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This paper studies the complexity between states in quantum field theory by introducing a Finsler

structure based on ladder operators (the generalization of creation and annihilation operators). Two simple

models are shown as examples to clarify the differences between complexity and other conceptions such
as complexity of formation and entanglement entropy. When it is applied into thermofield double (TFD)
states in d-dimensional conformal field theory, results show that the complexity density between them

and corresponding vacuum states are finite and proportional to T¢~!, where T is the temperature of TFD
state. Especially, a proof is given to show that fidelity susceptibility of a TFD state is equivalent to
the complexity between it and corresponding vacuum state, which gives an explanation why they may share

the same object in holographic duality. Some enlightenments to holographic conjectures of complexity are

also discussed.
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I. INTRODUCTION

In recent years, the conceptions in quantum information
theory are applying into the understanding about the high
energy and gravity physics. This leads to some surprising
discoveries about the connection of entanglement and
geometry [1-4]. Especially, the consideration about the
some aspects in the wormhole created by an Einstein-
Rosen (ER) bridge [5] and a pair of maximally entangled
black holes leads Leonard Susskind and Juan Maldacena to
propose a very interesting conjecture named “EPR = ER”
[3]. Here EPR refers to quantum entanglement (EPR
paradox). The deeper consideration about EPR = ER leads
to a quantity named “complexity” and its holographic
descriptions [6].

In this study, they consider an eternal AdS black hole
which is conjectured to dual to a thermofield double (TFD)
state,

TFD) := Z'2)  exp[~E/(2T)]|Ea),|Ea)g- (1)

The states |E,); and |E,); are defined in the two copy
CFTs at the two boundaries of the eternal AdS black
hole and T is the temperature. With the Hamiltonians H;,
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and Hp, at the left and right dual CFTs, the time evolution
of a TFD state is

(11, 15)) s= e~/ Hut1eH) [ TED), (2)

which can be characterized by two codimension-two
surfaces at the two boundaries of the AdS black hole with
left time ¢ = #; and right time ¢ = 7 [7,8]. There are two
proposals to compute the complexity for |y(t;,1z))
holographicallyl: CV(complexity = volume) conjecture
[9,12,13] and CA(complexity = action) conjecture [8,14].

The CV conjecture [9,13] states that the complexity of
lw(z,,tg)) is proportional to the maximal volume of the
space-like codimension-one surfaces which connect the
codimension-two timelike slices denoted by t; and 7z at
the two AdS boundaries, i.e.,

Cy = max { (3)

OZ=t; Uty

|

where Gy is the Newton’s constant. X is the possible space-
like codimension-one surface which connects ¢; and tg. £
is a length scale associated with the bulk geometry such as
horizon radius or AdS radius and so on. This conjecture
satisfies some properties of the quantum complexity.
However, there is an ambiguity coming from the choice
of a length scale #. This unsatisfactory feature motivated
the second conjecture: CA conjecture [8,14]. In this

"There are also some other holographic proposals for complex-
ity, see Refs. [9-11] for examples.
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conjecture, the complexity of a |y(#;, 7)) is dual to the
action in the Wheeler-DeWitt (WDW) patch associated
with #; and tg, i.e.,

1
CA _ WDW ) (4)
zh

The WDW patch associated with #; and ¢ is the set of all
spacelike surfaces connecting #; and 7 with the null sheets
coming from #; and tz. More precisely it is the domain of
dependence of any spacelike surface connecting #; and 7.
This conjecture has some advantages compared with the
CV conjecture. For example, it has no free parameter and
can satisfy Lloyd’s complexity growth bound in some cases
[15-18]. However, the CA conjecture has its own obstacle
in computing the action: it involves null boundaries and
joint terms. This problem has been overcome by carefully
analyzing the boundary term in null boundary [19,20].

Compared with the incessant progresses from gravity
duality (see Refs. [9,21,22] for some recent progresses by
gravity duality), it seems that we meet stiff obstacle in
giving a well definition about the complexity in pure field
theory framework. This difficulty partly comes from its
original idea. Roughly speaking, the complexity character-
izes how difficult it is to obtain a particular quantum state
from an appointed reference state. In a discrete system,
such as a quantum circuit, it is the minimal number of
required gates to convert the reference state into a particular
state [23-25]. This idea cannot directly be applied into the
continuous system.

In order to find a kind of generalization about gate
complexity, Nielsen and collaborators [26-28] constructed
a continuum approximation to gate complexity which
involved a new kind of “complexity geometry.” In
Nielsen’s works, the complexity is geometrized by Finsler
geometry (some introduction about Finsler geometry can be
found in Refs. [29,30]). The Finsler geometry depends on the
choice of Finsler structure. Different choices on Finsler
structure may lead to different results. At current, it seems
that there is no any method to determine the Finsler structure
uniquely. Recently, Ref. [31] used some different Finsler
structures to compute the complexity for some systems and
showed some similarities compared with the CV and CA
conjectures. However, as the systems they checked are very
different from TFD states, their results and holographic results
have still some differences. Therefore, if we really want to
compare the complexity based on a field theory framework
and holography, we need apply the field theory framework
into TFD states. This is what this paper will focus on.

On the other hand, though some positive results have
been obtained from the CV and CA conjectures, the
understanding on them is still at the very preliminary
stage. It is still not clear that if CV and CA conjectures are
completely correct. As the complexity depends on the
reference state, it is an important and fundamental question
to clarify the reference state. However, CV and CA

conjectures themselves do not tell us what the reference
state is. It is possible that the disappearance of reference
state in these two conjectures is because they are not the
complete versions and some modifications may be needed.
These questions obviously cannot obtain the answers only
by CV and CA conjectures themselves. A well definition
and full study about complexity based on pure field theory
are needed. This is also one motivation of this paper.

There is also a very surprising coincidence in holography
complexity and the holographic conjecture about fidelity
susceptibility [32,33]. The fidelity is also a very important
conception in quantum information theory, which measures
similarity of two states (a brief introduction about the fidelity
and fidelity susceptibility will be shown in subsection IV C.
For more details, one can refer to Ref. [34]). The fidelity
susceptibility and complexity, in principle, are two different
conceptions. Reference [32] gives a holographic description
and says that its gravity dual is approximately given by the
maximal volume of time slice in an AdS spacetime, which
shares the same object with the holographic complexity in
CV conjecture. This coincidence seems to imply that, at least
for TFD states, the complexity and fidelity susceptibility
have some deep connection and may be equivalent to each
other. To answer this question and clarify why such coinci-
dence can happen, we also need a well defined quantum field
theory proposal for complexity.

