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The D = 11 pure spinor formulation of the superparticle allows a simple realization of covariant
quantization, unlike the D = 11 Brink-Schwarz-like superparticle. We explicitly show the equivalence
between the cohomologies of these two models in the context of two different group decompositions:
SO(10,1) - SO(1,1) x SO(9) and SO(10,1) —» SO(3,1) x SO(7). We also carry out a light-cone
analysis of the pure spinor cohomology and show that it correctly reproduces the SO(9) equations of

motion for D = 11 linearized supergravity.
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I. INTRODUCTION

It is well known that the D = 10 Brink-Schwarz for-
mulation of the superparticle possesses first- and second-
class constraints which cannot be separated out in a
manifestly covariant way. If the physical spectrum is our
main concern, we can always go to the light-cone gauge
and follow Dirac’s prescription to show that the physical
spectrum consists of an SO(8) vector and spinor, which
satisfy the D = 10 linearized super-Yang-Mills (SYM)
equations of motion [1]. However, cone gauge breaks
the manifest covariance of the theory.

It is interesting and useful to look for covariant
descriptions which manifestly preserve as many sym-
metries as possible. One candidate that addresses this
point is the pure spinor version of the D = 10 Brink-
Schwarz superparticle, known as the D = 10 pure spinor
superparticle [2,3]. This description preserves supersym-
metry and Lorentz symmetry in a manifestly covariant
way. The spectrum is defined as the cohomology of the
Becchi-Rouet-Stora-Tyutin (BRST) operator defined by
Q = #d,, where }* is a D = 10 pure spinor and the d,
are the fermionic constraints of the D = 10 Brink-
Schwarz superparticle. There are two ways to see that
the pure spinor formulation indeed describes D = 10
linearized super-Yang-Mills. The first one is by looking
at the Q-cohomology of the D = 10 pure spinor super-
particle and realizing that the elements in this cohomology
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describe the Batalin-Vilkovisky (BV) version of D = 10
(Abelian) super-Yang-Mills [2]. The second one is by
showing that the cohomologies corresponding to the
D =10 Brink-Schwarz superparticle and the D = 10
pure spinor superparticle are identical [4].

As explained in Refs. [2-5], the D =10 SYM
physical fields are found in the ghost-number 1 vertex
operator V = #A,, after imposing on it the pure spinor
physical state condition. The light-cone analysis of
this cohomology reproduces the SO(8) superfield A,
satisfying the SYM equations of motion in D =8
superspace [6].

In D =11, the story is similar. The D = 11 Brink-
Schwarz-like superparticle [7] possesses first-class and
second-class constraints which do not allow a manifestly
covariant quantization of the theory. However, it is possible
to quantize the theory in the light-cone gauge, and it can be
shown that the spectrum is described by an SO(9) traceless
symmetric tensor, an SO(9) I'-traceless vector-spinor, and
an SO(9) 3-form which describe D = 11 linearized super-
gravity. As before, this theory is no longer manifestly
Lorentz covariant.

As in the D =10 case, Berkovits formulated the
so-called D =11 pure spinor superparticle [5]. The
physical states of this pure spinor version are defined
as elements in the cohomology of the BRST operator
0 = A*D,, where A% is a D = 11 pure spinor and D,
are the fermionic constraints of the D =11 Brink-
Schwarz-like superparticle. The elements of this
Q-cohomology describe the BV version of D =11
linearized supergravity [5]. Unlike the D =10
case, there is not explicit proof of the equivalence
between the cohomologies of the D =11 Brink-
Schwarz-like superparticle and the D = 11 pure spinor
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superparticle.1 In this work, we will demonstrate the
equivalence of these two cohomologies by using two
different group decompositions.”

As explained in Ref. [5], the D =11 supergravity
physical fields are found in the ghost-number 3 vertex
operator V = AaAﬁA‘SCaﬁ(;, after imposing the pure spinor
physical state condition. The light-cone analysis of this
cohomology will be described by the SO(9) superfields g,

i), and Cjy, which satisfy a set of equations of motion in
D =9 superspace that match the linearized supergravity
light-cone equations of motion [7].

The paper is organized as follows. In Sec. II, we review
the D = 11 Brink-Schwarz-like superparticle. In Sec. III,
we present the D = 11 pure spinor superparticle and show
the equivalence between the cohomologies of this theory
and the previous one by decomposing D = 11 objects into
their SO(1,1) x SO(9) and SO(3,1) x SO(7) compo-
nents. In Sec. IV, we study the light-cone pure spinor
cohomology and show that it is described by the usual
SO(9) irreducible representations that describe D = 11
supergravity and satisfy linearized equations of motion in
D =9 superspace.

II. REVIEW OF THE D =11
BRINK-SCHWARZ-LIKE SUPERPARTICLE

The D = 11 Brink-Schwarz-like superparticle is defined
by the action [5,7]

S = /dT(P’”Hm + eP™P,,), (1)

where I1,, = X,, —©%(T,,),,®/ and ®" is a Majorana
spinor. Let us now fix conventions. We will denote
SO(10, 1) vector indices by m, n, p, ..., and spinor indices
bya,p,... m=0,...,10and a =1, ...,32). The D = 11
gamma matrices [ are 32 x 32 symmetric matrices which
satisfy I, + FZ/,F'”W = 2™"8), and ’Imnrf'}x ﬁl“%’) =0.
In contrast to the D = 10 case, in D = 11, there exists an
antisymmetric metric tensor C,4 [and its inverse (C~')*],
which will allow us to lower (and raise) indices (for

instance ["% = C®I'}” etc). We also note that any D =
11 antisymmetric bispinor can be decomposed into a scalar,
3-form, and 4-form as fl# = C#f + (T,,,) " ™ +
(anpq)“ﬂ f""P4 and that any D = 11 symmetric bispinor

"There is a brief discussion of this point in Ref. [8], which
suggests following the same ideas developed in the D = 10
case. We will elaborate on the ideas mentioned there and give
another way to parametrize D = 11 pure spinors.

