
 

Duality in a supersymmetric gauge theory from a perturbative viewpoint
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We study duality inN ¼ 1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in
scheme-independent series expansions. Using exact results, we show how the dimensions of various
fundamental and composite chiral superfields, and the quantities a, c, a=c, and b at superconformal
fixed points of the renormalization group emerge in scheme-independent series expansions in the electric
and magnetic theories. We further demonstrate that truncations of these series expansions to modest order
yield very accurate approximations to these quantities and suggest possible implications for non-
supersymmetric theories.
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I. INTRODUCTION

Transformations that allow one to deal with a strongly
coupled quantum field theory as a weakly coupled field
theory in a different form have proved to be very powerful
throughout the history of physics. An important example is
provided by the lattice formulation of quantum chromody-
namics (QCD). Although the property of asymptotic free-
dom made possible perturbative calculations at large
Euclidean energy/momentum scales μ in the deep ultraviolet
(UV), the growth of the running gauge coupling gðμÞ in the
infrared (IR) prevented reliable perturbative calculations at
low energies. This difficulty was surmounted by Wilson’s
formulation of the theory on a (Euclidean) lattice [1], in
which the plaquette term in the action is multiplied by the
coefficient βP ¼ 2Nc=g20, where g0 is the bare gauge
coupling. Thus, the strong coupling limit g0 → ∞ is
equivalent to βP → 0, allowing analytic strong-coupling
Taylor series expansions in powers of βP. From such an
expansion, the area-law behavior of the Wilson loop and
hence confinement in QCD were proved for strong g0 [1].
In a different way, a duality transformation links two
different regimes of a theory. For example, in the two-
dimensional Ising model, a duality transformation maps the
high-temperature regime to the low-temperature regime and
led to the calculation of the critical temperature in this model.
Another realization of duality occurs in the generalization of
electromagnetic theory to include Dirac monopoles.

Here we will consider a theory for which duality
relations have been very useful, namely an asymptotically
free, vectorial, gauge theory (in d ¼ 4 spacetime dimen-
sions, at zero temperature) with N ¼ 1 supersymmetry,
having a gauge group SUðNcÞ and Nf massless chiral
superfields Qi and Q̃i, i ¼ 1;…; Nf, transforming in the
fundamental and conjugate fundamental representations of
SUðNcÞ, respectively. The decomposition of the chiral
superfields Qi and Q̃i in terms of component fields is
indicated in the standard manner as Qi ¼ ϕi þ

ffiffiffi
2

p
θψ i þ

θθFi and Q̃i ¼ ϕ̃i þ
ffiffiffi
2

p
θψ̃ i þ θθF̃i, where θ is a

Grassmann variable, and ϕi, ψ i, and Fi are the scalar,
fermion, and auxiliary component fields. This theory is
invariant under a global symmetry groupGgb ¼ SUðNfÞ ⊗
SUðNfÞ ⊗ Uð1ÞB ⊗ Uð1ÞR symmetry, with the represen-
tations indicated in Table I. We call this theory super-
symmetric quantum chromodynamics (SQCD). We denote

TABLE I. The matter content of the original (electric) and dual
(magnetic) SQCD theories.

SUðNcÞ SUðNfÞ SUðNfÞ Uð1ÞB Uð1ÞR
Q Nc Nf 1 1 Nf−Nc

Nf

Q̃ N̄c 1 N̄f −1 Nf−Nc

Nf

SUðNf − NcÞ SUðNfÞ SUðNfÞ Uð1ÞB Uð1ÞR
q Nc N̄f 1 Nc

Nf−Nc

Nc
Nf

q̃ N̄c 1 Nf − Nc
Nf−Nc

Nc
Nf

ϕ 1 Nf N̄f 0 2ðNf−NcÞ
Nf
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α ¼ g2=ð4πÞ. This theory has the appeal that many of its
properties are well understood at a nonperturbative level
[2–5]. The property of asymptotic freedom requires that Nf

