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We discuss a disordered λφ4 þ ρφ6 Landau-Ginzburg model defined in a d-dimensional space. First we
adopt the standard procedure of averaging the disorder-dependent free energy of the model. The dominant
contribution to this quantity is represented by a series of the replica partition functions of the system. Next,
using the replica-symmetry ansatz in the saddle-point equations, we prove that the average free energy
represents a system with multiple ground states with different order parameters. For low temperatures we
show the presence of metastable equilibrium states for some replica fields for a range of values of the
physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of
this model is performed, in the leading-order replica partition function.
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I. INTRODUCTION

The critical behavior of disordered systems has been
intensively investigated since the 1970s using numerical
simulations and analytical methods [1–7]. Two concepts
that are of fundamental importance in statistical disordered
systems defined on a spatial lattice are quenched disorder
and frustration. In quenched disordered systems, the dis-
order has slower dynamical evolution than the other
dynamical degrees of freedom and, therefore, they can
be considered spatially random. Frustration is related to the
fact that due to competing interactions there are situations
where it is not possible to find an equilibrium state for the
first neighbor spins [8,9]. These features are realized in
the Edwards-Anderson model for a spin-glass system. The
model consists of N Ising spins in a d-dimensional lattice
with finite range interaction where the exchange bonds are
randomly ferromagnetic and antiferromagnetic [10]. The
spin-glass phase is characterized by the fact that at low
temperatures there are domains where the spins become
randomly frozen in different directions in space. As has
been emphasized in the literature, disordered systems may
have infinitely many local equilibrium states [11]. For
instance, in the replica-symmetry-breaking scenario, the

free-energy landscape for the infinite-ranged spin glass has
a multivalley structure [12–14]. Many different systems
beyond the setting of magnetic materials present a spin-
glass-like behavior with an unusual free-energy landscape.
A fascinating example comes from the field of photonics, in
that light presents a glassy behavior when propagating in
random nonlinear media where the amplitudes of optical
modes play a role similar to that of the spins in a magnetic
material [15]. In addition, there have been investigations
of dynamical and pure static properties in the random-
temperature Landau-Ginzburg model, with special interest
on its spin-glass-like behavior [16,17].
Among the large variety of statistical models describing

quenched disorder, those formulated in the continuum are
especially interesting in view of their close relationship
with quantum field theory (see, e.g., Ref. [18]). In these
models, the disorder fields can be separated into two
groups: those which are random external fields and modify
the Gaussian contribution in the replica partition function,
and those that lead to a spatial variation of the couplings of
the model. In any case, the standard procedure is averaging
the disorder-dependent free energy using, for example, the
replica method [4]. Rather than computing the disorder
average of the logarithm of the partition function, the
replica method consists in averaging the kth power of the
partition function, with the average free energy being
obtained in the limit k → 0. In the mean-field theory of
spin glasses the concept of replica-symmetry breaking was

*racosta@cbpf.br
†nfuxsvai@cbpf.br
‡gkrein@ift.unesp.br
§carlos.zarro@if.ufrj.br

PHYSICAL REVIEW D 97, 065017 (2018)

2470-0010=2018=97(6)=065017(10) 065017-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.065017&domain=pdf&date_stamp=2018-03-28
https://doi.org/10.1103/PhysRevD.97.065017
https://doi.org/10.1103/PhysRevD.97.065017
https://doi.org/10.1103/PhysRevD.97.065017
https://doi.org/10.1103/PhysRevD.97.065017


introduced [19] to solve the problem of negative entropy
that afflicts the naive replica method, thereby allowing to
describe infinitely many pure thermodynamic states of the
system.
Recently, an alternative analytic calculation was pro-

posed to compute the disorder-average free energy for the
random-source Landau-Ginzburg model [20,21]. The
method—which we called the distributional zeta-function
method (DZFM)—shares similarities with the conventional
replica method. For directed polymers and interfaces in
random media (Gaussian models par excellence), the
DZFM and the conventional replica method give the same
result [22] for the replica-symmetric solution. The DZFM
was also used to investigated spontaneous symmetry
breaking in non-Gaussian models [23,24].
One of the motivations of this paper is to emphasize the

differences and similarities between the DZFM and the
conventional replica method in the study of disordered
systems. Here, we employ the DZFM to explore the free-
energy landscape of the d-dimensional disordered Landau-
Ginzburg λφ4 þ ρφ6 model. First, we write the dominant
contribution to the average free energy as a series of the
replica partition functions of the model. Next, the structure
of the replica space is investigated using the saddle-point
equations obtained from each replica field theory.
Assuming the replica-symmetry ansatz, we prove that
the average free energy represents a system with multiple
ground states with different order parameters. This situation
is similar to the free energy of the spin-glass phase obtained
in the Sherrington-Kirkpatrick model, in the replica-
symmetry-breaking scenario. Also, for low temperatures
we show the presence of metastable equilibrium states for
some replica fields in a range of values of the physical
parameters. One way to describe the spin-glass behavior in
the low-temperature region in the model is to assume that
some terms of the series representation for the average free
energy describe inhomogeneous domains. At low temper-
atures, some terms of the series may represent macroscopic

regions in space, ΩðkÞ with an order parameter φðkÞ
0 . Finally,

we perform the one-loop renormalization of this model.
This paper is organized as follows. In Sec. II we discuss

the d-dimensional random-temperature Landau-Ginzburg
model. In Sec. III we discuss the DZFM. In Sec. IV we
discuss the structure of the replica space using the saddle-
point equations of the model. In Sec. V the one-loop
renormalization of the disordered model is discussed.
Conclusions are given in Sec. VI. We assume that
ℏ ¼ c ¼ kB ¼ 1.