’In Refs. [9,10], I. Bandos relates these two models by using
the Lorentz harmonics approach. We will address the problem in
a different way, by focusing on the D = 11 light-cone Brink-
Schwarz-like superparticle.

can be written in terms of a 1-form, 2-form, and 5-form
as g(aﬁ) = F%ﬁgm + (an>a/}gmn + (Fm”pqr)aﬁgmnpqr'

The action (1) is invariant under reparametrizations,
supersymmetry (SUSY) transformations, and x transfor-
mations, which are defined by the following equations:

reparametrizations — dr’ = fi—jdr,
¢(¢) = 95 e(o)
SUSY transformations — 6@% = ¢7, SX™ = ®Ie,
OoP, =6e=0
k transformations — 60* = iP"(I",k)%,
oP,, =0,
SX™ = —BI'"s60’,
oe = 2i®ﬁK/,.

The conjugate momentum to % is

oL
—— = -T1e/P,. (2)

P, =
00*

Therefore, this system possesses constraints,
D,=P,+ F;”ﬁGﬁPm, (3)

and considering that {©%, Ps}p 5 = idj, we get the con-
straint algebra

{Da. Dy} = 2i(T") 4 Py (4)

where {-,-} denotes a Poisson bracket. One can show that
K% = P’”Fzﬁﬂ Dﬂ are the first-class constraints that generate
the k-symmetry. From (4), we realize that we have 16 first-
class constraints and 16 second-class constraints, and there
is no simple way to covariantly separate them out.
However, the physical spectrum can be easily found by
using the semi-light-cone gauge, which is defined by

Xt =—(X°+X%), t=—T"+1%) (5)

X =—(X"-X°, I =—(I°-T9. (6)

Sl Sl
Si-osl-

In these light-cone coordinates, one can use the « trans-
formation to choose a gauge where (I'"®),, = 0° With this
choice, we can rewrite the action as follows,

’An easy way to see this is to choose a frame where
P" = (P,0,...,P,0). The « transformation takes the form
00% = —iPﬂ“‘“ﬂKﬁ, and thus it follows immediately that
(rte@), =0.
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S = / dr [mem - %SASA +ePp, . (7)

where S, is an SO(9) Majorana spinor, which can be
written in terms of SO(9) component of @*. The conjugate
momentum to $* is

oL i
] S . 8
PA= 957 = T2 ®)
So, the constraints for this gauge-fixed system are
- i
Dy = pa +§SA~ 9)
Considering that {S4, pg} = —id45, We obtain
{DA’DB} = Oap- (10)

Hence, the constraint matrix is C45 = 845, and its corre-
sponding inverse is (C~')48 = §48. This allows us to
compute the following Dirac bracket:

{S4-Sp}p = {54 S5}p— Z{SAvDE}P(C DE{Dr.Sp}p

=0- Z 15AE

. (11)

15FB)

As is well known, the representation of the algebra (11)
defines the space of physical states. These states will be
denoted |1J), |BI), and |LMN), where we represent SO(9)
vector indices by I,J,K,L,..., and spinor indices by
A,B,C,D,.... These states correspond to an SO(9) trace-
less symmetric tensor, an SO(9) I'-traceless vector-spinor,
and an SO(9) 3-form, which, together, form the field

1
{84, Sp}H1T) :Z[Fécr he T ThelBcllIK) +

1
3 Thelfe + DTS ITK) +

content of D = 11 Supergravity. The action of the oper-
ators S, on the physical states is defined by

SallJ) =T g|BJ) + T |BI) (12)
1 1

S4|BI) = ngB |1T) + > — (TIEMN 1 65ILTMV) LMN)  (13)

Su|LMN) =TiM|BN) + TYY|BL) + % |BM). (14)

We can check that these definitions indeed reproduce the
desired algebra. Let us check the statement explicitly for
the graviton |1J):

SaSp|lT)= FBCSA|CJ)—|—F cSalCI)
1 1
I |tk JLMN
_FBC|:4FAC|JK> 72(F

1
+65/LTHY) |LMN>} +T%c [ZF§CIK>

1
+— (TEMN 4 65/LTAEY) ]LMN)} .

72
Analogously,
SpSall)) =T Sp|CT) + T4 -Sp|CI)
1 1
= F/[w L_‘FECUIQ 7 (F]LMN

1
+68/LTHY )|LMN>] + T [4F§C|1K>
1
+ 7 (THMN 4 65/LTHNY |LMN)] )

Thus, the anticommutator is

1
5 (b + T 4 T g

T THMNY 4 6(§7E DL TUN - §1T) PYMY 4 /LT, PUN 4 5101 TMN)]|[LMN)

1
= 1(251K5A3|]K> + 25JK5AB|IK>)

i
o5 VTR + ST 4 ST+ ST

+ 6(6'LTE MY + ST, TN + /LT (TMY + 15T THY)][ILMN).
Now, let us consider the symmetry properties of the SO(9) I'-matrices. The 1-form and 4-form are symmetric in their
spinor indices, and the 2-form and 3-form are antisymmetric in their spinor indices. Therefore,

{SAaSB}|IJ> :5AB|”>

1
13 (3" TRl + 8T TN 4 87/ T 4 6T T

MYILMN)

— S5)1J) _i_iz[(sJL(FIIBAXN 4 SIMEN]  TIMN | SNy | SIL(DIMN | s/MEN] 4 TN STMEN ) LM

— Supl1d) + iz [6/LSMTN — SILSINTM | GILGIMEN _ §IN /LM (15)
4 SILEIMEN _ GILSINDM o SILGIMEN _ SILSINTM] | LMN)

= S.p|17) + é [2FN|JIN> —2rM|gMI) + 2TV |IJN) — 2FM|IMJ>]

= Sapl1J) (16)
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as expected. One can similarly show that this algebra is
satisfied for the action of S, on the other two fields.
Therefore, the D = 11 superparticle spectrum describes the
physical degrees of freedom of D = 11 supergravity.