be less than an upper (u) bound, Nu, which, in the present
theory, is 3Nc. In this range, the theory is weakly
interacting in the deep UV, so one can calculate its
properties perturbatively. One can then investigate how it
evolves (“flows”) from the deep UV to the IR limit as
μ → 0. For Nf slightly less than 3Nc, the theory evolves to
an infrared fixed point (IRFP) of the renormalization group
(RG) at αIR, at which point it is scale-invariant and is
inferred [6] to be (super)conformally invariant. If Nf is in
the interval I∶ ð3=2ÞNc < Nf < 3Nc, the theory flows to
an IRFP in a (deconfined, chirally symmetric) non-Abelian
Coulomb phase (NACP) [3]. Henceforth, we restrict our
consideration to the NACP in this theory.
At this superconformal IRFP, it was conjectured in [3]

that the original theory is dual to the IR limit of another
N ¼ 1 supersymmetric theory with a gauge group SUðÑcÞ,
where Ñc ¼ Nf − Nc, with matter content consisting of
Nf chiral superfields qi and q̃i, i ¼ 1;…; Nf, in the
fundamental and conjugate fundamental representations of
SUðÑcÞ, respectively, together with a set of N2

f gauge-
singlet “meson” chiral superfields ϕi

j, 1 ≤ i; j ≤ Nf. The
original and dual theories were called “electric” and
“magnetic” in [3,4]. The dual theory also allows for a
unique superpotential W ¼ λϕqq̃, where λ is the super-
potential coupling. Evidence for this conjectured equiva-
lence includes the fact that the dual theory is also invariant
under the same global Ggb symmetry, and satisfies ’t Hooft
anomaly matching [3–5].
The dual theory is asymptotically free for Nf < 3Ñc,

i.e., Nf > ð3=2ÞNc and for Nf in the interval Ĩ∶ð3=2ÞÑc<
Nf<3Ñc, it flows to a superconformal IRFP in the space of
gauge and λ couplings, at which the physics is equivalent to
that in the original theory. The weak-coupling region in the
original theory corresponds to strong coupling in the dual
theory, and vice versa. This duality is well supported by
nonperturbative arguments, but one gains further insight
by seeing how the duality relations emerge perturbatively.
However, a conventional perturbative calculation, as a
series expansion in powers of the gauge coupling, encoun-
ters the difficulty that although αIR → 0 as Nf↗3Nc at the
upper end of the NACP, this theory becomes strongly
coupled, and hence not amenable to this type of perturba-
tive approach, as Nf↘ð3=2ÞNc at the lower end of the
NACP. A similar comment applies to conventional pertur-
bative expansions in the magnetic theory, which has a weak
gauge coupling as Nf↗3Ñc, but is strongly coupled as
Nf↘ð3=2ÞÑc. Even in the regions of the electric and
magnetic theories where they are weakly coupled, perturba-
tive expansions in powers of gauge couplings are scheme-
dependent.

Here we surmount this difficulty and present, for the first
time, a scheme-independent perturbative understanding of
the duality in the non-Abelian Coulomb phase of SQCD.
We utilize the fact that αIR → 0 as Nf↗3Nc, so that one
can alternatively express physical quantities at an IRFP in
the NACP as series in powers of the manifestly scheme-
independent quantity [7–9]