II. RANDOM-TEMPERATURE
LANDAU-GINZBURG MODEL

In this work we are interested in studying disordered
systems through statistical field theory defined in the
continuum. In the classical statistical mechanics of

Hamiltonian systems, any state is a probability measure
on the phase space. The expectation value of any observ-
able can be obtained from an average constructed with the
Gibbs measure

dμGibbs ¼
1

Z
e−βHdμLiouville; ð1Þ

where Z is the partition function, H is the Hamiltonian,
β ¼ 1=T, T is the absolute temperature, and dμLiouville is the
Liouville measure. The partition function is obtained from
a normalization procedure. For systems described in the
continuum with infinitely many degrees of freedom, this
framework can be maintained. For instance, Euclidean
functional methods (with functionals of probability mea-
sures) introduced classical probabilistic concepts into
quantum field theory. The Euclidean correlation functions,
i.e., the Schwinger functions, are the analytic continuation
of the imaginary-time vacuum expectation values of the
Wightman functions [25–28]. For a scalar field, these
n-point correlation functions, which are the moments of
probability measure, are defined by

hφðx1Þ…φðxkÞi ¼
1

Z

Z
½dφ�

Yk
i¼1

φðxiÞ exp ð−SðφÞÞ; ð2Þ

where ½dφ� is a formal Lebesgue measure (i.e., a measure in
the space of all field configurations) and SðφÞ is the
Euclidean action of the system.
Let us assume a λφ4 þ ρφ6 scalar model without dis-

order defined in Rd. The partition function of the model is
defined as

Z ¼
Z
∂Ω
½dφ� expð−HðφÞÞ; ð3Þ

where the effective Hamiltonian is given by HðφÞ ¼
H0ðφÞ þHIðφÞ. The free-field effective Hamiltonian
H0ðφÞ is given by

H0ðφÞ ¼
Z

ddx
1

2
φðxÞð−Δþm2

0ÞφðxÞ; ð4Þ

where Δ is the Laplacian in Rd and HIðφÞ is the self-
interacting non-Gaussian contribution, defined by

HIðφÞ ¼
Z

ddx

�
λ0
4
φ4ðxÞ þ ρ0

6
φ6ðxÞ

�
: ð5Þ

In Eq. (3), ½dφ� is the formal Lebesgue measure (i.e., a
measure in the space of all field configurations) given by
½dφ� ¼ Q

xdφðxÞ, and ∂Ω in the functional integral means
that the field φðxÞ satisfies some boundary condition.
Periodic boundary conditions can be imposed to preserve
translational invariance, replacing Rd by the torus Td.
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In order to generate the correlation functions of the
model by functional derivatives, as usual a fictitious source
is introduced. Therefore, the generating functional of the
correlation functions of the model is

ZðjÞ ¼
Z
∂Ω
½dφ� exp

�
−HðφÞ þ

Z
ddxjðxÞφðxÞ

�
: ð6Þ

The n-point correlation functions read

hφðx1Þ…φðxkÞi ¼ Z−1ðjÞ δkZðjÞ
δjðx1Þ…δjðxkÞ

����
j¼0

: ð7Þ

These moments of the probability measure are the sum of
all diagrams with k external legs, including disconnected
ones, with the exception of the vacuum diagrams. The
generating functional of n-point connected correlation
functions can be obtained by defining WðjÞ ¼ lnZðjÞ.
The order parameter of the model without disorder hφðxÞi
is given by

hφðxÞi ¼ Z−1ðjÞδZðjÞ
δjðxÞ

����
j¼0

: ð8Þ

In the following we are interested in discussing the
random-temperature d-dimensional Landau-Ginzburg
model. In the Landau-Ginzburg Hamiltonian, if λ0 and
m2

0 are regular functions of the temperature, a random
contribution δm2

0ðxÞ added to m2
0 can be considered as a

local perturbation in the temperature. In this case the
Hamiltonian of the model becomes

