as mentioned in the introduction part, it
may lead to larger complexity by reducing the operator sets.
Using the relationship expðβâ†Þexpðαâ†Þ ¼

exp½ðβþαÞâ†�, we can see that

expð−αâ†ÞjcohðαÞi ¼ j0i;

so we have,

Cðj0i; jcohðαÞiÞ ¼ Cðexp½−αâ†�Þ ¼ kαk: ð45Þ

and,

CðjcohðβÞi; jcohðαÞiÞ ¼ kβ − αk: ð46Þ

We see that in this case the complexity between coherent
states has reversibility. By these results we can check the
properties (1b) and (2b) in the Sec. I,

CðjcohðβÞi; jcohðαÞiÞ ¼ 0⇔ α¼ β⇔ jcohðβÞi∼ jcohðαÞi
CðjcohðβÞi; jcohðαÞiÞ þ CðjcohðαÞi; j0iÞ ≥ CðjcohðβÞi; j0iÞ:

ð47Þ

For any reference coherent state jcohðγÞi, we have follow-
ing inequality for the complexity of formation,

ΔCγðjcohðβÞi; jcohðαÞiÞ ¼ kβ − γk − kα − γk ≤ kα − βk:
ð48Þ

We see that the complexity of formation depends in the
choice of reference state jcohðγÞi.
When we recover the generators set E into the form

in Eq. (21), it seems that the complexity between
coherent state and vacuum state is still given by
Eq. (43). The proof is not obtained yet but the physical
intuition for such predication is simple: there is no any
ladder operators to be wasted (the meaning of “wasted”
here is that a particle created/annihilated at earlier time will

be annihilated/created at the later time), so it contains the
minimal operators to convert the reference state into the
target state.

B. Complexity of entangled thermal states

In this subsection, we restrict the consideration in the
case that the system is free system but there are two kinds
of creation and annihilation operators. By this subsection,
we want to show and clarity the similarities and differences
between the complexity and other conceptions such as
thermal/entanglement entropy and complexity of
formation.
Let’s consider a Hilbert space H ¼ H1 ×H2 so we

have two groups of creation and annihilation operators
and E0 ≔ fâ1; â2; â†1; â†2g. The subspace H2 is a copy of
subspace H1. Let us consider the entangled thermal state,

jSðβÞi ≔ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X∞

n¼0

e−βEn/2jni1jni2: ð49Þ

Here En is the eigenenergy of Hamilton in the subspaces.
The normalization constant ZðβÞ has been added so that
hSðβÞjSðβÞi ¼ 1. The density matrix is,

ρ≔ jSðβÞihSðβÞj¼ 1

ZðβÞ
X∞
n;m¼0

e−βðEnþEmÞ/2jni1jni2hmj1hmj2:

ð50Þ

As ρ is the density matrix for pure state, the thermal entropy
of this system is zero. In order to find the entanglement
entropy between the subspace H1 and H2, let us first take
the trace of H2 in the density matrix,

ρ1 ¼ Tr2ðρÞ ¼
X∞
m¼0

hmj2ρjmi2 ¼
1

ZðβÞ
X∞
n¼0

e−βEn jni1hnj1:

ð51Þ

Then we see that the subsystem is a mix state system with
temperature T ¼ 1/β. As here we assume that the system
is free, the eigenenergy En can be written as En ¼ ωnþ E0

for a positive ω and a zero-point energy E0. Then the
partition function is ZðβÞ ¼ 1/ð1 − e−βωÞ and the entan-
glement entropy S12 is,

S12 ¼ −Trðρ1 ln ρ1Þ ¼ lnZ − β
∂
∂β lnZ

¼ − lnð1 − e−βωÞ þ βω

eβω − 1
: ð52Þ

Now let us try to compute the complexity between jSðβÞi
and its corresponding ground state. To do so, let us write the
state jSðβÞi as follows,
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jSðβÞi ∼
X∞
n¼0

e−βEn/2

n!
ðâ†1â†2Þnj0i1j0i2

∼
X∞
n¼0

e−βnω/2

n!
ðâ†1â†2Þnj0i1j0i2 ¼ Ûβj0i1j0i2: ð53Þ

Here Ûβ ≔ expðe−βω/2â†1â†2Þ. In fact jSðβÞi can be
regarded as the TFD state in quantum mechanics
((1þ 0)-dimensional quantum field). We here consider
the complexity of conversion j0i1j0i2 → jSðβÞi. It seems
a high challenge to find the complexity under the gen-
erators set (21). Let us assume that the generators set only
contains two elements

E ¼ fâ†1â†2; Îg:

Then any operator Û ∈ UE has the relationship Û ∼
expðλâ†1â†2Þ with λ ∈ C. To determine the complexity of
Û, we have to solve the restricted extremum problem,

CðÛÞ ¼ 2min

�Z
1

0

dtkY1ðtÞk
�

ð54Þ

with the constraint,

Û ∼ expðλâ†1â†2Þ ¼ P⃖ exp

�Z
1

0

dtY1ðtÞâ†1â†2
�

¼ exp

�
â†1â

†
2

Z
1

0

dtY1ðtÞ
�
: ð55Þ

Solving this optimization problem, we can find that

C½expðλâ†1â†2Þ� ¼ 2kλk:

Hence, the complexity of Ûβ is,

CðÛβÞ ¼ 2e−βω/2: ð56Þ

All the operators which can transform j0i1j0i2 into jSðβÞi
are equivalent to Ûβ, so we obtain that,

CðjSðβÞi; j0i1j0i2Þ ¼ 2e−βω/2: ð57Þ

We see that in general CðjSðβÞi; j0i1j0i2Þ ≠ S12. This
shows that complexity and entanglement entropy are
different quantities. In fact, the complexity is the defined
between two states, so we can change the reference state
and compute the complexity between jSðβÞi and this
reference state. Then the value of complexity in general
has no direct relationship to entanglement entropy. This
shows that complexity in fact is a new independent quantity
to describe the relationship between two states.

One can easy see that

expðe−β1ω/2â†1â†2Þ expðe−β2ω/2â†1â†2Þ
¼ exp½ðe−β1ω/2 þ e−β2ω/2Þâ†1â†2� ð58Þ

so we have,

CðjSðβ2Þi; jSðβ1ÞiÞ ¼ 2je−β2ω/2 − e−β1ω/2j: ð59Þ

The reversible condition is also satisfied in this case.
Equation (59) leads that the complexity of formation of
jSðβ1Þi and jSðβ2Þi corresponding to jSðβ3Þi is,

ΔCβ3ðjSðβ2Þi; jSðβ1ÞiÞ ¼ 2je−β2ω
2 − e−

β3ω
2 j − 2je−β3ω

2 − e−
β1ω
2 j

≤ CðjSðβ2Þi; jSðβ1ÞiÞ: ð60Þ

Specially, when β3 ≤ minfβ2; β1g or β3 ≥ maxfβ2; β1g, the
left-hand of Eq. (60) is independent of the value of β3 and
the absolute value of complexity of formation is just the
complexity between these two states,

CðjSðβ2Þi; jSðβ1ÞiÞ ¼ jΔCβ3ðjSðβ2Þi; jSðβ1ÞiÞj: ð61Þ

This can be understood physically by following argument.
Let us consider to design some quantum circuits to

covert the initial state jIi into the finial state jFi. One can
see Fig. 3. Different curves such as ϕIM;ϕMF;ϕ1;ϕ2;ϕ3;…
stand for different designs. In general, some designs will
bring the initial state passing through the medial state jMi
but some designs such as ϕ̃ will not. However, in some
special cases, because of physical restrictions, all the

FIG. 3. Curves ϕIM;ϕMF;ϕ1;ϕ2;ϕ3;… stand for the possible
quantum circuits which can covert the initial state jIi into the
finial state jFi. The medial state jMi is the necessary state that all
the physically realizable quantum circuit will bring the initial
state jIi into the medial state jMi before it reaches the finial state
jFi. The black dashed curve ϕ̃ stands for a quantum circuit which
can connect states jIi and jFi without passing through the medial
state jMi. But this curve is forbidden by some physical rules.
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physical realizable quantum circuits will bring the initial
state passing through the medial state jMi. In these cases, if
ϕIM is one quantum circuit of minimal gates which can
convert jIi to jMi and ϕMF is one quantum circuit of
minimal gates which can convert jMi to jFi, then the
combination ϕMF∘ϕIM is also one quantum circuit of
minimal gates to realize the conversion jIi to jFi. This
means that,

CðjFi; jIiÞ ¼ CðjFi; jMiÞ þ CðjMi; jIiÞ; ð62Þ

or,

ΔCIðjFi; jMiÞ ≔ CðjFi; jIiÞ − CðjMi; jIiÞ ¼ CðjFi; jMiÞ;
ð63Þ

In addition, if the complexity is reversible, then Eq. (63)
can be strengthened as,

jΔCIðjFi; jMiÞj ¼ CðjFi; jMiÞ; ð64Þ

We see that the absolute value of complexity of formation
between states jFi and jMi (corresponding to jIi) then is
just the complexity between them.
Now let us return to the case in entangled thermal states.

