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We consider the exact R-matrix of AdS3/CFT2, which is the building block for describing the scattering
of worldsheet excitations of the light-cone gauge-fixed backgrounds AdS3 × S3 × T4 and AdS3 × S3 ×
S3 × S1 with pure Ramond-Ramond fluxes. We show that R is invariant under a “deformed boost”
symmetry, for which we write an explicit exact coproduct, i.e. its action on two-particle states. When we
include the boost, the symmetries of the R-matrix close into a q-Poincaré superalgebra. Our findings
suggest that the recently discovered boost invariance in AdS5/CFT4 may be a common feature of AdS/CFT
systems that are treatable with the exact techniques of integrability. With the aim of going towards a
universal formulation of the underlying Hopf algebra, we also propose a universal form of the AdS3/CFT2

classical r-matrix.
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I. INTRODUCTION

A. Quantum group symmetries in AdS/CFT

The progress in our understanding of the algebraic
structure behind the AdS/CFT correspondence, and the
integrability of its most symmetric incarnation [1,2], seems
to be continuing as more examples are being systematically
explored. The core of the method defines an eigen-
value problem for the Hamiltonian of an effective two-
dimensional integrable chain, and applies the Bethe ansatz
to its exact S-matrix. Integrability is tied to a large algebra
of non-Abelian symmetries which form a Hopf super-
algebra, and this makes it possible to ultimately solve the
system via the tools of the representation theory of quantum
groups.
The path to such a solution is however not a straightfor-

ward one, as these Hopf superalgebras are rather exotic.
They display an infinite tower of generators labeled by an
integer, and are very close to Yangian algebras [3–10]. The
level 0 typically coincides with the manifest superconfor-
mal symmetry of the theory, partially broken and centrally
extended à la Beisert [11,12]. The central extension goes
hand in hand with certain nonlinear constraints on the

central charges, which, in turn, are linked to deformations
appearing in the Hopf-algebra coproduct map [13,14].
Furthermore, the Yangian [9] displays extra generators
[15,16] with no level-0 analog. These symmetries have
been dubbed secret or bonus. They have also been observed
in boundary scattering problems [17], n-point amplitudes
[18], the pure-spinor formalism [19], in the quantum-affine
deformations [20] and in the context of Wilson loops [21].
This makes it quite a significant feature of the system and
not an isolated instance [22].
Some light was recently shed on the problem by applying

the so-called RTT formulation [23]. In this approach, one
starts from the S-matrix in the fundamental representation,
and generates from it an algebra of symmetries of the
integrable system at hand. In the process, the operator
deforming the coproduct was reinterpreted as a particular
Yangian generator of level −1. This has a correspondent in
the classical r-matrix algebra [16] constructed in the spirit of
Drinfeld’s second realization of Yangians [24,25].
Even with this step, the accommodation of the full

quantum-group tower of symmetries appears still out of
reach, and the hope of finding the universal R-matrix and
having full control of the representation theory [26,27], relies
on further progress. It has very recently become clear in fact
[28,29] that extra generators (automorphisms) are necessary.
In Ref. [30] an entirely different generator was found for
superstrings in AdS5 × S5, as we will describe in a sub-
section below. This is the five-dimensional case, with a dual
theory given by four-dimensional N ¼ 4 super Yang-Mills.
Analogous nonstandard quantum algebras and associ-

ated bonus generators have been found in lower-
dimensional AdS/CFT as well. All these settings share
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peculiar algebraic features stemming from the vanishing of
the Killing form of their superisometry [31,32], dictated by
string coset integrability and σ-model scale invariance. This
seems to tie in with the algebraic peculiarities we have been
discussing, which, albeit with a richness of variants, appear
to carry over to all cases. From a quantum-group viewpoint,
the integrable structure behind the AdS4 case [33–35] is
reduced for the most part to the five-dimensional case
(although the physics is very different).
The AdS3/CFT2 integrability [36–38]—see also

Refs. [39–41]—provides another fertile realization of these
exotic group-theory structures [42]. This is the setup in
which we will work in this paper. The program of
integrability is carried out for superstrings on AdS3 × S3 ×
S3 × S1 and on AdS3 × S3 × T4. The former background
contains a parameter α corresponding to the relative radii of
the S3’s, reflected in the superisometry algebra dð2;1;αÞL⊕
dð2;1;αÞR. Here L and R label the two copies. An α → 0
contraction produces psuð1; 1j2ÞL ⊕ psuð1; 1j2ÞR, the
superisometry algebra of the latter background. The bonus
symmetry was found in Ref. [43], cf. Ref. [42]. Before
discussing the results in AdS3/CFT2 in more details, let us
review the boost invariance that was identified in
AdS5/CFT4.

B. Deformed Poincaré supersymmetry in AdS5/CFT4

In Ref. [30], a new symmetry of the AdS5/CFT4 S-matrix
was found, realizing the boost of a specific q-deformation
of 1þ 1-dimensional Poincaré superalgebra. Other q-
deformations have appeared in Refs. [38,44–51]. In these
parallel lines of investigation, however, the q-deformation
is superimposed to the algebra, and deforms the theory.
This is not what we study in this context, where the super q-
Poincaré deformation is part of the ordinary superstring
theory. Boost operators on spin chains have a long history
[52–54]. See also Refs. [55,56] in the context of long-range
spin chains, Refs. [57–59] in the study of sigma models,
and Refs. [28,60,61] in the development of algebraic
methods for AdS/CFT integrability.
The paper [62] was the first to investigate remnants of the

Poincaré algebra in the AdS5/CFT4 integrable problem.
The exact dispersion relation of the excitations was
interpreted as the Casimir of a q-Poincaré algebra:

C ¼ H2 þ g2ðK1
2 −K−1

2Þ2; ð1:1Þ

where H is the generator corresponding to the energy and
K ¼ expðiPÞ is the exponential of the worldsheet momen-
tum. The coupling g, which is the tension of the string,
plays the role of the deformation parameter of q-Poincaré.
The boost generator J was introduced as producing shifts

J∶ z → zþ c ð1:2Þ
in the torus variable z that uniformizes the dispersion
relation [63]. Immediately afterwards, the paper [64]

generalized this construction to the full centrally extended
psuð2j2Þ algebra, under which the AdS5/CFT4 S-matrix is
invariant. Nevertheless, a coproduct was given only for a
carefully selected subalgebra of generators, and it turned
out to be incompatible with the S-matrix—e.g. the energy
was not cocommutative.
In Ref. [30], it was demonstrated that one can overcome

these shortcomings by allowing a nonstandard coproduct
for J, in such a way that the boost is a symmetry of the
S-matrix, as well as all other generators in the superalgebra.
In Sec. II we adopt this strategy to extend these results
to AdS3/CFT2.

C. Deformed Poincaré supersymmetry in AdS3/CFT2

The global superconformal symmetries of the AdS3 ×
S3 × S3 × S1 and AdS3 × S3 × T4 backgrounds are broken
by a choice of vacuum. This corresponds to fixing light-
cone gauge compatibly with the Berenstein-Maldacena-
Nastase (BMN) ground state, or in the spin-chain picture to
the choice of the reference state. The elementary excitations
above the vacuum transform in the little group of residual
symmetry which preserves the vacuum. These residual
symmetries consist of two copies of the centrally extended
suð1j1Þ superalgebra in the case of AdS3 × S3 × S3 × S1

[65–67], while there are four copies in the case of AdS3 ×
S3 × T4 [68–71]; see also Refs. [72–80], and Sec. II for
more details. The AdS3/CFT2 integrable problem contains
not only massive but also massless excitations. This
appears as a novel feature compared to the AdS5/CFT4
case, and it offers both challenges (such as mismatches with
perturbation theory waiting to be fully resolved [80]) and
interesting physics [81]; see also Refs. [82–84].
By adopting the spirit of Refs. [62,64], in Ref. [85] it was

shown that for massless excitations of the above AdS3
backgrounds the corresponding residual symmetries can be
extended to a q-Poincaré superalgebra analogous to that of
AdS5/CFT4. Due to the massless dispersion relation, the q-
deformed energy coproduct turns out to be cocommutative,
and hence an exact symmetry of the S-matrix. This new
interpretation of the magnon supersymmetry in the mass-
less case also allows a very concise reformulation of the
comultiplication map, and connections with the scattering
of phonons [86]. Matching more closely with the relativ-
istic theory might be of significance to describe certain
limits of the putative dual field theories [87,88]. In this
setting, however, the boost coproduct is not a symmetry of
the S-matrix, but rather it annihilates it. This was shown in
Ref. [89], where an associated differential-geometric
framework was then proposed based on a flat would-be
connection. It seems that the construction of Refs. [85,89]
is limited to the case of massless excitations, and it is not
clear how to extend it to representations of generic mass.
In this paper we adopt a point of view close to Ref. [30],

and our discussion of the q-Poincaré supersymmetry is
valid for generic values of the mass. In Sec. II we construct
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a coproduct for the boost, and we check that it is a
symmetry of the S-matrix in the relevant two-particle
representations. We also study how the boost transforms
under crossing transformations. In Sec. III we take the
semiclassical limit of the deformed superalgebra, which
yields a classical Lie superalgebra that may be obtained
also as a contraction of slð1j2Þ. In Sec. IV we write down a
proposal for a universal classical r-matrix that matches the
known results in the fundamental representation, and we
check that it satisfies the classical Yang-Baxter equation in
universal form. We use this result in Sec. V to compute the
cobrackets of the generators, including the boost.