Hðφ; δm2
0Þ ¼

Z
ddx

�
1

2
φðxÞð−Δþm2

0 − δm2
0ðxÞÞφðxÞ

þ λ0
4
φ4ðxÞ þ ρ0

6
φ6ðxÞ

�
: ð9Þ

The φ6 contribution in the interaction Hamiltonian must be
introduced to obtain a Hamiltonian that is bounded from
below, as is necessary to correctly describe the critical
properties of the model. Brézin and Dominicis [29],
studying a random field model, showed that new inter-
actions should be considered. This term is related to the
tricritical phenomenon [30,31].
The local minima in the Hamiltonian are the configu-

rations of the scalar field that satisfy the saddle-point
equations where the solutions depend on the particular
configuration of the random mass. (The terms “random
mass”/“random temperature,” “false vacuum”/“metastable
equilibrium state,” and “true vacuum”/“stable equilibrium
state” are used interchangeably throughout the text.) The
existence of a large number of metastable states in many
disordered systems and the loss of translational invariance
makes the traditional perturbative expansion formalism

quite problematic. As discussed in the literature, averaging
the free energy over the disorder field allows us to imple-
ment a perturbative approach in a straightforward way.
Let us briefly discuss the n-point correlation function

associatedwith a disordered system.Thedisorder-generating
functional for one realization of the disorder is given by

Zðδm2
0;jÞ

¼
Z
∂Ω
½dφ�exp

�
−Hðφ;δm2

0Þþ
Z

ddxjðxÞφðxÞ
�
; ð10Þ

where a fictitious source jðxÞ is introduced. The n-point
correlation function for one realization of disorder reads

hφðx1Þ…φðxnÞiδm2
0

¼ 1

Zðδm2
0Þ
Z

½dφ�
Yn
i¼1

φðxiÞ exp ð−Hðφ; δm2
0ÞÞ; ð11Þ

where the disordered functional integral Zðδm2
0Þ ¼

Zðδm2
0; jÞjj¼0. As in the pure system, one can define a

generating functional for one disorder realization,
W1ðδm2

0; jÞ ¼ lnZðδm2
0; jÞ. Now, we can define a

disorder-averaged correlation function as follows:

E½hφðx1Þ…φðxnÞiδm2
0
�

¼
Z

½dδm2
0�Pðδm2

0Þhφðx1Þ…φðxnÞiδm2
0
; ð12Þ

where E½…� means the average over the ensemble of all
the realizations of the quenched disorder, ½dδm2

0� is the
formal Lebesguemeasure, and the probability distribution of
the disorder is written as ½dδm2

0�Pðδm2
0Þ, where Pðδm2

0Þ is
given by

Pðδm2
0Þ ¼ p0 exp

�
−

1

4σ

Z
ddxðδm2

0ðxÞÞ2
�
: ð13Þ

The quantity σ is a small parameter that describes the
strength of disorder and p0 is a normalization constant.
In this case we have a delta-correlated disorder field, i.e.,
E½δm2

0ðxÞδm2
0ðyÞ� ¼ σδdðx − yÞ. A relevant quantity is

the disorder-averaged generating functional W2ðjÞ ¼
E½W1ðδm2

0; jÞ�:

W2ðjÞ ¼
Z

½dδm2
0�Pðδm2

0Þ lnZðδm2
0; jÞ: ð14Þ

Taking the functional derivative of W2ðjÞ with respect to
jðxÞ, we get

δW2ðjÞ
δjðxÞ

����
j¼0

¼
Z

½dδm2
0�Pðδm2

0Þ
�

1

Zðh; jÞ
δZðh; jÞ
δjðxÞ

�����
j¼0

:

ð15Þ
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Since hφðxÞiδm2
0
is the expectation value of the field for a

given configuration of the disorder in the Euclidean field
theory with randommass, the above quantity is the averaged
normalized expectation value of the field. Taking two func-
tional derivatives of W2ðjÞ with respect to jðxÞ, we get

δ2W2ðjÞ
δjðx1Þδjðx2Þ

����
jðxiÞ¼0

¼ E½hφðx1Þφðx2Þiδm2
0
�

− E½hφðx1Þiδm2
0
hφðx2Þiδm2

0
�: ð16Þ

That is, contrary to the pure-system case, one finds
that E½hφðx1Þiδm2

0
hφðx2Þiδm2

0
� is different from

E½hφðx1Þiδm2
0
�E½hφðx2Þiδm2

0
�. This fact shows that taking

functional derivatives of WðjÞ does not lead to connected
correlation functions. Indeed, in the disordered system, there
is a multivalley structure spoiling the usual perturbative
approach, in which the field is expanded around only one
minimum [32,33]. One way to tackle this problem is to use
the spectral zeta-function method, which is a global
approach, i.e., we do not rely upon only one specific
minimum. Our aim is to compute

W2ðjÞjj¼0 ¼
Z

½dδm2
0�Pðδm2

0Þ lnZðδm2
0Þ: ð17Þ

In the next section we use the DZFM to calculate the
average free energy of the system.

III. DISTRIBUTIONAL ZETA-FUNCTION
METHOD

For free fields without disorder, the spectral zeta-func-
tion is a way of regularizing the determinant of the Laplace
operator with some boundary conditions, and it can be used
to calculate the free energy of the system. Here, we are
interested in obtaining the average free energy which is
directly related to W2ðjÞjj¼0, after introducing the temper-
ature, i.e., F ¼ − 1

βW2ðjÞjj¼0. Our aim is to compute the
disorder-averaged free energy given by

F ¼ −
1

β

Z
½dδm2

0�Pðδm2
0Þ lnZðδm2

0Þ; ð18Þ

where again ½dδm2
0� is also a formal Lebesgue measure.