Let us assume β1 ≤ β2 ≤ β3 and consider the conversion
jSðβ3Þi → jSðβ1Þi. As the parameter β in the states jSðβÞi
describe the temperature and can only be changed con-
tinuously in a real system, then all the physically realizable
quantum circuits must bring the state jSðβ3Þi into the state
jSðβ2Þi before then reach the final state jSðβ1Þi. As the
complexity satisfies reversibility in entangled thermal
states, we see that,

jΔCβ3ðjSðβ1Þi; jSðβ2ÞiÞj ¼ CðjSðβ1Þi; jSðβ2ÞiÞ; ð65Þ

For other cases of β3 ≤ minfβ2; β1g or β3 ≥ maxfβ2; β1g,
one can find the same result.

IV. COMPLEXITY BETWEEN TFD STATES

A. Construct TFD states by Bogoliubov
transformations

In this section, we will construct two different vacuum
states which can be associated by a Bogoliubov trans-
formation. One can see that the TFD state can be naturally
identified with a vacuum state by this manner. For simplicity,
we only consider the free scalar field theory in this section.
Let us first define a two-copy vacuum state jAi ≔

jAiLjAiR. The state jAiL is left-side vacuum state in the
Hilbert space HL, which is annihilated by the operator âL

k⃗
,

âL
k⃗
jAiL ¼ 0: ð66Þ

Here k⃗ ¼ ðk1; k2;…; kd−1Þ is the momentum of the annihi-
lated particle. The state jAiR is right-side vacuum state
in the Hilbert space HR which is the copy of HL. Its
annihilation operator is âR

k⃗
. Let us first assume that the

momentum is discrete. Then the annihilation and creation
operators corresponding to the left-side and right-side
vacuum states satisfy following bosonic commutation
relations,

h
âL
k⃗
; âL†

k⃗0

i
¼

h
âR
k⃗
; âR†

k⃗0

i
¼ δk⃗k⃗0 Î ð67Þ

and others are zeros. All the excited states in the Hilbert
space H ≔ HL ×HR then can be generated by using
creation operators âL†

k⃗
and âR†

k⃗
from vacuum state jAi.

The vacuum state is not the unique. In fact, the studies on
the quantum field in curved spacetime have made us to
realize that vacuum also depends on the observers. This
understanding leads to the unified understanding on the
Unruh effect [42,43], Hawking radiation [44,45] and other
particle automatical creations in the curved spacetime
[46,47]. To define an other vacuum state, let us consider
a new decomposition on the Hilbert space H such that
H ¼ HU ×HD and the corresponding annihilation oper-
ators ðb̂U

k⃗
; b̂D

k⃗
Þ which have following relationships to

ðâL
k⃗
; âR

k⃗
Þ,

b̂U
k⃗
≔ ck⃗

	
âR
k⃗
− e−πωk⃗/aâL†

k⃗



; b̂D

k⃗
≔ dk⃗

	
âL
k⃗
− e−πωk⃗/aâR†

k⃗



:

ð68Þ

Hereωk⃗ is the energy of a particle at momentum k⃗ and a is a
non-negative real number. We will see later on that a is
just proportional to the temperature of a TFD state. For the
free scalar field with conformal symmetry, the mass is zero

and we have ωk⃗ ¼
ffiffiffiffiffi
k⃗2

p
. The coefficients ck⃗ and dk⃗ are

determined so that bosonic commutation relationships are
satisfied,

h
b̂U
k⃗
; b̂U†

k⃗0

i
¼

h
b̂D
k⃗
; b̂D†

k⃗0

i
¼ δk⃗k⃗0 Î: ð69Þ

As they are not important in this paper, we will not give out
their expressions. The annihilation operators pairs ðb̂U

k⃗
; b̂D

k⃗
Þ

determine a new vacuum jBi ≔ jBiUjBiD, which satisfies,

b̂U
k⃗
jBiU ¼ b̂D

k⃗
jBiD ¼ 0; ð70Þ

or we can write that b̂U
k⃗
jBi ¼ b̂D

k⃗
jBi ¼ 0.

We see that in the Eq. (68) the new annihilation operators
are mixed with original creation and annihilation operators,
so from the viewpoint of vacuum jAi, the state jBi is an
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excited state and has nonzero particle numbers. Using the
Eqs. (68) and (70), one can easy find following relationship,

ðâR†
k⃗
âR
k⃗
− âL†

k⃗
âL
k⃗
ÞjBi ¼ 0 ð71Þ

This equation implies that the number of left-side particles
and the number of right-side particles are the same in the new
vacuum state jBi. As the Fock’s space of HL and HR can
span the Hilbert spaceH, any state inH can bewritten as the
superposition of the particle states in them. Then we see that,

jBi ∼
�Y

k⃗i

X∞
n¼0

Kn

n!
ðâR†

k⃗i
âL†
k⃗i
Þni

�
jAi: ð72Þ

The recursion formula for the coefficients Kni can be readily
found from the Eq. (71). The result is

Knþ1 − e−πωk⃗i
/aKn ¼ 0: ð73Þ

Then we can see that

jBi ∼
�Y

k⃗i

X∞
n¼0

e−πniωk⃗i
/a

n!
ðâR†

k⃗i
âL†
k⃗i
Þn
�
jAi

¼
Y
k⃗i

X∞
n¼0

e−πnωk⃗i
/ajn; k⃗iiLjn; k⃗iiR: ð74Þ

Here the notation jn; k⃗iimeans that there are n particles with
momentum k⃗i. The similar relation between state jBi and jAi
appears in some important physical situations. For example,
for an accelerated observer in Minkowskin spacetime, the
vacuum jAi is the Rindler vacuum and the vacuum jBi is the
Minkowskin vacuum, Eq. (74) then shows that accelerated
observer can find the particles appearing in Minkowskin
vacuum, which leads to the Unruh effect. For the a static
observer at the infinite of a Schwarzschild black hole, the
vacuum jAi is the out-vacuum and the vacuum jBi is in-
vacuum, Eq. (74) then leads to the particles emission from
the black hole, which is the origin of Hawking radiation.
In order to see that the vacuum state corresponding to

annihilation operators pair ðb̂U
k⃗
; b̂D

k⃗
Þ is just a TFD state, let

us introduce the energy eigenstate jEiiL and jEiiR as the
basis of Hilbert spaceHL andHR, then the state jBi can be
expressed as,

jBi ∼
X∞
i;j¼0

fijjEiiLjEjiR: ð75Þ

For every momentum k⃗i, the left and right sides always
contain the same particles, which means that they also have
the same energy. For every state with momentum k⃗i and
particle number n, it contains the energy E ¼ nωk⃗i

and the

coefficient with is probational to e−πnωk⃗i
/a. This means that

fij ¼ δij expð−πEi/aÞ and so,

jBi ∼
X∞
i¼0

e−πEi/ajEiiLjEiiR: ð76Þ

Here jEiiL/R ≔ gðEiÞ
Q

k⃗j

P
ni jni; k⃗jiL/R with the restric-

tion ωk⃗i

P
ni ¼ Ei. Here the coefficient gðEiÞ is the

normalization factor. Comparing it with the Eq. (1), one
can see that jBi is a TFD state with temperature T ¼ a/2π.
The vacuum state jAi is just the TFD state at the zero
temperature limit, i.e., the state at the limit a → 0.
As all the different âR†

k⃗i
âL†
k⃗i

are commutative, the Eq. (74)

can be written into the continuous form by this way,

jTFDi ≔ jBi ∼
Y
k⃗i

X∞
ni¼0

e−πniωk⃗i
/a

ni!
ðâR†

k⃗i
âL†
k⃗i
Þni jAi

¼
Y
k⃗i

exp½e−πωk⃗i
/aâR†

k⃗i
âL†
k⃗i
�jAi

¼ exp

�X
k⃗i

e−πωk⃗i
/aâR†

k⃗i
âL†
k⃗i

�
jAi

¼ exp

�Z
dkd−1e−πωk⃗/aâR†ðk⃗ÞâL†ðk⃗Þ

�
jAi

¼ Û†
ajAi ð77Þ

with the operator Û†
a defined as,

Û†
a ≔ exp

�Z
dkd−1e−πωk⃗/aâR†ðk⃗ÞâL†ðk⃗Þ

�
: ð78Þ

The discrete creation operator â†
k⃗i
has been converted into

its continuous form by Eqs. (31) and (32).
The continuous form in Eq. (77) shows that a TFD state

and its vacuum can be associated by the operator Û†
a. This is

the starting point in following computations about com-
plexity. A remarkable property is that we do not need any
UV cut-off at the momentum when we construct the TFD
state from the vacuum state by Bogoliubov transformation.
It needs to note that the operator Û†

a is not unitary as we can
see that Û−1

a ≠ Û†
a. However, Û

†
a has a unitary partner Ĝa

which can also realize the conversation from jAi to jTFDi,

Ĝa ≔ exp

�Z
dkd−1fða; k⃗Þ½âR†ðk⃗ÞâL†ðk⃗Þ − âRðk⃗ÞâLðk⃗Þ�

�
ð79Þ

for a real-valued function fða; k⃗Þ. One can see that Ĝa is
unitary as ĜaĜ

†
a ¼ Î. Let us try to find a function fða; k⃗Þ so
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that Û†
ajAi ¼ ĜajAi. Firstly, we return to the discrete form

and define,

L̂ðk⃗Þ
þ ≔ âR†

k⃗
âL†
k⃗
; L̂ðk⃗Þ

− ¼ âR
k⃗
âL
k⃗
;