II. SYMMETRY ALGEBRA AND THE BOOST

In this section we will review in more detail the
superalgebra of symmetries of the AdS3/CFT2 integrable
models, and its short fundamental representations. The
formulation we employ here differs from that of
Refs. [65,68] in how we treat the off-shell central
extension; in particular, instead of introducing the central
elements C; C̄, we write the results of the corresponding
anticommutators just in terms of the momentum generator
P, or more conveniently in terms of1 K≡ expðiPÞ. As
done in Refs. [30,64] for the AdS5/CFT4 case, we
therefore formulate the symmetry algebra as a deforma-
tion of the universal enveloping algebra. In this formu-
lation g, which at large values of the tension of the string
is the tension itself, plays the role of the deformation
parameter.
As recalled in the Introduction, after fixing the light-cone

gauge on the worldsheet for the AdS3 × S3 × S3 × S1

background one ends up with a centrally extended
suð1j1ÞL ⊕ suð1j1ÞR superalgebra, where the labels left
(L) and right (R) distinguish the two copies. Worldsheet
excitations are organized in two-dimensional irreducible
representations of this superalgebra. They carry labels L or
R (see below) which remind us that on shell (P ¼ 0) only
the L (R) copy of the superalgebra acts nontrivially on L
(R) excitations. Their masses can take only the values
m ¼ 0; α; 1 − α; 1. The construction carried out for the
AdS3 × S3 × T4 background leaves instead a larger sym-
metry algebra. This may be obtained by considering two
copies of the above centrally extended suð1j1ÞL ⊕
suð1j1ÞR superalgebra, where we mod out half of the
central elements to leave only their symmetric combina-
tions, and the odd generators are organized in (anti)
fundamental representations of an additional suð2Þ sym-
metry. The worldsheet excitations are still labeled by L and
R, and their masses can be just m ¼ 0, 1. To keep the
discussion as general as possible, in the following we will
consider just one copy of the centrally extended

suð1j1ÞL ⊕ suð1j1ÞR superalgebra, and we will consider
L and R representations of generic mass m. Therefore, in
order to obtain the results for the AdS3 × S3 × S3 × S1

background it will be enough to set the masses to the
desired values. The results for the AdS3 × S3 × T4 back-
ground are instead obtained by constructing the bifunda-
mental representations as explained in Refs. [68,70]; see in
particular Sec. 3.1 of Ref. [70].
The centrally extended suð1j1ÞL ⊕ suð1j1ÞR superal-

gebra is spanned by the superchargesQI; Q̄I and the central
elementsHI;P (here the subscript I ¼ L, R denotes the two
copies), which close into the anticommutation relations

fQL; Q̄Lg ¼ HL;

fQL;QRg ¼ ig
2
ðK1

2 −K−1
2Þ;

fQR; Q̄Rg ¼ HR;

fQ̄L; Q̄Rg ¼ ig
2
ðK1

2 −K−1
2Þ: ð2:1Þ

Useful combinations are the Hamiltonian H ¼ HL þHR,
and the central charge M ¼ HL −HR which, as we will
recall later, is related to the mass. The two copies of
suð1j1Þ decouple on shell, i.e. when P ¼ 0.
We now introduce a boost generator J such that

½J;P� ¼ iH;

½J;QI� ¼ −
ig
4
ðK1

2 þK−1
2ÞQ̄Ī;

½J;H� ¼ g2

2
ðK −K−1Þ;

½J; Q̄I� ¼ −
ig
4
ðK1

2 þK−1
2ÞQĪ; ð2:2Þ

where I ¼ L, R and L̄ ¼ R; R̄ ¼ L. A difference
with respect to the construction of Refs. [85,89] is that
here we do not introduce a boost generator for each
copy L and R; rather we have one common boost relating
the two copies. The boost also breaks the centrality
of H and P. The above commutation relations are also
compatible with the automorphism b acting only on the
supercharges as

½b;QL� ¼ −2QL; ½b; Q̄L� ¼ þ2Q̄L;

½b;QR� ¼ þ2QR; ½b; Q̄R� ¼ −2Q̄R: ð2:3Þ

The generator b is the only combination of the two bI
outer automorphisms of suð1j1ÞI that survive after
introducing the central extension (P ≠ 0). For convenience,
we summarize our conventions for the generators we
shall use and their fermionic degree in the following
table:

1To avoid confusion coming from different notations used in
the literature, we stress that P, K are respectively the worldsheet
momentum and its exponential (multiplied by i).
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Generator Degree

QL 1
Q̄L 1
QR 1
Q̄R 1
P 0
K 0
H 0
M 0
J 0
b 0
B̂ 0

The generator B̂will appear later, cf. Eq. (2.16). The Casimir
of the q-Poincaré subalgebra (generated by H, P, J) is
denoted by C ¼ H2 þ g2ðK1

2 −K−1
2Þ2. When comparing it

to the shortening condition H2 ¼ M2 − g2ðK1
2 −K−1

2Þ2
given in Refs. [65,68] we see that we should set C ¼ M2.
The short irreducible representations of the centrally

extended suð1j1ÞL ⊕ suð1j1ÞR are two-dimensional. They
are labeled by three parameters2: the mass m, the momen-
tum p and the coupling g. We will be interested in the L and
the R representations3 ϱL and ϱR, each spanned by a boson
ϕI and a fermion ψ I. On the (reducible) representation ϱL ⊕
ϱR ¼ spanfϕL;ψL;ϕR;ψRg the above generators may be
realized as explicit 4 × 4 matrices

QL ¼ apσ− ⊕ bpσþ; Q̄L ¼ āpσþ ⊕ b̄pσ−;

QR ¼ bpσþ ⊕ apσ−; Q̄R ¼ b̄pσ− ⊕ āpσþ; ð2:4Þ

where σ� ¼ 1
2
ðσ1 � iσ2Þ. The L and R representations may

be mapped to each other by swapping the labels L ↔ R on
the charges and on the states. We take

ap ¼ āp ¼
ffiffiffi
g
2

r
γp;

bp ¼ b̄p ¼ i

ffiffiffi
g
2

r
γ−1p

��
xþ

x−

�
1/2

−
�
xþ

x−

�
−1/2
�
;

γp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðx−p − xþp Þ

q
; ð2:5Þ

and we make use of the Zhukovski variables x�p which
satisfy

xþp þ 1

xþp
− x−p −

1

x−p
¼ 2im

g
;

xþp
x−p

¼ eip: ð2:6Þ

Notice the dependence on the mass m in the first of the
above constraints. One also finds

H ¼ hp½12 ⊕ 12�;
M ¼ m½12 ⊕ ð−12Þ�;
b ¼ σ3 ⊕ ð−σ3Þ; ð2:7Þ

with

hp ¼ ig
2

�
x−p − xþp þ 1

xþp
−

1

x−p

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4g2sin2

p
2

r
:

ð2:8Þ

The sign of the eigenvalue of M allows us to distinguish
between the L and R representations. The action of the
generator b also differs on the two representations by a
sign. Finally, the boost is realized as J ¼ iH∂p.
In Ref. [65] an R-matrix in the fundamental representa-

tion was found by demanding that it should be invariant
under the symmetries, with the exception of the boost; the
reader is also referred to Refs. [90–92]. In our conventions,
when scattering the tensor-product representation ϱ ⊗ χ,
the symmetry invariance of the R-matrix is imposed as