III. D=11 PURE SPINOR SUPERPARTICLE

As for the D = 10 case [4], we will obtain the D = 11
pure spinor superparticle from the gauge-fixed Brink-
Schwarz-like superparticle (7) by introducing a new set
of variables (®%, P,,) and a new symmetry coming from the
following first-class constraints,

D, :Da+7(rmr+s>apm7 (17)

V2Pt
where {S,,Sz} = 845 and D = P, +T7,0/P,. Using
the relation {@©% Py} =id7, one can show that

{Dg, Dy} = 2i(I"™) 5P,,. Let us check that these ones
are indeed first-class constraints:

{Da,Dﬁ} ={Dy.Dg} +—=— \f - (FmF+)aA(F"F+)ﬁAPmPn
2
= 2i(I"™) P, — f: s P, P,

= 2i(I") 4P,y — j (D04 T") Py Py (18)

Since "I = -t + 2™+, we obtain

. , i
{Da Dy} = 2i(T") Py = 5 (207" Tig) P Py
+ p2
+ Fraﬁp
— Fr;ﬁpz (19)

Thus, the modified Brink-Schwarz-like action will be

S = / dr <X’"Pm - %SASA +eP"P, +O"P, + f“f)a),

(20)
where we have added the usual kinetic term for the
variables (®%, P,) and the last term takes into account
the new constraint through the fermionic Lagrange multi-

plier /. The standard BRST method gives us the following
gauge-fixed action,

1
S:/dT<X P, —fSASA—fP’”P +OP, +éb+ A W(,>

(21)

and the BRST operator

Q = A*D, + cP"P,, — (AF*A)b (22)

2P+

once we choose the gauge e = _i and f* = 0. The ghosts

¢ and A" come from gauge fixing the reparametrization
symmetry and the new fermionic symmetry, respectively.
Now, we will show that the cohomology of the BRST

operator 0 is equivalent to the cohomology of a BRST
operator Q = A*D,, where A” is a pure spinor. We will
show this claim in two steps. First, we show that the
Q-cohomology is equivalent to Q’-cohomology, where
Q' = A®D, and ATtA’ = 0. Finally, we will prove that
the Q’-cohomology is equivalent to the Q-cohomology.

Let us start by defining the operator O, = Agf)a. Notice
that when A§ is equal to A% or A%, Q, becomes the first
term of Q or Q', respectively. Now, let V be a state such that
0oV = (A" Ag)W, for some W. Because of the property
that A* satisfies, V is annihilated by Q'. Also, using (19),
we find that (QO) = 557 P"P,,(AoI""Ay). So, we con-
clude that QoW = 55+ P"P,,V. We can then show that the
state V =V —2iP*cW is annihilated by 0,

QV =0Q(V=2iPtcW)
= QV = 2iP*(Qc)W 4 2iP*c(QW)

= (ATYA)W + cP™P,V —2iP* < 2P+> (ATTA)W

2iPte PP,V

T <2P+> m

= (AT*A)W + cP™P,,V — (AT*A)W — cP™P,,V
=0, (23)

where we have assumed that b annihilates physical states.
Now, let us show that if a state V is BRST trivial (in the Q’-

cohomology) we can find a state V = V — 2iP*¢W which

is also BRST trivial (in the Q—cohomology). Let V be a
state which satisfies V = QyQ + (Aol Ag)Y, for some Y.
It is clear that if Aj = A" we have that V is Q' exact and if

A§ = A% we have that the first term of Q is equal to
V — (AT*A)Y. So, we see that
Q(Q +2iP*cY) = QQ +2iP*(Qc)Y = 2iPtc(QY)

=V — (ATTA)Y + cP"P,,

+2iP* (— 2}%) (AT*A)Y

i
—2iPte(W———P"P,Q), (24
i c< SpT m) (24)
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where we used the fact that b annihilates Q as well as the
result QpY = W — 5pr P"P,,, which follows from the
definition of V. Hence, we obtain

Q(Q +2iPtcY) =V — (ATTA)Y + cP"P,Q
+ (AT*A)Y = 2iP*cW — cP"P,,Q
=V =2iPtcW
=V. (25)

Therefore, we have proven that for each state V in the
Q'-cohomology we can find a state V in the Q-cohomol-
ogy. If we reverse the arguments given above, we can show
that any state in the Q-cohomology corresponds to a state in
the Q’-cohomology.

The last step is to show that the Q’-cohomology is
equivalent to the Q-cohomology. We will do this by using
two different approaches.

A. Group decomposition SO(9) — SU(2) x SU(4)

The SO(10, 1) spinors A* and D, can be expressed in
terms of their SO(8) components in the following way,

where a,a =1, ...,8. The constraint A'TTA’ =0 can be
written in terms of these SO(8) components as follows:

/1/1'1/1/21 4 /”va;va =0. (27)

The particular representation for SO(10, 1) I'-matrices used
in this section is studied in detail in Appendix A. Now, we
find it useful to break SO(9) into SU(2) x SU(4). The
branching rule for the spinor representation is
16 — (2,4) + (2,4). Explicit expressions for the SU(2) x
SU(4) components corresponding to ¢, §¢, d, d®, e and
' are given below, Eq. (28). There, the SO(9) spinor S,
has been expressed in terms of its SO(8) components S,
S and A,A = 1, ...,4. It should be clear in (28) that fields
in the same representation of SU(4) (4 or 4) form SU(2)

doublets. So, for instance, <ii*" transforms under

dj
A -
(2,4), < bl ) transforms under (2, 4), etc. Notice that the
representat10ns 4 and 4 are defined by the null spinor
(TTA’)* by using the fact that one can always choose an

Na de SU(4) subgroup under which this spinor is invariant.
ya pr Therefore, we define the antifundamental representation
N = wa | D, = e | (26)  (4) in such a way that (I'V) i (THA )4 =0, where
o ) J=1,...,9, T is an SU(2) vector index and A is an
A —d* SO(9) spinor index,
|
1 2a 2a—1 2a 2a—1 / 1 12a 12a—1
1 4 1
S — 7§(S2a i82a 1) d= = %(aﬁa id2a—1) /11/2 \/_5(2/2(1 _ il/Za—l)
~ 1 ~ 1 ~
S, = 7§(S2a+152a 1) d. = T(dZa_'_leu l) }1 ﬁ(/?'IZa_’_M’/Za 1)
- 1 . ~ 1 ~ ~ 1 ~n
S: = 75(5251 is2a 1) d- = ﬁ(dZa _ l-d2u—l) 1/; 75(/1/211 _ iﬂ/Zu—l)' (28)
After performing the following shifts where K = — 2\/@‘ This result can be expanded by using
/ V2 2 29) the Baker-Campbell-Hausdorff (BCH) formula
Si—Si— <—> A
2V Pt
. . VV?2 Zy, 7 _ 1
- A+<ﬁ>d/a (30) eIXe? =X+ [X.Z)+5[X. 2.2+ s (32)

the operator Q' will change by the similarity transformation

Ql N e—[K(S;\dA—SAd

1 Qf elK (5343534 (31)

where X = Q' = A®D, and Z = K(SKZZ’A - S’;‘dﬁ). The
first term is just Q’, which can be cast as
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0 = A“D, + (NT"T+S)P,,

