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The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of
de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman
definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic
phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies
state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a
uniform electric field is reviewed and Schwinger’s result for the vacuum decay rate is recovered by this
same real time analysis. The vacuum decay rate in each case is also calculated by switching the background
field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again.
In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are
verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter
case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a
greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E-field
case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of
their backreaction effects on the background field estimated. Possible consequences of the Hubble scale
instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological “constant”
problem are discussed.
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I. INTRODUCTION

The vacuum state of quantum field theory (QFT) in flat
Minkowski space, with no external fields, is defined as the
eigenstate of the Hamiltonian with the lowest eigenvalue.
The existence of a Hamiltonian generator of time transla-
tional symmetry, with a non-negative spectrum, bounded
from below is crucial to the existence and determination of
the vacuum ground state, containing no particle excitations.
Particle states are defined then by solutions of relativistic
wave equations forming irreducible representations of the
Poincaré group. The vacuum state is invariant under
translations, rotations, and Lorentz boosts, and the corre-
lation functions built upon this vacuum state enjoy com-
plete invariance under Poincaré symmetry.
As is well known, these properties do not hold in a

general curved spacetime, in time-dependent external
background fields, nor even for a free QFT in flat spacetime
under general coordinate transformations that are not
Poincaré symmetries. In these cases the Hamiltonian
becomes time dependent or no Hamiltonian bounded from
below exists at all, and the concepts of “vacuum” or

“particles” become much more subtle. In situations when
the background has a high degree of symmetry, such as de
Sitter spacetime, it has been customary to avoid the particle
concept altogether, and focus attention instead on the state
possessing the maximal symmetry of the background. In de
Sitter space, this maximal Oð4; 1Þ symmetric state for
massive fields is commonly known as the Bunch-Davies
state.1 The question of whether the Bunch-Davies state is
actually a “vacuum” state, or a stable state at all, has been
the subject of a number of investigations [3–6], although
with implications that appear to differ somewhat from each
other, even for free fields [7,8]. When self-interactions are
considered, additional differences between the various
approaches arise [9–19]. At yet another level are the
potential effects of graviton loops, when higher order
gravitational interactions are considered [20].
In view of the central role the Bunch-Davies state plays

in cosmological models of inflation and the origin of
fluctuations that give rise to anisotropies in the Universe
[21], as well as the importance of de Sitter vacuum
instability to the fundamental issue of vacuum energy in
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1The state was first investigated by several authors [1,2] and
might also be called the Chernikov-Tagirov-Bunch-Davies
(CTBD) state.
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cosmology and the cosmological constant problem [22–24],
it is essential that the physical basis of the QFT vacuum in
de Sitter space be clearly established. Reconciling the
various approaches to vacuum energy in cosmology when
the technical issues which arise in the cases that interactions,
light fields, or graviton loops are considered, is bound to be
more difficult if de Sitter vacuum decay in the simplest and
best controlled case of a massive scalar free field is not first
fully clarified.
To this end, in this paper we discuss in detail the close

correspondence between QFT in de Sitter spacetime and in
the nongravitational background of a constant, uniform
electric field [5], which provides important guidance for the
de Sitter case. Both backgrounds have a high degree of
symmetry, which permit exact solutions and natural gen-
eralizations of concepts and QFT methods from the case of
a flat, zero-field background. Yet neither admit a conserved
Hamiltonian bounded from below and, in both cases,
particle creation occurs and vacuum decay is expected.
In the case of a constant, uniform electric field, the QFT

of charged matter, neglecting self-interactions, was con-
sidered by Schwinger in the covariant proper time repre-
sentation [25]. By this covariant heat kernel method, the
vacuum decay probability and decay rate in terms of the
imaginary part of the one-loop effective action is obtained,
defined by analytic continuation in the proper time variable.
Since the E-field spontaneously decays into particle/anti-
particle pairs, the vacuum is not the state of maximal
symmetry of the background (which is time reversal
symmetric), but instead the E-field initiates a nontrivial
time-dependent process, which almost certainly leads to a
state populated with particle/antiparticle excitations in
which the coherent mean electric field vanishes asymp-
totically at late times. The correspondence with the de Sitter
case suggests that cosmological vacuum energy should
similarly decay into particle/antiparticle pairs, eventually
leading to a state with small but nonzero slowly decaying
vacuum energy [3,24].
Schwinger’s proper time method makes no explicit

reference to particles, and its very elegance disguises
somewhat the physical definition of vacuum it entails.
Later studies of QFT in a constant E-field by canonical
quantization methods [26–30] revealed that the essential
ingredient is the m2 → m2 − iϵ prescription where ϵ → 0þ.
This is of course the same iϵ prescription defining the
causal propagator function in flat space QFT, which
Feynman obtained by identifying positive frequency sol-
utions of the wave equation as particles propagating
forward in time, and negative frequency solutions as the
corresponding antiparticles propagating backward in time
[31]. It is this physical condition that provides the math-
ematically precise definition of particle/antiparticle excita-
tions and fixes the vacuum state of relativistic QFT in real
time, which by continuity and the adiabatic theorem applies
also to background fields or weakly curved spacetimes.