L̂ðk⃗Þ
0 ≔

1

2

	
âR
k⃗
âR†
k⃗

þ âL
k⃗
âL†
k⃗

− Î


¼ 1

2

	
âR†
k⃗
âR
k⃗
þ âL†

k⃗
âL
k⃗
þ Î



;

Ĝk⃗
a ≔ exp

h
fða; k⃗ÞðL̂ðk⃗Þ

þ − L̂ðk⃗Þ
− Þ

i
: ð80Þ

Then Eqs. (79) and (77) can be presented as,

Ĝa ¼
Y
k⃗

exp
h
fða; k⃗Þ

	
L̂ðk⃗Þ
þ − L̂ðk⃗Þ

−


i
¼

Y
k⃗

Ĝk⃗
a; ð81Þ

jTFDi ∼
Y
k⃗

exp
h
e−πωk⃗/aL̂ðk⃗Þ

þ
i
jAi: ð82Þ

The generators fL̂ðk⃗Þ
þ ; L̂ðk⃗Þ

− ; L̂ðk⃗Þ
0 g form a su(1,1) Lie-algebra

with the commutation relationships,

h
L̂ðk⃗Þ
þ ; L̂ðk⃗Þ

−

i
¼ −2L̂ðk⃗Þ

0 ;
h
Lðk⃗Þ
0 ; L̂ðk⃗Þ

�
i
¼ �L̂ðk⃗Þ

� : ð83Þ

Ĝa defined in Eq. (80) can be decomposed as (see the
Appendix 11.3.3 of Ref. [48]),

Ĝk⃗
a ¼ exp

h
γþðk⃗ÞL̂ðk⃗Þ

þ
i
exp

h
ln γ0ðk⃗ÞL̂ðk⃗Þ

0

i
exp

h
γ−ðk⃗ÞL̂ðk⃗Þ

−

i
ð84Þ

with

γ�ðk⃗Þ ¼ � tanh fða; k⃗Þ; γ0ðk⃗Þ ¼ cosh−2fða; k⃗Þ: ð85Þ

Noting the fact that L̂ðk⃗Þ
− jAi ¼ 0 and L̂ðk⃗Þ

0 jAi ¼ 1
2
jAi, one

can find that,

Ĝk⃗
ajAi ¼ exp

h
γþðk⃗ÞL̂ðk⃗Þ

þ
i
exp

�
1

2
ln γ0ðk⃗Þ

�
jAi

∼ exp
h
γþðk⃗ÞL̂ðk⃗Þ

þ
i
jAi: ð86Þ

So we see that ĜajAi ∼
Q

k⃗ exp ½γþðk⃗ÞL̂
ðk⃗Þ
þ �jAi. Comparing

it with Eq. (82), we see that ĜajAi ¼ Û†
ajAi if we take,

fða; k⃗Þ ¼ arctanhe−πωk⃗/a: ð87Þ

In fact, besides the nonunitary operator Û†
a and unitary

operator Ĝa, there are infinite different operators which
can satisfy ÛjAi ∼ jAi. For example, let us introduce the
Casimir operator for su(1,1) Lie-algebra (83),

Ĉðk⃗Þ ≔ L̂ðk⃗Þ2
0 −

1

2

h
L̂ðk⃗Þ
þ L̂ðk⃗Þ

− þ L̂ðk⃗Þ
− L̂ðk⃗Þ

þ
i

¼ L̂ðk⃗Þ2
0 − L̂ðk⃗Þ

0 − L̂ðk⃗Þ
þ L̂ðk⃗Þ

− ; ð88Þ

One can easy check that ½Ĉðk⃗Þ; Lðk⃗Þ
� � ¼ ½Ĉðk⃗Þ; Lðk⃗Þ

0 � ¼ 0.

Then for any function hðk⃗; xÞ ¼ P∞
n¼0 hnðk⃗Þxn, the oper-

ators,

Ô1 ≔ exp

�Z
dkd−1e−πωk⃗/aL̂ðk⃗Þ

þ þ hðk⃗; Ĉðk⃗ÞÞ
�

Ô2 ≔ exp

�Z
dkd−1e−πωk⃗/aarctanhe−πωk⃗/a

	
L̂ðk⃗Þ
þ − L̂ðk⃗Þ

−




þ h
	
k⃗; Ĉðk⃗Þ


�
ð89Þ

can satisfy the relationship Ô1jAi ∼ Ô2jAi ∼ jTFDi.

B. Complexity between different TFD states

When we consider the complexity in TFD states, the
basic generators set given by Eq. (20) then should be
replaced by the two-copy of creation/annihilation operators
set,

E0 ≔ ⋃
i

n
âR†
k⃗i
; âR

k⃗i
; âL†

k⃗i
; âL

k⃗i
; Î
o

ð90Þ

The total generators set then is still given by Eq. (21).
In order to find the complexity for TFD states, in this
subsection, let us restrict the generators set into following
form,

E ¼ fL̂ðk⃗Þ
þ ; Îj ∀ k⃗ ∈ Rd−1g: ð91Þ

This generators set contains infinite different generators
which are commutative to each others. Similar to what
we have argued in the end of subsection III A, physical
intuition seems to imply that the complexity computed by
the generator set (91) is just the result even when we
recover the generator set into the general form given by
Eq. (21). However, the proof is still absent and out of the
goal of this paper. Let us restrict the generator set to be
Eq. (91) in this paper for TFD states. In the Appendix D, we
will use a bigger generator set which contains the Casimir

operators Ĉðk⃗Þ to find the complexity and show the
complexity is just the same result given by generator set
(91). This seems to be evidence for this physical intuition.
Similar to the case in thermal entangle state, any operator

Û ∈ UE has the relationship Û ∼ expðR dd−1kλðk⃗ÞLðk⃗Þ
þ Þ for

a function λðk⃗Þ ∈ C. We have to solve the restricted
extremum problem,
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CðÛÞ ¼ 2Vol
ð2πÞd−1min

�Z
1

0

dt
Z

dd−1kkYk⃗ðtÞk
�

ð92Þ

with the constraint,

Û ∼ exp
Z

dd−1kλðk⃗ÞL̂ðk⃗Þ
þ

¼ exp

�Z
dd−1kL̂ðk⃗Þ

þ

Z
1

0

dtYk⃗ðtÞ
�
: ð93Þ

Solving this optimization problem, we can find that

C
�
exp

Z
ddkλðk⃗ÞL̂ðk⃗Þ

þ

�
¼ 2Vol

ð2πÞd−1
Z

dd−1kkλðk⃗Þk ð94Þ

Hence, we can find that,

CðjTFDi; jAiÞ ¼ CðÛ†
aÞ

¼ 2Vol
ð2πÞd−1

Z
dd−1ke−πωk⃗/a

¼ 2Vol
ð2πÞd−1

Z
dd−1ke−ωk⃗/ð2TÞ ð95Þ

If we assume the quantum field theory has full conformal
symmetry, then we have dispersion relationship ωk⃗ ¼ jk⃗j.
This leads to following result,

CðjTFDi; jAiÞ ¼ 2Vol
ð2πÞd−1

Z
dd−1ke−k/ð2TÞ

¼ 2Sd−2Γðd − 1Þ
πd−1

Vol · Td−1: ð96Þ

Here Sd−2 is the area of (d − 2)-dimensional unit sphere. It
is surprising that the complexity density between the TFD
state and its zero temperature vacuum state is finite and
proportional to Td−1. This is just the behavior of renor-
malized holographic complexity in Schwarzschild-AdS
black hole with planar symmetry [35]. In addition, the
result (96) seems to be against the expectations in
Refs. [20,31,36,38,49] that the complexity density about
a TFD state should be infinite. To clarify why the complex-
ity density between a TFD state and its corresponding
vacuum state should be finite, I will make some detailed
discussions in Sec. V.
Beside the decomposition H ¼ HR ×HL and H ¼

HU ×HD, we can also make a new decomposition
H ¼ HB ×HW and its creation/annihilation operators
fĉB†

k⃗i
; ĉB

k⃗i
; ĉW†

k⃗i
; ĉW

k⃗i
g. Then these annihilation operators

define a vacuum jCi ∈ H such that ĉW
k⃗i
jCi ¼ ĉD

k⃗i
jCi ¼ 0.