1
e
= lydy + Ardy + i = Lyd, — 2y = Aydy + \J2V2PTILS; + 1\ 2V2PYIS;

~ ~ ~ ~ \/§ . el ~ a el ~
+\/2V2PFIES; +\/2V2P TS5 + \[ 5 (6)aaS5P: = 14(0") 3,55 P

V2 -
+ F%Sﬁ + 25 83]P. (33)

To find the second term in (32), it is necessary to compute the SU(4) (anti)commutation relations, which can be obtained
from the SO(8) relations:

{a*.d"} = -2v/25°P*,  {d%.d"} = 26" P!
{a*.d"} = -2V25°PP*,  {d%.d"} =28°P PV
{a°.d"} = -2v26'P~,  {d*.d"} =2(c)" P!
{d%,d") = —2v/25°PP=,  {d% d"} = —2(c')P. (34)
Using these, together with (28), leads us to the SU(4) relations displayed below, Eq. (35):
(SiSit=ma {dadi} =20uP",  {dadz} = 2(6") 3P
(805 =myz Adandz} =26,3P",  {ds.di} =2(c") ;P
{dy.dy} = =2V2n, P, {d,.d;} =25,4P".  {d,.d;
{dj.d5} = =2V2n,3PF, {dedi} =26,P",  {dydz} = =2(c'), 3P (35)

Hence, we get

- e e V2.
KIQ' 83d; - $3d3] = =\ 2V2P 258 = \J2V2P 0385 — dy + Dy — || 54 Si P!

V2, Vs Vo i
- P—+/1%S;‘P“ - F’W(d)aixs,ip? + Fﬁ' (6') 4,54 P;- (36)
From this expression, it is easy to see that
Q. 7],Z] =0, (37)

and so the third term and all of the other ones in (32) (which were represented by ...) vanish.
Therefore, we have arrived at the following result,

Q' — Nydy + Xydy = Ayd, = 2ydy + \[2V2PHILS, + \[2V2P VLS, (38)

where A% and A satisfy the relation A%4% + 1“2’ = 0. If we define a spinor, A% = [AA,/IE,AQ,L,ZA,ZE] =
[ﬁ%, 0, /1;,;1;,;1%, 0], the previous expression can be written as

Q' = A"Dy +\/2V2PHILS; 4+ \/2V2P IS5, (39)

Furthermore, after using the quartet argument [11], it is clear that the Q’-cohomology is equivalent to the Q-cohomology,4
0 - Q=AD,, (40)

where A% is a pure spinor.

“That is, the states in the Hilbert space will be independent of A, S5, 7=, and S; and their respective conjugate momentaw’;, Sz, W', , and S
A T4 A APa A A
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B. Group decomposition SO(9) - U(1) x SO(7)
We will express SO(10, 1) spinors in terms of their SO(3,1) x SO(7) components,
+40
W (7
2= ( i ) (41)

X

where i = 1, ..., 7. The notation + and the representation of the SO(10, 1) gamma matrices used here are explained in detail
in Appendix B. Using this notation, we can express the (anti)commutation relations studied above in the SO(3, 1) x SO(7)
language

{D__O,D_+0} — 2\/§P+, {D__O,D+_O} — 2\/§P2+3i, {D__i, D++0} — _)pi
{D~—i D"} = —2V2P*s, {D~—i Dt} = —2\/2P2+3igii. {Dt+ D=0} = 2p
{D++O,D+_O} — 2\/§P—7 {D++O’ D—+0} — 2\/§P2—3i7 {D—+i’ D+—0} —opi
{D++i’ D+—j} _ —2\/§P_5i~f, {D++i, D—+j} — _2\/§P2—3i5ij’ {D+_i,D_+O} — _)pi (42)
and also
{S__O, S—+O} J—
{S“'i, S'H} =6, (43)

and any other anticommutator vanishes. Under a certain subgroup U(1) x SO(7) € SO(9), the null spinor (I'" A’)* will be
invariant up to rescaling. This subgroup is chosen in such a way that (T>") _) ,(TTA")* = (IV) g, (Tt A')* = 0, where
we have dropped out the minus sign associated to the first U(1) charge, and j =1,...,7

The BRST operator Q' can be expressed in terms of SO(3, 1) x SO(7) variables:

1 . ) . . ) )
Q/ — A,O’Da + W [_ (A/F—F+S)P+ =+ (A/F2—311—*+S)P2+3z + (A/F2+31F+S)P2—31 + (A/F/F+S)Pj}
— A/aDa _ 2y 5i (A/+—Os—+0 — A/Tig—ti 4 A/FTT0g——0 _ A/++i5——i)
VV2

+1 2\/_(/\ +0g- +0)P2+%' -1/ 2\/7(/\——]5——])].)2 3i _ g(A__jS_+O)P]
- \/g(/\—“’s P (44)

After performing the following shifts,

Wi

S0 5§50 i (45)
S~H 5§ — —\/E D=t (46)
2P
the BRST operator will change by
0 — e720Q'¢%, (47)

where Z = NC(S +Op=—0 — §==iD=*1), The BCH formula (32) gives us the result
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1
0= 0'+[0. 7 +5 0.2 2]+ -
— —A/FT+0p—0 +A/++iD——i +A/——OD++0 — AN——ipt+i _ A/0p—+0 +A/+—iD—+i