Recall that a measure space ðΩ;W; ηÞ consists in a setΩ,
a σ algebra W in Ω, and a measure η on this σ algebra.
Given a measure space ðΩ;W; ηÞ and a measurable f:
Ω → ð0;∞Þ, we define the associated generalized ζ func-
tion as

ζη;fðsÞ ¼
Z
Ω
fðωÞ−sdηðωÞ

for those s ∈ C such that f−s ∈ L1ðηÞ, where in the above
integral f−s ¼ expð−s logðfÞÞ is obtained using the prin-
cipal branch of the logarithm. This formalism contains

some well-known examples of zeta functions, such as the
classical Riemann zeta function [34,35], the prime zeta
function [36–39], the families of super-zeta functions [40],
and the spectral zeta functions [41]. The usual approach is
to define zeta functions in terms of a countable collection of
numbers, such as prime numbers, length of closed paths,
etc. Here we use the definition of the distributional zeta
function ΦðsÞ, inspired by the spectral zeta function, as

ΦðsÞ ¼
Z

½dδm2
0�Pðδm2

0Þ
1

Zðδm2
0Þs

ð19Þ

for s ∈ C, where this function is defined in the region
where the above integral converges. The average free
energy can be written as

F ¼ 1

β
ðd=dsÞΦðsÞjs¼0þ ; ReðsÞ ≥ 0; ð20Þ

where ΦðsÞ is well defined. To proceed, we use Euler’s
integral representation for the gamma function,

1

Zðδm2
0Þs

¼ 1

ΓðsÞ
Z

∞

0

dtts−1e−Zðδm2
0
Þt; for ReðsÞ> 0: ð21Þ

Although the above Mellin integral converges only for
ReðsÞ > 0, as Zðδm2

0Þ > 0, we will show how to obtain
from the above expression a formula for the free energy
valid for ReðsÞ ≥ 0. Substituting Eq. (21) into Eq. (19),
we get

ΦðsÞ ¼ 1

ΓðsÞ
Z

½dδm2
0�Pðδm2

0Þ
Z

∞

0

dtts−1e−Zðδm2
0
Þt: ð22Þ

We already know that the distributional zeta function ΦðsÞ
is defined for ReðsÞ ≥ 0. Now we will use the above
expression to compute its derivative at s ¼ 0 using ana-
lytical tools. We assume (when necessary) the commuta-
tivity of the disorder average, differentiation, and
integration.
To continue, we take a > 0 and write Φ ¼ Φ1 þΦ2,

where

Φ1ðsÞ ¼
1

ΓðsÞ
Z

½dδm2
0�Pðδm2

0Þ
Z

a

0

dtts−1e−Zðδm2
0
Þt ð23Þ

and

Φ2ðsÞ ¼
1

ΓðsÞ
Z

½dδm2
0�Pðδm2

0Þ
Z

∞

a
dtts−1e−Zðδm2

0
Þt; ð24Þ

where a is a dimensionless parameter, whose interpretation
will be discussed in the next section. The average free
energy can be written as
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F ¼ 1

β

d
ds

Φ1ðsÞ
����
s¼0þ

þ 1

β

d
ds

Φ2ðsÞ
����
s¼0

: ð25Þ

Let us define the integer moment of the partition function
E½ðZðδm2

0ÞÞk�≡ E½Zk�, where

E½ðZðδm2
0ÞÞk� ¼

Z
½dδm2

0�Pðδm2
0ÞðZðδm2

0ÞÞk: ð26Þ

The integral Φ2ðsÞ defines an analytic function defined in
the whole complex plane. The contribution of Φ1ðsÞ reads

Φ1ðsÞ ¼
as

Γðsþ 1Þ þ
1

ΓðsÞ
X∞
k¼1

ð−1Þkakþs

k!ðkþ sÞ E½Z
k�; ð27Þ

which is valid for ReðsÞ ≥ 0. The function ΓðsÞ has a pole
at s ¼ 0 with residue 1, and therefore

d
ds

Φ1ðsÞjs¼0þ ¼
X∞
k¼1

ð−1Þkak
k!k

E½Zk� þ fðaÞ; ð28Þ

where

fðaÞ ¼ d
ds

�
as

Γðsþ 1Þ
�����

s¼0

¼ ðlog aþ γÞ; ð29Þ

and γ is Euler’s constant 0.577… The derivative of Φ2 in
Eq. (24) is given by

d
ds

Φ2ðsÞjs¼0 ¼
Z

½dδm2
0�Pðδm2

0Þ
Z

∞

a

dt
t
e−Zðδm2

0
Þt ¼ RðaÞ:

ð30Þ

Hence, integrating over the disorder, the average free
energy can be represented by

F ¼ 1

β

�X∞
k¼1

ð−1Þkak
k!k

E½Zk� þ logaþ γ þ RðaÞ
�
: ð31Þ

Notice that RðaÞ vanishes as long as a → ∞. Indeed, in the
following we discuss the asymptotic behavior of RðaÞ,
which is related to the incomplete gamma function, defined
as [42]