Δf ¼ 3Nc − Nf: ð1:1Þ

The expansion parameter in the dual theory is

Δ̃f ¼ 3Ñc − Nf ¼ 2Nf − 3Nc: ð1:2Þ

We will study dimensions of various (gauge-invariant)
chiral superfield operators and of certain quantities a, c,
a=c, and b characterizing RG flows, in both the original
and dual theories, as expansions in both Δf and Δ̃f, and
will show how various relations emerge order-by-order in
these expansions. We address and answer an important
question, namely how accurate are finite truncations of
these series expansions as approximations to the exact
results for the various scaling dimensions. Clearly, the
series expansions in powers of Δf are most accurate at
the upper end of the NACP, while the series expansions in
powers of Δ̃f are most accurate at the lower end of the
NACP. From our analysis, we will show that a combination
of finite-order expansions in these two dual expansion
parameters Δf and Δ̃f yields quite accurate approximations
to physical quantities throughout the entire NACP. Our
work thus demonstrates how perturbative calculations in
the well-chosen scheme-independent expansion parameters
Δf and Δ̃f can provide insight into results based on abstract
nonperturbative methods. Our present results extend our
previous studies of anomalous dimensions in N ¼ 1
supersymmetric gauge theories [10,11] in showing how
well a combination of perturbative expansions in Δf and
Δ̃f, reproduce exactly known results for the anomalous
dimensions of fundamental and composite chiral super-
fields, as well as quantities such as a and c. For this
purpose, we make use of the powerful electric-magnetic
duality in this theory. Just as exact results in SQCD [2–5]
have provided new insights into QCD with many fermions
(e.g., the NACP), so also, our quantitative demonstration
of the accuracy of finite truncations of these scheme-
independent series suggest that corresponding finite-order
scheme-independent series [9] in the NACP of nonsuper-
symmetric theories might be similarly accurate.

II. BACKGROUND AND CALCULATIONAL
METHODS

In this section we review some background and methods
relevant for our calculations. The series expansion of β in
powers of α is
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β ¼ −2α
X∞
l¼1

bl

�
α

4π

�
l
; ð2:1Þ

where bl is the l-loop coefficient. The first two coefficients
in the expansion (2.1) are scheme-independent, while
higher-order coefficients are scheme-dependent. For this
theory, the first two coefficients are [12]

b1 ¼ 3Nc − Nf ð2:2Þ

and [13]

b2 ¼ 2½3N2
c − ð2Nc − N−1

c ÞNf�: ð2:3Þ

For Nf slightly less than 3Nc, the two-loop beta function
has a (scheme-independent) IR zero at

αIR;2l ¼ 2πð3Nc − NfÞ
ð2Nc − N−1

c ÞNf − 3N2
c
: ð2:4Þ

IfNf is only slightly less than 3Nc, then this IRFP occurs at
weak coupling. Indeed, in the limitNc → ∞,Nf → ∞with
the ratio r ¼ Nf=Nc fixed, the IRFP in the scaled coupling
ξ ¼ αNc (which is finite in this limit) occurs at

ξIR;2l ¼ 2πð3 − rÞ
2r − 3

ð2:5Þ

and becomes arbitrarily weak as r↗3.
One can express a (gauge-invariant) physical quantity P

at this IRFP as a power series in the coupling,

P ¼
X∞
n¼0

cP;nαnIR; ð2:6Þ

where the cP;n are n-loop coefficients, and it is understood
implicitly here that αIR is the value of α at the IRFP,
calculated to the n-loop order, to match the n-loop order of
the expansion of P. One important example of a physical
quantity is the (full) scaling dimension DO of a physical
operator O at an IRFP, which, in general, differs from its
free-field value, due to interactions. We write

DO ¼ DO;free − γO; ð2:7Þ

where DO;free is the free-field scaling dimension of O and
γO is the anomalous dimension at the IRFP. In general (not
assuming that the theory is at an IRFP) the anomalous
dimension can be expanded as a conventional series in
powers of the coupling as

γO ¼
X∞
l¼1

cO;lα
l: ð2:8Þ

At an IRFP, one can calculate this to a given n-loop order
by computing the n-loop value of α and substituting it in

Eq. (2.8). This was done forO ¼ ψ̄ψ ¼ PNf

i¼1 ψ̄ iψ i in [10],
[14,15], and effects of scheme dependence were studied in
[16]. Connections between the DR [17] and NSVZ [2]
schemes have been discussed in [18].
As a physical quantity, P cannot depend on the scheme