+ A-FTOpD+=0 _ Ar=+ip+=i _ 2VPT (A/+—Os—+0 — AN/ HFig——i + A/FTT0g——0 _ A/+—is—+i)
V2
2V2, o . V2, o
+ F(A +OS +0)P2+3 _ F(A is /)PZ 3
V2 . , V2 V2
— [ ZE(AISTHO)PI = [ LE(AH05— P 4 L [0\ 2NH0S- 0Pt
FOAig—HOpi 2\/§A/—+Os—+OP2+3i _ 2\/§P+A/++i5——i + 2\/§P2—3iA/——iS——i

+ 2A"+OS__iPi] + A/++0D——0 — At-ip—ti 4+ (48)

where the ellipsis represents 5; [[Q", Z]. Z] + 4 [[[Q'. Z], Z], Z] + - - -. However, these terms vanish because [[Q'. Z], Z] = 0,
as can be seen from Eq. (42). Thus, we are left with

Ql S AT p—i +A/——0D++0 —A——ipttHi _ AH-0p—+0 +A/—+OD+—0 —AHDTE /2\/§P+ (A/++Os——0 —A/+_iS_+i).
(49)
If we define a spinor A®=[ATT0,ATH A=0 A= A0 AT A=F0 A=F]=[0,AFH A'=70, A== AF70,0, A0, A/=H)

where A'TTA’ = 0, the resulting BRST operator can be written as
|

/ o which coincide with those found in Ref. [7]. To see this, let
a _ + +4+0 q—+0 _ A/+—iQ——i ’
Q' — A*D, 2v2P (A0S NS (50) us write Q in SO(9) notation (see Appendix A),

From this last expression, we can conclude that the space of
physical states will not depend on the canonical variables
§=0, 871, A'**0, and A"~ and their respective conjugate
momenta S~°, S~*, W=, and W'+, Therefore, the  and define the operator
BRST operator takes the simple form

Q - AADA + /_\ADA, (53)

P'N,;
Ql - Q - AaD(n (51) R = \/§P+ ? (54)

where A% is a D = 11 pure spinor. In this way, we have
shown that the modified Brink-Schwarz-like superparticle
action (21) is equivalent to the theory described by the

where 1 =1,...,8,11 and N’ = AT, ,WB. The corre-
sponding similarity transformation generated by this oper-

manifestly Lorentz covariant action ator 1s
. 1 : . Q = e RQeR
S = / dr (X'”Pm - EPum + O%P, + A“Wa> (52) I
=0+ (0. +50.R].R| +
and the BRST operator Q = A“D,,, where AT A = 0. This o i _
theory is the D = 11 pure spinor superparticle. = ADy+ ADy + V2P+ P/(A*T}zD")
IV. LIGHT-CONE ANALYSIS OF THE PURE = A D, + P,('D),| + A‘D,
SPINOR COHOMOLOGY 2P
In this section, it will be shown that the pure spinor = NGy + A'Dy, (55)

physical condition implies light-cone equations of motion
for D = 11 linearized supergravity in D = 9 superspace, where G, is defined by the relation
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Gy=D,+—=—P,(I'D),

fP+

P?(ng?D) PllDA’ (56)

+ -
ﬁP* f Pt

where 7 is an SO(8) vector index. This object can be written
in the compact form

1
—— P T,,D
Ga = 55 P (T, D), (57)

It will be useful to keep in mind the following SO(9)
relations which can be deduced from (3) and (4),

{Dj, Dy} = =2V28,3P~
{Dy, Dy} = —2V26,5PF
{Ds. Dy} = 2((1r) asP; — Sa5P11]
{Da. D} = 2[~(rr')asP; = 6a5P11). (58)
where D, and D, are given by
Dy =Py +V2i0,P~ —i(y°7'0),P; + i0,Py;  (59)
Dy = Py +V2i0,P" +i(y°/'©),P; +iO4P,;  (60)
or in a more compact form
D, = P, +V2i®,P +T%,08P, (61)
Dy = Py +V2i0,P" + T ,08P,, (62)
where FQB = (_i(Vg}’;)AB, iB4p), F%B = (i(}’g}’z)AB’ iB4p)-
Using Eqgs. (57) and (58), one can show that
{Ga.Dp} =0 (63)

\/E(P Pm)éAB (64)

{G4, G} =
Notice that the nilpotency of Q no longer requires the
validity of the SO(9) pure spinor constraint AT, ,AZ = 0
as can be seen from (63). A further similarity trans-
formation induced by the operator,

R= \[P+ (0T, ,PP)P,, (65)

will transform the operators D,, G, into
Dy = Py +V2i07P* (66)
Gy = Pa- f+mmm. (67)

Hence, the pure spinor BRST operator will take the form

é - AAGA + /_\ADA. (68)

The supersymmetry invariance of this operator follows

from the supersymmetry invariance of G, and D, under the
operators

éA — pA - \/El@APJr (69)
i a
QA—PA+\/_ +( um)(’DA—WPIFQDQDv (70)

which are the R-transformed versions of the supersym-
metry generators

Qu = Py —V2iP 0, +i(y°7'0),P; — i®,P,, (71)

Qu =P, —V2iP*0, — (°/'0),P; — i0,P,.  (72)
A. Light-cone equations of motion

The physical fields are contained in the ghost-number 3
superfield V = A“AﬁA"Caﬂa [5]. This superfield can be
written in SO(9) notation as
V= MAPACC a0y + SMAPACCay )iy

+3NATACC )y (r) + MAPACCp) ) )
(73)

where the signs =+ come from the splitting
SO(10,1) - SO(1,1) x SO(9). The use of the gauge

transformation 6V = QQ, with Q being an arbitrary
ghost-number 2 superfield, allows us to cancel out the last
three terms in (73),

0Q = MABACG,Q( py(sc) + 2AAEACGLQ gy
+ AA/_\B/_\CGAQ(_B)(_Q -+ /_\AABACBAQ(+B)<+C)
+ 2/_\A[_\BAC5AQ(_B)(+C) + /_\A/_\B/_\CéAQ(_BX_C) N

after  conveniently choosing  Q_p)_c), Q)-0)
Q( +B)(+C)- Therefore, we are left with
V - AAABACCABc, (74)

where we have dropped the SO(1,1) index for conven-

ience. The Q-closedness condition for V implies the
following equations for Cgcp,

DyCpcp = (FJ)A(BCMCD) + O(BcX DA (75)

+ (1) 4 Clukicp)
+ (T7%) s 8ClukLicD) (76)

GuCpep = S(aBScp)
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where ypa, écps Cieps Cikeps and Cygrep are SO(9)
p-form bispinors. Each of these possesses a certain
symmetry determined by (75) and (76). To find the physical
spectrum and the corresponding equations of motion, we
should solve these equations subject to the constraints

{Dy. Dy} = —2V2P "5, (77)

(GGl =L e o (8)

A way to solve this constrained system of equations is the
following. Let us choose the only nonzero component of
the spinor A* to be A*Y. This choice will imply
A~" = A*0 =0, where i is the usual SO(7) vector index.