Then we define Bogoliubov transformations between them
as follows,

b̂U
k⃗
∝ âR

k⃗
− e−πωk⃗/a1 âL†

k⃗
; b̂D

k⃗
∝ âL

k⃗
− e−πωk⃗/a1 âR†

k⃗
: ð97Þ

and,

ĉW
k⃗
∝ âR

k⃗
− e−πωk⃗/a2 âL†

k⃗
; ĉB

k⃗
∝ âL

k⃗
− e−πωk⃗/a2 âR†

k⃗
: ð98Þ

They can give two TFD states,

jTFD1i ∼ exp

�Z
dkd−1e−πωk⃗/a1L̂ðk⃗Þ

þ

�
jAi

jTFD2i ∼ exp

�Z
dkd−1e−πωk⃗/a2L̂ðk⃗Þ

þ

�
jAi ð99Þ

We can find that,

CðjTFD1i; jAiÞ ¼
2Vol

ð2πÞd−1
Z

dd−1ke−ωk⃗/ð2T1Þ: ð100Þ

and,

CðjTFD2i; jAiÞ ¼
2Vol

ð2πÞd−1
Z

dd−1ke−ωk⃗/ð2T2Þ: ð101Þ

Here T1 ¼ a1/ð2πÞ and T2 ¼ a2/ð2πÞ. We see that the
complexity of formation between this two TFD states with
respective to reference vacuum state jAi,

ΔCAðjTFD2i; jTFD1iÞ

¼ 2Vol
ð2πÞd−1

Z
dd−1k½e−ωk⃗/ð2T2Þ − e−ωk⃗/ð2T1Þ�: ð102Þ

As the operators âR†ðk⃗1ÞâL†ðk⃗1Þ and âR†ðk⃗2ÞâL†ðk⃗2Þ are
commutated with each other for any two momentum k⃗1
and k⃗2, the complexity between any to TFD states will be
given by the manner similar to the subsection III B, which
reads,

CðjTFD1i; jTFD2iÞ

¼ 2Vol
ð2πÞd−1

Z
dd−1kje−ωk⃗/ð2T2Þ − e−ωk⃗/ð2T1Þj: ð103Þ

We see that the absolute value of complexity of formation
according to the vacuum state jAi is just the complexity
between them. In fact, one can show that, by choosing
any jTFD3i as the reference state, the complexity of
formation is given by,

ΔCTFD3
ðjTFD2i; jTFD1iÞ

¼ 2Vol
ð2πÞd−1

Z
dd−1kfje−ωk⃗/ð2T2Þ − e−ωk⃗/ð2T3Þj

− je−ωk⃗/ð2T3Þ − e−ωk⃗/ð2T1Þjg: ð104Þ
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Hence, just as the same as the case in (1þ 0)-dimensional
TFD stats shown in the subsection III B, if the temper-
atures of TFD states satisfy that T3 ≤ minfT1; T2g or
T3 ≥ maxfT1; T2g, then the complexity of formation is
independent of the choice on reference TFD state and
its absolute value is just the complexity between two
states, i.e.,

jΔCTFD3
ðjTFD2i; jTFD1iÞj ¼ CðjTFD2i; jTFD1iÞ;

if T3 ≤ minfT1; T2g or T3 ≥ maxfT1; T2g: ð105Þ

The physical reason for that is just as the same as what
was shown in the subsection III B.

C. Equivalence to fidelity susceptibility

Now I will try to connect the other useful conception in
the quantum information theory, the fidelity susceptibility
(or information metric), to the conception of complexity.
More precisely, I will show that the fidelity susceptibility
for a TFD state in fact is equivalent to the complexity
between it and corresponding vacuum state. This statement
is motivated by Ref. [32], which gives a proposal that
the fidelity susceptibility of a TFD state is given by the
maximum volume of space-like surfaces which connect the
two boundary of an enteral asymptotic AdS black hole. We
see that the holographic objects of fidelity susceptibility
and complexity in CV conjecture are the same one. This
gives us strong evidence and motivation to connect two
conceptions.
Let us assume that jψðλÞi to be a curve in Hilbert

space H and jψð0Þi ¼ jψ0i. In general, this curve can be
generated by a s-dependent tangent operator T̂ðsÞ, i.e.,

jψðλÞi ¼ 1

N ðλÞ P⃖ exp

�Z
λ

0

T̂ðsÞds
�
jψ0i: ð106Þ

Here N ðλÞ ∈ Rþ is the normalization factor so that
hψðλÞjψðλÞi ¼ 1. If T̂ðλÞ is anit-Hermit, i.e., T̂†ðλÞ ¼
−T̂ðλÞ, then N ðλÞ ¼ 1. In general case, we have
N ðλÞ ≠ 1. Then the projection of jψðλÞi on jψ0i is given
by hψ0jψðλÞi. The fidelity susceptibilityGT (or information
metric) then is given by,

GT̂ ≔ lim
λ→0

1

λ2
½1 − jhψ0jψðλÞij�

¼ lim
λ→0

1

λ2

�
1 −

1

N ðλÞ jhψ0jP⃖ exp

�Z
λ

0

T̂ðsÞds
�
jψ0ij

�
:

ð107Þ

We see that fidelity susceptibility depends on the state jψ0i
and generator T̂0 ≔ T̂ðλÞjλ¼0. We can write Eq. (107) into a
more explicate form. One can easy check that,

2GT̂ ¼ hψ0jT̂0T̂
†
0jψ0i − hψ0jT̂0jψ0ihψ0jT̂†

0jψ0i: ð108Þ

If we look at the proposal about the definition of complex-
ity according to Fubini-Study metric in Ref. [36], then we
see that Eq. (108) is nothing but a line element in Fubini-
Study metric. If we use the method in Ref. [36] to define the
complexity, then the fidelity susceptibility measures the
“infinitesimal complexity” for nearby two states.
For the definition of the complexity in this paper, it is not

easy to find its relationship to fidelity susceptibility. Let
us first consider an explicit example by computing fidelity
susceptibility of a TFD state. For a given theory, there is
only one parameter, the temperature T, to describe different
TFD states.9 Assume the jψβi is a TFD state with temper-
ature T ¼ 1/β, which is defined according to a vacuum jAi
state in this way,

jψβi ≔
1

N
exp

�Z
dkd−1e−βωk⃗/2L̂ðk⃗Þ

þ

�
jAi ð109Þ

Here the factor N is applied so that jψβi is normalized.
Now consider one parameter family of TFD states
jψβðλÞi ≔ jψβð1þλÞi, which is generated by,

jψβðλÞi

¼ 1

N ðλÞ exp
�Z

dkd−1ðe−λβωk⃗/2 − 1Þe−βωk⃗/2L̂ðk⃗Þ
þ

�
jψβi

¼ 1

N ðλÞ exp
�
−
Z

λ

0

ds
Z

dkd−1
βωk⃗

2
e−ð1þsÞβωk⃗

2 L̂ðk⃗Þ
þ

�
jψβi:

ð110Þ

Then we can read that,

T̂0 ¼ −
β

2

Z
dkd−1ωk⃗e

−βωk⃗/2L̂ðk⃗Þ
þ : ð111Þ

Using Eq. (108), we can reads,

2GT̂ ¼ hψβjT̂†
0T̂0jψβi − hψβjT̂†

0jψβihψβjT̂0jψβi

¼ β2

4

Z
dkd−1ω2

k⃗
e−βωk⃗hψβjL̂ðk⃗Þ

− L̂ðk⃗Þ
þ jψβi: ð112Þ

This integration is not easy to compute in general if we
directly take Eqs. (110) and (111) into Eq. (112). However,
as what we have shown in the section, the TFD state is the
vacuum state of annihilation operators fb̂U†ðk⃗Þ; b̂D†ðk⃗Þg
defined by Eq. (68), i.e., b̂Uðk⃗Þjψβi ¼ b̂Dðk⃗Þjψβi ¼ 0 and

β ¼ 2π/a. then we can expressed L̂ðk⃗Þ
þ by,

9The time evolution of TFD states are not considered here.
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L̂ðk⃗Þ
þ ¼ âR†ðk⃗ÞâL†ðk⃗Þ

¼ sinh2 ξk⃗b̂
Uðk⃗Þb̂Dðk⃗Þ þ cosh2 ξk⃗b̂

U†ðk⃗Þb̂D†ðk⃗Þ

−
sinh 2ξk⃗

2
½b̂Dðk⃗Þb̂D†ðk⃗Þ þ b̂U†ðk⃗Þb̂Uðk⃗Þ�: ð113Þ

Here ξk⃗ ≔ e−βωk⃗/2. After some algebras, we can find that

hψβjL̂ðk⃗Þ
− L̂ðk⃗Þ

þ jψβi ¼
1

4

Vol
ð2πÞd−1 ðcosh 4ξk⃗ − 2 cosh 2ξk⃗ þ 1Þ;

ð114Þ

We finally find that the fidelity susceptibility of a TFD
state is

GT̂ ¼ β2

32

Vol
ð2πÞd−1

Z
dkd−1ω2

k⃗
e−βωk⃗ðcosh 4ξk⃗

− 2 cosh 2ξk⃗ þ 1Þ: ð115Þ

In full conformal symmetry case, we have ωk⃗ ¼ k. Thus
Eq. (115) reads

GT̂ ¼ VolSd−2ϑd
32ð2πÞd−1 β

1−d: ð116Þ

with,

ϑd ¼
Z

∞

0

xde−xðcosh 4e−x − 2 cosh 2e−x þ 1Þdx: ð117Þ

On the other hand, we can see from Eq. (96) that the
complexity between jψβi and jAi reads

Cðjψβi; jAiÞ ¼
2Sd−2ΓðdÞ

πd−1
Vol · β1−d: ð118Þ

Combining Eqs. (115) and (119), we see that,

Cðjψβi; jAiÞ ¼
2dþ5ΓðdÞ

ϑd
GT̂: ð119Þ

This equation clearly shows that the fidelity susceptibility is
equivalent to the complexity between a TDF state and
corresponding vacuum state. This result seems to supply an
explanation on why two quantities may share the same
holographic object. This subsection only shows that the
fidelity susceptibility and complexity are equivalent to each
for TDF states. It is not clear if such equivalence can
happen in more general states.