used in the conventional calculation as the power series
(2.9). However, this property is not maintained beyond the
lowest orders in Eq. (2.9). It is therefore of great value to
devise a complementary approach in which one expresses a
physical quantity evaluated at the IRFP α ¼ αIR as an
expansion in powers of a variable such that, at every order
in this expansion, the result is scheme-independent. The
key property that makes this possible is the fact that both
αIR and Δf vanish as Nf approaches 3Nc from below.
Because of this, one can recast the conventional series (2.9)
as a power series in the manifestly scheme-independent
variableΔf. By the same logic, one can recast a series for P
in the dual, magnetic theory as a series in powers of Δ̃f.
This successfully accomplishes three goals: (i) achieving
series for the quantity P at the IRFP in the non-Abelian
Coulomb phase in both the electric and magnetic theories
that are manifestly scheme-independent, (ii) having a series
in the magnetic theory involving a small expansion
parameter Δ̃f that can be used accurately in the region
near the lower end of the NACP where the expansion
parameter Δf in the electric theory is getting large, and
hence (iii) having accurate perturbative expansions starting
from both ends and extending throughout the entirety of
the non-Abelian Coulomb phase.
For a (gauge-invariant) quantity P at the superconformal

IRFP, we write the expansions of P in powers of Δf

and Δ̃f as

P ¼
X∞
n¼0

pnΔn
f ¼

X∞
n¼0

p̃nΔ̃n
f: ð2:9Þ

In the first sum in Eq. (2.9), one takes Nc as fixed and
computes P as a function of the variable Δf, or equiv-
alently, Nf. In the second sum, for the dual theory, one
takes Ñc ¼ Nf − Nc as fixed; while varying Nf, one can
keep Ñc fixed by formally varying Nc oppositely to Nf.
The nth-order coefficients have a definite relation to terms
in conventional perturbative expansions.
At an IRFP, γO can also be expanded in a scheme-

independent series as

γO ¼
X∞
n¼1

κO;nΔn
f: ð2:10Þ

The coefficient κO;n depends on the terms in the beta
function of the theory in Eq. (2.1) up to loop order l ¼
nþ 1 and on the terms in the conventional expansion of
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γO in powers of α in Eq. (2.8) up to loop order l ¼ n,
inclusive, but does not receive contributions from higher-
loop terms. This is a very powerful observation which
can be used in two different ways. First, it allows for a
calculation of any physical quantity in a manifestly
scheme-independent way, order-by-order, even if one only
knows the gauge coupling beta function and DO to some
finite loop order. Second, if, on the other hand, one knows
an exact expression for a quantity P at the IRFP, then one
can calculate its expansions in powers of Δf and Δ̃f in
Eq. (2.9) exactly, to all orders, without doing any explicit
loop computations.
In the analysis in the present work, we will use the second

method, since the exact expressions for the relevant operator
dimensions are known in thisN ¼ 1 supersymmetric gauge
theory. To make our discussion self-contained, we will also
review the explicit method of calculating the coefficients
κO;n from knowledge of the coefficients bn and cP;n in
conventional series in powers of α. (For further details of this
method, we refer the reader to our previous papers in [9].)
For definiteness, we consider the case of the gauge-invariant
quadratic chiral superfield operator product Q̃Q (where a
sum over flavor indices is understood) and focus on the
anomalous dimension γψ̃ψ ;IR of the associated fermionic
bilinear ψ̃ψ at the IRFP, where, as defined above, ψ i and ψ̃ i
are the fermion field components in the chiral superfieldsQi

and Q̃i. This anomalous dimension is the analogue, in this
supersymmetric theory, of the quantity γψ̄ψ ;IR in nonsuper-
symmetric gauge theories that we have calculated scheme-
independent Δf expansions for in previous work [9]. The
conventional expansion for γψ̃ψ ;IR in the electric theory has
the form (2.9) with cψ̃ψ ;n ≡ cn. For the scheme-independent
expansion in the electric theory we write

γψ̃ψ ;IR ¼
X∞
j¼1

κjΔ
j
f: ð2:11Þ

To calculate κj, one begins by writing aIR ¼ αIR=ð4πÞ as a
series expansion in Δf:

aIR ¼
X∞
j¼1

ajΔ
j
f: ð2:12Þ

For an IR zero of β, we have

X∞
l¼1

blal ¼ 0: ð2:13Þ

Next, one expands the coefficients bl in Taylor series around
Nf ¼ Nu, i.e., Δf ¼ 0. Since each bl is a finite polynomial
in Nf, its Taylor series around Δf ¼ 0 truncates at a
maximal degree denoted rmaxðlÞ. One then substitutes the
resulting expansions for bl and the Δf expansion for aIR,
Eq. (2.12), in Eq. (2.13), yielding