With these constraints, the only D, that act nontrivially on

C(40)(+0)(+0) are D_; and D . Therefore, we will have 2°
states in C(1g)(+0)(+0): 128 bosonic and 128 fermionic
states. The other components of C,pc can be shown to be
related 0 Cligy40)+0) by SO(9) rotations (see
Appendix C) given by the operator

1
8v2P "

which satisfies the algebra

RV = (DI’ D) (79)

[RIJ, RKL] — ?’]IKRJL _ ﬂJKRIL _ ﬂILRJK + ’,]JLRIK‘ (80)

The 128 fermionic states can be adequately represented by
the lowest order term in fp,

Cpep = (FJ>(BC]~C|J\D)’ (81)

where f,p is T traceless. The 128 bosonic states can be
accommodated in the SO(9) traceless symmetric tensor g;x
and the 3-form HMN . Therefore, we can write

Ciep = a(U%)epgsx + b(Cokrm) cpH™M. (82)
After replacing (81) and (82) in (75), one obtains
F{BCDM} J|D) = a(FK)A(B (FJ)CD)gJK

+ b(T)) as (T M) epy Hg

2b
+ ?5(BC(FKLM)D)AHKLM- (83)

Next, we use the SO(9) Fierz identities
Spc(TKEM) o = 3(TH) o (TEM) 1y 4
+ () (e (T M) p)a (84)
(BC(FJ)D)A = _(Fl)(BC(FJKLM)D)m (85)

which can be found by using the Mathematica package
GAMMA [12], to obtain

(FJKLM)

IYBCDIAJNCJ\D) = a(rj>(BC(rK)D)AgJK
+ 2b(rj)(BC(FLM)D)AHJLM

b
-3 (T e (™M) p aHi s (86)

which implies

DA}JD = a(rK>ADgJK - 2b<FLM)ADHJLM

b
3 (CrxLa) apH M, (87)

where the constants a and b will be determined from

supersymmetry. To do this, we should know how D 4 acts
on g;x and Hgy . An educated guess based on linearity
and symmetry properties is

f)Ang = _2\/§P+[(FJ)AE]KE + (Tk)aef 1E] (88)

-3

DyHMM = 2V 2PF(TKE) o FY — (DFM) 1
+ () 4 FE], (39)

where the factor —2v/2P+ was chosen for convenience.
These equations of motion should satisfy the supersym-
metry algebra (77). This requirement fixes the values of a
and b to be a =} and b = ;. Therefore, the whole set of
light-cone equations of motion is

BAQJK = =2V2P (T apfxe + (Tk)arfiE] (90)

A - 1 1
Dafp = 1 (T&) apgsx + %) [(CykLm)ap

+ 6 (D), p | HEEM ©n

2

D HKM — —2\/§P+[(FKL)AEJ~C%I — (TKM) e f%
+ (FLM)AEJCIE(]' 92)

These expressions are the same equations of motion
obtained for D =11 linearized supergravity from the
light-cone D = 11 Brink-Schwarz-like superparticle [7].

The mass-shell condition can be obtained from (78) after
using the tracelessness condition for Cgcp, which is
necessary to have a nontrivial vertex operator V. This
condition gives rise to the equation

GaCrep + GpCucp + GcCapp + GpCape = 0, (93)

which has a solution only if G,Cpcp = 0. This result,
together with (78), implies that k"k,, = 0, where k™ is the
momentum. Consequently, Cpzcp depends only on O,

Cscp = Cpep(®). To obtain the pure spinor vertex oper-
ator in the Q-cohomology, one just performs the similarity

transformation generated by —(R + R). The result is
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V = V(0)eX, (94)

where 6" = & Op(I'")ABk,.

f I
V. REMARKS

The equivalence of cohomologies for the D = 11 Brink-
Schwarz-like superparticle and the D = 11 pure spinor
superparticle is strong evidence that the two models
describe the same physical theory. Our method to demon-
strate the equivalence uses ideas that were applied pre-
viously to the D = 10 case [e.g., the group decomposition
SO(10,1) - SO(1,1) x SO(9)] and introduces a para-
metrization of D = 11 objects [the group decomposition
SO(10,1) - SO(3,1) x SO(7)], which was useful for
analyzing the light-cone pure spinor cohomology.

The equations of motion in D = 9 superspace found in
this paper, by studying the light-cone pure spinor coho-
mology, match the light-cone equations of motion pre-
sented in Ref. [7]. We conclude that the D = 11 pure spinor
superparticle is a good model to study D = 11 linearized
supergravity in a manifestly covariant way.
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APPENDIX A: T-MATRICES OF S0(10.1)

We will denote SO(10, 1) vector indices by m, n, ... and
SO(9,1) vector indices by 7,7, .... In addition, we will
denote SO(10, 1) spinor indices by a,f, ... and SO(9, 1)
spinorindicesby u, v, .... As usual, we add a new matrix, "',
to the set of SO(9,1) gamma matrices {I""}, which is

numerically equal to the chirality matrix ™" in D = (9, 1):
o =ron = (116“6 0 > (A1)
0 —liexis

This matrix satisfies the properties {I"",T"'°} =0, for
m=0,...,9,and (I''?)? = 1. The chirality matrix 'in D =
(10, 1) is given by

=1 .11 = rohrio = (ri0y? = 1,

which reflects the fact that we do not have Weyl (anti-Weyl)
spinors in this case. However, we can have Majorana spinors.
It is easy to see that C = I'” satisfies the definition of the
charge conjugation matrix’ CI" = —(I")’C. For two
Majorana spinors ® and ¥, we have OI""¥ = O CT""¥.
This result can be viewed in terms of SO(9, 1) components,

(A2)

*We know that for D = (9,1), COD =T0 is the charge
conjugation matrix, so we just need to show that C = I'’ obeys
CT!% = —(T'%TC, which is trivial since T''? is symmetric and
{10, 19} = 0.