This paper will study the complexity of states in quantum
field theory by introduce a Finsler structure based on the
ladder operators (the generalization of creation and anni-
hilation operators). In the Sec. II, some basic properties of
complexity will be proposed and a method to construct the
Finsler structure will be presented. Then this method will
be first applied into some simple examples in Sec. IIL
Especially, the complexity of coherent states and entangle-
ment thermofield states are computed as examples to show
how to use this method. These examples will also clarify
some differences between complexity and other concep-
tions such as complexity of formation and entanglement
entropy. In Sec. IV, this method is applied to compute
complexity between thermofield double states. The results
show that the complexity density between a thermofield
double state and corresponding zero temperature ground
state is finite. In addition, it is found that complexity C and
temperature 7" in d-dimension free conformal field theory
shows the behavior of C o« 797!, which is just the renor-
malized complexity predicted by CA and CV conjectures
[35]. Especially, an explicit proof will be given to show
fidelity susceptibility of a TFD state is equivalent to the
complexity between it and corresponding vacuum state,
which gives an explanation on why they may share the
same object in holography. In Sec. V, some physical
discussions will be found to explain why the complexity
between a TFD state and its corresponding zero temper-
ature vacuum state should be finite, and some comments on
understanding about CV and CA conjectures will also be
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given. A short summary and some outlooks will be given
in Sec. VL

II. COMPLEXITY GEOMETRY

A. Geometrization of complexity

In the works of Refs. [26-28], instead of to directly
construct the complexity between states, they first defined
the complexity of operators.2 Here I will follow this idea
and propose some basic properties of complexity.

For the case that all the admitted operators form a
continuous manifold o, they introduced of a Finsler
structure F, which is a non-negative function defined on
its tangent bundle TU. For any piecewise C' curve
¢: [0,1] = U which satisfies ¢(0) =1 and &(1) € U,
one can define its length L[¢] such that,

L[?] = A LA (), é(1)). (5)

Here ¢() == 4¢(t) = T(¢)é(t). Then Nielsen defined the
complexity of U by, 3

C(U) =min{L[¢]| ¥V &: [0,1] — U, 31 #0,

s.t., ¢(0) =1,¢(1) = AU}, (6)
Here 1 is the identity of ¢{. This definition leads to
followmg two properties: V U, U /1, U,eu

(la) C(U)=0s31#0,s.t.,U =1

(2a) Subadditivity:  C(U;) —|—C(U2) >C(0,0,

0,0, eld.

The complexity of states then can be defined based on the
complexity of operators. For any two states |y ) and |y,),
the complexity from |w;) to |w,) can be defined by
following way,

)) =min{C(0)

) if

> ~U i|W1>}'
(7)
Here notation means that the two sides can differ from

each other up to any nonzero complex number. This
definition leads to following two properties,”

C(lw2). v,

“

The other idea was proposed by Ref. [36], which defined a
hne element in Hilbert space by Fubini-Study metric [37].

*In the original definition of Nielsen’s, the 4 has to be 1.
However, it can be relaxed that 4 is any nonzero complex number
in this paper, as we here only consider the operators which
are acted on quantum states. For any quantum state |y), Uly)
and AU|y) describe the same state.

These two properties seem to be the necessary requirements
for any well-defined complexity. However, the property (1b) is
violated by CA conjecture and the generalized path-integral
complexity for general metrics and actions in Ref. [38].

'|'//2>

v1)

FIG. 1. The schematic explanations about the triangle inequal-
ity. ¢1z is one quantum circuit of minimal gates to realize
[w1) = |R), ¢g, is one quantum circuit of minimal gates to
realize |R) — |y,), and ¢, is one quantum circuit of minimal
gates to realize |w;) — |yp,). As the combination ¢pyoh;
is a possible quantum circuit to realize |y) — |w,) with the
gates number C(|y»), |R)) + C(|R), |y;)) which should be larger
than or equal to the gates number of ¢,, we see that

Clly2). [R)) + C(IR). lw1)) = Clw2). [w1))-

(1b) C(ly2). [w1)) = 0 if and only if [y) ~ [yy);
(2b) Triangle inequality: C(|y,).|R)) + C(|R), lw)) >
C(lw2). ly1)) for any state [R).
One understanding and proof for (2b) can be found in
Fig. 1. The complexity does not have reversibility in
general, i.e., C(|y2). [w1)) # C(lw1). [w2)).

There is also a useful conception named “complexity of
formation” proposed by Ref. [39]. It describes what is the
additional complexity arising in preparing state |w)
compared with |y,) from a reference state |R). This can
be defined by ACx(|y3), |y1)) in following way,

ACg(ly2). ly

)) = Cllw2),

R)) = C(ly1),

R)). (8)

In general, the complexity of formation between the two
states depends on the choice of reference state. Especially,
when we choose that the reference state |R) to be state |y ),
then “complexity of formation” just gives the complexity
from |y ) to |y,). In general cases, the property (2b) shows
that,

C(lya), |y

) 2 ACk(ly1), [yw2))  for V [R). (9)

The inequality (9) cannot be strengthened into the
C(lw2). ly1)) = [ACk(w1). [y>))| in general as the com-
plexity may not have reversibility. In general, the complex-
ity of formation and complexity from one to the other are
different. However, it will be shown in the subsection III B
that they can be equivalent in some special cases.

It needs to emphasis three properties based on the
definitions (6) and (7). The first one is that we must first
state what is the admitted operators set U/ as the value of
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U

FIG. 2. The schematic example that the value of C(U/) depends
on the choice of /. The operators set U/ is a subset of a larger
operators set I{’. The curve length is just given by Euclidean
metric. For the operators set U, the shortest curve from Tto Uis
given by ¢;. However, if one extend the operators set I/ to U, the
shortest curve from 1 to U becomes C,. This shows that the
complexity of {J depends on the choice of operators set.