Δop
χ⊗ϱðqÞR ¼ RΔϱ⊗χðqÞ; ð2:9Þ

where we use the subscript to specify the tensor-product
representation on which we should evaluate the coproduct,
and we define Δop

χ⊗ϱ ≡ ΠgΔχ⊗ϱΠg where Πg is the graded
permutation.4 The coproduct that we use here is the one in
the most symmetric frame

ΔðQIÞ ¼ QI ⊗ K−1
4 þK

1
4 ⊗ QI;

ΔðHÞ ¼ H ⊗ 1þ 1 ⊗ H;

ΔðQ̄IÞ ¼ Q̄I ⊗ K
1
4 þK−1

4 ⊗ Q̄I;

ΔðMÞ ¼ M ⊗ 1þ 1 ⊗ M;

ΔðbÞ ¼ b ⊗ 1þ 1 ⊗ b;

ΔðPÞ ¼ P ⊗ 1þ 1 ⊗ P: ð2:10Þ

The R-matrix is decomposed into blocks related by LR
symmetry; see Refs. [65,68]. The two independent blocks
are LL and LR, and one finds

2In the spirit of the original paper [65] we prefer to denote bym
the mass of the excitations, so thatm ≥ 0. In Ref. [67]mwas used
for the eigenvalue of M (at q ¼ 0), which is positive/negative on
L/R representations; in that case the mass of the excitations would
be jmj.

3The two additional representations denoted by ϱ̃L; ϱ̃R in
Ref. [70] are simply obtained from the above ones by exchanging
the roles of the bosons and the fermions.

4In an explicit matrix realization, when defining the “op” of a
coproduct one should also take care to swap the labels
fp1; m1g ↔ fp2; m2g everywhere. With these conventions, the
states are ordered as fðp1; m1Þ; ðp2; m2Þg both before and after
the action of the R-matrix.
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RjϕLϕLi ¼ jϕLϕLi;
RjϕLψLi ¼ aLL12 jϕLψLi þ bLL12 jψLϕLi;
RjψLψLi ¼ cLL12 jψLψLi;
RjψLϕLi ¼ ðaLL21 Þ�jψLϕLi þ ðbLL21 Þ�jϕLψLi; ð2:11Þ

RjϕLϕRi ¼ aLR12 jϕLϕRi þ bLR12 jψLψRi;
RjϕLψRi ¼ jϕLψRi;
RjψLψRi ¼ aLR21 jψLψRi þ bLR21 jϕLϕRi;
RjψLϕRi ¼ cLR12 jψLϕRi; ð2:12Þ

where � denotes complex conjugation—under which
ðx�Þ� ¼ x∓. Here we have chosen an arbitrary normaliza-
tion by setting one element in each block to 1; the
remaining coefficients are

aLL12 ¼
�
xþ1
x−1

�−1/2 xþ2 − xþ1
xþ2 − x−1

;

bLL12 ¼
�
xþ1
x−1

�−1/4�xþ2
x−2

�
1/4 xþ2 − x−2

xþ2 − x−1

γ1
γ2

;

cLL12 ¼
�
xþ1
x−1

�−1/2�xþ2
x−2

�
1/2 x−2 − xþ1

xþ2 − x−1
; ð2:13Þ

and

aLR12 ¼
�
xþ1
x−1

�−1/2 x−2 x
þ
1 − 1

x−1 x
−
2 − 1

;

bLR12 ¼
�
xþ2
x−2

�−1/4�xþ1
x−1

�−1/4 iγ1γ2
x−1 x

−
2 − 1

;

cLR12 ¼
�
xþ1
x−1

�−1/2�xþ2
x−2

�−1/2 xþ1 x
þ
2 − 1

x−1 x
−
2 − 1

: ð2:14Þ

Braiding unitarity is written as RopR ¼ 1, and one may
check that the Yang-Baxter equation is satisfied; a con-
venient way to check it is done by introducing the S-matrix
S ¼ ΠgR so that

S12ðp2; p3ÞS23ðp1; p3ÞS12ðp1; p2Þ
¼ S23ðp1; p2ÞS12ðp1; p3ÞS23ðp2; p3Þ: ð2:15Þ

The subscripts denote the subspaces on which the S-matrix
is acting, e.g. S12 ¼ S ⊗ 1, and one should take care to
evaluate the S-matrix in the relevant representation.
As discovered in Ref. [43], one may identify a secret

symmetry similar to the one appearing in the case of
AdS5/CFT4. The antisymmetric combination of the L and
R secret symmetries of Ref. [43] (at level 0) should be
identified with our automorphism b. The symmetric
combination instead may be identified with B̂, the counter-
part of the AdS5/CFT4 secret symmetry. See also Eq. (6.1)

for the explicit relation to generators used in the literature.
In the ϱL ⊕ ϱR fundamental representation we write B̂ as

B̂ ¼ 1

4

�
xþp þ x−p −

1

xþp
−

1

x−p

�
ðσ3 ⊕ σ3Þ; ð2:16Þ

which is compatible with the commutation relations

½B̂;QI� ¼ −Q̂I − ðK1
2 þK−1

2ÞQ̄Ī;

½B̂; Q̄I� ¼ ˆ̄QI þ ðK1
2 þK−1

2ÞQĪ: ð2:17Þ

Here hatted supercharges denote the ones at level 1 of the
Yangian. We assume that we can use the evaluation
representation and identify e.g. Q̂I ∼ ûQI with û ¼
ðxþ þ x− þ 1/xþ þ 1/x−Þ/2. One may check that the
coproduct

ΔðB̂Þ ¼ B̂ ⊗ 1þ 1 ⊗ B̂

þ i
g

X
I¼L;R

ðK−1
4QI ⊗ K−1

4Q̄I þK
1
4Q̄I ⊗ K

1
4QIÞ

ð2:18Þ

gives a symmetry of the R-matrix, both in the LL and the
LR representations.
In order to determine the coproduct for the boost we

follow the strategy used in Ref. [30] in the case of
AdS5/CFT4: we constrain an appropriate ansatz for the
boost coproduct by imposing the commutation relations
(2.2), while using the above coproducts for all other
generators in the algebra. The coproduct that we find in
the fundamental representation

ΔðJÞ ¼ Δ0ðJÞ þ T ð2:19Þ

is analogous to the one of Ref. [30]. In particular, the
contribution Δ0ðJÞ remains the same, since it is found by
imposing commutation relations of the bosonic q-Poincaré
subalgebra. One has

Δ0ðJÞ ¼
�
1 −

s12
h1

�
J ⊗ 1þ

�
1þ s12

h2

�
1 ⊗ J;

s12 ¼
g
2

sinp1 þ sinp2 − sinðp1 þ p2Þ
w−1
1 − w−1

2

; ð2:20Þ

where

wp ¼ 2hp
g sinp

¼ 2
1þ x−pxþp
x−p þ xþp

: ð2:21Þ

The tail T is obtained by imposing commutation relations
between J and the supercharges, and we find
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T ¼T HB̂þT MbþT LþT RþT 1;

T HB̂¼
1

2

1

w1−w2

�
1− tan

p
2
⊗ tan

p
2

�
ðH⊗ B̂þB̂⊗HÞ;

T Mb¼
1

8

w1þw2

w1−w2

ðM⊗bþb⊗MÞ;

T J¼
1

2

w1þw2

w1−w2

ðK−1
4QJ⊗K−1

4Q̄J−K
1
4Q̄J⊗K

1
4QJÞ:

ð2:22Þ

Notice the strong analogies with the AdS5/CFT4 result of
Ref. [30] when looking at the bilinear piece in supercharges
and the contribution with the secret symmetry B̂. In the
fundamental representation the terms T HB̂ þ T Mb mix, but
we can distinguish them by studying the coproduct both in
the ϱL ⊗ ϱL and in the ϱL ⊗ ϱR fundamental representa-
tions. One may check that the above coproduct is a
homomorphism for the commutation relations with J in
both such representations.
Commutation relations do not fix T 1, the contribution to

the tail which is proportional to the identity operator. At the
same time, the freedom of choosing T 1 may be used to
make sure that ΔðJÞ is a symmetry of the R-matrix. For
example, in the ϱL ⊗ ϱR fundamental representation we
can check that5

Δop
RLðJÞRLR − RLRΔLRðJÞ
¼ i½ðh1 − s12Þ∂p1

þ ðh2 þ s12Þ∂p2
�RLR

þ T op
RLRLR − RLRT LR

¼ ðfLR þ T op
1;RL − T 1;LRÞRLR: ð2:23Þ

Notice the appearance of both T 1;LR and T 1;RL, because of
the opposite coproduct. A similar equation with just the
labels L ↔ R swapped is obtained when considering the
representation ϱR ⊗ ϱL. If we impose LR symmetry6

RLR ¼ RRL as in Refs. [65,68], we find fLR ¼ fRL and
we may impose also T 1;LR ¼ T 1;RL. The crucial point here
is that fLR is a scalar factor. We omit its explicit expression,
which is not illuminating nor important for the discussion.
Then boost invariance follows by taking T 1;LR ¼
fLR/2þ T symm

LR , where T symm
LR is a contribution symmetric

under “op” which drops out from the equations. The
computation proceeds similarly for the ϱL ⊗ ϱL represen-
tation, where one finds a corresponding scalar factor fLL.