- Vi 0
ercr"yY = (e* 0,) ) (P ¥,),
0 —(mm

(A3)

0 -1

OTCTIOY = (©* @,,)(_1 .

Jer ) o

where m =0,...,9 and yJ¢, and (y™)* are the SO(9.1)
y-matrices. It is useful to mention that the index structure of
the charge conjugation matrix is C,g. So, the I'-matrices have
index structure (I"")%;, and when they are multiplied by the
charge conjugation matrix (or its inverse), we obtain the
corresponding matrices (I"™),,; and (I")*.

Next, we will show explicitly the form of the gamma
matrices. For D = (9, 1), we have

Igxg O —lgs O >
0\ap 0 —
) (0 18><8>’ ey < 0 —lgs

l8><8 0 18><8 0 >
9\ap _ 9y _
) (0 —18Xg>’ s (0 g
3 0 Giza 3 0 O'Em
o= ),<mw—< “)

.. 0

= ()

V2xs 0)
(A () s

0 O
0
where each entry is an 8 x 8 matrix and 7 is a SO(8) vector
index. The matrices y= are defined by

1
F=00 ).

T2

The o'-matrices are defined by

0= €®eRe c,=7®e®1
l,=1®17 ®c¢ b, =e®@1®7!
2, =17 ®e¢ ol,=e®1®17
.= ®e®1 &, =10111,

72, and 7° are the usual Pauli
(o!,)7) and satisfy

where ¢ = i and 7',
; i o (pl —
matrices. The o%,, are symmetric (¢%,, =

the following relations:
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UZaO‘(/zb

+ ol 0, =28108,

aa~ a

Similarly, for D = (10, 1), we have

A_ _iB 5 i
wipr= (770 = (T
0

0 iVixB

=4 5) ()

()" = <_\0@ 8) ’ :
° {o-va)
0 O

()7 — <0 —ﬁi) _\/Z.O |
o (V)

0 0

Jiaag;‘) + Géaaib = Zé;jéab

(] PR S
CipOae + 0aqOhe = 264504 -

)
_i},?AB

(o) ©
e o)
—V2i 0
(M) = (O °> ; 00 , (A6)
¢ (0 —\/§i>

where A and B are SO(9) spinor indices. Notice that each I'-matrix is 32 x 32.

To construct the above representation of the I'-matrices,
we used a basis convenient for dealing with SO(8) objects.
Hence, an arbitrary D = 11 spinor y* is written in this basis
as

NN

(A7)

.NI

Z{l

This was the convention used in (26). This is useful when
SO(8) objects are needed, as in Sec. III. However, when
analyzing the light-cone structure of the pure spinor
cohomology and vertex operators, we need to deal with
SO(9) objects. So, we define the following change of basis
matrix,

My, =

S = O O
oS o = O
S O O =
- O O O

where each entry represents an 8 x 8 matrix. Using this
matrix, we find the corresponding I'-matrices in this new
basis,

= { o, o)

o I o 1
o) ()
AB
0 0 —/2i
(T = < > (F+)aﬁ = < Va2i O>
0 —V2i 0 0

(F_)aﬁ:<_\0@ g)’ (F_)"”:<g —021')’

(A9)
where 145 is the SO(9) identity matrix, A and B are SO(9)
spinor indices, and i=1,....8. Each entry in the above

matrices is 16 x 16.

APPENDIX B: S0(10.1) — SO(3.1) x SO(7)

Here, we will explain the + notation and construct
explicitly a different representation for the SO(10, 1) gamma
matrices. Let us define the raising and lowering I'-matrices:

FiO—H — (:tr0+r1) (Bl)

N =

253 = — (T2 +i13). (B2)

N[ =

066002-12



EQUIVALENCE OF THE 11D PURE SPINOR AND BRINK- ... PHYS. REV. D 97, 066002 (2018)

These I'*-matrices act on an arbitrary spinor y as follows:

= 4a) =|++a), T --a)=~|=+a),  T|++0)=]|++))
[ = —a) = |+-a). Tt —a)=|++a).  Dl++j)=[++0)
Ot ta) = | =+a), DV =ta)=—|-+a),  T/|=+0) =~ +))
I+ —a) = ==a), ¥+ +4a) =|+-a), T|=+j)=-|-+0)
U==0)=[==j).  Tl==j)=1=--0)  T|+-0)=-[+-)
U+ =j) = =+ =0), (B3)

and any other relation vanishes. In these formulas, we have made the identification | + +a) = y* witha = 0, i. Itis clear that
these relations are consistent with the SO(10, 1) Clifford algebra. With these rules, one can construct the respective
representation

(FOJrl)aﬂ — , (F—0+l)oz/j — (B4)

o o O O
S = O O
o o o O
S O O =
- o O O
o o o O
S o = O
o o o O

Here and throughout this Appendix, each entry will represent an 8 x 8 matrix unless otherwise stated. Now, it is easy to
calculate the explicit form of the matrices (FO)"/, and (I')%:

0 0 0 1 00 0 1
0 0 -1 0 00 1 0
FO”: , Fl(z: B5
(% 0 1 0 0 ()% 01 00 (B5)
-1 0 0 0 1 000
Similarly, we find
0010 000 0 0010 00 —i 0
0000 000 —1 00 0 -1 00 0 —i
I—*2+3i a 1’*2—31‘ a 1—‘2 a 1—‘3 a . B6
()”0000()” 100 ()% 1000()/’ i 00 0 (B6)
0-100 000 0-10 0 0i 0 0

However, as already mentioned, there exists an antisymmetric metric tensor C,zin D = 11 dimensions which raises and lowers
indices. Let us define it as follows,