The m2 − iϵ rule in the Schwinger proper time approach
is specified by a single exponential describing a relativistic
particle worldline. Causality is enforced by the particle
always moving forward in its own proper time, whether the
external coordinate time t does so or not. This observation,
first made by Stueckelberg [32], carries over unaltered
to curved spacetimes. The extension of the covariant
Schwinger heat kernel method to gravitational backgrounds
was developed extensively by DeWitt [33]. The causality
condition and m2 analyticity it implies in the covariant
Schwinger-DeWitt formulation is mathematically equiva-
lent to the requirement that ingoing particle modes as
t → −∞ are analytic in the upper half complex m2 plane,
while the corresponding outgoing modes as t → þ∞ are
analytic in the lower half complex m2 plane [34,35].
Antiparticle modes are the complex conjugate solutions
of the wave equation in which the analyticity requirements
in the upper/lower m2 plane are reversed. It is not difficult
to see that the definition of the corresponding j0; ini and
j0; outi vacuum states, and the in-out effective action they
imply, leads to a nontrivial Bogoliubov transformation
between the j0; ini and j0; outi states, particle pair creation,
and a vacuum decay rate for de Sitter space analogous to
that of the uniform E-field [3,5].
In the canonical description in terms of Fock space

creation and destruction operators, pair creation manifests
as a nontrivial Bogoliubov transformation between the
positive/negative frequency operators as t → −∞, which
define the j0; ini vacuum, relative to the corresponding
positive/negative frequency operators as t → þ∞ which
define the j0; outi vacuum. The overlap probability

jh0; outj0; inij2V;T ¼ expf−VTΓg ¼ expf−2VTImLeffg
ð1:1Þ

behaves exponentially in the spatial volume V and time T
that the background field is applied, with Γ ¼ 2ImLeff
twice the imaginary part of the effective Lagrangian density
Leff found by the Schwinger proper time approach. To be
meaningful, the four-volume factor V4 ¼ VT must be
removed from (1.1). For persistent symmetric backgrounds
Leff is independent of the spacetime coordinates x and t.
Then Γ is the constant decay rate of the j0; ini vacuum per
unit volume per unit time due to steady spontaneous
creation of particle/antiparticle pairs by the fixed classical
(E or de Sitter) background field, under the assumption that
the space and time dependence of the background and any
backreaction may be neglected at lowest order. Notice that
the effective action and the vacuum decay rate given by its
imaginary part in (1.1) are coordinate invariant quantities,
even though the spaceþ time splitting, definition of positive/
negative frequency modes, Bogoliubov transformation, and
definition of particles are not. General coordinate invariance
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is manifest throughout only in the Schwinger-DeWitt world-
line proper time representation.
It is important also to realize that the imaginary part of

the one-loop effective Lagrangian ImLeff , and vacuum
decay rate Γ cannot be obtained by reliance upon a
calculation in Euclidean time τ ¼ it, but instead requires
a definition of the vacuum consistent with causality in real
time. Indeed, since the electric field is the Fj0 component of
the field strength tensor, a Euclidean calculation with Ej ¼
Fj0 → iFj4 in this case would be tantamount to treating it
as a constant magnetic field background Bi ¼ 1

2
ϵijkFjk, for

which the quantum Hamiltonian is bounded from below,
particle trajectories are circular rather than hyperbolic, no
particle creation at all occurs, and the vacuum is stable, all
of which is completely different physics than the E-field
background in real time. Including particle self-interactions
does not change these fundamental differences between
backgrounds for which the Lorentz invariant quantity
B2 −E2 has opposite signs. An interacting QFT built
upon the B-field vacuum with Euclidean time correlation
functions is therefore necessarily physically inequivalent to
the E-field in real time, completely missing the particle pair
creation and vacuum decay rate contained in (1.1), even at
lowest zeroth order in the self-interactions.
At the particle worldline level, the vacuum decay is