X∞
l¼1

blal ¼ 0 ¼
X∞
l¼1

�� XrmaxðlÞ
r¼0

bðrÞl Δr
f

��X∞
j¼1

ajΔ
j
f

�
l
�

¼
X∞
n¼1

knΔn
f: ð2:14Þ

Since the sum in the last line of Eq. (2.14) is zero for all Δf,
each coefficient kn must be zero. This yields a set of linear
equations that one can solve for the an in terms of the Taylor
series coefficients of bl in the expansion about Δf ¼ 0.
Next, one inserts these expressions for the an in the Δf

expansion for aIR. Then, one carries out similar Taylor series
expansions of the cn around Δf ¼ 0 and substitutes these,
together with the expansion (2.12) of the aIR, in the series
γψ̃ψ ;IR ¼ P∞

l¼0 cla
l
IR. This finally yields the coefficients κj

in Eq. (2.11). This, then, is the procedure to obtain the
coefficients in the scheme-independent series expansion of
γψ̄ψ ;IR in powers of Δf. The same type of procedure is used
to obtain the coefficients in the scheme-independent series
expansions of other physical quantities at the IRFP.

III. RESULTS FOR MESON AND BARYON
OPERATORS

In the original (electric) theory, gauge-singlet composite
chiral superfields include the meson-type operators
Mi

j ¼ QiQ̃j, and baryon- and antibaryon-type operators
Bi1���iNc ¼ϵi1���iNc

Qi1 ���QiNc and B̃i1���iNc
¼ϵi1���iNc Q̃i1 ���Q̃iNc

,
respectively. Similarly, in the dual (magnetic) theory, in
addition to ϕi

j, one has the dual baryon and antibaryon

operators bi1���iÑc
¼ϵi1���iÑc qi1 ���qiÑc

and b̃i1���iÑc¼ϵi1���iÑc
q̃i1 ���

q̃iÑc . Duality dictates that the meson operators are matched
in the electric and magnetic theories, and similarly for the
baryon operators and the antibaryon operators. Hence, the
meson operators in the electric and magnetic theories must
have the same dimensions, and similarly for the baryon and
antibaryon operators.
In a superconformal theory, the dimension DO of a

gauge-invariant chiral superfield operator O is related to
the R-charge, RO, of the operator via DO ¼ ð3=2ÞRO.
This implies, in particular, that the scaling dimension of the
(composite) electric and (fundamental) magnetic mesons is

DM ¼ Dϕ ≡D ¼ 3ðNf − NcÞ
Nf

¼ 3Ñc

Nf
: ð3:1Þ

Note that DM;free ¼ 2 while Dϕ;free ¼ 1. We want to under-
stand how Eq. (3.1) emerges order-by-order in the scheme-
independent expansions in the original and dual theories.
To calculate the series expansion of D in powers of Δf,
we substitute Nf ¼ 3Nc − Δf in Eq. (3.1) and expand,
obtaining
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D ¼ 2 −
X∞
n¼1

�
Δf

3Nc

�
n
: ð3:2Þ

Equivalently, in the dual theory, substituting Nf¼3Ñc−Δ̃f

in Eq. (3.1) and expanding, we find

D ¼ 1þ
X∞
n¼1

�
Δ̃f

3Ñc

�n

: ð3:3Þ

These series have respective radii of convergence jΔfj ¼
3Nc and jΔ̃fj ¼ 3Ñc, and hence converge throughout the
entire NACP, since the maximal values of Δf and Δ̃f in
the NACP are ð3=2ÞNc and ð3=2ÞÑc. The truncations of
the series (3.2) and (3.3) to order n ¼ s are denoted Ds.
In Fig. 1 we plot the values of D calculated from (3.2) to