C(U) defined by (6) depends on the choice of U/ (see Fig. 2
as an example). The second one is that in general we can
not say C(|lw),|w1)) = C(lw1),|w2)). In fact, this point
emerges from the physical intuition very naturally, as we
can feel that the costs for many processes and their inverses
are different. The third point is that there may be many
different operators {/; which can satisfy the relationship
ly2) ~ U|y). We should compare the complexities of all
these operators by using Eq. (6) and find the minimal value
of them to determine the complexity from |y ;) to |y>).
References [26-28] studied the complexity in special
operators set U, where all the curves can be generated by
some “time-dependent Hamiltonians” 7(¢) such that,

&(s) = Pexp /0 “P(1)de (10)

and the P indicates a time ordering such that the
Hamiltonian at earlier times is applied to the state first.
Any “time-dependent Hamiltonian” 7'(f) should be
expanded in the basis E = {M', M?,...} such that,

T(t) =Y, (t)M". (11)

The basis E, which can be treated as the generators of
operators set U and plays the role of universal set (minimal
complete gates set) in the quantum gates, determines the
operators set U E.S Then the Finsler structure F in Eq. (5)
can be given by a basis-dependent function F in this way,

Fle(r).e(n)] = Fle(r):¥,(1)]. (12)
Here the Finsler structure and its function form expressed in

a basis, i.e., F and F, should be distinguished. The reason
will be explained later on. Reference [27] studied different

Here it does not need that I/ forms any group.

types of Finsler structure F and compared their advantages
and disadvantages. We will return to it in the Sec. II B.
In general, one can choose different bases and obtain
different admitted operators sets. Let us assume E' =
{M" 0%, ..} and E={M' M? ..}. One important
case is that £’ O E so that E' generate a larger operators
set Uy and some new curves. Then we see that

c(U Mo, = e )|, - This means that it will decrease the

complexity when we extend the generators set. The other
important case is that E and E’ can be associated by a linear
transformation, i.e., there is a matrix A%; such that,6

M'* = A%, M. (13)

Here A%; may be not an invertible matrix. We can see that
Uy CUE in this case. If the generator 7() is also one
generator of U, then it can be expanded by the new basis
E' such as T(t) = Y/,M'®. The coefficients Y/, and Y, will
have following relationship,

YI :AaIY:X. (14)

Assume F’ to be the Finsler structure in Uz and F' is its
function form defined in the basis E’. As U C Uy, we can
compute the lenght for any curve &(f) generated by 7'(¢)
with two different Finsler structures 7' and F. If we require
that two Finsler structures can give the same length for this
curve, then their function forms in the odd and new bases
should satisfy following condition,

Fle(): Y] = Fle(n: A% Y], ¥ Y, (15)
This gives the transformation rule for function form of
Finsler structure under the basis transformation (13). We
see that, for a given Finsler structure F, its function form
depends on the choice of basis. Because of this reason,
we have to distinguish Finsler structure F and its function
form F. In the Appendix A, I will give an example about
how to use this transformation rule to obtain the function
forms of Finsler structure in new bases.

To give the definition (6) a well meaning, we have to first
appoint the basis (i.e., the generators set) £ and Finsler
structure function form F corresponding to this basis. Then
the pair (E, F) determines the complexity of any operator
in set U and the complexity between two states in set S,
where Sy is the states set in which any two states can be
transformed by the operators in {/. In general, the states set
Sg is not the whole Hilbert space H, as there may be two
states in H which cannot be transformed from one to the
other by the operators in Up.

®In this paper, the Einstein summation rule has been used for
upper and lower indexes, i.e., it needs to make a summation if the
same index notation appears in the upper and lower indexes.
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Let us make a short argument on why the Finsler
geometry is a natural generalization of gates complexity
in the continuous system. Finding the complexity of an
operator U in both the classical and quantum circuits can be
concluded in following steps. First, one has to choose a
universal gates set (the fundamental components in con-
structing the circuit) E = {&,, &,, ... }. By repeating to use
these components, one can find ways to construct some
quantum/classical circuits to realize the operator /. There
may be many different ways to construct different circuits
to realize the same operator U. To determine which design
is optimal, one has to appoint the “cost” F; > 0 for every
element ¢; € E. Then the total cost of the design is the
summation of the cost of every element, i.e., > F;. If we
appoint that F; is 1 for all the components, then the total
cost is just the gates number in the circuit. In general, the
optimal design is the one which can make > F; minimal,
and this minimal value is the complexity of operator U. The
pair (E, F) in continuous case is almost the continuous
version of pair (E, F;) in classical/quantum circuit.

B. Finsler structure and generators

In Ref. [31] (and also in the previous works of Nielsen’s),
the Finsler structures were constructed by paying more
attention to the group structure itself. In this paper, I will try
to consider the problem from how to construct the states in
Hilbert space. One will see later that this viewpoint will be
very suitable to study the complexity between quantum
states, especially for the TFD states.

Let us consider a bosonic Hilbert space H. For conven-
ience, let us assume the system has discrete momentum. To
describe a state in H, we need to choose a representation,
1.e., a series of basic vectors. One common choice in free
theory is the particle number operator,

N:=a'a. (16)

Here operator @' and & are the creation and annihilation
operators. In most cases, there are some different creation
and annihilation operators, which are commutative to each
others. To distinguish such different particles created by
different creation operators, we can add some indexes. For
example, let us consider the case that particles can carry
different momentum. Then the particle number density

operators corresponding to momentum £; is,

A

N> ==a

p=ala (17)

]‘(' .
i i

1+

Here operators &;{ and a; are the creation and annihilation

operators, which can add a particle of momentum k or

annihilate a particle of momentum k. Let us use the
notation,

H'ni’]_éi> = |”07ZO>|"1,§1>|H2752>--- (18)

i=0

to stand for the state that there are n, particles of
momentum ky, n; particles of momentum k;, n, particles

of momentum 122, .... The state in Eq. (18) is the common
eigenvector of all the particle number density operators and
can form a complete basis in Hilbert space /. Any state in
the Hilbert space H can be presented as,

Cnon]...H|nivki>
i=0
oo

= > o lnokolni K)o (19)

ny,ny,...=0

(5]

)=

no,ny,...=0

This is the occupation number representation of a state in
Hilbert space, which is one basic representation in canoni-
cal quantization in quantum field theory and second
quantization in quantum many-body systems. The coef-
ficient matrix ¢, ,,... can be reorganized into the matrix
product state presentation [40] or multiscale entanglement
renormalization ansatz (MERA) [41].

The physical meanings of operators d; and 51; are very
clear: they stand for deleting or adding one particle of

momentum k in the system. If the bosonic field is the
fundamental field rather then an effective field, then
particles are indivisible. It is very naturally to regard that
the fundamental operators are adding and deleting one
particle. This advises us to choose following generators set,

O U{az ;. ﬁ} (20)

i

Here [ satisfies 1é = & for V & € E® and 15,; = [&;,Zz%].