typified by hyperbolic trajectories of the constant accel-
eration of particles in a constant electric field, in contrast to
the closed circular orbits in the corresponding Euclidean
constant magnetic field, which does possess a stable QFT
vacuum. The hyperbolic trajectories of freely falling test
particles in de Sitter space, drawn away from each other by
the de Sitter expansion, are similarly clearly different
qualitatively from the closed circular trajectories of test
particles on the compact Euclidean S4 manifold. Since
analytic continuation of propagators to the Euclidean S4

manifold enforces boundary conditions whose semiclass-
ical limit is precisely these closed circular trajectories, it
defines a theory inequivalent to that on the Lorentzian de
Sitter manifold which requires quite different boundary
conditions at asymptotic early and late times t →∓ ∞.
These different boundary conditions lead to the instability
of the Bunch-Davies state to particle creation in real time.
This essential difference between specification of the

vacuum in real time and the postulate of Euclidean
analyticity is one of the root causes of the different results
and claims in the literature. The difference between the
m2 − iϵ prescription vs Euclidean continuation is not
simply a difference of formalisms, but rather of enforcing
completely different physical requirements on the QFT
vacuum by different initial/final conditions in real time than
those imposed by regularity in the Euclidean time domain.
Although equivalent in flat Minkowski space, it turns out
that the m2 − iϵ prescription required by causality is
mathematically inconsistent with Euclidean continuation

in background fields such as the E-field or de Sitter space,
and leads to physically different results.
Another way of seeing why the equivalence of Euclidean

continuation to the causal QFT vacuum in flat space fails to
hold in de Sitter space is in the qualitatively different
properties of representations of the Poincaré and de Sitter
symmetry groups. It is an important special property of
Minkowski spacetime that the subspaces of positive and
negative frequency solutions of the wave equation are
separately invariant under proper orthochronous Lorentz
transformations, so that the Stueckelberg-Feynman defi-
nition of vacuum is consistent with maximal Poincaré
symmetry. In contrast, there is no SOð4; 1Þ invariant
decomposition of positive and negative frequency solutions
in de Sitter spacetime. Any such decomposition into
positive and negative frequency subspaces mixes under
SOð4; 1Þ symmetry transformations, and transforms with
equivalent representations of the de Sitter group [36]. As a
result, there is no de Sitter invariant way to distinguish
particles from antiparticles, and no reason for the physical
Stueckelberg-Feynman definition of particle excitations or
vacuum to lead to a de Sitter invariant state. Indeed, on any
finite time slice, it does not.
Closely related to and following from analyticity require-

ments in m2, rather than a Euclidean postulate, is the fact
that the de Sitter/Feynman propagator GFðx; x0Þ calculated
with in-out boundary conditions obeys the composition ruleZ

Σx

dΣμ
xGFðx1; xÞ∇

↔

μGFðx; x2Þ ¼ GFðx1; x2Þ ð1:2Þ

consistent with causality, where Σx is an arbitrary spacelike
Cauchy surface intermediate between x1 and x2. This
composition rule again expresses the Stueckelberg-
Feynman prescription of particles moving forward in time,
antiparticles backward in time, and results from the
representation of GF in terms of a single exponential in
worldline proper time in Schwinger’s method, rather than a
sum of exponentials of opposite sign. These single expo-
nentials combine simply and lead to the composition (1.2),
which is violated by the Euclidean Bunch-Davies propa-
gator [4]. In physical terms the Bunch-Davies state is best
understood not as a vacuum state at all, but as a particular
finely tuned phase coherent superposition of particle and
antiparticle modes [5].
In this paper we study the process of particle creation in

greater detail in real time, using the flat Poincaré spatial
slicing of de Sitter space most commonly considered in
cosmology. The m2 analyticity properties of the complex
Fourier mode function solutions of the scalar wave equa-
tion (2.2) defining particle and antiparticle waves according
to the Feynman description lead directly to consideration of
the adiabatic phase integral (2.9), and the concept of
adiabatic particle creation [37–40]. The analytic extension
of the adiabatic phase to the complex time domain allows
for a determination of the time teventðkÞ at which each

DECAY OF THE DE SITTER VACUUM PHYS. REV. D 97, 065016 (2018)