Γðα; xÞ ¼
Z

∞

x
e−ttα−1dt: ð32Þ

The asymptotic representation for jxj → ∞ and −3π=2 <
arg x < 3π=2 reads

Γðα; xÞ ∼ xα−1e−x
�
1þ α − 1

x
þ ðα − 1Þðα − 2Þ

x2
þ � � �

�
:

ð33Þ

To conclude this section, we note that the spectral zeta
regularization is sometimes used in quantum and statistical
field theories to regularize the determinants of operators.
Although inspired by the spectral zeta function, the DZFM
is not a regularization procedure: the representation is used
to compute the free energy of disordered systems in terms
of replica partition functions. To regularize ultraviolet
divergences, dimensional regularization is employed,
which is free from the problems known as “multiplicative
anomalies” [43,44] that accompany the zeta regularization
method. Nevertheless, for technical reasons there are some
similarities between the DZFM and zeta regularization,
e.g., the loga contribution appearing in Eq. (31) is
analogous to the contribution to the free energy
ζð0Þ log μ2 that appears in the latter, where μ is a parameter
with dimensions of mass introduced when performing
analytic continuations. We note that in the present case,
the log a term does not change the thermodynamics.

IV. THE GLASS-LIKE PHASE IN THE
DISORDERED MODEL

In this section we will discuss the glass-like phase in the
disordered model. From the series representation of the
average free energy we have to calculate the integer
moments of the partition function E½Zk�. Using the prob-
ability distribution for the disorder and the Hamiltonian of
the model, this quantity is given by

E½Zk� ¼
Z Yk

i¼1

½dφi�e−HeffðφiÞ; ð34Þ

where the effective Hamiltonian HeffðφiÞ is written as

HeffðφiÞ ¼
Z

ddx

�
1

2

Xk
i¼1

φiðxÞð−Δþm2
0ÞφiðxÞ

þ 1

4

Xk
i;j¼1

gijφ2
i ðxÞφ2

jðxÞ þ
ρ0
6

Xk
i¼1

φ6
i ðxÞ

�
; ð35Þ

where the replica-symmetric coupling constants gij are
given by gij ¼ ðλ0δij − σÞ. The saddle-point equations
derived from each replica partition function read

ð−Δþm2
0ÞφiðxÞ þ λ0φ

3
i ðxÞ þ ρ0φ

5
i ðxÞ

− σφiðxÞ
Xk
j¼1

φ2
jðxÞ ¼ 0: ð36Þ
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Using the replica-symmetry ansatz φiðxÞ ¼ φjðxÞ, the
above equation becomes

ð−Δþm2
0ÞφiðxÞ þ ðλ0 − kσÞφ3

i ðxÞ þ ρ0φ
5
i ðxÞ ¼ 0: ð37Þ

In the replica method, using the simplest possible
replica-symmetric ansatz in each replica partition function,
we obtain the saddle-point equations of systems without
disorder. The replica-symmetry-breaking scheme was
introduced to take into account the presence of many
different local minima in the disorder Hamiltonian of the
original model. For instance, a manifestation of this replica-
symmetry breaking appears in ferromagnetic systems with
random spin bonds. There is a low-temperature regime with
frustrated spin domains nucleated in a ferromagnetic back-
ground [45]. As we will see, it is possible to obtain a
structure with different order parameters in the scenario
constructed using the DZFM, where we do not follow the
standard replica-symmetry-breaking arguments. Indeed,
consider a generic term of the series given by Eq. (31)
with a replica partition function given by E½Zl� [see also
Eqs. (34) and (35)]. We are led to the following choice for
the structure of the fields in each replica partition function:

(
φðlÞ
i ðxÞ ¼ φðlÞðxÞ for l ¼ 1; 2;…; N;

φðlÞ
i ðxÞ ¼ 0 for l > N;

ð38Þ

where for the sake of simplicity we still employ the same
notation for the field. Therefore, the average free energy
becomes

F ¼ 1

β

XN
k¼1

ð−1Þkak
k!k

E½Zk� þ � � � : ð39Þ

In Eq. (31), the free energy is independent of a. However,
the entire approach relies on the fact that a can be chosen
large enough so that RðaÞ can be neglected in practice. In
this case, the free energy is described by a series which is a
dependent. As we will see, this series is able to describe a
system with multiple ground states with different order
parameters. A whole class of amorphous systems will be
described by changing this dimensionless parameter.
To proceed, the mean-field theory corresponds to a

saddle-point approximation in each replica partition func-
tion. A perturbative approach give us the fluctuation
corrections to mean-field theory. Hence, to implement a
perturbative scheme, it is necessary to investigate fluctua-
tions around the mean-field equations. Imposing the
replica-symmetric ansatz, the replica partition function
and the effective Hamiltonian for each replica partition
function read

E½Zk� ¼ 1

k!