7
The generator set E° forms an infinite dimensional

Heisenberg-Weyl Lie algebra. In general, this basis is
not big enough for the physical interesting questions, so
let us extend the basis in this way,

E:= @(EO)”, 1)

(Eo)n = {Mi]iz"'i” ::éi éi "'éin :| V éil’ ""éin S EO}
(22)

Here the ““: :” means that annihilation operators will always
appear at the right of corresponding creation operator, e.g.,
. e i do

PSSP Y .- PO
'akiaié,. = aié,.aki‘ In the definition (21), ¢;,¢é,,, ..

not need to be different from each others. Such extended
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basis in fact is nothing but the universal enveloping algebra
of Heisenberg-Weyl Lie algebra.7

For free field theory, the particle number is conversed
and very convenient to characterize the quantum states.
However, in interacted field theories, the total Hamiltonian
H and the particle number density operator N i defined in
Eq. (17) are not commutative, so the particle number is
not conversed. In this case, we can use ladder operators

{71—5_, 7;% } (the generalization creation/anihinlation operators)
to replace the creation/annihilation operators {a’. , ag }. For
k; i

arbitrary field theory, let A be its Hamilton which has
discreted eigenvalues E,, (it is assumed that £, | > E,,) and
is commutative to momentum operator. In the Appendix B,

I will prove that there is a unique operators set {2,—{;, 2;}

which can satisfies,

.92 — 5T 9T
T3] = [12.11] =0,

BIE,. &) = a,7lE,1.K) (23)

A
[10.11] =fop 7.

= 0. The vacuum state

Hl 0|E0’ >

The operator ll can change the energy at momentum k

witha >0 if n>0 anda

correspondmg to this Hamilton then is |0) =

from E,, to En+l . By applying the l;, we can create the any

state HE_\Eni,I;i) from vacuum state and the set Uy,

{ITi=0lEy,- I?,)} forms a complete basis in Hilbert space H.

The operators {2];_,2;} are called the ladder operators

corresponding to Hamilton H. iE- is the lowering operator
(the generalized annihilation operator) and ?; is the raising

operator (the generalized creation operator). One can also
find that the generalized particle number density operator

is commutative to the Hamilton 4. Thus, in general system,
we can use the ladder operators to replace the creation and
annihilation operators and define,

E0 = U{ﬂ Tz } (24)

It still forms an infinite dimensional Heisenberg-Weyl Lie
algebra. If the system is given by a free theory, then the
ladder operators are just the creation and annihilation

"In mathematics, the universal enveloping algebra of set E
defined by Eq. (21) can be induced by Heisenberg-Weyl Lie
algebra, i.e., the basic commutative relationship [ak, a]:] = 5~—,|]
Thus it also forms a Lie algebra and the corresponding operators
set is also a Lie group.

operators. For convenience, we will still use the notation
{21;%,&];_} to stand for ladder operators and |n) to stand

for the energy eigenstate |E,) in interacted systems. The

readers should keep in mind that {&2, a; } stands for the

ladder operators corresponding to total Hamilton when we
discuss the interacted theory.

After we have prepared the basis already, then the
generator 7(¢) can be decomposed in this way,

T(t) = Ty(t H+ZY M’+ZY,] (MY 4 -

+ Z Ylllz

iris..

Here Ty(1),Y(1).Y;;(t),... are
M, MY, ... are the generators given by Eq. (21) except
for {. In addition, we can require that the tangent operator
T(1) should be anti-Hermitian, i.e., 7(¢)" = =7(r), so that
the operator generated by it is unitary. This requirement is
natural in physics. However, as this paper is going to
explain the basic idea about how to construct the complex-
ity in quantum field theory, we will not add this
requirement.

Now we have to appoint the function form of Finsler
structure in this basis. Four different types of F have
been studied in Ref. [27] and also been checked in recent
paper [31], which are,

Yl =0l
1

Fy= /Z|Yl|2’ =/ 'Y (26)

The summation includes all the indexes of Y in Eq. (25). In
the two Finsler structures on the right side, p’ and ¢’ are
penalty factors which can be chosen to favour certain ones
in the fundamental generators/gates over others, i.e., to give
a higher cost to certain classes of gates. For real numbers,
the notation || - || is defined as ||Y!|| := |Y!|, i.e., the usual
absolute value of real number. As what have been com-
pared in quantum circuits formed by spin chain in Ref. [27],
F, is the best motivated of all the four local Finsler
structures. One physical interpretation for such preference
is as follow. Suppose U to be generated by applying
sequentially the discrete fundamental operators (logic
gates) which are generated by 64,6,,... at the time
t1, 1, .... Then we can use d-function to write these discrete
operators into a generator as following form,

Zét—t

(27)

£ R g (25)

complex numbers,

F

T(t)=68(t—1,)8, +(t—1,)6, + -
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F| leads that the length defined by Eq. (5) for this “curve”
is just the total number of fundamental operators, so the
curve of minimal length just corresponds to the design of
minimal required gates. In this sense, F'| is the most natural
generalization of the gate complexity for continuous
system. F, is a modified version of F; in which we
introduce a penalty for some generators. But functions F;
and F, cannot give Finsler structures in strict sense.
However, Ref. [27] shows that this can be overcome by
treating them as the limit of some continuous function.
Thus, this subtlety will not be important in physics.

When the coefficients Y; in Eq. (25) are complex
number, the notation ||-|| is a little ambiguous as
Y; = p;e in fact stands for two numbers (p;,6;) rather
than one number. Naively thinking, we should use
[IY;]] = p;- However, this naive idea in fact is against with
the original intention of F', as the “rotation” caused by 6, is
not counted into the complexity. One way to generalize F';
for complex number Y, = p,e’ is,

1Y1l[ = pr(| cos 0] + | sin6,]). (28)

This generalization has simple physical picture: as Y, M! =
prcos@M! +p;sind, - (i-M'), we can treat M’ and (i - M")
as different generators. The other simple method to take
the “rotation” into account is that we define,

1Yl = piy/ 1+ 67 (29)
In this formula, we decompose the complex number Y/, (¢)
into two steps. First, we find the point p;(7) at the real axis.
Then we make a rotation to angle 6;(¢) and this leads to an
arc length p;6;. Then the total “cost” for this complex

number is given by \/p? + (p;0;)% This gives the result in
Eq. (29). For a given Y/,(¢), the value of 8,(¢) is not unique.