065016-3



Fourier mode labeled by k most probably experiences a
particle creation event. Determination of teventðkÞ relates
the interval of time during which the external (E-field or de
Sitter) field is applied to the range of Fourier modes
contributing to the decay rate (2.23), allowing for the
infinite four-volume factor V4 to be removed, thereby
determining the finite rate Γ and prefactor in (2.24)
unambiguously for persistent background fields.
We also consider the vacuum decay rate Γ obtained by

adiabatically turning the electric or expanding de Sitter
background field on and then off again, after the lapse of a
long but finite time T. In this approach there can be no
ambiguity of initial and final vacuum states, since the
geometry at both early (t → −∞) and late (t → þ∞) times
is Minkowski flat space with zero background field. Both
approaches remove the somewhat unsatisfactory feature of
previous constant E-field or de Sitter background calcu-
lations, in which a formal divergence in the integral over
modes must be cut off by an appeal to the finite “window”
of modes undergoing particle creation in a finite time T in
the constant background [5,26–28]. When the two
approaches are applicable they would be expected to yield
the same result, and they do for the E-field background.
However, in the de Sitter case the second method reveals a
possibly unexpected sensitivity to the details of how the de
Sitter expansion is ended, which suggests sensitivity to
infrared spatial boundary conditions and correlations over
superhorizon scales that may have important implications
for cosmology.
The outline of the paper is as follows. The next section

reviews the general framework of particle creation and
vacuum decay by means of the adiabatic phase and
nonuniformity of the adiabatic condition in persistent
background fields. Section III shows how the adiabatic
phase integral and its Stokes lines of constant real part in
the complex plane can be used to determine the time tevent
of a particle creation event, which, when applied to the
case of a constant, uniform electric field, reproduces
Schwinger’s result for the vacuum decay of the E-field.
In Sec. IV two time profiles of the uniform electric field for
which it is adiabatically turned on and off with a long
duration T in between where it is effectively constant are
used to compute the particle creation and decay rate in the
limit T → ∞, again reproducing the Schwinger result. The
electric current is also computed for one profile and
shown to grow linearly with T, so that the secular effects
of backreaction clearly must be taken into account for
persistent fields. In Sec. V, the same adiabatic phase
method is applied to a persistent de Sitter background in
the spatially flat Poincaré coordinates, and the particle
creation and finite decay rate of the Bunch-Davies state
determined. In Sec. VI we consider two time profiles for
which the de Sitter background is adiabatically turned on
and off with a long time duration in between, similar to the
E-field case. For one profile we evaluate the particle

creation and decay rate numerically in the limit of long
time duration. In Sec. VII an analytic estimate is made of
the energy density and pressure of the particles created in
the de Sitter phase along with an estimate of the strength of
their backreaction effect. Section VIII contains a discussion
of our conclusions, including the possible implications
for inflation, vacuum dark energy, and the cosmological
“constant” problem.

II. PARTICLE CREATION AND THE
ADIABATIC PHASE

We consider a quantum field interacting only with a
classically prescribed (i.e., nondynamical) external back-
ground field. For simplicity we specialize to a non-self-
interacting scalar field Φ and a spatially homogeneous but
time-dependent classical background. Making use of spa-
tial homogeneity, the quantum scalar field operator may be
expanded in a Fourier series

Φðt;xÞ ¼ 1ffiffiffiffi
V

p
X
k

fakeik·xfkðtÞ þ b†ke
−ik·xf�kðtÞg ð2:1Þ

whose time-dependent mode functions obey second order
differential equations in time of the form

�
d2

dt2
þ ω2

kðtÞ
�
fkðtÞ ¼ 0: ð2:2Þ

Here k labels the spatial momentum which takes on
discrete values for periodic boundary conditions in the
finite volume V. For the cases of interest in this paper,
ω2
kðtÞ is a real time-dependent frequency function that for

massive fields is strictly positive, nowhere vanishing on the
real time axis −∞ < t < ∞.
Considering the case of a charged complex scalar field

Φðt;xÞ in a pure electric field background E, the Klein-
Gordon wave equation ð∂μ − ieAμÞ2Φ ¼ m2Φ gives

ω2
kðtÞ ¼ ðk − eAðtÞÞ2 þm2 ð2:3Þ

in the A0 ¼ 0 gauge in which E ¼ − _A. The case of an
uncharged Hermitian scalar field (obeying Φ† ¼ Φ and
ak ¼ bk) in a spatially homogeneous and isotropic cos-
mological spacetime may also be reduced to a mode
equation of the form (2.2) with a different ω2

kðtÞ, cf. (5.2).
The complex valued solutions of (2.2) are required to

satisfy the Wronskian condition

fk _f
�
k − _fkf�k ¼ iℏ ð2:4Þ

constant in time, and the Fock space operators are required
to obey the commutation relations

½ak; a†k0 � ¼ ½bk; b†k0 � ¼ δk;k0 ð2:5Þ
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in order for the Heisenberg field operator Φ to satisfy the
canonical equal time commutation relation