Z Yk
i¼1

½dφðkÞ
i �e−HeffðφðkÞ

i Þ; ð40Þ

and

HeffðφðkÞ
i Þ¼

Z
ddx

Xk
i¼1

�
1

2
φðkÞ
i ðxÞð−Δþm2

0ÞφðkÞ
i ðxÞ

þ1

4
ðλ0−kσÞðφðkÞ

i ðxÞÞ4þρ0
6
ðφðkÞ

i ðxÞÞ6
�
: ð41Þ

Note that a factor of 1
k! was absorbed into E½Zk�, which can

be interpreted as representing an ensemble of k-identical
replica fields. Also, the fields in each replica partition
function are different since each field has the quartic
coefficient ðλ0 − kσÞ. Up to now, we have followed the
approach developed in Refs. [23,24], where we considered
only the leading term in the series representation for the
averaged free energy. However, in order to access the glass-
like phases that characterize a disordered system, we have
to consider the contributions of all of the terms in the series
given by Eq. (39). In the following we show that each term
in the series in Eq. (39) describes a field theory with
different order parameters. Therefore, a single order
parameter is insufficient to describe the low-temperature
phase of the disordered system.
Here we follow the discussion for the tricritical phe-

nomenon presented in Ref. [46]. Let us define a critical kc
for each temperature given by

kc ¼
�
λ0ðTÞ
σ

−
4

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ðTÞρ0
3

r 	
; ð42Þ

where bxc means the integer part of x. Note that kc is a
function of σ, m0, λ0, and ρ0. For simplicity, we consider
the case where m2

0ðTÞ > 0. Possible functional forms for
the squared mass and coupling constant are m2

0ðTÞ ¼
μ2−γTγ and λ0ðTÞ ¼ μd−4−αTα, where μ is an arbitrary
parameter with dimensions of mass. The region in the
parameter space for which k ≤ kc corresponds to the
situation where metastability is absent, as the replica fields
in each replica partition function fluctuate around zero-
value, stable equilibrium states. For k > kc, the zero value
for the replica fields is a metastable equilibrium state. For
these replica partition functions there are first-order phase
transitions. The existence of domains with different order
parameters can be most easily understood using an analogy
with a dynamical phase transition induced by a deep
temperature quenching [47]. Specifically, a system initially
in a stable high-temperature equilibrium state will develop
spatially inhomogeneous domains when quenched to suf-
ficiently low temperatures. The dynamical evolution stops
when the system reaches a new equilibrium state. The
nature of the inhomogeneities depends on the equilibrium
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free energy landscape. In the present case, the inhomoge-
neities appear in the form of bubble nucleation due to the
form of the replica free energy in Eq. (41), which signals
first-order phase transitions.
In the series representation for the free energy, each

replica partition function is defined by a functional space
where the replica fields are different. As already discussed,
the contribution to the free energy that we are interested is a
dependent, and therefore this structure with multiple
ground states with different order parameters depends on
a, whose specific value depends on the physical system
under consideration. Different classes of amorphous sys-
tems are characterized by different values of a: when one
changes the value of a, one chooses a subset of replica
partition functions that will be the relevant ones in the
series. This is a quite interesting situation, in which the
structure of the vacuum states is modified by changing this
dimensionless parameter. We claim that the series repre-
sentation for the average free energy leads to a natural
interpretation of describing inhomogeneous systems. The
average free energy (39) can be written as

F ¼ F1 þ
1

β

XN
k¼kc

ð−1Þkak
k

E½Zk� þ � � � ; ð43Þ

where F1 is the contribution to the average free energy for
replica fields which oscillate around the true vacuum, i.e.,

φðkÞ
0 ¼ 0, for k ≤ kc. E½Zk� is defined in Eqs. (40) and (41).
One interpretation for this series is that each term

describes macroscopic homogeneous domains. Each

domain ΩðkÞ has at least one order parameter φðkÞ
0 . An

important question is the size of the domains in the model.
The size of each domain is characterized by the correlation
length ξðkÞ, which can be estimated from the renormalized
correlation functions. Therefore, in the next section we will
perform the one-loop renormalization of the model.

V. ONE-LOOP RENORMALIZATION IN THE
DISORDERED MODEL

To proceed we will go beyond the mean-field approxi-
mation by implementing the one-loop renormalization in
this model. For the sake of simplicity, we consider the
leading replica partition function. This partition function is
described by a large-N Euclidean replica field theory [23].
Notice that all of the calculations can be performed in a
generic replica partition function. The leading replica
partition function is written as

E½ZN � ¼ 1

N!

Z YN
i¼1

½dφi�e−HeffðφiÞ; ð44Þ

where

HeffðφiÞ ¼
Z

ddx
XN
i¼1

�
1

2
φiðxÞð−Δþm2

0ÞφiðxÞ

þ 1

4
ðλ0 − NσÞφ4

i ðxÞ þ
ρ0
6
φ6
i ðxÞ

�
; ð45Þ

where for simplicity φðNÞ
i ¼ φi. Let us define g0 ¼ λ0 − f0,

where f0 ¼ Nσ. We maintain f0 fixed while N → ∞ and
σ → 0. Since in the Landau-Ginzburg scenario λ0 depends
on the temperature, g0 is not positive definite for suffi-
ciently low temperatures. For simplicity we assume thatm2