To avoid this ambiguous, we can require that 0; € [0, , 7)
for constant ;. If 6,(¢) is not a constant, then we require
0;(0) € [0,,x) and 0,(¢) is continuous when ¢ € [0, 1]. By
this convention, the complex number Y, () can correspond
to a unique phase angle 6,(¢).

In fact, except for these two ways to give the meaning of
|l - ||, there are also many other ways. However, in order to
make the optimization problem (6) is well defined, it needs
that || - || satisfies the requirement ||x|| + ||y| > ||x + y||
for V x,y € C. One can easy see that the definition (28)
satisfies this requirement. In the Appendix E, it will be
shown that definition (29) also satisfies this requirement.
The fact that we have infinite choices on Finsler structure
reflects the difficult position in this approach: we do not
have a dynamic equation to connect the Finsler structure
and the operators set. However, we can base on some
physical considerations to try some possible Finsler struc-
tures and study what it will bring to us. This is helpful for
understanding complexity itself.

In this paper, we will use F, Finsler structure function

form. For the tangent vector 7(¢) shown in Eq. (25), it is
naturally to introduce function F in the basis E in this way,

F= f[pllTo(f)ll + ZIIY,-(t)II + ZZHYW)H +e

S WY (0 +} (30)

iyiy...1,

Here 7 is a free parameters and positive. One can prove that

in order to match the requirement that C(1) = 0, we have to
set that

p=0.

It is every naturally to choose the weight factors for other
coefficients as Eq. (30), as the generator M’ only contains
the operators which can create or annihilate one particle,
generator M only contains the operators which can
create or annihilate n particles. The decomposition Eq. (25)
can be generalized into the continuous cases. The discrete
annihilation operator &,;i and its continuous form have the

relation,

Vol | -
W(l}z[ - a(k) (31)

as well as the relationship between the summation and
integration,

Z - (;;;}_l/dd—lk. (32)

i

Here Vol stands for the volume of the space where the
field can distribute and d is the spatial dimensions of
corresponding quantum field theory. The function form of
Finsler structure then becomes,

£IF = [(2:)3] [z
w2l [ ey 0+

) (33)

After we have prepared the pair (E, F), then we can
compute the complexity of any operators in Uy and
complexity between the states in Sg. It is not clear that
if the states set S can contain the all the states in the whole
Hilbert space H. However, it will be show that the TFD
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states, which are the main targets in the holographic duality,
are contained in the states set Sg. In addition, the states
studied by Ref. [36] are also contained in Sg. For
convenience, the following sections of this paper will take
¢ = 1. While the work in this paper is by no means
exhaustive, I hope to provide a starting point for more
systematic studies of framework by using Finsler geometry
to construct the complexity in quantum field theory.

III. COMPLEXITY IN SOME SIMPLE EXAMPLES

A. Complexity between coherent states

Before we discuss how to use the framework in the
previous section to study the complexity in TFD states, let
us first try to study a useful model in quantum mechanics.
As lots of new definitions and clarifications were made in
previous sections, it is better to use some simple examples
to familiarize the readers with them. In this subsection, let
us assume that the momentum has only one possible value
so that we can neglect the momentum index. Then the
Hilbert space is spanned by {|n) }. We choose that states set
Sp is the collection of all the coherent states,

Sk = {|coh(a))| V |coh(a)) € H,s.t., a|coh(a))
= alcoh(a))}. (34)

We see that Sg is the collection of all the eigenstates
of lowering/annihilation operator.® This state can be gen-
erated from vacuum state |0) by displacement operator
D, =exp(ad’ — a*a),

[coh(a)) = D,[0). (35)

It is obvious that displacement operators are the elements of
Ug. In order to use our method to compute the complexity
between any two states in Sg, we have to check that if there
is at least one operator in U to convert each other of any
two states in Sg. This can be done as follows. Firstly, one

can prove that the displacement operator D,, and Dﬂ satisfy,
Dab/}v = eaﬂ*_ﬂ"*baﬂg. (36)

This equation implies that D,|coh(p)) =
e =P |coh(a + f3)) ~ |coh(a + B)), so any two elements
in set (34) can be converted to each other by at least one
operator in Uy.

Now let us try to compute the complexity from |0) to
|coh(a)) according to Eq. (7). To do that we have to find all
the operators U such that |coh(a)) ~ U]0). Displacement
operator D, of course is one of such operators but is not the
one of minimal complexity. In fact, all operators [/  with

8All the results in this subsection can be used into the both of
free and interacted systems.

the form of explaa’ + fa] for arbitrary constant f can
satisfy that [coh(a)) ~ U|0).

Let us first show how to compute the complexity of
Uy = explaa'’]. The general curve in Uy is generated by
following generator,

A

T(t) = To(Di + Y (Dat + Yy()a + ZY,.I. by by + -

5]
i1,

+ Z Yi]...in@i]"'Bi,, + (37)

Here B,.],...,i;,." €{a,a’}. As the curve generated by
T(f) should satisfy condition U, = explaa’] = ¢(1) =
P exp [ T(1)dt, so we obtain the restricted extremum
problem,

ety =min{ [ at| 7,011+ 1701
+2) 1Yl ++H (38)

i iy
with the constraint,

< 1 A
exp(aa’) = AP exp {/ dr {TO(I)I] +Y(r)a*"
0

+ Yz(t)& + ZYiIiZBil ZS[Z + e

iy,iy
+ Z Yi]“.ingi]"‘l;in—'—.”]} (39)

for a nonzero complex number A

It seems to be a high challenge to solve optimization
problem Eqgs. (38) and (39) strictly. As the first attempt to
investigate the complexity in this manner, in order to avoid
sinking into verbose math, let us reduce the elements in
generators set. Here it is assumed that

E=E9 = {a,a"0}. (40)

Under this reduced generators set, the optimization prob-
lem Eqgs. (38) and (39) then becomes,

C(Up) = min { [Matmon+ ||Y2<r>||1} (41)

with the constraint,

exp(aa’) = AP exp {Al de[To()1+ Y ()at + Yz(t)&]}

(42)
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for a nonzero complex number A. Using the results in the
Appendix C, we can find that the complexity of U, is,

C(Uy) = Clexplaa’]) = ||a]. (43)

The complexity between the coherent state and vacuum
state is [see Eq. (C16) in Appendix C],

C(lcoh(a)), [0)) = el (44)

If someone directly uses the complexity of displacement
operator D, to stand for the complexity |0) — |coh(a))

the result in Eq. (44). Of course, if one insist that the
operators we can use to convert states are unitary, then
displacement operator D, is one of which give the minimal
complexity. Just as mentioned in the introduction part, it
may lead to larger complexity by reducing the operator sets.