�
Φðt;xÞ; ∂Φ

†

∂t ðt;x0Þ
�
¼ iℏδ3ðx − x0Þ ð2:6Þ

in a finite volume V. In the absence of any external field,
A and ωk are constants, and

fð0Þk ðtÞ≡
ffiffiffiffiffiffiffiffiffi
ℏ

2ωk

s
e−iωkt ð2:7Þ

defines the positive energy particle mode function that is
analytic in the upper half complex m2 plane in both limits
t →∓ ∞. The corresponding Minkowski no-particle state
j0i defined by

akj0i ¼ bkj0i ¼ 0; ∀ k ð2:8Þ

is both the vacuum j0; ini state and the vacuum j0; outi state
for all times, and there is no spontaneous particle creation
or vacuum instability in flat Minkowski spacetime.
The physical basis for extending the definition of

no-particle vacuum states to the case of slowly varying
weak external fields is the adiabatic theorem, which
guarantees that the state of a quantum system does not
change if subjected to an external perturbation that is
arbitrarily slowly varying in time [41]. Hence, in weak or
slowly varying external fields the QFT vacuum must be
“close” to that of (2.7) and (2.8) and well determined up to
small terms in an asymptotic expansion of the solution of
(2.2) in terms of the time derivatives of ωk. The adiabatic
phase integral

ΘkðtÞ ¼
Z

t
dt0ωkðt0Þ ð2:9Þ

then takes on fundamental importance, since the zeroth
order adiabatic mode function

f̃ð0Þk ðtÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðtÞ

p expf−iΘkðtÞg ð2:10Þ

is an approximate positive frequency (particle) solution to
(2.2) satisfying (2.4) (with ℏ ¼ 1 hereafter) in the limit that
ω2
kðtÞ is an arbitrarily slowly varying function of t. Higher

order approximate adiabatic mode functions f̃ðnÞk may be
found by substituting the exponential ansatz

fkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðtÞ
p exp

�
−i

Z
t
dt0Wkðt0Þ

�
ð2:11Þ

into the mode equation (2.2), resulting in the exact non-
linear equation for WkðtÞ

W2
k ¼ ω2

k þ 3

4

_W2
k

W2
k
−
1

2

Ẅk

Wk
ð2:12Þ

which then may be expanded in an asymptotic series in
time derivatives:

Wk ¼ ωk

�
1þ 3

8

_ω2
k

ω4
k
−
1

4

ω̈k

ω3
k

þ � � �
�
: ð2:13Þ

Clearly the lowest (zeroth) order adiabatic mode function

(2.10) withWð0Þ
k ðtÞ ¼ ωkðtÞ is a good approximation to the

solution of (2.2), and the adiabatic theorem is applicable
only to the extent that the relative size of the corrections in
(2.13) parametrized by

jδkðtÞj≡
���� 38 _ω2

k

ω4
k
−
1

4

ω̈k

ω3
k

���� ≪ 1 ð2:14Þ

remains uniformly small for all t.
For k such that (2.14) holds, f̃ð0Þk ðtÞ remains an approxi-

mate positive frequency particle solution with the required
analyticity in m2 for all time, and particle creation in these
Fourier modes is negligibly small. Since jδkj → 0 as
jkj → ∞, the adiabatic condition (2.14) does hold arbitrarily
accurately in this limit for smoothly varying background
fields with bounded time derivatives. Thus, there is no
particle creation in arbitrarily high momentum modes, and
the vacuum remains the vacuum at large momenta or short
distances. It is just this property that makes the adiabatic
expansion useful for the renormalization of composite
operators such as the electric current or energy-momentum
tensor in smoothly time-varyingbackgrounds, requiring only
the standard counterterms expected on the basis of the usual
power counting arguments [40,42].
If on the other hand the condition (2.14) fails to hold at

some times, and particularly at small to moderate jkj,
on the scale of the time variation of the background field,
these Fourier modes will then receive some admixture of
the complex conjugate approximate solution to (2.10).
Because of the association of the complex conjugate
solution to negative energy or antiparticle modes in (2.1)
by the m2 − iϵ prescription, the violation of the adiabatic
approximation near the maxima of jδkðtÞj corresponds to
particle/antiparticle pairs being created spontaneously from
the vacuum [37–39].
The adiabatic mode functions (2.10), perhaps extended

by use of a frequency function of higher order in the
asymptotic expansion (2.13), also provide useful templates
against which the exact mode function solutions of (2.2)
may be compared. The transformation between the two
bases of fk and f̃ðnÞk defines a time-dependent Bogoliubov
transformation which may be used to define a semiclassical
time-dependent particle number [5,43–45]
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N ðnÞ
k ðtÞ ¼ 1