OðΔs
fÞ, i.e., Ds, in the electric theory and Ds calculated

from (3.3) in the magnetic theory for 1 ≤ s ≤ 4, together
with the exact result, for the illustrative case, Nc ¼ 3. The
maximal order s ¼ 4 is chosen to be the same as the highest
order in our SI expansions in nonsupersymmetric theories,
to facilitate accuracy comparisons.
Because the coefficients of Δn

f and Δ̃n
f in the expansions

(3.2) and (3.3) are positive, several monotonicity properties
follow (for Nf in the NACP): (i) for fixed s, Ds is a
monotonically increasing function of Nf; (ii) for fixed Nf,
Ds, as calculated in the electric theory, decreases mono-
tonically with s; and (iii) Ds, as calculated in the magnetic
theory, increases monotonically with s. As is evident from
Fig. 1, the respective fractional accuracies of the Δf and Δ̃f

series expansions in (3.2) and (3.3) are highest near the
upper and lower ends of the NACP, respectively. Thus, by
combining these two perturbative calculations, we achieve
an excellent approximation to the exact expression (3.1)
throughout all of the NACP, even with a modest value of the

truncation order, s such as s ¼ 4. This makes use of the full
power of the duality, since it allows one to treat the strong-
coupling regime in the original theory via a perturbative
calculation in the weak-coupling regime of the dual theory,
and vice versa.
We next consider the baryon-type operators. In both the

electric and magnetic theories, their scaling dimensions
have to agree, and are

DB ¼ Db ≡D0 ¼ 3NcðNf − NcÞ
2Nf

¼ 3NcÑc

2Nf
: ð3:4Þ

As with the mesons, we want to understand how this
expression for D0 emerges order-by-order in perturbation
theory, as calculated in both the original and dual theories.
In the original (electric) theory, we find

D0 ¼ Nc −
Nc

2

X∞
n¼1

�
Δf

3Nc

�
n
; ð3:5Þ

while in the dual (magnetic) theory we find

D0 ¼ Ñc −
Ñc

2

X∞
n¼1

�
Δ̃f

3Ñc

�n

: ð3:6Þ

As before, these series converge throughout the entire
NACP. The truncations of these series to order n ¼ s are
denoted D0

s.
In Fig. 2 we plot the values ofD0 calculated from (3.5) to

OðΔs
fÞ in the electric theory and from (3.6) to OðΔ̃s

fÞ in the
magnetic theory, for 1 ≤ s ≤ 4, together with the exact
result. Because the coefficients of Δn

f and Δ̃n
f in the

expansions (3.5) and (3.6) are positive, several monoto-
nicity properties follow for the calculations in both the
electric and magnetic theories (for Nf in the NACP): (i) for
fixed s, D0

s is a monotonically increasing function of Nf;

FIG. 1. The scaling dimensionD of the meson chiral superfield,
as computed to OðΔs

fÞ in the original (electric) theory (blue

dashed curves) and to OðΔ̃s
fÞ in the dual (magnetic) theory (red

dashed curves), together with the exact D (black solid curve), for
the illustrative case Nc ¼ 3. From top to bottom for the blue
curves and from bottom to top for the red curves, these depict Ds
with s ¼ 1;…; 4.

FIG. 2. The scaling dimension D0 of the baryon operators, as
computed in the electric theory (blue dashed curves) and
magnetic theory (red dashed curves), together with the exact
result (black solid curve), for the illustrative value, Nc ¼ 3. From
top to bottom for both the blue and red curves, these depict D0

s
with s ¼ 1;…; 4.
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and (ii) for fixed Nf, D0
s is a monotonically decreasing

function of s. The same comments about respective frac-
tional accuracies of the Δf and Δ̃f calculations made
for Fig. 1 hold here, so that again, by combining these
two perturbative calculations, we obtain an excellent
approximation to the exact expression (3.4) throughout
all of the NACP even with a modest truncation order, s,
such as s ¼ 4.
Corresponding to the global symmetry groups in Ggb,

there are conserved currents. We will focus on the con-

served current JðBÞμ associated with the Uð1ÞB baryon
number symmetry. The two-point correlation function
for this current (in flat space) is