Using  the  relationship  exp(pa’)exp(aa’) =
exp[(f+a)a’], we can see that

exp(—ad')|coh(a)) = |0),
so we have,
C(|0), [coh(a))) = C(exp[~aa']) = [lall.  (45)

and,

C(lcoh(£3)), |coh(a))) =

We see that in this case the complexity between coherent
states has reversibility. By these results we can check the
properties (1b) and (2b) in the Sec. I,

15— al|. (46)

C(|coh(p)), [coh(a))) =0 & a = f & |coh(f)) ~ |coh(a))
)

C(|coh(p)), [coh(a))) + C(|coh(a)), [0)) = C(|coh(f)), |0)).

(47)

For any reference coherent state |coh(y)), we have follow-
ing inequality for the complexity of formation,

AC,([coh(p)). [coh(a))) =

16 =7l = lla =7l < [la—Bll.
(48)

We see that the complexity of formation depends in the
choice of reference state |coh(y)).

When we recover the generators set E into the form
in Eq. (21), it seems that the complexity between
coherent state and vacuum state is still given by
Eq. (43). The proof is not obtained yet but the physical
intuition for such predication is simple: there is no any
ladder operators to be wasted (the meaning of “wasted”
here is that a particle created/annihilated at earlier time will

be annihilated/created at the later time), so it contains the
minimal operators to convert the reference state into the
target state.

B. Complexity of entangled thermal states

In this subsection, we restrict the consideration in the
case that the system is free system but there are two kinds
of creation and annihilation operators. By this subsection,
we want to show and clarity the similarities and differences
between the complexity and other conceptions such as
thermal/entanglement entropy and complexity of
formation.

Let’s consider a Hilbert space H = H; x H, so we
have two groups of creation and annihilation operators
and E° := {a,,a,,a},a}}. The subspace H, is a copy of
subspace H;. Let us consider the entangled thermal state,

S(B)) - Z PER ) |n),. (49)

J—

Here E,, is the eigenenergy of Hamilton in the subspaces.
The normalization constant Z(/3) has been added so that
(S(P)|S(B)) = 1. The density matrix is,

Z e_/s(En+E,n)/2|n>1|n>2<m|1<m‘2'

P=ISBNSPBI =75
n,m=0

(50)

As p is the density matrix for pure state, the thermal entropy
of this system is zero. In order to find the entanglement
entropy between the subspace H; and H,, let us first take
the trace of H, in the density matrix,

=Try(p Z myp|m), :%Z
m=0 n=0

(51)

Then we see that the subsystem is a mix state system with
temperature 7 = 1/§. As here we assume that the system
is free, the eigenenergy E, can be written as E,, = wn + E|
for a positive @ and a zero-point energy E,. Then the
partition function is Z(8) = 1/(1 — e™#®) and the entan-
glement entropy S, is,

0
S12 = —Tr(pl lnpl) = an—ﬂ%]nZ
P

=—In(1—eP® .
n(l-e )+eﬂ‘”—1

(52)

Now let us try to compute the complexity between |S(f))
and its corresponding ground state. To do so, let us write the
state |S(f3)) as follows,
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o) e—[)’E /2
n=
00 —[)’11(1)/2

NZe

n=0

2)"10)110),

)"10)110), = U4[0),]0),.  (53)

Here Uj:=exp(e?®?ala)). In fact |S(B)) can be
regarded as the TFD state in quantum mechanics
((1 4 0)-dimensional quantum field). We here consider
the complexity of conversion |0);|0), — |S(f)). It seems
a high challenge to find the complexity under the gen-
erators set (21). Let us assume that the generators set only
contains two elements

E = {aja,1).

Then any operator U € U has the relationship U ~
exp(Aajal) with 2 € C. To determine the complexity of
U, we have to solve the restricted extremum problem,

C(0) = 2min {Al dt||Y1(t)||}

with the constraint,

(54)

0 ~ exp(Aalal) = p{/ dey, (1)a] é}

{ th1 )} (55)

Solving this optimization problem, we can find that
Clexp(2a} )] = 2(|2]]-
Hence, the complexity of U 5 18,

C(Uy) = 2e7F", (56)
All the operators which can transform |0),]0), into |S(/))
are equivalent to U 4> SO we obtain that,

C(IS(8))-

We see that in general C(|S(f)),[0),|0),) # Si,. This
shows that complexity and entanglement entropy are
different quantities. In fact, the complexity is the defined
between two states, so we can change the reference state
and compute the complexity between |S(f)) and this
reference state. Then the value of complexity in general
has no direct relationship to entanglement entropy. This
shows that complexity in fact is a new independent quantity
to describe the relationship between two states.

0)1]0),) = 277", (57)

One can easy see that

exp(e”/"%a]}) exple ")
= exp[(eh? + e_ﬁzw/z)&ﬂz] (58)
so we have,
C(IS(B)). 1S(B1))) = 2|e — e[ (59)

The reversible condition is also satisfied in this case.
Equation (59) leads that the complexity of formation of

|S(p,)) and |S(B,)) corresponding to |S(f3)) is,

/iz_m o bzw _he
7|

ACs, (IS(52)). [S(B1))) =2]e™> —e™ > [ =2]e™= —e
<C(IS(B2)). [S(B1)))-

Specially, when 83 < min{f,, #;} or 5 > max{f,, 4, }, the

left-hand of Eq. (60) is independent of the value of f; and

the absolute value of complexity of formation is just the
complexity between these two states,

C(IS(52)).

(60)

)) = [AC, (IS(A2)),

SBONI-

This can be understood physically by following argument.