2WðnÞ
k

���� _fk þ
�
iWðnÞ

k −
VðnÞ
k

2

	
fk

����2 ð2:15Þ

with respect to the nth order adiabatic basis functions,
defined by the pair of real time-dependent functions

fWðnÞ
k ðtÞ; VðnÞ

k ðtÞg chosen to match the asymptotic expan-
sion (2.13) forWk and − _Wk/Wk, respectively, to nth order
in time derivatives. This definition is local in time, and has
some necessary arbitrariness in that a choice of adiabatic
order n must be made. Generally, the lowest order n ¼
0; 1; 2;… approximations are the most useful for applica-
tions, such as defining an approximate particle number
density for transition to a semiclassical Boltzmann-Vlasov
transport description of nonequilibrium relativistic quan-
tum systems [43] and, in particular, allowing dissipative
particle interactions to be taken into account.
In this paper we focus on the application of the adiabatic

method to background fields that are persistent for long
periods of time, such as constant uniform electric fields, or
de Sitter space. In both cases the adiabatic condition (2.14)
holds arbitrarily accurately asymptotically as t →∓ ∞, for
any finite k, and asymptotic j0; ini and j0; outi vacuum
states can be defined, accompanied by well-defined particle
number Fock basis operators. However, since the condition
(2.14) is not satisfied at all intermediate times for some k,
the approximate solution (2.10) is not a solution to the exact
equation (2.2) uniformly valid for all t, j0; outi ≠ j0; ini,
and particle creation occurs in such nontrivial persistent
background fields. This specification of vacuum states in
the asymptotic past or future is necessarily a global in time
definition, that describes secular or long time effects.
In this case the task is to determine the admixture of the

negative frequency complex conjugate solution at late
times, t → þ∞, given that the exact solution fkðtÞ is a
pure positive frequency solution of the form (2.10) at early
times, t → −∞, or in other words, to determine the time-
independent Bogoliubov coefficients ðAk; BkÞ for the exact
solutions of (2.2) satisfying the asymptotic conditions

fkðtÞ →
(
f̃ð0Þk ðtÞ; t → −∞

Akf̃
ð0Þ
k ðtÞ þ Bkf̃

ð0Þ�
k ðtÞ; t → þ∞

ð2:16Þ

which has the form of a one-dimensional scattering
problem. It is over-the-barrier scattering if ω2

kðtÞ is strictly
positive for all real t, so that there are no classical turning
points on the real t axis.
Because of the Wronskian condition (2.4), the

Bogoliubov coefficients necessarily satisfy

jAkj2 − jBkj2 ¼ 1 ð2:17Þ

characteristic of a time-independent canonical transforma-
tion. Because of this condition, the Bogoliubov coefficients
may be characterized by a hyperbolic angle parameter χk.

In the second quantized description (2.1) the quantity
jBkj2 ¼ sinh2 χk is the well-defined mean number density
of particles at asymptotically late times created in the mode
k by the background electric or gravitational field, assum-
ing the initial vacuum state j0; ini. The coefficient jBkj2
may be calculated in special cases such as the constant E-
field and de Sitter space by knowledge of the exact
scattering solutions of (2.2) satisfying (2.16), or approx-
imately by the complex WKB adiabatic phase methods to
be discussed in the next section, or finally, by direct
numerical solution of the mode equation (2.2).
Since the vacuum state for a non-self-interacting field

theory is a product of Gaussian harmonic oscillator wave
functions, one for each k, it is a straightforward exercise to
represent the initial Gaussian state and Fock space oper-
ators in the final state basis, in terms of jBkj2 or χk. For a
single real Hermitian scalar field beginning in the j0; ini
vacuum, the diagonal elements of the Gaussian density
matrix ϱ̂ for the nth excited state of the oscillator labeled by
k in the final jn; outi state basis are [46,47]