Obviously, from this point of view the solutions depend
on the normalization of the R-matrix. In fact, if in the above
example we had normalized the R-matrix with a different
scalar factor R0

LR ¼ eΦ12RLR, then boost invariance would
translate to ðfLR þ T op

1;LR − T 1;LR þ DΦ12Þ ¼ 0, where
D≡ iðh1 − s12Þ∂p1

þ iðh2 þ s12Þ∂p2
. In other words, the

solution for T 1 would be further shifted by 1
2
DΦ12. This

consideration should be taken into account when construct-
ing the physical S-matrices for the AdS3 × S3 × T4 case7

that include the dressing factors of Refs. [93,94].
It is natural to expect that there should be a universal

form of T 1, which should be valid independently of the
representation that we consider. However, this does not
mean that the above solutions T 1;LL; T 1;LR found in the
fundamental representation should coincide. In fact, T 1

may receive contributions both from H and M, which
could be quite complicated; see e.g. the suggestion (5.9)
towards a universal form of the other terms in the coproduct
tail coming from the cobracket. Since their actions differ on
L and R and their contributions mix, expressions in terms of
x�p could look quite different on ϱL ⊗ ϱL and ϱL ⊗ ϱR. A
possibility would be to inspect and compare the solutions
for T 1 in the ϱL ⊗ ϱL and in the ϱL ⊗ ϱR fundamental
representations, when normalizing the R-matrix with the
physical dressing factors, to see if the results suggest a
universal form that evaluates as desired on both cases. We
plan to return to this issue in the future.

A. Antipode

In this section we wish to determine the antipode of the
boost J. For all other generators q, the antipode is
implemented8 by SðqðpÞÞ ¼ Cqstðp̄ÞC−1, where C is the
charge conjugation matrix, st denotes supertransposition
and p̄ is the analytic continuation of the momentum to the
crossed region. In the representation ϱL ⊕ ϱR ¼
spanfϕL;ψL;ϕR;ψRg we may choose

C ¼ σ1 ⊗
�
1 0

0 i

�
; ð2:24Þ

which shows that charge conjugation is swapping the L and
R representations. When crossing, we send x� → 1/x�,
with the caveat that we are more careful when dealing with
the analytic continuation γp → −iðxþp Þ−1ðxþp /x−pÞ1/2γp.

5Here the subscripts LR and RL are used to denote the relevant
representations.

6Imposing at the same time LR symmetry and (braiding and
physical) unitarity singles out a particular class of normalization
for the LR and RL blocks of the R-matrix; see Refs. [65,68]. A
different normalization of the R-matrix results just in a shift of
fLR or fRL as explained later.

7There is currently no proposal for the physical dressing
factors that should solve the crossing equations of Refs. [65,67]
in the AdS3 × S3 × S3 × S1 case.

8In Eq. (B.11) of Ref. [68] the antipode is implemented
differently on supercharges; see also Eq. (B.13). In that paper,
one only looks at one two-dimensional representation (i.e. either
L or R), and the swapping of L and R is therefore implemented on
the labels of the supercharges rather than on the representations.
Here we prefer to write the antipode formula in a more standard
way. We still agree with Eq. (B.10) of Ref. [68].
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Essentially, under crossing the coefficients ap, bp entering
the definitions of the supercharges (2.4) transform as ap →
ibp and bp → iap. With these prescriptions one finds that
the antipode acts as SðqÞ ¼ −q on all supercharges QI; Q̄I,
as well as generators M, H, b and B̂.
In order to find out how the antipode acts on J we follow

the strategy of Ref. [30] and impose9

μ∘ðS ⊗ idÞ∘ΔðJÞ ¼ 0: ð2:25Þ

Let us separate the various contributions arising from the
different terms that appear in the boost coproduct. The
contribution related to Δ0ðJÞ obviously does not differ from
the AdS5/CFT4 case [30]

μ∘ðS ⊗ idÞ∘Δ0ðJÞ ¼
�
1þ lp

hp

�
ðSðJÞ þ JÞ; lp ¼ g

2
w2
p

�
dwp

dp

�
−1
ðcosp − 1Þ: ð2:26Þ

The tail of the boost coproduct contains factors of ðw1 − w2Þ−1 which potentially generate divergences when acting with the
multiplication μ. As in AdS5/CFT4 we therefore need to carefully check that the divergences cancel in order to get a
meaningful result. It is interesting to note that the piece of the tail T Mb—which has no counterpart in AdS5/CFT4—is an
essential ingredient in the case of AdS3/CFT2, since without it the divergences would not cancel. When applying the
multiplication μwe identify the two spaces appearing in the tensor product—where we have placed representations with the
same mass m—and we take the limit p2 → p1. We find

μ∘ðS ⊗ idÞ∘T HB̂ ¼ lim
p2→p1

1

w1 − w2

�
−h1b̂1

�
1þ tan2

p1

2

��
ðσ3 ⊕ σ3Þ;

μ∘ðS ⊗ idÞ∘T Mb̂ ¼ lim
p2→p1

1

w1 − w2

�
−
mw1

2

�
ðσ3 ⊕ σ3Þ;

μ∘ðS ⊗ idÞ∘ðT L þ T RÞ ¼ lim
p2→p1

−w1

w1 − w2

ðQLQ̄L − Q̄LQL þQRQ̄R − Q̄RQRÞ þ finite

¼ lim
p2→p1

1

w1 − w2

mw1ðσ3 ⊕ σ3Þ þ finite: ð2:27Þ

Here we wrote the secret symmetry as B̂ ¼ b̂pðσ3 ⊕ σ3Þ.
Since wp ¼ 2

m hpb̂pð1þ tan2 p
2
Þ, we find that all divergent

terms cancel each other.
The piece of the tail containing the supercharges pro-

duces an additional finite contribution arising from the
multiplication of factors of K, which generate a factor of
ðp1 − p2Þ canceling the pole. If we regularize p2 ¼ p1 þ ϵ
and then take the limit ϵ → 0 we find that the finite
contribution produced by T L þ T R is

lim
ϵ→0

iϵ
4

�
1−

wðp1þ ϵÞ
wðp1Þ

�
−1
ðfQL;Q̄LgþfQR;Q̄RgÞ¼ dp1;

dp≡−
i
4
wp

�
dwp

dp

�
−1
hp: ð2:28Þ

Now that we have identified all the terms in the Eq. (2.25)
we can solve it to determine the antipode of J

SðJÞ ¼ −J −
�
1þ lp

hp

�
−1
ðcp þ dpÞ1: ð2:29Þ

The expression agrees with the one of AdS5/CFT4, except
for a relative factor of 2 in the definition of dp. We have
included also a possible finite contribution cp arising from
the central part T 1 of the tail of the boost coproduct.
Similarly to the discussion in Ref. [30], we remark that

although we have solved Eq. (2.25), the equation where the
antipode acts on the second space μ∘ðid ⊗ SÞ∘ΔðJÞ ¼ 0
should hold as well. Following calculations similar
to the above ones, in that case one would find SðJÞ ¼
−J − ð1þ lp/hpÞ−1ðc0p − dpÞ1, where c0p is the contribu-
tion from T 1 which is possibly different from the previous
cp. Notice the change of sign in front of dp. We conclude
that we may have a consistent antipode on J only if the
contribution of T 1 is such that the two results agree. An
analogous question was encountered in Ref. [30], and
originally left unanswered. It has subsequently become
clear that it is always possible to reverse engineer the tail of
the boost coproduct to incorporate the contribution from
a dressing phase which is a solution of the crossing
equation.10 The same argument applies in this context,
which confirms that the boost, although not capable of

9This follows from one of the axioms of Hopf algebras μ∘ðS ⊗
idÞ∘Δ ¼ 1∘ϵ after setting ϵðJÞ ¼ 0. 10Cf. Ref. [30] (revision to appear).
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constraining the dressing factor, is nevertheless a genuine
symmetry of the complete S-matrix.11

It would be interesting to see whether it is possible to
find such a T 1, which at the same time makes sure that the
boost coproduct is a symmetry of the R-matrix normalized
with the physical dressing factors of Refs. [93,94].