V. DISCUSSION

A. Reasons of finite complexity density

In the subsection IVA, it has been shown that the complex-
ity density between a TFD state and the zero temperature
vacuumstate is finite. This seems to be againstwith the results
from the holographical duality such as Refs. [20,38,49] and
some anther attempts for building complexity from field
theory frameworks such as Refs. [31,36]. In the following, I
will explain that this is because of the different choices on
reference states or systems.
The complexity here is defined between two states rather

than for one state. When someone tries to ask what is the
complexity for one state, he must first clarify the reference
state in a very clear manner. The indistinct announce such
as “choosing a reference state” is a little ambiguous since
there is not a unique quantum state in Hilbert space which is
simpler than all other states. Even a vacuum state is also a
kind of TFD state for some particular choice on annihila-
tion operators. In the subsection IVA, for a TFD state, the
reference state jAi is chosen so that it satisfies the Eq. (77).
Then one can see that in the UV region jk⃗j → ∞, the
coefficient e−πωk⃗/a → 0 and the TFD state in fact just
inherits the UV structure of reference state. This implies
that we need not to add quantum gates to change the UV
part and the UV divergence of gate number will not appear.
In Refs. [20,38,49], the reference state for computing the
complexity of a TFD state are chosen as a kind of particular
“simple” reference state. Though the physical properties of
this reference state are not clear, it is not the zero temper-
ature vacuum state corresponding to this TFD state as the
complexity between this reference state and the vacuum
state is not zero. Hence, the infinity discussed by
Refs. [20,38,49] and the finite shown in this paper are
not contradictory as the reference states are different.
References [31,36] studied the complexity for some oper-
ators and between the states which are different from the
TFD states, so the results are different. It will be shown later
that, whence the UV structures of two states are different,
the complexity between them is divergent.
To understand more clearly about why the complexity

between a TFD state and its corresponding zero temper-
ature vacuum state is finite, let us consider MERA
approximations for states jAi and jTFDi in tensor network
representation. In the Fig. 4, the MERA approximations for
jAi and jTFDi are shown. The left and right sides are
MERA approximations for states jAi and jTFDi in tensor
network representation. The horizonal direction stands for
the (d − 1)-dimensional spatial directions and the vertical
direction is the length scale (inverse of momentum). For
convenience, the spatial direction and momentum are
shown in 1-dimensional case. The green rectangles at
the middle of two tensor networks stand for the quantum
circuit. In the Fig. 4, only one copy of a double state is
show, i.e., only the parts belong to HL are shown. In
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principle, one should add the other copy at the head of
Fig. 4 to stand for the parts belong to HR. However, the
simplified schematic figure is enough for our purpose.
The disentanglers (blue rectangles) and isometries (tri-

angles) in Fig. 4 connect the microscopic degrees of
freedom at the very layer (length scale). In the full
MERA approximation, the tensors of jAi and jTFDi are
both infinite. This divergence is the divergent discussed in
previous papers such as Refs. [20,31,36,38,49]. However,
the complexity in this paper is not defined by how many
tensors are needed when we use MERA to approximate the
target state from a particular reference state. We define the
complexity is the minimal required logic gates when we use
a quantum circuit to convert one state to the other, which
can be presented by the green rectangles in the middle
region of two tensor networks in Fig. 4. With increasing the
momentum, the disentangle and isometry tensors are
increased in order of jk⃗jd−1. However, the Bogoliubov
transformation (68) shows that average particles number
that we have to add into vacuum state decays exponentially
in the order of e−πωk⃗/a. This means that the deeper layer of
TFD state will inherit the more UV tensors and the change
compared with the corresponding parts in jAi is suppressed
exponentially. Hence, the number of gates will decrease in
UV region when we increase the circuit depth, though the
tensors in MERA for both jAi and jTFDi are increased.
At the UV limit, the disentangle and isometry tensors are
divergent but the gates number in the quantum circuit is
zero. As a result, the total gates in the Fig. 4 is finite. By this
explanation, we see that the finite complexity between a
TFD state and its corresponding zero temperature limit
vacuum state is just the result of that they share the same
UV structure. Based on a similar arguments, one can also
see that the complexity between two different TFD states
defined by Eq. (99) is also finite.

B. Enlightenments to holographic conjectures

It needs to note that computations in Secs. III and IV do
not involve the dynamics of the fields. In order to make a
connection to the results in Refs. [20,31,36,38,49], the
detailed model and the dynamics are needed. Let us assume
the quantum field theory is a free scalar field with
Hamilton,

Ĥ ¼ 1

2

Z
dd−1x½π̂2 þ ð∇⃗ ϕ̂Þ2 þm2ϕ̂2�; ð120Þ

and the minimal energy state corresponding to this
Hamilton is the vacuum state jAi. This means that the
creation and annihilation operators fâRðk⃗Þ; âLðk⃗Þ; âR†ðk⃗Þ;
âL†ðk⃗Þg have following relationship to the scalar field
operator in momentum space,

ϕ̂ðk⃗Þ ¼ ϕ̂Lðk⃗Þ þ ϕ̂Rðk⃗Þ ð121Þ

with

ϕ̂Lðk⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωk⃗

p ½âLðk⃗Þ þ âL†ð−k⃗Þ�;

ϕ̂Rðk⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωk⃗

p ½âRðk⃗Þ þ âR†ð−k⃗Þ�: ð122Þ

One can see that state jAi minimizes the expected value
of Hamilton (120), i.e., hAj∶Ĥ∶jAi ¼ 0. Let us choose
special state jQðξÞi as the reference state rather than the jAi
or TFD states, which is the vacuum state corresponding to
annihilation operators q̂Lðk⃗Þ and q̂Rðk⃗Þ. The relationships
between fq̂Rðk⃗Þ;q̂Lðk⃗Þ;q̂L†ðk⃗Þ; q̂R†ðk⃗Þg and fâRðk⃗Þ; âLðk⃗Þ;
âR†ðk⃗Þ; âL†ðk⃗Þg are given by,

"
q̂Lðk⃗Þ
q̂R†ðk⃗Þ

#
¼

"
cosh ξk⃗ − sinh ξk⃗
− sinh ξk⃗ cosh ξk⃗

#"
âLðk⃗Þ
âR†ðk⃗Þ

#
ð123Þ

with the parameter ξk⃗. If one take tanh ξk⃗ ¼ e−πωk⃗/a, then
the state jQðξÞi is just the TFD state shown in Eq. (77). It
can be proven that

hQðξÞjϕ̂ðk⃗Þϕ̂ðk⃗0ÞjQðξÞi ¼ e−2ξk⃗

ωk⃗

δd−1ðk⃗þ k⃗0Þ

Converting it into the spatial coordinate, we can read that,

hQðξÞjϕ̂ðx⃗Þϕ̂ðx⃗0ÞjQðξÞi ¼
Z

dd−1k
e−ξk⃗

2ωk⃗

eik⃗·ðx⃗−x⃗0Þ ð124Þ

By similar steps in subsection IVA, one can find the
following relationship between jAi and jQðξÞi,

FIG. 4. The schematic explanation about why the complexity
from jAi to a TFD state is finite. The left and right sides are
MERA approximations for states jAi and jTFDi in tensor
network representation. The some green rectangles at the middle
of two tensor networks stand for the quantum circuit. The
horizonal direction stands for the (d − 1)-dimensional spatial
directions and the vertical direction is the length scale (inverse of
momentum). For convenience, the spatial direction and momen-
tum are shown in 1-dimensional case and only one copy of a
double state is shown in the figure. One can image that the ith
layer is the state jψkii ≔

P∞
n¼0 e

−πnωk⃗i
/ajniiLjniiR.
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jQðξÞi ∼ exp

�Z
dd−1k tanh ξk⃗â

R†ðk⃗ÞâL†ðk⃗Þ
�
jAi ð125Þ

Let us assume jTFDai ≔ Û†
ajAi where Û†

a is given
by (78). Then it is easy to find that jAi ∼
exp ½− tanh ξk⃗

R
dkd−1âR†ðk⃗ÞâL†ðk⃗Þ�jQðξÞi and,

jTFDai ∼ exp

�Z
dkd−1ðe−πωk⃗i

/a − tanh ξk⃗Þ

× âR†ðk⃗ÞâL†ðk⃗Þ
�
jQðξÞi ð126Þ

Under the reduced generator set in Eq. (91), we see that,

ð2πÞd−1
2Vol

CðjTFDai; jQðξÞiÞ ¼
Z

dd−1kj tanh ξk⃗ − e−πωk⃗/aj:

ð127Þ

If one takes the parameter,

ξk⃗ ¼
1

2
lnðM/ω⃗kÞ ð128Þ

for arbitrary energy scale M, then Eq. (124) becomes,

hQðξÞjϕ̂ðx⃗Þϕ̂ðx⃗0ÞjQðξÞi ¼ 1

M
δd−1ðx⃗ − x⃗0Þ: ð129Þ

In this case, the state jQðξÞi is an unentangled product
state, which has no any spatial correlations. This state
appears in Refs. [50,51] as initial product state to construct
the vacuum state jAi in cMERA (the continuous version of
MERA) and is the reference state in Ref. [36] to compute
the complexity by Fubini-Study metric. Taking the
Eq. (128) into the expression (127), one can see that the
integration is divergent when jk⃗j → ∞. This result explic-
itly shows that the complexity between a TFD state and a
particular reference state may be infinite. What’s more,
after a UV cut-off km ¼ M ¼ 1/δ is introduced with a small
length scala δ and the full conformal symmetry is imposed,
we can see that the divergence in Eq. (127) is,

ð2πÞd−1
2Vol

CðjQðξÞi; jTFDaiÞ ∝
1

δd−1
þ finite term: ð130Þ

The divergent structure is the same as the one studied by
Refs. [38,49,52] and also appears in Ref. [36].10 However,
the choice in Eq. (128) is not the unique reference state to
match the divergent structure of CVor CA conjecture. One

can just take ξk⃗ to be any nonzero constant, then he can still
obtain the result shown in Eq. (130). Thus, we see that there
are infinite different states, which can be the reference
states and give the divergent structure just as the same as
ones in CVand CA conjectures. This seems to imply that, it
is hard to clarify what is the reference state in CV and CA
conjectures just by studying the divergent structure of
complexity. However, because of the results about the
complexity between two TFD states in subsection IV B, it
is still possible that both these two conjectures do not give
the complexity for the TFD state but the absolute value of
the difference in two black holes gives the complexity
between corresponding two TFD states. In this modified
version, the reference state is not needed. Both CVand CA
conjecture in fact give the some kind of “complexity
potential”. In order to compute the complexity between
two TFD states jTFD1i and jTFD2i, we need to use Eqs. (3)
or (4) to compute the corresponding Cð1ÞV and Cð2ÞV or Cð1ÞA and

Cð2ÞA , then the complexity between jTFD1i and jTFD2i is
given by

CVðjTFD2i; jTFD1iÞ ¼ jCð1ÞV − Cð2ÞV j;
or CAðjTFD2i; jTFD1iÞ ¼ jCð1ÞA − Cð2ÞA j: ð131Þ

In fact, this modified holographic version does not lose
important physical properties of the original version and
seems to be simpler as it does not need to refer to an
unknown reference state. In addition, it just matches the
results obtained in field theory approach in Sec. IV B. It is
interesting and worthy of investigating this idea further.

VI. SUMMARY

Let us make a brief summary. By this paper, the
complexity between two states in quantum field theory
was studied by introducing a Finsler structure based on
ladder operators. Some simple examples, including coher-
ent states and entangled thermal states, were computed to
show how to use this method and clarify the differences
between complexity and other conceptions such as com-
plexity of formation and entanglement entropy. Then this
method was applied to compute complexity of two thermo-
field double states. The results showed that the complexity
density between a thermofield double state and correspond-
ing zero temperature ground state was finite. In addition,
it was found that complexity for d-dimension conformal
field showed the behavior of C ∝ Td−1, which is just the
renormalized complexity predicted by CA and CV con-
jectures. It has also been shown that fidelity susceptibility
of a TFD state is equivalent to the complexity between it
and corresponding vacuum state, which gave an explan-
ation why they could share the same object in holographic
duality. It was also showed that if the reference state and
TFD state had different UV structures, the complexity

10In fact, the subleading divergent terms can appear in both CV
and CA conjectures if the time slices at the boundary are not flat.
This corresponds the deformed conformal field theory rather than
a free conformal field theory discussed in this subsection.
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between them was divergent. Especially, for some reference
state, the method in this paper gave the same divergent
structure in the CV and CA conjectures. The results in this
paper seem to imply that the difference of volumes or
actions in two black holes computed by CV or CA
conjectures might correspond to the complexity between
two TFD states.
Though the computations for TFD states were done in

scalar field, it is no any essential difficulty to generalize
them into higher spin bosonic fields and obtain some
similar results. For fermi fields, the Bogoliubov trans-
formations from vacuum state to TFD state are different
from the forms in Eq. (68). This leads to some important
differences which are worthy of investigating in future. It is
also very interesting to use this method to study the growth
rate of time-dependent TFD state defined in Eq. (2).
Especially, the CV and CA conjectures give different
predictions for complexity growth rate at the early time.
The CV conjecture shows that the complexity growth rate is
finite at early time [32,53]. However, CA conjecture pre-
dicts that the complexity growth rate is zero at early time
and then changes from negative infinite at a particular
time [20]. The investigation on the complexity between
time-dependent TFD states in pure quantum field theory
can give us evidence to judge which one of CV and CA
conjectures is better.
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APPENDIX A: TRANSFORMATION RULE
IN DIFFERENT BASES

In this Appendix, I will give a simple explicit example
about how to find the function form for a Finsler structure
in the new basis E0 if E0 and the original basis are associated
by transformation Aα

I shown in Eq. (13).
Let us consider the case that the generator set E ¼

fM̂1; M̂2;…g. This generators set can generate an oper-
ators set U. For any tangent operator T̂ðtÞ, we can
decompose it as,

T̂ðtÞ ¼ Y1ðtÞM̂1 þ Y2ðtÞM̂2 þ � � � : ðA1Þ

Let us assume that the function form of Finsler structure in
this basis is given by Fp form

F½ĉðtÞ; Y1ðtÞ; Y2ðtÞ;…� ¼ pIkYIðtÞk
¼ p1kY1ðtÞk þ p2kY2ðtÞk þ � � �

ðA2Þ

In the new generators set E0 ¼ fM̂01; M̂02;…g, the tangent
operator can also be decomposed into following form,

T̂ðtÞ ¼ Y 0
1ðtÞM̂01 þ Y 0

2ðtÞM̂02 þ � � � : ðA3Þ

In the new basis, the function form of Finsler structure
can be expressed by the function of coefficients
fY 0

1ðtÞ; Y 0
2ðtÞ;…g. The coefficients fY 0

1ðtÞ; Y 0
2ðtÞ;…g

and fY1ðtÞ; Y2ðtÞ;…g are associated by Eq. (14). If we
require that two function forms give the same Finsler
structure, then F and F0 must satisfy the Eq. (15), i.e.,

F0½ĉðtÞ; Y 0
1ðtÞ; Y 0

2ðtÞ;…� ¼ p1kY1ðtÞk þ p2kY2ðtÞk þ � � � :
ðA4Þ

Then we obtain following the transformation rule for
function forms of Finsler structure under the basis
transformation,

F0½ĉðtÞ; Y 0
1ðtÞ; Y 0

2ðtÞ;…� ¼ pIkAα
IY 0

αk: ðA5Þ

We see that after a basis transformation, the new function
form of Finsler structure is different from form such as Fp

shown in Eq. (26).

APPENDIX B: UNIQUENESS OF LADDER
OPERATORS FOR GIVEN HAMILTON

In this Appendix, I will show that for given Hamilton Ĥ
with discrete eigenvalues, there is a unique group of ladder
operators which can satisfies the requirements in Eq. (23).
Assume that the state jEn; k⃗i is the eigenstate correspond-
ing to the eigenvalue En. Then we see that,

Ĥ ¼
X∞
n¼0;k⃗

EnjEn; k⃗ihEn; k⃗j: ðB1Þ

The requirement

l̂k⃗jEn; k⃗i ¼ αn;k⃗jEn−1; k⃗i ðB2Þ

shows that operator l̂k⃗ must have following form,

l̂k⃗ ¼
X∞
n;m¼0

αn;k⃗δmþ1;njEm; k⃗ihEn; k⃗j

¼
X∞
n¼1

αn;k⃗jEn−1; k⃗ihEn; k⃗j ðB3Þ
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Here αn > 0 for n > 1 and α
0;k⃗ ¼ 0. Then one can easy

check that this operator satisfies following equation,

l̂†
k⃗
jEn; k⃗i ¼ αnþ1;k⃗jEnþ1; k⃗i: ðB4Þ

After some algebras, we can obtain that,

l̂k⃗l̂
†
k⃗0
¼

X∞
n¼0

α2
nþ1;k⃗

δk⃗;k⃗0 jEn; k⃗ihEn; k⃗
0j ðB5Þ

and,

l̂†
k⃗0
l̂k⃗ ¼

X∞
n¼0

α2
n;k⃗
δk⃗;k⃗0 jEn; k⃗ihEn; k⃗

0j ðB6Þ

One can read that the generalized particle number density
operator N̂0

k⃗
≔ l̂†

k⃗
l̂k⃗ is commutative to Hamilton. The

commutator l̂† and l̂ then reads,

h
l̂k⃗; l̂

†
k⃗0

i
¼

X∞
n¼0

	
α2
nþ1;k⃗

− α2
n;k⃗



δk⃗;k⃗0 jEn; k⃗ihEn; k⃗

0j ðB7Þ

If α2
nþ1;k⃗

− α2
n;k⃗

¼ 1 then we can see that ½l̂k⃗; l̂†k⃗0 � ¼ δk⃗;k⃗0 Î.