ϱ̂nðkÞjReal Φ ¼ jhn; outj0; inij2

¼ δn;2l
ð2lÞ!
4lðl!Þ2 sechχkðtanh χkÞ

2l ð2:18Þ

which, in the second quantized Fock space description
(2.1), is the probability of finding n ¼ 2l particles in the
Fourier mode k in the final state, if none were present in the
initial state. In (2.18)

tanh2χk ¼ jBkj2
jAkj2

; sechχk ¼ 1

jAkj
¼ ½1þ jBkj2�−1

2

ð2:19Þ

with the vanishing of ϱ̂n for n odd, the result of the fact
that the particles can only be created in pairs. Thus, the
probability that no particle pairs at all are produced in any
mode

jh0; outj0; inij2jReal Φ ¼
Y
k

ϱ̂0ðkÞ ¼
Y
k

sechχk

¼ exp

�
−
1

2

X
k

lnð1þ jBkj2Þ
�

ð2:20Þ

is the vacuum persistence probability, or the probability that
the j0; ini vacuum at early times will be found in the j0; outi
vacuum at late times. Equation (2.20) relates the probability
of vacuum decay directly to particle creation via the
number density of created particles jBkj2 in the final state
defined by the one-dimensional scattering problem (2.16)
for spatially homogeneous background fields, in the in-out
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formalism of QFT, enforcing the Feynman-Schwinger
m2 − iϵ prescription.
For a complex charged scalar field the corresponding

diagonal elements of the density matrix are more simply
given by [43]

ϱ̂nðkÞjComplex Φ ¼ jhn; outj0; inij2
¼ δn;2lðsechχkÞ2ðtanh χkÞ2l ð2:21Þ

with (2.19) as before, so that the corresponding vacuum
persistence probability is

jh0; outj0; inij2jComplex Φ ¼
Y
k

ϱ̂0ðkÞ ¼
Y
k

sech2χk

¼ exp

�
−
X
k

lnð1þ jBkj2Þ
�

ð2:22Þ
for a charged scalar field decaying into pairs [26–29].
The relative factor of 2 between the exponents of (2.20) and
(2.22) may be understood as a result of the doubling of
degrees of freedom and the one-loop effective action for a
complex field relative to a real one. In each case, one may
check from (2.18) and (2.21) that Trϱ̂ ¼ P∞

l¼0 ϱ̂2l ¼ 1 so
that probability (unitarity) is conserved.
If the external field producing the particles persists over an

infinitely long time, homogeneously over an infinite volume,
jBkj2 becomes independent of some components of k, and
the sum over k in (2.20) or (2.22) diverges. This divergence
is not a pathology, as is sometimes claimed [40], but simply a
consequence of a persistent spatially homogeneous external
field producing particles at a finite rate everywhere in space
for an infinite time, requiring careful extraction of the
volume and time factors. The spatial volume factor is easily
extracted by the usual method of replacing the sum

P
k over

discrete Fourier modes by the continuous Fourier integral
V
R

d3k
ð2πÞ3, and dividing the exponent in (2.20) and (2.22) byV

in the infinite volume continuum limit V → ∞. The vacuum
decay rate Γ per unit volume might be defined then by an
expression of the form (2.20) or (2.22), with

Γ ¼ lim
T→∞

lim
V→∞

1

VT
N
2

X
k

lnð1þ jBkj2Þ

¼ N
2

lim
T→∞

1

T

Z
d3k
ð2πÞ3 lnð1þ jBkj2Þ ð2:23Þ

where N ¼ 1, 2 refers to the number of independent scalar
fields undergoing particle creation, one for a single real field
and two for a complex charged scalar. For application to
curved spaces the factor VT should be replaced by the
invariant four-volume integral V4 ¼

R
d4x

ffiffiffiffiffiffi−gp
over which

the background field acts.
As has been remarked previously [5,26–28], the integral

in (2.23) still diverges for background external fields that
persist for an infinite interval of time, and the expression is

indeterminate. In order to extract the time factor T, it is
necessary either to determine the finite subset or “window”
of Fourier k modes that experience particle pair creation
during specific intervals of time, or alternatively, to apply
the external background field only for a finite time,
compute the Fourier integral, and only at the end take
the limit in (2.23).
The first method for defining the decay rate, to be called

the Differential Method, is suggested by the fact that
the integrand Γ ¼ 2ImLeff should be independent of
both space and time for persistent external fields of high
symmetry. Then one can extract the spacetime volume by
identifying the increment of Fourier modes between k
and kþ Δk that undergo their creation events in each
small increment of time between t and tþ Δt, in each slice
of four-volume between V4 and V4 þ ΔV4. The determi-
nation of which Fourier mode(s) undergo a particle creation
“event” at each time t effectively establishes a functional
relation t ¼ teventðkÞ or its inverse k ¼ k̄ðtÞ. Then division
by the corresponding four-volume increment gives