Let us consider to design some quantum circuits to
covert the initial state |I) into the finial state |F). One can
see Fig. 3. Different curves such as ¢, @ryr. b1, P2, P3, -
stand for different designs. In general, some designs will
bring the initial state passing through the medial state | M)
but some designs such as ¢ will not. However, in some
special cases, because of physical restrictions, all the

(61)

FIG. 3. Curves ¢y, Qyr> P15 P2, @3, -.. stand for the possible
quantum circuits which can covert the initial state |I) into the
finial state | F). The medial state |M) is the necessary state that all
the physically realizable quantum circuit will bring the initial
state |/) into the medial state |M) before it reaches the finial state
|F). The black dashed curve ¢ stands for a quantum circuit which
can connect states |I) and |F) without passing through the medial
state |M). But this curve is forbidden by some physical rules.
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physical realizable quantum circuits will bring the initial
state passing through the medial state |M). In these cases, if
¢y 18 one quantum circuit of minimal gates which can
convert |I) to |M) and ¢y is one quantum circuit of
minimal gates which can convert |M) to |F), then the
combination ¢y rogy, is also one quantum circuit of
minimal gates to realize the conversion |I) to |F). This
means that,

CAF). 1Y) = C(F). M) + C(M). D). (62)
AC(IF). [M)) = C(IF). |1)) = C(IM). |1)) = C(IF). M),
(63)

In addition, if the complexity is reversible, then Eq. (63)
can be strengthened as,

[AC,(|F). [M))] = C(|F), |M)), (64)

We see that the absolute value of complexity of formation
between states |F) and |M) (corresponding to |I)) then is
just the complexity between them.

Now let us return to the case in entangled thermal states.
Let us assume f; < ff, < 3 and consider the conversion
IS(B3)) = |S(B1)). As the parameter f in the states |S(f))
describe the temperature and can only be changed con-
tinuously in a real system, then all the physically realizable
quantum circuits must bring the state |S(f;)) into the state
|S(B,)) before then reach the final state |S(f;)). As the
complexity satisfies reversibility in entangled thermal
states, we see that,

|ACs, (IS(B1))- 1SN = CIS(B1)), [S(B2))), - (65)

For other cases of 3 < min{f,,#;} or f3 > max{f,,f,},
one can find the same result.

IV. COMPLEXITY BETWEEN TFD STATES

A. Construct TFD states by Bogoliubov
transformations

In this section, we will construct two different vacuum
states which can be associated by a Bogoliubov trans-
formation. One can see that the TFD state can be naturally
identified with a vacuum state by this manner. For simplicity,
we only consider the free scalar field theory in this section.

Let us first define a two-copy vacuum state |A) :=
|A),|A)g. The state |A), is left-side vacuum state in the
Hilbert space H;, which is annihilated by the operator &’I_z,

ak|A), = 0. (66)

Here k = (k', k%, ..., k%"1) is the momentum of the annihi-
lated particle. The state |A)p is right-side vacuum state
in the Hilbert space Hjy which is the copy of H,. Its
annihilation operator is &]Lf . Let us first assume that the

momentum is discrete. Then the annihilation and creation
operators corresponding to the left-side and right-side
vacuum states satisfy following bosonic commutation

relations,
k. akt] = [af. 28] = o (67)

Kk k

and others are zeros. All the excited states in the Hilbert
space H :=H; x Hy then can be generated by using
creation operators &%T and &Ig
The vacuum state is not the unique. In fact, the studies on
the quantum field in curved spacetime have made us to
realize that vacuum also depends on the observers. This
understanding leads to the unified understanding on the
Unruh effect [42,43], Hawking radiation [44,45] and other
particle automatical creations in the curved spacetime
[46,47]. To define an other vacuum state, let us consider
a new decomposition on the Hilbert space H such that
‘H ="Hy x Hp and the corresponding annihilation oper-
ators (l;g, Bg ) which have following relationships to

" from vacuum state |A).

BU .— [ AR _ ,—nwpla s LT D . g (5L _ ,—rwplafRY
bk '_Ck<a12 e az' ) bk -—dk ag—e a:).

(68)

Here w; is the energy of a particle at momentum kandaisa
non-negative real number. We will see later on that a is
just proportional to the temperature of a TFD state. For the
free scalar field with conformal symmetry, the mass is zero
and we have w; = \/? . The coefficients c¢; and d; are
determined so that bosonic commutation relationships are
satisfied,

(6. 5] = [2. 52| = ol (69)

As they are not important in this paper, we will not give out
their expressions. The annihilation operators pairs (blg , b]zD )
determine a new vacuum |B) := |B);|B);, which satisfies,

Z’,%]|B>U =b

tallw}

B)p =0, (70)
or we can write that ;3}(’|B> = lA)]-{»D|B> =0.

We see that in the Eq. (68) the new annihilation operators
are mixed with original creation and annihilation operators,
so from the viewpoint of vacuum |A), the state |B) is an
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excited state and has nonzero particle numbers. Using the
Egs. (68) and (70), one can easy find following relationship,

(a'ak —ar'ab)|B) = 0 (71)

This equation implies that the number of left-side particles
and the number of right-side particles are the same in the new
vacuum state |B). As the Fock’s space of H; and Hy can
span the Hilbert space H, any state in H can be written as the
superposition of the particle states in them. Then we see that,

[HZ - ag ag ]|A) (72)

The recursion formula for the coefficients K, can be readily
found from the Eq. (71). The result is

K, —e ™K, =0. (73)
Then we can see that
0 e—ltn,-w; la
ARY AL
B~ [II- S @aty |
,‘('L n=0
- —rnw; la 7
= HZe T k) k) g (74)
% n=0

. _’,»> means that there are n particles with

Here the notation

momentum ;. The similar relation between state |B) and |A)
appears in some important physical situations. For example,
for an accelerated observer in Minkowskin spacetime, the
vacuum |A) is the Rindler vacuum and the vacuum |B) is the
Minkowskin vacuum, Eq. (74) then shows that accelerated
observer can find the particles appearing in Minkowskin
vacuum, which leads to the Unruh effect. For the a static
observer at the infinite of a Schwarzschild black hole, the
vacuum |A) is the out-vacuum and the vacuum |B) is in-
vacuum, Eq. (74) then leads to the particles emission from
the black hole, which is the origin of Hawking radiation.
In order to see that the vacuum state corresponding to

annihilation operators pair (@EU , Bg ) is just a TFD state, let
us introduce the energy eigenstate |E;); and |E;), as the
basis of Hilbert space H; and Hp, then the state |B) can be
expressed as,

By~ FulELIE . (75)
ij=0

For every momentum l?,-, the left and right sides always
contain the same particles, which means that they also have
the same energy. For every state with momentum k; and
particle number n, it contains the energy £ = nw; and the

—TThn

coefficient with is probational to e ™"*%’*. This means that

fij =3 exp(—zE;/a) and so,

[Se]

)~ Y e ENE), B g (76)

i=0

Here |E;);/r = g(E )Hk > on, i k) p with the restric-
tion wy > n; = E;. Here the coefficient g(E;) is the
normalization factor. Comparing it with the Eq. (1), one
can see that |B) is a TFD state with temperature T = a/2x.
The vacuum state |A) is just the TFD state at the zero
temperature limit, i.e., the state at the limit a — O.