III. SEMICLASSICAL LIMIT

We achieve the semiclassical limit by rescaling the
generators J → gJ and P → P/g and then taking g → ∞.
This corresponds to the BMN limit of Ref. [95], although
from our point of view this is really a contraction of the
algebra and not just of the representation. We obtain

fQL; Q̄Lg ¼ 1

2
ðHþMÞ;

fQL;QRg ¼ −
1

2
P;

fQR; Q̄Rg ¼ 1

2
ðH −MÞ;

fQ̄L; Q̄Rg ¼ −
1

2
P;

½J;H� ¼ iP;

½J;QI� ¼ −
i
2
Q̄Ī;

½J;P� ¼ iH;

½J; Q̄I� ¼ −
i
2
QĪ; ð3:1Þ

and

½B̂;QI� ¼ −Q̂I − 2Q̄Ī;

½B̂; Q̄I� ¼ ˆ̄QI þ 2QĪ:

½b;QL� ¼ −2QL;

½b; Q̄L� ¼ þ2Q̄L;

½b;QR� ¼ þ2QR;

½b; Q̄R� ¼ −2Q̄R; ð3:2Þ

which shows that the deformed algebra turns into a
standard classical superalgebra. It contains in particular
the Poincaré algebra in two dimensions (spanned by P, H,
J) as a subalgebra. There is a clear interpretation of
the above limit at the level of the worldsheet. In fact, in
the strict semiclassical limit only the quadratic part of the
Hamiltonian in the light-cone gauge survives (see e.g.
Ref. [2]), and the boost invariance on the worldsheet, which

was broken by the gauge in the full Hamiltonian, is
restored. One may therefore derive the corresponding
Noether charge J ¼ R dσðσHþ τPÞ, where H ¼ R dσH,
P ¼ −

R
dσP, and σ, τ parametrize the worldsheet. The

canonical quantization of the usual Poisson brackets will
then reproduce the above commutation relations involving
the boost. We refer to Ref. [30] for the explicit calculations
in the AdS5/CFT4 case. Our findings concerning the
deformed boost invariance at finite g suggest that the
symmetry associated to J should be implemented non-
locally on the worldsheet, as indicated by the form of the
coproduct.
The centrally extended suð1j1ÞL ⊕ suð1j1ÞR superalge-

bra in the semiclassical limit can be obtained as a contraction
of slð1j2Þ. The superalgebra slð1j2Þ is generated by 3 × 3
matricesMij with zeros everywhere except 1 at entry ij that
are supertraceless StrðAÞ ¼ A11 − A22 − A33 ¼ 0.

A Serre-Chevalley basis for slð1j2Þ with both simple roots
fermionic may be given by

e1 ¼ M21; f1 ¼ M12; h1 ¼ M11 þM22;

e2 ¼ −M13; f2 ¼ M31; h2 ¼ −M11 −M33; ð3:3Þ

so that

½hi;hj� ¼ 0; ½hi; ej� ¼ aijej;

½hi; fj� ¼ −aijfj; fei; fjg ¼ δijhi; ð3:4Þ

with a symmetric Cartan matrix aij ¼ ðσ1Þij. The two
remaining generators may be found by taking e12 ¼
fe1; e2g, f12 ¼ −ff2; f1g. If we identify the above gener-
ators with

QL ¼
ffiffiffi
ε

2

r
ðf1 þ ie2Þ; QR ¼

ffiffiffi
ε

2

r
ðie1 þ f2Þ;

Q̄L ¼ −
ffiffiffi
ε

2

r
ðe1 þ if2Þ; Q̄R ¼ −

ffiffiffi
ε

2

r
ðif1 þ e2Þ;

H ¼ iεð−e12 þ f12Þ; P ¼ −iεðh1 þ h2Þ;

J ¼ −
i
2
ðe12 þ f12Þ; M ¼ −εðh1 − h2Þ ð3:5Þ

and then take ε → 0 we indeed reproduce the (anti)commu-
tation relations of the q-Poincaré superalgebra in the

11Access to a universal formulation of the boost coproduct
would of course allow a first-principle derivation of the dressing
phase; however this is not yet available, and a subject for future
study.
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semiclassical limit. Notice that we have been careful to
identify P with a Cartan generator.
One may be tempted to construct Uqðslð1j2ÞÞ and try to

recover the q-Poincaré superalgebra under study as a
contraction of Uqðslð1j2ÞÞ; in other words the idea would
be that of closing the following diagram. In Ref. [30] it was
shown that in the case of AdS5/CFT4—in that case slð1j2Þ
is replaced by the dð2; 1; αÞ superalgebra—the naive limits
fail to achieve the desired contraction and to close the
diagram corresponding to the one above. Here we are faced
with the same mechanism. The problem lies in the fact that
in the q-deformed case the (exponentials of the) Cartan
elements will appear as

ε
qh1�h2 − q−ðh1�h2Þ

q − q−1
; ð3:6Þ

where the explicit ε comes from the normalization of the
generators. When considering the combination h1 þ h2 it
appears natural to take q ¼ ewε/2, so that factors of eiP will
naturally appear after taking the ε → 0 limit. However, this
would at the same time leave unwanted factors of eM

coming from h1 − h2, which would prevent us from
matching with the desired superalgebra.
We should note, however, that the current situation is

much simpler than the AdS5/CFT4 case. There, in fact, the
unwanted factors are exponentials of the Cartans of the
suð2Þ subalgebra, meaning that it is not obvious how to
implement the semiclassical limit only at the level of these
generators without spoiling other commutation relations.
Here, instead, M is a central element of the superalgebra
(after taking ε → 0); in other words it appears only on
the right-hand side of anticommutation relations.
Therefore, it would be enough to define a new generator
M0 ≡ 1

w ðe
w
2
M − e−

w
2
MÞ to mimic the wanted (anti)commu-

tation relations, where M is replaced by M0. Although this
trick seems to work at the level of commutation relations,
we do not expect that it will go through when including also
the coproducts.

IV. UNIVERSAL r-MATRIX

In this section we wish to construct a universal classical
r-matrix for AdS3/CFT2. Besides its intrinsic importance, it
will also be a necessary tool for the next section, where we
will use it to compute the cobracket of the various
generators, in particular the boost.

A. Universal r-matrix and the CYBE

We want the r-matrix to agree with the semiclassical
expansion of the quantum R-matrix given in Eqs. (2.11)
and (2.12), i.e. in the g → ∞ limit we should have

R ¼ 1þ g−1ðrþ r0Þ þOðg−2Þ; r0 ¼ ϕ01 ⊗ 1: ð4:1Þ

The part proportional to the identity, r0, is sensitive to the
normalization and we will not consider it. To take the
semiclassical limit in the fundamental representation we
rewrite12

x� ¼ x

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2x2

g2ðx2 − 1Þ2

s
� imx
gð1 − x2Þ

!
; ð4:2Þ

and send g → ∞. After rewriting the semiclassical expan-
sion of the quantum R-matrix in terms of the semiclassical
spectral parameter u [related to x as u ¼ xþ 1/x; x ¼
1
2
ðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4

p
Þ] we find that it can be written as

r ¼ −i
u1 − u2

�
2
X
I¼L;R

ðQI ⊗ Q̄I − Q̄I ⊗ QIÞ

þ u2
u1

H ⊗ B0 þ
u1
u2

B0 ⊗ Hþ 1

2
ðM ⊗ bþ b ⊗ MÞ

�
:

ð4:3Þ

All the generators appearing above are assumed to be
written in the semiclassical limit. Moreover, B0 corre-
sponds to the level 0 of the secret symmetry, so that
B0 ∼ u−1B̂. Crucially, the above expression matches with
the semiclassical expansion of R both in the ϱL ⊗ ϱL and in
the ϱL ⊗ ϱR representations.13

We will interpret the above result as the r-matrix in the
evaluation representation. If we assume that it comes from
a universal expression after identifying the charges at each
level n as qn ¼ unq, it is easy to reverse engineer a
candidate form for the universal r-matrix

r ¼ −i
�
2rL þ 2rR þ rHB þ 1

2
rMb

�
;

rI ¼
X∞
n¼0

ðQI;−1−n ⊗ Q̄I;n − Q̄I;−1−n ⊗ QI;nÞ;

rHB ¼
X∞
n¼−1

B−1−n ⊗ Hn þ
X∞
n¼1

H−1−n ⊗ Bn;

rMb ¼
X∞
n¼0

ðM−1−n ⊗ bn þ b−1−n ⊗ MnÞ: ð4:4Þ

Although the above proposal for a universal expression
matches with the known results, it is important to
further test it by checking whether it satisfies the classical
Yang-Baxter equation (CYBE) without specifying any

12The semiclassical limit for massless representations should
be taken with some care. See the end of this section for a
discussion on this.