hJðBÞμ ðxÞJðBÞν ð0Þi ¼ b
ð4πÞ2 ðgμν∂

2 − ∂μ∂νÞ
1

x4
: ð3:7Þ

Here b is a function of the couplings of the theory and
changes from bUV to bIR along the RG flow. For SQCD,
bUV is given by its respective free-field values, bUV ¼
2Nf=Nc and bUV ¼ 2Nf=Ñc in the electric and magnetic
theories, while bIR ¼ 6 at the IRFP in the non-Abelian
Coulomb phase in both of these theories [19]. Hence,
calculating bUV − bIR, we have, in the electric theory,

bUV − bIR ¼ −
2Δf

Nc
; ð3:8Þ

and, in the magnetic theory,

bUV − bIR ¼ −
2Δ̃f

Ñc
: ð3:9Þ

These results show that higher-order contributions to bIR in
powers of Δf, and equivalently in powers of Δ̃f, vanish.
This again shows the value of the scheme-independent
series expansion method, since the zero coefficients of the
respective Δn

f and Δ̃n
f terms with n ≥ 2 in Eqs. (3.8) and

(3.9) involve complicated cancellations when computed via
conventional (scheme-dependent) series expansions in
powers of couplings.

IV. ANALYSIS OF a AND c

The trace of the energy-momentum tensor in four
spacetime dimensions, in the presence of a curved back-
ground metric gμν, is [20]

Tμ
μ ¼

1

ð4πÞ2 ðcWμνρσWμνρσ − aE4Þ ð4:1Þ

whereWμνρσ is the Weyl tensor and E4 is the Euler density.
In d ¼ 2, it was proved that c decreases monotonically
along an RG flow [21], but this monotonicity does not hold
in d ¼ 4. The quantity a encodes important information

about the flow of a quantum field theory between two RG
fixed points and satisfies the inequality that aUV − aIR > 0
(called the a theorem) [19,22–26]. This is in accord with
the Wilsonian notion of thinning of degrees of freedom
along an RG flow [27]. For an asymptotically free theory,
aUV is given by the (massless) free-field content of the
theory [20]: aUV ¼ ð1=48Þð9Nv þ NχÞ, where here Nv and
Nχ denote the numbers of vector and chiral superfields,
respectively [20]. In the original (electric) theory, Nv ¼
N2

c − 1 and Nχ ¼ 2NcNf, while in the dual (magnetic)
theory, Nv ¼ Ñ2

c − 1 and Nχ ¼ 2ÑcNf þ N2
f. The duality

at the superconformal IRFP dictates that the value of aIR
must be identical in the electric and magnetic theories; it is
[19] aIR ¼ ð3=16Þ½2N2

c − 1 − 3ðN4
c=N2

fÞ�. Note that this

result for aIR does not contain any factors ∼e−const:=αIR that
are generic manifestations of instanton effects. Calculating
a series expansion for aIR in the electric theory, in powers
of Δf, we obtain

aIR ¼ aUV −
1

144

X∞
n¼2

ðnþ 1ÞΔn
f

ð3NcÞn−2
: ð4:2Þ

Equation (4.2) shows how the a theorem is satisfied at each
order in powers of Δf. In the magnetic theory, we find

aIR ¼ aUV −
1

144

�
21Δ̃2

f þ
X∞
n¼3

ðn − 11ÞΔ̃n
f

ð3ÑcÞn−2
�
: ð4:3Þ

Here again, the a theorem is satisfied at each order in
powers of Δ̃n

f; in this case, the result follows because the

leading-order term in the square brackets, 21Δ̃2
f, dominates

over higher-order terms ∝ Δ̃n
f with 3 ≤ n ≤ 10 with oppo-

site sign.
In Fig. 3 we plot aIR as computed to first through fourth

order in Δf in the electric theory and in Δ̃f in the magnetic
theory, together with the exact result, for the illustrative
case Nc ¼ 3.
Although the coefficient c in Eq. (4.1) does not obey a

monotonicity relation along RG flows or an inequality on
the sign of cUV − cIR, it is also of interest to calculate
scheme-independent series expansions for this difference.
For the (asymptotically free)N ¼ 1 supersymmetric gauge
theory considered here, cUV ¼ ð1=24Þð3Nv þ NχÞ, where,
as above, Nv and Nχ denote the numbers of (massless)
vector and chiral superfields [20]. The duality at the
superconformal IRFP implies that the value of cIR must
be identical in the electric and magnetic theories; it is [19]
cIR ¼ ð1=16Þ½7N2