0

is a positive quantity. In this situation we have N replicas
with true and false vacua. Vacuum transitions in this theory
with N replicas can be described in the following way.
Lowering the temperature, each replica field has a false
vacuum and two degenerate true vacuum states. The
transition from the false vacuum to the true one will
nucleate bubbles of the true vacuum [48–50]. One way
to proceed is to calculate the transition rates in the diluted
instanton approximation. This is a standard calculation that
can be found in the literature. Instead of this, our goal is to
perform the one-loop renormalization of the model.
At this point, let us introduce an external source JiðxÞ in

replica space linearly coupled with each replica.
Considering only the leading term in the series representa-
tion for the average free energy, and absorbing the
dimensionless quantity a in the functional measure, we
are able to define the generating functional of all correlation
functions for a large-N Euclidean field theory as
E½ZNðJÞ� ¼ ZðJÞ. To proceed, we follow Ref. [51].
Accordingly, this generating functional of all correlation
functions of this Euclidean field theory is given by

ZðJÞ ¼ 1

N!

Z YN
i¼1

½dφi�e−HeffðφiÞþ
R

ddx
P

N
i¼1

Jiφi : ð46Þ

It is possible to define the generating functional of
connected correlation functions WðJ Þ ¼ lnZðJ Þ. For
simplicity we assume that we have one replica field.
Since in the large-N approximation all of the replica fields
are equal, this procedure is identical for all of the fields. The
generating functional of one-particle irreducible correla-
tions (vertex functions) Γ½ϕ̄� is obtained by taking the
Legendre transform of WðJ Þ,

Γ½ϕ̄� þWðJ Þ ¼
Z

ddxðJ ðxÞϕ̄ðxÞÞ; ð47Þ

where

ϕ̄ðxÞ ¼ δWðJ Þ
δJ

����
J¼0

: ð48Þ

For the sake of completeness we discuss the one-loop
renormalization of the corresponding theory. First, a vertex
expansion for the effective action is given by
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Γ½ϕ̄� ¼
X∞
n¼0

1

n!

Z Yn
i¼1

ddxiΓðnÞðx1;…; xnÞϕ̄ðx1Þ…ϕ̄ðxnÞ;

ð49Þ

where the expansion coefficients ΓðnÞ correspond to the
one-particle irreducible (1PI) proper vertex. Writing the
effective action in powers of momentum around the point
where all external momenta vanish, we have

Γ½ϕ̄� ¼
Z

ddxVðϕ̄Þ þ � � � ð50Þ

The term Vðϕ̄Þ is called the effective potential which takes
into account the fluctuation in the model. Let us define the
Fourier transform of the 1PI proper vertex. We get

ΓðnÞðx1;…; xnÞ ¼
1

ð2πÞn
Z Yn

i¼1

ddkið2πÞd

× δðk1 þ � � � þ knÞeiðk1x1þ���þknxnÞΓ̃ðnÞðk1;…; knÞ: ð51Þ
Now, we assume that the field ϕ̄ðxÞ ¼ ϕ is uniform. This

condition is similar to the diluted instanton approximation.
In this case, we can write

Γ½ϕ� ¼
Z

ddx
X∞
n¼1

1

n!
½Γ̃ðnÞð0;…; 0Þϕn þ � � ��: ð52Þ

The effective potential can be written as

VðϕÞ ¼
X
n

1

n!
Γ̃ðnÞð0;…; 0Þϕn: ð53Þ

From the above discussion it is possible to write the
effective potential for each replica field in the leading
replica partition function as VðϕÞ ¼ V1ðϕÞ þ V2ðϕÞ,
where

V1ðϕÞ ¼
1

2
ðm2

0 þ δm2
0Þϕ2 þ 1

4
ðg0 þ δg0Þϕ4

þ 1

4
ðρ0 þ δρ0Þϕ6; ð54Þ

δm2
0, δg0, and δρ0 are the counterterms that have to be

introduced to remove divergent terms, and

V2ðϕÞ ¼
1

2

Z
ddp
ð2πÞd ln

�
1þ 1

p2 þm2
0

ð3g0ϕ2 þ 5ρ0ϕ
4Þ
�
:

ð55Þ
The calculation that we present here takes into account the
corrections due to the fluctuations around the saddle-point
of each replica partition function. To proceed, we are
interested in implementing the one-loop renormalization in
each replica field theory. The contribution to the effective
potential given by V2ðϕÞ can be written as

V2ðϕÞ ¼
X∞
s¼1

ð−1Þsþ1

2s
ð3g0ϕ2 þ 5ρ0ϕ

4ÞsIðs; dÞ; ð56Þ

where Iðs; dÞ is given by

Iðs; dÞ ¼
Z

ddq
ð2πÞd

1

ðq2 þm2
0Þs

¼ 1

ð2 ffiffiffi
π

p Þd
Γðs − d

2
Þ

ΓðsÞ ðm2
0Þ

d
2
−s: ð57Þ

At this point, let us use an analytic regularization
procedure that has been used in field theory [52] and also
to obtain the renormalized vacuum energy of a quantum
field in the presence of boundaries [53–55]. Using the well-
known result that in the neighborhood of the pole z ¼ −n
ðn ¼ 0; 1; 2;…Þ and for ε → 0 the gamma function has the
representation

Γð−nþ εÞ ¼ ð−1Þn
n!