13In fact, the terms B0 ⊗ H and b ⊗ M mix, but they can be
distinguished by comparing the expansion of the R-matrix both in
the ϱL ⊗ ϱL and in the ϱL ⊗ ϱR representations.
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representation. To do that we will follow the strategy used
in Ref. [16] to check the CYBE for the universal r-matrix of
AdS5/CFT4. We start by noticing that the above r-matrix
may be rewritten as

r ¼ rcan þ r; r≡ −iðB0 ⊗ H−1 −H−1 ⊗ B0Þ; ð4:5Þ

where we interpret rcan as the canonical universal r-matrix
of the loop algebra uð1j1ÞL ⊕ uð1j1ÞR. This superalgebra
is spanned by the superchargesQI; Q̄I, I ¼ L, R, the central
elements H, M and the inner automorphisms B0;b, which
are linear combinations of the inner automorphisms acting
separately on the two copies of uð1j1Þ. The universal r-
matrix of the loop algebra is built according to the generic
construction as Refs. [96,97]

rcan ¼ −i
X∞
n¼0

TA
−1−n ⊗ TB

ngAB; ð4:6Þ

where TA
n are the generators at level n, and gAB is the

(inverse of) an invariant nondegenerate bilinear form.14 To
reproduce our r we take

gðQI;Q̄JÞ¼−
1

2
δIJ; gðH;BÞ¼ 1; gðM;bÞ¼ 2; ð4:7Þ

and one may check that the above bilinear form is invariant
and nondegenerate on uð1j1ÞL ⊕ uð1j1ÞR. In what follows
we will actually consider a deformation of the loop algebra
of uð1j1ÞL ⊕ uð1j1ÞR, as suggested by the strategy of
Ref. [16]. We write the (anti)commutation relations as

fQL;m; Q̄L;ng ¼ 1

2
ðHmþn þMmþnÞ;

fQL;m;QR;ng ¼ −βHmþn−1;

fQR;m; Q̄R;ng ¼ 1

2
ðHmþn −MmþnÞ;

fQ̄L;m; Q̄R;ng ¼ −βHmþn−1; ð4:8Þ

and

½bm;QL;n� ¼ −2QL;mþn;

½bm; Q̄L;n� ¼ þ2Q̄L;mþn;

½bm;QR;n� ¼ þ2QR;mþn;

½bm; Q̄R;n� ¼ −2Q̄R;mþn;

½Bm;QI;n� ¼ −QI;mþn − 2βQ̄Ī;mþn−1;

½Bm; Q̄I;n� ¼ þQ̄I;mþn þ 2βQĪ;mþn−1: ð4:9Þ

The undeformed loop algebra is recovered at β ¼ 0. When
setting β ¼ 1, instead, we reproduce the superalgebra that
is of interest to us; in particular, the commutators involving
the secret symmetry B reduce to the ones in Eq. (3.2). To
match them we also need the identification H−1 ∼ 1

2
P.

Wewill now prove that r satisfies the CYBE at β ¼ 1; we
will actually prove it for generic β. We use the fact that rcan

satisfies the CYBE at β ¼ 0; therefore there are only two
types of additional contributions to compute:
(1) Those proportional to β (coming from deformed

commutators) when computing

½rcan12 ; r
can
13 � þ ½rcan13 ; r

can
23 � þ ½rcan12 ; r

can
23 �: ð4:10Þ

(2) Those coming from the “mixed terms”

½r12; rcan13 � þ ½r13; rcan23 � þ ½r12; rcan23 � þ ½rcan12 ; r
can
13 �

þ ½rcan13 ; r23� þ ½rcan12 ; r23�: ð4:11Þ

Notice that terms of the form ½r; r� are automatically 0 since
Bm and Hm commute. For contributions of type 1 we find

½rcan12 ; r
can
13 �∶ − 4β

X∞
m;n¼0

X ½−3−n−m;n;m�;

½rcan13 ; r
can
23 �∶ − 4β

X∞
m;n¼0

X ½−1−n;−1−m;mþn−1�;

½rcan12 ; r
can
23 �∶ þ 4β

X∞
m;n¼0

X ½−1−n;n−m−2;m�; ð4:12Þ

where we defined

X ½n1;n2;n3�≡ ðHn1 ⊗QL;n2 ⊗QR;n3 þQL;n1 ⊗QR;n2 ⊗Hn3

−QL;n1 ⊗Hn2 ⊗QR;n3 þL↔RÞþQ↔ Q̄:

ð4:13Þ

To avoid long expressions, here we are not writing all the
terms explicitly. For each term that we write explicitly there
are three additional ones, obtained by first exchanging the
labels L ↔ R, and then Q ↔ Q̄ everywhere. Summing up
the above results we obtain

14In our conventions ⟦TA; TB⟧ ¼ fABC TC, where ⟦; ⟧ denotes a
(anti)commutator. We also define the metric as gAB ¼ gðTA; TBÞ,
so that gAB is the inverse metric. The metric is symmetric in the
block of bosonic generators, while it is antisymmetric in the block
of fermionic generators. The Killing form of uð1j1ÞL ⊕ uð1j1ÞR
is degenerate.
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−4β
�X∞

m¼0

X∞
n¼mþ2

þ
X∞
n¼0

X∞
m¼n−1

−
X∞
n¼0

X∞
m¼0

�
X ½−1−n;n−m−2;m� ¼ −4βX ½−1;−1;−1�; ð4:14Þ

where we first relabeled the summed indices, and then used the identity

�X∞
m¼0

X∞
n¼mþ1

þ
X∞
n¼0

X∞
m¼n

−
X∞
n¼0

X∞
m¼0

�
Fmn ¼ 0; ð4:15Þ

which is valid due to the cancellation of the domains for any collection of objects Fmn labeled by m and n. We will now
show that −4βX ½−1;−1;−1� is exactly canceled by the contributions of type 2. We find

½r12; rcan13 �∶ þ
X∞
n¼0

ð2QL;−1−n ⊗ H−1 ⊗ Q̄L;n þ 4βQL;−2−n ⊗ H−1 ⊗ QR;n þ L ↔ RÞ þQ ↔ Q̄;

½rcan12 ; r13�∶ −
X∞
n¼0

ð2QL;−1−n ⊗ Q̄L;n ⊗ H−1 þ 4βQL;−2−n ⊗ QR;n ⊗ H−1 þ L ↔ RÞ þQ ↔ Q̄;

½r13; rcan23 �∶ þ
X∞
n¼0

ð2H−1 ⊗ QL;−1−n ⊗ Q̄L;n þ 4βH−1 ⊗ QL;−1−n ⊗ QR;n−1 þ L ↔ RÞ þQ ↔ Q̄;

½rcan13 ; r23�∶ −
X∞
n¼0

ð2QL;−1−n ⊗ H−1 ⊗ Q̄L;n þ 4βQL;−1−n ⊗ H−1 ⊗ QR;n−1 þ L ↔ RÞ þQ ↔ Q̄;

½r12; rcan23 �∶ −
X∞
n¼0

ð2H−1 ⊗ QL;−1−n ⊗ Q̄L;n þ 4βH−1 ⊗ QL;−2−n ⊗ QR;n þ L ↔ RÞ þQ ↔ Q̄;

½rcan12 ; r23�∶ þ
X∞
n¼0

ð2QL;−1−n ⊗ Q̄L;n ⊗ H−1 þ 4βQL;−1−n ⊗ QR;n−1 ⊗ H−1 þ L ↔ RÞ þQ ↔ Q̄: ð4:16Þ

It is easy to see that all β-independent terms cancel each
other, while the β-dependent ones leave a finite result due to
some shifts in the levels in some expressions. The result

4β
X∞
n¼0

ðX ½−1;−1−n;n−1� − X ½−1;−2−n;n�Þ ¼ 4βX ½−1;−1;−1�

ð4:17Þ

exactly cancels the contributions of type 1, and the CYBE
is checked for generic β. Notice that, in order for the
calculation to work, it was crucial to have shifts of −1 in the
levels in the β-dependent terms of the (anti)commutation
relations, as well as the additional r.