As all the different a Af* AkT are commutative, the Eq. (74)

i i

can be written into the continuous form by this way,

—rm lon /a

HZ o @ 4 )A)

k ni=
_ Hexp —nw; /a,\RTALT]|A>

ITFD) :=

—mu /aAR'}'ALT |A>
k

i

[ [ akt-temena yat )

|
Q)

(77)

with the operator U} defined as,
Ul == exp { / dkd‘le‘”w%’“&RT(%)&LT(lz)}. (78)

The discrete creation operator &;_ has been converted into
its continuous form by Egs. (31) and (32).

The continuous form in Eq. (77) shows that a TFD state
and its vacuum can be associated by the operator . This is
the starting point in following computations about com-
plexity. A remarkable property is that we do not need any
UV cut-off at the momentum when we construct the TFD
state from the vacuum state by Bogoliubov transformation.
It needs to note that the operator U7 is not unitary as we can

see that U;' # U. However, U} has a unitary partner G
which can also realize the conversation from |A) to |TFD>,

G, = exp { / k91 f(a, k)[aR (K)alt (k) aR(/'é)&L(l?H}
(79)

for a real-valued function f(a, 1?) One can see that G, is
unitary as G,G} = I. Let us try to find a function f(a, 1?) )
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that U}|A) = G,|A). Firstly, we return to the discrete form

and define,
7 (K) _ ARi ALY £ (F) _ ARAL
LY =az a;’, LY = agag,
n 1 NI A
3 = (akal +atal 1) = 3 (affak +atlat +1),
AT = A E AT
S=exp [fla KLY - 1) (80)

Then Eqgs. (79) and (77) can be presented as,

= Hexp [f(a, k) (ﬁ@ - ﬁ@)} = H(A}E, (81)
i i
ITFD) ~ [T exp e [ —rolaf (k } 1A). (82)
k

The generators {ﬁi{‘), ﬁ@), f,(()k)} form a su(1,1) Lie-algebra
with the commutation relationships,

20.60] — o, [1.20) - 225, (3
Ga defined in Eq. (80) can be decomposed as (see the
Appendix 11.3.3 of Ref. [48]),

Gy = exp {H(lz) Q} exp [ln }’o(lz)i(()k)} exp {7—(%)££)}
with

v, (k) = +tanh f(a. k), 70(K) = cosh™2f(a, k). (85)

Noting the fact that £* |A> =0 and Lo |A> 3]A), one
can find that,
AL A (F 1 2
681A) = ex [1. (LY exp | 7o) )
k)
~exp 14 (KLY 14). (36)

So we see that G, |A) ~ [[exp [y, (k)L Sr ]|A). Comparing
it with Eq. (82), we see that G,|A) = U}|A) if we take,
f(a. k) = arctanhe s/ (87)
In fact, besides the nonunitary operator U}, and unitary
operator Ga, there are infinite different operators which

can satisfy {J|A) ~|A). For example, let us introduce the
Casimir operator for su(1,1) Lie-algebra (83),

LOLY)]

Gy
t=

~

=

Koy

S JO Ak (88)

[c®, L] = 0.
h,(K)x", the oper-

One can easy check that [CW), L i_L)]

Then for any function h(k, x) = > %
ators,

0, =exp {/ dkd-te=mo/al M) 4 p(k, C‘(Z))]
0, =exp { / dk¥te ™l arctanhe ¥ (f,gf) - lA,(:))
+n(k 6:“?))} (89)

can satisfy the relationship 0|A) ~ O,|A) ~ |TFD).

B. Complexity between different TFD states

When we consider the complexity in TFD states, the
basic generators set given by Eq. (20) then should be
replaced by the two-copy of creation/annihilation operators
set,

0. AR AR ALY AL B

EO .= Lij{alz,- ,azi,alz_ Lag I]} (90)
The total generators set then is still given by Eq. (21).
In order to find the complexity for TFD states, in this
subsection, let us restrict the generators set into following
form,

E={LV .1V keRrd}. (91)

This generators set contains infinite different generators
which are commutative to each others. Similar to what
we have argued in the end of subsection III A, physical
intuition seems to imply that the complexity computed by
the generator set (91) is just the result even when we
recover the generator set into the general form given by
Eq. (21). However, the proof is still absent and out of the
goal of this paper. Let us restrict the generator set to be
Eq. (91) in this paper for TFD states. In the Appendix D, we
will use a bigger generator set which contains the Casimir

operators C*) to find the complexity and show the
complexity is just the same result given by generator set
(91). This seems to be evidence for this physical intuition.

Similar to the case in thermal entangle state, any operator

U € Uy has the relationship U ~ exp( [ dd‘lkl(z)L(l‘)) for

a function A(k) € C. We have to solve the restricted
extremum problem,
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with the constraint,

(AJNexp/dd"kﬂ(lz) <+)

- exp{ / -1k P A 1th,;(:)}. (93)

Solving this optimization problem, we can find that

] ok [kl s

C )LV | = ==
|:6Xp / ( ) + (2 )
Hence, we can find that,

C(|TFD), |A)) = C(UY)

— (22V)SL /dd—lke—ﬂw;/a
v/
2Vol

— (2ﬂ)d—l /dd_lke_wl?/QT) (95)

If we assume the quantum field theory has full conformal

symmetry, then we have dispersion relationship w; = |%|
This leads to following result,

2Vol
C(ITFD), |A)) - )3_1 / rmp—cY
T
28, T(d—1
_2aalld= ) d(_‘f ) yol. 71, (96)
T

Here S,_, is the area of (d — 2)-dimensional unit sphere. It
is surprising that the complexity density between the TFD
state and its zero temperature vacuum state is finite and
proportional to 7!, This is just the behavior of renor-
malized holographic complexity in Schwarzschild-AdS
black hole with planar symmetry [35]. In addition, the
result (96) seems to be against the expectations in
Refs. [20,31,36,38,49] that the complexity density about
a TFD state should be infinite. To clarify why the complex-
ity density between a TFD state and its corresponding
vacuum state should be finite, I will make some detailed
discu