0 -B 0 0 0 B 0 O
B 0 0 O -B 0 0 O
C,y = , (CHYY = , (B7)
0 0 0 -B 0 0 0 B
0 0 B O 0 0 -B O
where B is a diagonal matrix with elements By, = 1, B;; = —1. To preserve the original Clifford algebra, we need to multiply
the matrices ()% by i. Now, we can find the matrices (I'""),, (Tm)ab:
0 0 —-iB O 0 0 0 O
0O 0 0 O 0 0 0 iB
=1 S (BS)
-iB 0 0 O 0 0 0 O
0O 0 0 O 0 iB 0 O
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and so

0 0 B O 0 0 —-iB O
0 0 iB 0 0 O B
Fg/}: J Féﬁ: (B9)
iB 0 0 O -iB 0 0 ,0
0 iB 0 O 0 B O 0
By using (I'")% = C®CP/(T"™);,, we find the matrices % and I''%:
0 B 0 0 0 B O 0 -B 0 O 0 0 B O
B 0 0 O 0 0 0 iB B 0 0 O 0O 0 0 i
o — . - (B10)
0O 0 O B iB 0 0 O 0O 0 0 -B iB 0 O
0 0 -B O 0 iB 0 O 0 0 B O 0 iB 0 O
and
0 0 B O
0 0 0 -iB
e = . (B11)
iB 0 0 0
0 —-iB O 0
Analogously, we can find the remaining matrices
00 0O 0 00 iB
. 0 0 iBO . 0 00O
<F2+3l)(1/)’ = ’ (FZ_BZ)(I[)’ =
0iB 0O 0 00O
00 0O iB 0O O
0 0 0 iB 0 00 -B
0 0 iB O 0 0B O
(Fz)aﬁ = . ’ (F3)a/3 =
0 B O O 0 BO O
iB 0 0 O -B 00 O
0O 0 0 -iB 0 00 -B
0 0 —-iB O 0 0B O
(I‘Q)a/)’ _ l 7 (F3)ap‘ _
0 —-iB 0 O 0 BO O
-iB 0 0 O -B 00 O
0 —-iBA O 0 0 iBA O 0
. iBA 0 0 0 . —iBA 0 O 0
(M) ap = | @)= N (B12)
0 0 0 iBA 0 0 O —iBA
0 0 —iBA O 0 0 iBA O

where A is an 8 x 8 matrix with nonvanishing elements Ay; = A, = 1. All these matrices are symmetric and satisfy the desired
property: I“(’I”ﬂlﬂ”/”1 + Ph—= 2.
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Finally, the product of two spinors y%p, will be defined
as follows:

)((1 (l/}p/} — _)(++OP__0 +)(++ip——i +)(——0p++0
it 0,0 iyt
00 by

APPENDIX C: OCTONIONS AND
SO(7) ROTATIONS

In this Appendix, we will show that any component of
Cpep can be obtained from C(g)(10)+0) by SO(9) rota-
tions. These rotations are defined by the operator

1 N

RY = ———DI"Dp, (C1)
8v2P*
which satisfy the algebra
[RV,RKL) = yIKRIL — y/KRIL — yILRIK 4 WJLRIK  (C2)

Therefore, we can use this operator to rotate the ground
state C(10)(+0)(+0)- To do this, let us first write the trans-

formation rule for a general Cyp being acted on by R':

1 1
RHC — FIJ EC + FIJ EC
BCD \/E ( )B ECD \/z ( )C BED
1
+— (T, ECpck. C3
\/z ( )D BCE ( )

As explained above, only ﬁ_i and 5+0 will act nontrivially
on C,¢)(+0)(+0)- Thus, we have

(TY) (42)(=0) D=k D 1+0C (+0)(+0)(+0) &% (T) (0)FC(10)(+0)-
(C4)

To solve this equation, we recall the notion of octon-
ions [13].

The octonion mutiplication table can be written in the
form

eje; = _5ij + €ijkChks (CS)
which is equivalent to
eiej' = 51] - ieijkek, <C6)

where ¢, is a totally antisymmetric tensor with value +1
when (ijk) = (123), (145), (176), (246), (257), (347),

TABLE 1. States produced by the rotation operator R'/.

States produced States produced

Initial state by R/ by R¥
C(10)(+0)(+0) C40)(+0)(+0) Cli)(+0)(+0)
C40)(+0)(+0) Clar)(+0)(+0) Ce0)(+0)(+0)s Crn)(=j)(+0)
Clany(+(+0) Clny(+(+r) Clt)(=0)(+0) Clahy(+1(-r)
C-0)(+0)(+0) e C-0)(-k)(+0)

Cl41) (k) (+0) Clej)=r)(+0) Clai)(=r)(=k)
Clan+r+n T Cl0)(+n(+r)
Clir)(-0)(+0) C0)(-0)(+0)> Clr)(=0)(-r)
Cl-0)(-0)(+0) C—0)(~k)(-r)
Clt(-n(+0) Clet(-n ()
Cl0)(+n(+r) Cl-0)(-0)(+n)
Cl-0)(-0)(+0) C0)(=0)(-r)
Cl0)-0)+n C0)(-0)(-0)

(365). Now, we can identify these octonions as the gamma
matrices of the SO(7) Clifford algebra:

Y = 51 — jelikT*, (C7)

This equation can be thought of as the seven-dimensional
generalization of the three-dimensional case

Tit) = 8 + jelikk,

(C8)

where 7' are the ordinary Pauli matrices.
Coming back to Eq. (C4) and applying the octonion
identity, we obtain

(T9) (41)(=0) D=k D10C (10)+0)+0) & (TY) (40 F CE(10)(+0)
€ D_D +0C (10)(+0)(+0) % €7 C (1) (10)(+0)-
(C9)

Therefore, we have obtained the state C(i)(40)(+0)- BY
acting with R™* on C(+40)(+0)(+0)» We obtain the state

C—i)(+0)(+0)"

]

(T iy iy D=iD-;C s 0y0) < (T75) (0)F o))

-3

e"D_;D_;C(10)(+0)(+0) & 8 Clp)(10)(+0)-
(C10)

In this way, one can obtain all states contained in Cypc.
The Table I shows explicitly how this is done. For brevity,
we include only one way to obtain each state. The centered
points (- - -) means that all states corresponding to an initial
state have been already obtained from other initial states.
Finally, since C4p¢ is completely symmetric, states related
by symmetry to states on the table need not be included.
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