B. Massless representations, semiclassical
limit and the r-matrix

The parametrization (4.2) of the Zhukovski variables is
not adequate in the massless limit m → 0, since it would
imply xþ ¼ x− and p ¼ 2πn. A different parametrization is
therefore needed in the massless case, and we can find it
e.g. by sending m → 0 only after redefining x ¼ 1þ m

2ξ (or
x ¼ −1 − m

2ξ) in Eq. (4.2). We find

x� ¼ � iξ
g
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ξ2

g2

s
; or x� ¼ � iξ

g
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ξ2

g2

s
;

ð4:18Þ

where the first parametrization implies15 p > 0 while the
second one impliesp < 0. Therefore, we need to distinguish
between worldsheet left- and right-movers. In both cases the
energy is 2g sinðp/2Þ ¼ 2ξ. The coefficients parametrizing
the supercharges in Eq. (2.4) are just ap ¼ −bp ¼ ffiffiffi

ξ
p

in the
first parametrization, and ap ¼ þbp ¼ ffiffiffi

ξ
p

in the second
one. Let us emphasize thatwehave not taken theg → ∞ limit
yet. Notice that the secret symmetry in Eq. (2.16) vanishes in
the massless limit, since xþ ¼ 1/x− when m ¼ 0.
Furthermore, the spectral parameter û ¼ ðxþ þ x− þ
1/xþ þ 1/x−Þ/2 reduces to �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2/g2

p
, where the sign

� depends onwhich of the above parametrizations is chosen.
Therefore, semiclassically û → u ¼ �2.
Let us make a comment on the g dependence. In the

massless case we may parametrize x� ¼ e�ip/2, so that
there is no explicit g dependence. This is not a good

15Here we assume −π < p < π.
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parametrization if we want to take a semiclassical limit
g → ∞, since for example the massless-massless R-matrix
would not expand as 1þOð1/gÞ. If instead we use the
parametrization above in terms of ξ, we reintroduce the
missing g dependence, and it makes sense to expand our
results at large g. This is similar to what one does in the
BMN limit [95], where one first rescales p → p/g.
Let us now discuss the semiclassical limit of the

R-matrix. First we consider the case of massless-massive
scattering, where the mass of the second excitation is
generic but not 0. To obtain the classical r-matrix in the
fundamental representation we first consider the massless-
massive R-matrix, where x�1 are parametrized in terms of
Eq. (4.18) and x�2 in terms of Eq. (4.2). Then we send
g → ∞ and we obtain R ¼ 1þ r/gþOð1/g2Þ. We have
checked that what we obtain coincides with the r-matrix in
the evaluation representation as written in Eq. (4.3).
Particular care is needed when taking the semiclassical

limit in the case of massless-massless scattering. In fact, we
must scatter a left- with a right-mover, i.e. we must use the
first parametrization in Eq. (4.18) for one excitation and the
second one for the other. From the operational point of view,
this is done to avoid the appearance of infinities. Physically it
is justified by the fact that we want the two massless
excitations to travel in opposite directions, so that they have
the chance to meet, since they both go at the speed of light.
Then we extract the classical r-matrix from the semiclassical
expansion of the massless-massless R-matrix, R¼
1þr/gþOð1/g2Þ. We get r ¼ −i

ffiffiffiffiffi
ξ1

p ffiffiffiffiffi
ξ2

p
M, where M ¼

σþ ⊗ σ− þ σ− ⊗ σþ. Also this result matches with the
classical r-matrix written in the evaluation representation
in Eq. (4.3), and this can be seen quite simply. In fact, all
terms in r containing M or B obviously vanish. The only
contributions come from the supercharges, and

QL ⊗ Q̄L − Q̄L ⊗ QL þQR ⊗ Q̄R − Q̄R ⊗ QR

¼ ða1ā2 − b̄1b2Þσ− ⊗ σþ − ðā1a2 − b1b̄2Þσþ ⊗ σ−;

ð4:19Þ

where we have used the parametrization coefficients as in
Eq. (2.4). Now it is crucial that we are taking two massless
excitations in opposite kinematical regimes, i.e. a1 ¼ −b1
and a2 ¼ þb2. Recalling that in our parametrizationwe have
real coefficients (ā ¼ a; b̄ ¼ b), this means that the con-
tributions add up instead of canceling ða1ā2 − b̄1b2Þ ¼
2a1a2 ¼ ðā1a2 − b1b̄2Þ. Using u1 ¼ −u2 ¼ 2 we obtain
r ¼ −i

ffiffiffiffiffi
ξ1

p ffiffiffiffiffi
ξ2

p
M as wanted.

V. COBRACKET

Although the majority of the results—e.g. the R-matrix
in Eqs. (2.11) and (2.12) and the coproducts in Eqs. (2.10)
and (2.19)—are only given in the fundamental representa-
tion, the universal r-matrix proposed in the previous section
allows us to go towards a universal formulation. In
particular, if we consider the invariance of the R-matrix
under a generic generator q as in Eq. (2.9) and we
implement a semiclassical expansion, we find that δðqÞ≡
Δð1ÞðqÞ − Δop

ð1ÞðqÞ may be obtained by computing the

commutator δðqÞ ¼ ½q ⊗ 1þ 1 ⊗ q; r�. One gets this
result after expanding the coproduct as ΔðqÞ ¼
q ⊗ 1þ 1 ⊗ qþ g−1Δð1ÞðqÞ þOðg−2Þ. In other words
δðqÞ, which we call the cobracket of q, can be derived
in universal form thanks to the knowledge of the universal
r-matrix.
We present the results for the cobrackets of all the

generators of the deformed loop algebra uð1j1ÞL ⊕
uð1j1ÞR of the previous section. In universal form they read

δðQL;mÞ ¼ i
Xm
n¼0

½Hm−n−1 ⊗ QL;n −QL;m−n ⊗ Hn−1� þ i
Xm−1

n¼0

½2βðHm−n−2 ⊗ Q̄R;n − Q̄R;m−n−1 ⊗ Hn−1Þ

þMm−n−1 ⊗ QL;n −QL;m−n−1 ⊗ Mn�; ð5:1Þ

δðQ̄L;mÞ ¼ −i
Xm
n¼0

½Hm−n−1 ⊗ Q̄L;n − Q̄L;m−n ⊗ Hn−1� − i
Xm−1

n¼0

½2βðHm−n−2 ⊗ QR;n −QR;m−n−1 ⊗ Hn−1Þ

þMm−n−1 ⊗ Q̄L;n − Q̄L;m−n−1 ⊗ Mn�; ð5:2Þ

δðQR;mÞ ¼ i
Xm
n¼0

½Hm−n−1 ⊗ QR;n −QR;m−n ⊗ Hn−1� þ i
Xm−1

n¼0

½2βðHm−n−2 ⊗ Q̄L;n − Q̄L;m−n−1 ⊗ Hn−1Þ

−Mm−n−1 ⊗ QR;n þQR;m−n−1 ⊗ Mn�; ð5:3Þ

δðQ̄R;mÞ ¼ −i
Xm
n¼0

½Hm−n−1 ⊗ Q̄R;n − Q̄R;m−n ⊗ Hn−1� − i
Xm−1

n¼0

½2βðHm−n−2 ⊗ QL;n −QL;m−n−1 ⊗ Hn−1Þ

−Mm−n−1 ⊗ Q̄R;n þ Q̄R;m−n−1 ⊗ Mn�; ð5:4Þ
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δðbmÞ ¼ 4i
Xm−1

n¼0

½QL;m−n−1 ⊗ Q̄L;n −QR;m−n−1 ⊗ Q̄R;n þ Q̄L;m−n−1 ⊗ QL;n − Q̄R;m−n−1 ⊗ QR;n�; ð5:5Þ

δðBmÞ ¼ 2i
X
I¼L;R

Xm−1

n¼0

½QI;m−n−1 ⊗ Q̄I;n þ Q̄I;m−n−1 ⊗ QI;n� þ 4iβ
X
I¼L;R

Xm−2

n¼0

½QĪ;m−n−2 ⊗ QI;n þ Q̄Ī;m−n−2 ⊗ Q̄I;n�: ð5:6Þ

Notice that the cobrackets of the barred supercharges are obtained through complex conjugation of their nonbarred
correspondences, together with the exchangeQI ↔ Q̄I. Also, the signs of the terms involving the generatorM keep us from
easily writing the cobrackets of the supercharges in the more compact forms δðQI;mÞ and δðQ̄I;mÞ. SinceMm,Hm are central
elements of the loop algebra of uð1j1ÞL ⊕ uð1j1ÞR, their cobrackets are trivial.