Thus, we find that αn;k⃗ ¼
ffiffiffi
n

p
. Therefore, there is a unique

operator,

l̂k⃗ ≔
X∞
n¼1

ffiffiffi
n

p jEn−1; k⃗ihEn; k⃗j ðB8Þ

can satisfy the requirements in Eq. (23). l̂k⃗ is a lowering
operator which can transform the energy eigenstate into the
lower level and l̂†

k⃗
is a raising operator which can transform

the energy eigenstate into the higher level. One can see
that this raising/lowering operator returns to the creation/
annihilation operator in free field theory. For free field, the
Hamilton and ladder operators have a simple relationship,

Ĥ ¼
X
k⃗

ωk⃗ l̂
†
k⃗
l̂k⃗ þ E0; ðB9Þ

for momentum dependent function ωk⃗ and a zero-point
energy E0. However, for general cases that En is not the
linear function of n, the Hamilton Ĥ and ladder operators
do not satisfy the Eq. (B9). Thus, we see that

Ĥ ≠
X
k⃗

ωk⃗l̂
†
k⃗
l̂k⃗ þ E0 ðB10Þ

for general interacted system.

APPENDIX C: FINDING THE COMPLEXITY
WHEN E=E0

Under the general generators set E defined in Eq. (21), it
seems to be a subtle and high technical problem to find the
complexity and give out an exact proof. It will bring us far
away from the physical aspects if we focus on this point.
However, if we reduce the generators set to a very small and
simple case, it is possible to give a short and exact proof
about how to find the complexity generated by this small
generators set. By doing this, it is also a good example to
show the basic idea to find the complexity and obtain some
direct feelings about framework in the paper.
Let us restrict the generators set E ¼ E0 ¼ fâ†; â; Îg,

which forms a h(1) Lie algebra. The operators set can be
given by three independent complex-valued constants α�
and α0 by,

U ≔ fÛðαþ; α−; α0Þj ∀ α�; α0 ∈ C;

Ûðαþ; α−; α0Þ ≔ expðαþâ† þ α−âþ α0 ÎÞg ðC1Þ

Now let us compute the complexity of any operator in the
operator set U. The group multiplication law in the H(1)
group takes the form,

Ûðαþ; α−; α0ÞÛðα0þ; α0−; α00Þ

¼ Ûðαþ þ α0þ; α− þ α0−; α0 þ α00 þ
1

2
ðαþα0− − α−α

0þÞ:
ðC2Þ

It is very useful when we compute the complexity for
coherent states and the operators in U.
To compute the complexity of an operator in U, we have

to find the minimal length connecting it and identity. Any
curve starting from the identity can be given by three
complex functions Y� and Y0 in this way,

ĉðsÞ ≔ P⃖ exp
Z

s

0

dx½YþðxÞâ† þ Y−ðxÞâþ Y0ðxÞÎ�: ðC3Þ

Assume curve ĉðsÞ can connect Ûðαþ;α−; α0Þ and identity,
then we see that,

P⃖ exp
Z

1

0

ds½YþðsÞâ† þ Y−ðsÞâþ Y0ðsÞÎ�

¼ expðαþâ† þ α−âþ α0 ÎÞ: ðC4Þ

Let us first find the relationship between fY�ðsÞ; Y0ðsÞg
and fα�;α0g. As YþðsÞâ† þ Y−ðsÞâþ Y0ðsÞ is not com-
mutative to each other for different s, the time-order
operator cannot be dropped. We rewrite the time-order
integration into the time-order product form,
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P⃖ exp
Z

1

0

ds½YþðsÞâ† þ Y−ðsÞâþ Y0ðsÞÎ� ¼ P⃖
Y∞
n¼0

ĝn

ðC5Þ

with,

ĝn ≔ expfΔs½YþðsnÞâ† þ Y−ðsnÞâþ Y0ðsnÞÎ�g: ðC6Þ

Here Δs → 0 and sn ¼ nΔs. Now let us introduce series

fbð�Þ
n ; bð0Þn g and define

P⃖
Yn
k¼0

ĝk ¼ expðbðþÞ
n â† þ bð−Þn âþ bð0Þn Þ:

Then we see that α� ¼ limn→∞b
ð�Þ
n , and α0 ¼ limn→∞b

ð0Þ
n .

On the other hand, we can find that,

ĝnþ1 exp
	
bðþÞ
n â† þ bð−Þn âþ bð0Þn Î



¼ exp

�
½bðþÞ

n þ ΔsYþðsnþ1Þ�â†

þ ½bð−Þn þ ΔsY−ðsnþ1Þ�âþ bð0Þn Îþ ΔsY0ðsnþ1ÞÎ

þ ÎΔs
2

½Yþðsnþ1Þbð−Þn − bðþÞ
n Y−ðsnþ1Þ�

�
ðC7Þ

Thus, there are following recursion relationships,

bðþÞ
nþ1 ¼ bðþÞ

n þ ΔsYþðsnþ1Þ;
bð−Þnþ1 ¼ bð−Þn þ ΔsY−ðsnþ1Þ;
bð0Þnþ1 ¼ bð0Þn þ ΔsY0ðsnþ1Þ

þ Δs
2
½YþðsnÞbð−Þn − Y−ðsnÞbðþÞ

n � þOðΔs2Þ: ðC8Þ

After dropping the higher order infinitesimal OðΔs2Þ, we
find that the solutions read,

bðþÞ
n ¼

Xn
k¼0

ΔsYþðsnÞ;

bð−Þn ¼
Xn
k¼0

ΔsY−ðsnÞ;

bð0Þn ¼
Xn
k¼0

Δs
�
Y0ðsnÞ þ

1

2

�
YþðsnÞ

Xn
k¼0

Y−ðsnÞ

− Y−ðsnÞ
Xn
k¼0

YþðsnÞ
��

: ðC9Þ

Now taking n → ∞ and converting them into the continu-
ous form, we find the following relationship between
fY�ðsÞ; Y0ðsÞg and fα�; α0g,

α� ¼
Z

1

0

dsY�ðsÞ;

α0 ¼
1

2

Z
1

0

ds

�
2Y0ðsÞ þ YþðsÞ

Z
s

0

ds̃Y−ðs̃Þ

− Y−ðsÞ
Z

s

0

ds̃Yþðs̃Þ
�
: ðC10Þ

Thus, we obtain the following restricted optimization
problem to find the complexity of Ûðαþ; α−; α0Þ,

C½Uðαþ; α−; α0Þ� ¼ min

�Z
1

0

ds½kYþðsÞk þ kY−ðsÞk�
�

ðC11Þ

This restricted optimization problem can be solved easy if
we note the relationship kxþ yk ≤ kxk þ kyk which leads
that

R
1
0 dskY�ðsÞk ≥ k R 1

0 dsY�ðsÞk and

Z
1

0

ds½kYþðsÞk þ kY−ðsÞk�

≥
����
Z

1

0

dsYþðsÞ
����þ

����
Z

1

0

dsY−ðsÞ
���� ¼ kαþk þ kα−k:

ðC12Þ

Thus the complexity of Uðαþ; α−; α0Þ is,

C½Uðαþ; α−; α0Þ� ¼ kαþk þ kα−k: ðC13Þ

Now let us give the method to find the complexity
between two coherent states. Let us take two different
coherent states jcohðb1Þi and jcohðb2Þi. Then we have,

jcohðbiÞi ∼ expðbiâ†Þj0i; i ¼ 1; 2: ðC14Þ

To find the complexity between this two states, we have
first to find all the operators in U which can satisfy
jcohðb2Þ ∼ Ûjcohðb1Þi. For any operator parametrized by
α� and α0, we have the following relationship

Ûðαþ; α−; α0Þjcohðb1Þi
∼ expðαþâ† þ α−âÞ expðb1â†Þj0i

¼ exp

�
ðαþ þ b1Þâ† þ α−â −

α−b1
2

�
j0i

∼ exp ½ðαþ þ b1Þâ†�j0i: ðC15Þ

We see that jcohðb2Þi ∼ Ûjcohðb1Þi if and only if
αþ ¼ b2 − b1. There are infinite different operators which
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can convert jcohðb1Þi to jcohðb1Þi. The complexity
between any two coherent states is,