�
1

ε
þ ψðnþ 1Þ

�
ð58Þ

[where ψðnþ 1Þ, the digamma function, is the regular part
in the neighborhood of the pole], and using the renorm-
alization conditions

d2

dϕ2
VðϕÞjϕ¼0 ¼ m2

R;

d4

dϕ4
VðϕÞjϕ¼0 ¼ gR;

d6

dϕ6
VðϕÞjϕ¼0 ¼ ρR; ð59Þ

we obtain renormalized physical quantities. Note that the
normalization conditions are chosen in the metastable
vacuum state. It is possible to choose another normalization
condition such as in the true minimum of the effective
potential. We would like to stress that all of the renorm-
alization conditions are equivalent after one establishes the
correspondence between them [56]. For the sake of
simplicity, we consider the case where d ¼ 4:

m2
R ¼ m2

0

�
1 −

3g0ψð2Þ
16π2

�
; ð60Þ

gR ¼ 6g0 þ
9ψð1Þ
4π2

g20 −
15ψð2Þ
4π2

ρ0m2
0; ð61Þ

ρR ¼ ρ0

�
120 −

675ψð1Þ
2π2

g0

�
þ 369

4π2
g30
m2

0

; ð62Þ

where ψð1Þ ¼ −γ and ψð2Þ ¼ −γ þ 1.
In conclusion, the DZFM allows us to write a series

representation for the average free energy where each term
is given by a replica partition function. In the leading-order
approximation we get only one replica partition function
with N identical fields. In this case, it is sufficient to work
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with only one replica field. In order to renormalize this
theory we used the effective potential approach. Combining
an analytic regularization procedure to regularize the theory
and the standard renormalization conditions, we obtained a
finite theory. Notice that in order to describe an amorphous
system, we had to take into account many replica partition
functions in the series representation for the free energy. In
this case, the renormalization procedure can be imple-
mented by the same token as the case discussed above.

VI. CONCLUSIONS

How the mathematical formalism of the statistical
mechanics of disordered systems differs from that of
homogeneous systems is a fundamental question. In
homogeneous systems the study of the low-temperature
phase can be simplified making use of the many spatial
symmetries that such systems have. In principle, in
quenched disordered systems these symmetries are absent.
The first step to recover at least the translational symmetry
in disordered systems is averaging over the quenched
disorder. Here, in order to partially answer the above
question, we would like to discuss a few disordered models
that have been investigated on the lattice and also using
statistical field theory defined in the continuum.
One of the simplest models of spin glass is the Edwards-

Anderson model. The spin-glass phase of this model is
characterized by the absence of orientational localized
magnetic-moment ordering in space at low temperatures.
This indicates that the system does not have a unique
ground state. These multiple vacuum states appear in an
infinite-range spin model: the Sherrington-Kirkpatrick
model. In this model, a replica-symmetry-breaking
mechanism is introduced in order to prevent the emergence
of unphysical results, i.e., a negative entropy at low
temperatures, which would arise with the assumption of
a replica-symmetric solution in such a model. In the
replica-symmetry-breaking scheme for this fully connected
model, the mean-field approximation predicts a unusual
structure for the free energy: the existence of a multivalley
structure in the free-energy landscape. Studying a statistical
field theory defined in the continuum, some authors
using the replica method with a replica-symmetry-breaking
mechanism have discussed the spin-glass-like behavior and
the possibility of the existence of infinitely many ground
states in the random-temperature Landau-Ginzburg model.

One of the motivations of this paper was to emphasize
the differences and similarities between the DZFM and the
conventional replica method by discussing a disordered
λφ4 þ ρφ6 Landau-Ginzburg model defined in a d-dimen-
sional space. First, we adopted the standard procedure by
averaging the disorder-dependent free energy using the
DZFM. We showed that the dominant contribution to the
average free energy of this system is written as a series of
the replica partition functions of the model. In a generic
replica partition function, the structure of the replica space
was investigated using the saddle-point equations. In each
replica partition function we imposed the replica-symmetry
ansatz. We proved that the average free energy represents a
system with multiple ground states with different order
parameters. This situation is quite similar to the one
obtained in a fully connected mean-field model in a
replica-symmetry-breaking scenario. For low temperatures,
we also showed the existence of metastable equilibrium
states for some replica fields. In the low-temperature
regime, one way to proceed is to consider the possibility
that the series representation for the average free energy
describes inhomogeneous domains, i.e., macroscopic
regions in a sample ΩðkÞ with at least one proper character-

istic order parameter φðkÞ
0 .

Finally, we discussed the leading term in the series
representation for the average free energy. This leading
term of this series expansion is a large-N Euclidean replica
field theory. In this leading-order replica partition function,
the one-loop renormalization of this model was performed.
It is important to point out that it is possible to go beyond
the one-loop approximation using the composite field
operator formalism [57–62], where an infinite number of
leading diagrams is summed. This technique deals with the
effective action formalism for composite operators. One
must consider a generalization of the effective action where
the scalar field is coupled linearly and quadratically to
sources. This generalization is under investigation by the
authors.
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