A. Cobracket of the boost

We now wish to compute the cobracket of the boost δðJÞ ¼ ½J ⊗ 1þ 1 ⊗ J; r�. As in Ref. [30] we use

½J;B0� ¼ −2iB−1; ð5:7Þ
which is motivated by the fundamental representation. Moreover, if we define the action of the boost on a generic generator
q0 at level 0 as q̃0 ≡ ½J;q0�, we will assume that the boost acts on the level n qn ∼ unq0 as

½J;qn� ¼ q̃n þ in
�
2qn−1 −

1

2
qnþ1

�
; ð5:8Þ

where q̃n ∼ unq̃0. This commutator is justified by the result in the evaluation representation. In universal form we find

δðJÞ ¼ −i
�
2δLðJÞ þ 2δRðJÞ þ δHBðJÞ þ

1

2
δMbðJÞ

�
;

δIðJÞ ¼ i
X∞
m¼0

½QI;−m ⊗ Q̄I;m − Q̄I;−m ⊗ QI;m� −
i
2
½QI;0 ⊗ Q̄I;0 − Q̄I;0 ⊗ QI;0�;

δHBðJÞ ¼ i

�X∞
m¼0

B−m ⊗ Hm þ
X∞
m¼1

H−m ⊗ Bm

�
;

δMbðJÞ ¼ i
X∞
m¼0

½M−m ⊗ bm þ b−m ⊗ Mm� −
i
2
½M0 ⊗ b0 þ b0 ⊗ M0�: ð5:9Þ

As expected, δHBðJÞ is identical16 to the case of
AdS5/CFT4, and one may notice close similarities also
in the contributions with the supercharges. After going to
the evaluation representation we obtain

δðJÞ ¼ u1 þ u2
u1 − u2

�X
I¼L;R

ðQI ⊗ Q̄I − Q̄I ⊗ QIÞ

þ 1

4
ðM ⊗ bþ b ⊗ MÞ

�
þ 1

u1 − u2
ðH ⊗ B1

þB1 ⊗ HÞ: ð5:10Þ

There are obvious analogies between the cobracket and the
exact coproduct given in Eqs. (2.19), (2.20) and (2.22). As

in the case of AdS5/CFT4, the result suggests that the
semiclassical spectral parameter ui is replaced at the
quantum level by wi. Certain terms in the exact coproduct
ΔðJÞ are not captured by the cobracket, either because they
start entering at orders higher than 1/g (e.g. the contribution
with tan p

2
⊗ tan p

2
in T HB̂) or because they are symmetric

under the action of “op” [e.g. the correction to the trivial
coproduct in Δ0ðJÞ].

VI. CONCLUSIONS

In this paper we have shown that the q-Poincaré super-
symmetry is not exclusive to the AdS5/CFT4 integrable
problem, and that it can be realized also in AdS3/CFT2. This
suggests that, similarly to what happened for the secret
symmetry, also the invariance under the boost J should be
viewed as one of the several common features shared by the
AdS/CFT integrable models. It would be interesting to
identify other manifestations of J in AdS/CFT. In particular,

16In the above expression we have already used the identi-
fication Pn ∼ 2Hn−1. We refer to Ref. [30] for the expression of
δHBðJÞ before this identification.
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a background recently found to be integrable is
AdS2 × S2 × T6, with superisometry psuð1; 1j2Þ. The holo-
graphic dual might either be a superconformal quantum
mechanics, or a chiral CFT [98,99]. In Ref. [100] an exact
S-matrix theory was built, realizing a centrally extended
psuð1j1Þ Lie superalgebra. The Yangian, bonus symmetry
and Bethe ansatz have been studied in Refs. [100–103]. On
the one hand, observing the boost symmetry also in the AdS2
case, which appears to be amenable to a similar algebraic
treatment as its higher-dimensional analogues, would con-
firm the universal nature of the symmetry we are finding. On
the other hand, the AdS2 integrable structure is in several
ways more subtle, and therefore progress towards the
complete solution of the model is harder to achieve, and it
is decorated with open questions. Discovering the boost
symmetry in that setup could represent a crucial step in
overcoming some of these open problems, and we plan to
return to this issue in future work.
Since the action of J includes taking a derivative with

respect to the worldsheet momentum, the boost invariance
is sensitive to the normalization of the S-matrix.
Nevertheless, a different normalization of S would produce
only a shift in the tail of ΔðJÞ proportional to the identity
matrix. Since we can only reverse engineer the boost
coproduct and we cannot fix it a priori, we cannot obtain
constraints on the dressing phases of AdS3/CFT2. In a
scenario where the boost coproduct were instead known in
universal form, the dressing phases would need to satisfy
certain differential equations, and one could further test the
proposals of Refs. [93,94]. It would be therefore very
interesting to find alternative ways to fix the tail of the boost
coproduct, including its contribution proportional to the
identity. The achievement of this goal would certainly
require some additional inputs, and the specification of
which AdS3 background is studied. In fact the dressing
phases of AdS3 × S3 × S3 × S1 and of AdS3 × S3 × T4 are
expected to be different.
Let us mention that the AdS3 backgrounds that we are

considering can in general be supported by a mixture of
Neveu-Schwarz-Neveu-Schwarz (NSNS) and Ramond-
Ramond (RR) fluxes. It is known that in the generic case
the off-shell algebra is essentially the same as the one in the
pure RR case considered here, and that the representations
will depend on an additional parameter corresponding to
the relative amount of the fluxes [67,71].17 It would be
interesting to extend the deformed boost invariance to the

generic case of mixed fluxes: since the dispersion relation
depends on , that would corre-
spond to a deformation of the q-Poincaré algebra consid-
ered here, and it would be nice to investigate it also in the
pure NSNS limit.
Motivated by the desire of better understanding the

boost symmetry, we have also proposed a universal
expression for the classical r-matrix of the AdS3/CFT2

integrable system. Its structure resembles the one of the
AdS5/CFT4 classical r-matrix of Beisert and Spill [16].
With this result we complete some information that was
missing in AdS3/CFT2, and we contribute to putting
AdS3/CFT2 in a status closer to the one of its higher-
dimensional cousin.
The appearance of the boost invariance in both

AdS5/CFT4 and AdS3/CFT2 gives us further confidence
that J should not be just an accidental symmetry
of the fundamental representations of the underlying
symmetries, and that J may help to shed some light on
the universal formulation of the corresponding quantum
groups.
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Note added.—While writing this manuscript we received
the interesting paper [104], where the universal classical
r-matrix of AdS3/CFT2 is justified from the RTT formu-
lation. In order to match our results with those of Ref. [104]
we need to identify the generators as

QðnÞ
L ¼−QL;n; SðnÞ

L ¼ Q̄L;n;

HðnÞ
L ¼−

1

2
ðHnþMnÞ; HðnÞ

R ¼−
1

2
ðHn−MnÞ;

QðnÞ
R ¼−QR;n; SðnÞ

R ¼ Q̄R;n;

ßðnÞL ¼−
1

2
bnþ1−Bnþ1; ßðnÞR ¼ 1

2
bnþ1−Bnþ1; ð6:1Þ

where the notation of each paper is used, and the identi-
fication of bn, Bn is to be understood up to central
elements.

17It may be useful, especially when attempting to include the
boost, to reformulate the construction and have already the
commutation relations, rather than just the representations, de-
formedby this additional parameter. For example, insteadof having
fQL; Q̄Lg ¼ 1

2
ðHþMÞ whereM has eigenvalues [67,71], one

may prefer to write where M has eigenvalues m. The
generator M would then remain central even when including a
generator acting as the derivative with respect to momentum.
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