C½jcohðb2Þi; jcohðb1Þi�
¼ minfkαþk þ kα−kj ∀ α− ∈ C; and αþ ¼ b2 − b1g
¼ kb2 − b1k: ðC16Þ

APPENDIX D: FINDING THE COMPLEXITY
IN A LARGER GENERATORS SET

FOR TFD STATES

In the subsection IV B, we have chosen the generators set

to be E ¼ fL̂ðk⃗Þ
þ ; Îj ∀ k⃗ ∈ Rd−1g to compute the complex-

ity. In this Appendix, I will extend it to include the Casimir
operators given by Eq. (88), i.e,

E ¼
n
L̂ðk⃗Þ
þ ; Ĉðk⃗Þ; Îj ∀ k⃗ ∈ Rd−1

o
: ðD1Þ

We see that L̂ðk⃗Þ
þ contains 2 creation operators and Ĉðk⃗Þ

contains 4 creation/annihilation operators. By definition,

the weight for generator L̂ðk⃗Þ
þ is just 2 but the weight for Ĉðk⃗Þ

is not 4. According to Eq. (88), we can see that,

Ĉðk⃗Þ ¼ L̂ðk⃗Þ2
0 − L̂ðk⃗Þ

0 − L̂ðk⃗Þ
þ L̂ðk⃗Þ

−

¼ 1

4

	
âR†2
k⃗

âR2
k⃗

þ âL†2
k⃗

âL2
k⃗



þ
N̂R

k⃗i
N̂L

k⃗i

2

þ 1

4

	
N̂R

k⃗i
þ N̂L

k⃗i



− L̂ðk⃗Þ

þ L̂ðk⃗Þ
− −

Î
4

ðD2Þ

Here N̂R
k⃗i
and N̂L

k⃗i
are particle density operators. The last

line of Eq. (D2) has been rewritten as the summation
of some normal order polynomials of creation and anni-
hilation operators. Using the transformation rule (A5),

we see that the weight for Ĉðk⃗Þ should be ð4þ 4Þ/
4þ 4/2þ ð2þ 2Þ/4þ 4 ¼ 9. As E forms an Abelian Lie
algebra, any operator generated by E can be parametrized
by three complex functions f1ðk⃗Þ; f2ðk⃗Þ and f0ðk⃗Þ in the
following way,

Ûðf0; f1; f2Þ

≔ exp
Z h

f1ðk⃗ÞL̂ðk⃗Þ
þ þ f2ðk⃗ÞĈðk⃗Þ þ f0ðk⃗ÞÎ

i
dd−1k:

ðD3Þ

Then the operators set UE is given by,

UE ≔ fÛðf0; f1; f2Þj ∀ f0; f1; f2∶ Rd−1 ↦ Cg: ðD4Þ

The operators set UE forms an Abelian Lie group with the
group multiplication law,

Ûðf0; f1; f2ÞÛðf̃0; f̃1; f̃2Þ ¼ Ûðf0 þ f̃0; f1 þ f̃1; f2 þ f̃2Þ
ðD5Þ

Any curve staring from the identity can be given by three
complex function y1ðt; k⃗Þ; y2ðt; k⃗Þ and y0ðt; k⃗Þ in this way,

ĉðsÞ ≔ P⃖ exp
Z

s

0

dt
Z

dd−1k
h
y1ðt; k⃗ÞL̂ðk⃗Þ

þ

þ y2ðt; k⃗ÞĈðk⃗Þ þ y0ðt; k⃗ÞÎ
i
: ðD6Þ

As UE forms an Abelian Lie group, the time order operator
can be dropped. The condition that ĉð1Þ ¼ Ûðf0; f1; f2Þ
leads to,

Z
1

0

yiðt; k⃗Þdt ¼ fiðkÞ; i ¼ 0; 1; 2: ðD7Þ

Then computing the complexity for operator Ûðf0; f1; f2Þ
becomes the following optimization problem under the
restrictions (D7),

C½Ûðf0; f1; f2Þ�

¼ Vol
ð2πÞd−1min

�Z
1

0

dt
Z

dkd−1½2ky1ðt; k⃗Þk

þ 9ky2ðt; k⃗Þk�
�
: ðD8Þ

Similar to Eq. (C12), we can see that,

C½Ûðf0; f1; f2Þ� ¼
Vol

ð2πÞd−1
�
2

����
Z

dkd−1f1ðk⃗Þ
����

þ 9

����
Z

dkd−1f2ðk⃗Þ
����
�
: ðD9Þ

For the case that f0 ¼ f2 ¼ 0 and f1ðk⃗Þ ¼ λðk⃗Þ, we can see
that the complexity is,

C½Ûð0; λ; 0Þ� ¼ 2Vol
ð2πÞd−1

����
Z

dkd−1λðk⃗Þ
����; ðD10Þ

which is the same as Eq. (94). We see that the complexity is
the same even we extend the generators set from Eq. (91)
into Eq. (D1).
These steps can be generalized into a more larger

generator set,
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E ¼ fL̂ðk⃗Þn
þ ; Ĉðk⃗Þn; Îj ∀ k⃗ ∈ Rd−1; ∀ n ∈ Nþg: ðD11Þ

This generators set contains infinite different polynomials
of creation and annihilation operators but does not contain
polynomials of creation and annihilation operators between
different momentums. One can see that it can still generate
an Abelian group. It is easy to see that the complexity of

exp
R
ddkλðk⃗ÞL̂ðk⃗Þ

þ in this generators set is still given
by Eq. (94).

APPENDIX E: THE BASIC INEQUALITY
FOR NORMAL k · k

In this Appendix, the proof will be given to show a basic
inequality for the normal k · k defined in Eq. (29). For any
two complex constants x and y, I will show that,

kxk þ kyk ≥ kxþ yk: ðE1Þ

When x and y are both real-valued, this is just the basic
inequality about the absolute value. Let us pay attention to
the case that one of them has nonzero imaginary part. In
order to prove the inequality (E1), let us refer to following
lemma (see the chapter 1.2 in Ref. [30]):
Lemma Suppose V to be a vector space. For any

nonnegative functionH∶ V ↦ ½0;∞Þ, if it satisfies follow-
ing three conditions:
(M1) H is C∞ on Vnf0g;
(M2) HðλxÞ ¼ λHðxÞ for ∀ x ∈ V and λ > 0;
(M3) ∀ x ∈ Vnf0g and ∀ y1; y2 ∈ V, following symmet-

ric bilinear form

∂2

∂u∂vH
2ðxþ uy1 þ vy2Þ

���
u¼v¼0

ðE2Þ

is positive;
then we have following triangle inequality,

HðxÞ þHðyÞ ≥ Hðxþ yÞ; ∀ x; y ∈ V ðE3Þ

and the equality can be achieved if and only if y ¼ 0 or
∃λ ≥ 0 such that x ¼ λy.
The normal k · k in Eq. (29) is defined in the complex

number, which can be regarded as the function defined in
V ¼ R2. We can defined the function H as,

Hða; bÞ ≔ kaþ ibk ¼ ρða; bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θða; bÞ2

q
ðE4Þ

with ρða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. According to subsection II B,

the function θða; bÞ is given in following way. If aþ ib is a
constant, then

θ ¼ θ0 ≔ Argðaþ ibÞ ∈ ð−π; π�:

Here Arg is the principal value of the argument for a
complex number. If aþ ib is the function of s so that
aþ ib forms a smooth curve in the complex plan then

θðsÞ ¼ θ0ðsÞ þ 2nðsÞπ

for an integer nðsÞwhich is determined by the requirements
that nð0Þ ¼ 0 and nðsÞ can make the function θðsÞ to be
continuous.
It is easy to see that H defined in Eq. (E4) satisfies the

conditions (M1) and (M2). Now let us prove that Hða; bÞ
also satisfies the condition (M3). The requirement (M3) is
equivalent to that matrix

" ∂2H2

∂a2 ; ∂2H2

∂a∂b
∂2H2

∂a∂b ;
∂2H2

∂b2

#

is positive definite, which is yield following requirements,

∂2H2

∂a2 > 0;
∂2H2

∂a2
∂2H2

∂b2 −
�∂2H2

∂a∂b
�

2

> 0: ðE5Þ

Direct computations show that,

∂2H2

∂a2
∂2H2

∂b2 −
�∂2H2

∂a∂b
�

2

¼ 4ðθ2 þ 1Þ2 þ 4 > 0 ðE6Þ

and

∂2H2

∂a2 ¼ θ2 − θ sin 2θ þ 1þ sin2 θ: ðE7Þ

To verify the right hand of Eq. (E7) is large than zero, one
can introduce an auxiliary function fðθÞ¼θ2−θsinð2θÞþ
1þsin2ðθÞ. Taking the derivative with respective to θ,
one can see that f0ðθÞ ¼ 4θ sin2 θ. This result shows that
the minimal value of fðθÞ is fð0Þ ¼ 1 > 0. Thus, the right
hand of Eq. (E7) is larger than zero. Therefore, the
inequality (E1) is true.
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