c − 2 − ð9N4
c=N2

fÞ�. Calculating a series
expansion for cIR in the electric theory, in powers of Δf, we
obtain

cIR ¼ cUV þ Nc

48

�
2Δf −

X∞
n¼2

ðnþ 1ÞΔn
f

ð3NcÞn−1
�
: ð4:4Þ

THOMAS A. RYTTOV and ROBERT SHROCK PHYS. REV. D 97, 065020 (2018)

065020-6



In the magnetic theory, we find

cIR ¼ cUV −
Ñc

48

�
4Δ̃f þ

5Δ̃2
f

Ñc
þ
X∞
n¼3

ðn − 11ÞΔ̃n
f

ð3ÑcÞn−1
�
: ð4:5Þ

In Fig. 4we plot cIR as computed to first through fourth order
inΔf in the electric theory and in Δ̃f in the magnetic theory,
together with the exact result (black solid curve), for the
illustrative case Nc ¼ 3. The curves in Fig. 4 show the same
result as we demonstrated for operator dimensions and for
aIR, namely that by combiningΔf and Δ̃f series expansions,
one can get very good approximations to exact nonpertur-
bative expressions, even for modest truncation orders.
In a superconformal field theory, the ratio a=c is

restricted, by the positivity of energy flux, to lie in the
interval 1=2 ≤ a=c ≤ 3=2 [28–30]. (This ratio a=c satu-
rates its upper bound of 3=2 if the superconformal theory
contains only vector superfields, while it saturates its lower
bound of 1=2 if this theory contains only chiral superfields.)
We have calculated Δf and Δ̃f series expansions for
aIR=cIR and, as with aIR and cIR, we have found that that
a combination of modest-length series in these two vari-
ables gives a very good approximation to the exact result.

V. CONCLUSIONS

In conclusion, we have shown, for the first time, how
exact relations for dimensions of chiral superfields and
for the quantities a, c, a=c, and b in the non-Abelian

Coulomb phase of SQCD emerge order-by-order in
scheme-independent perturbative series expansions, as
calculated in the original (electric) theory in powers of
Δf and in the dual magnetic theory in powers of Δ̃f.
Our series expansions have a fundamental advantage over
conventional series expansions of these quantities in
powers of αIR, namely that our expansions are scheme-
independent, while conventional expansions in powers
of αIR are scheme-dependent. We have addressed and
answered the question of how well finite-order truncations
of these scheme-independent series expansions approxi-
mate exact expressions. We have demonstrated that a
combination of truncated Δf and Δ̃f series expansions of
modest order yield quite accurate approximations to exact
results for these quantities throughout the entire non-
Abelian Coulomb phase. Although these results do not
apply directly to nonsupersymmetric theories, they
encourage one in the conjecture that corresponding
finite-order series [9] in the NACP of a nonsupersym-
metric gauge theory might be similarly accurate.
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FIG. 4. The central charge cIR, as computed in the electric
theory (blue dashed curves) and magnetic theory (red dashed
curves), together with the exact result (black solid curve), for the
illustrative case Nc ¼ 3. For the electric theory, from top to
bottom, the curves refer to the calculation of cIR to OðΔs

fÞ with
s ¼ 1;…; 4, while for the magnetic theory, from bottom to top,
the curves refer to the calculation of cIR to OðΔ̃s

fÞ with
s ¼ 1;…; 4.

FIG. 3. The quantity aIR, as computed in the electric theory
(blue dashed curves) and magnetic theory (red dashed curves),
together with the exact result (black solid curve), for the
illustrative case Nc ¼ 3. From top to bottom, the blue curves
are for aIR calculated to OðΔs

fÞ with s ¼ 1;…; 4, and from

bottom to top, the red curves are for aIR calculated to OðΔ̃s
fÞwith

s ¼ 1;…; 4.
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