Γ ¼ N
2

lim
ΔV4→0

1

jΔV4j
XkþΔk

k

lnð1þ jBkj2Þ

¼ N
2

V
ð2πÞ3

Z ���� d3kdV4

���� lnð1þ jBkj2Þjk¼k̄ðtÞ ð2:24Þ

for the decay rate in the presence of the persistent back-
ground field, due to the increment of Fourier modes going
through their pair creation events in an incremental slice of
four-volume dV4 at t, in the limit that both these increments
are infinitesimal. There is then no infinite T to be considered
and thek integration in (2.24) is to be performed, restricted to
only those Fourier modes experiencing a particle creation
event at the time t ¼ teventðkÞ, while the values of jBkj2 to be
used are determined by the asymptotic scattering problem
(2.16) for the persistent external field.
The characterization of the particle creation event needed

in the Differential Method is the semiclassical event time
teventðkÞ and thence its inverse k ¼ k̄ðtÞ, which are based
upon the behavior of the adiabatic phase integral (2.9) in the
complex time domain, and in particular by the pattern of
Stokes and anti-Stokes lines of constant real and imaginary
parts ofΘk emanating from the complex critical points in t at
which ω2

k vanishes. The particle creation event is then
associated with the time teventðkÞ at which the Stokes line
for a given k crosses the real time axis. At this time the
amplitude of the antiparticle complex conjugate mode

function fð0Þ�k rises rapidly [5]. Determining the finite subset
of Fourier modes that experience a particle creation event in
the finite time interval in this way determines a finite range in
the Fourier integral in (2.23) proportional to dt, which allows
the finite rate Γ to be determined by (2.24), by computing the
indicated (positive) Jacobian jd3k/dV4j.
In the second method for defining the decay rate, to be

called the Integral Method, one replaces the persistent
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background field of interest, such as de Sitter space which
extends infinitely far into the past and future, and which is
responsible for the divergent k integral, by a substitute
external background field which is turned on slowly around
some initial time t0, persists for a very long but finite time
T, and then is turned off again slowly at a later time t1.
Since for any fixed finite T only a finite range of Fourier
modes will undergo particle creation events, jB2

kj will
vanish rapidly outside of a finite window in Fourier space
and the integral over k in (2.23) will be finite, but
proportional to T. Then one can divide by T and explicitly
take the T → ∞ limit indicated in (2.23) to obtain a finite
result for the vacuum decay rate.
This Integral Method has the advantage of defining zero-

field regions in the infinite past (t ≪ t0) and infinite future
(t ≫ t1) where particles and vacuum states are unambig-
uously defined by the standard flat Minkowski space
prescription, (2.7) and (2.8). However, for this method to
work, it is essential that a suitable substitute time-
dependent external field be found for which the turning
on and off of the background of interest around t0 and t1 be
gentle enough not itself to create significant numbers of
particles by violation of the adiabatic condition (2.14), and
for which any “edge effects” of particle creation around t0
and t1 become negligible in the long time limit T → ∞.
When these criteria are satisfied, the Integral Method

should give the same result as the Differential Method for
defining the decay rate of the vacuum in a (nearly) constant
external field, since the long-time time average of a constant
integrand is the constant integrand itself. An example of an
external field time profile satisfying these criteria and
application of the Integral Method to the uniform E-field
case is provided by (4.7), shown in Fig. 4, with the result of
Sec. IV for the vacuum decay rate agreeingwith Schwinger’s
result in the limit T → ∞. In this flat space example, VT is
simply the total four-volume

R
d4x ¼ V4 over which the

external E-field acts, and Γ ¼ 2ImLeff at one-loop order in
Schwinger’s approach.
These general considerations and both methods of

defining the vacuum decay rate are best illustrated with
specific examples. In this paper, we apply both methods to
the cases of particle creation in a constant, uniform electric
field and in the gravitational de Sitter background. After
first reviewing the persistent field calculation of the vacuum
decay and particle creation, and the complex adiabatic
phase for analyzing particle creation in real time, we
present numerical results for the adiabatic switching on
and off again of each background after a long time T, and
comparison of the vacuum decay rate Γ computed by both
the Differential and Integral Methods in each case.

III. PERSISTENT UNIFORM ELECTRIC
FIELD BACKGROUND

The constant, uniform electric field has been studied by
numerous authors by a variety of methods [3,5,6,25–29],

and may be considered the prototype of the class of
problems involving particle creation and quantum vacuum
decay of classically persistent fields. Choosing the time-
dependent gauge

Az ¼ −Et; At ¼ Ax ¼ Ay ¼ 0 ð3:1Þ

the Klein-Gordon equation for a charged scalar field may
be separated into Fourier modes as in (2.1), with

ω2
kðtÞ ¼ ðkz þ eEtÞ2 þ k2⊥ þm2: ð3:2Þ

We then obtain the mode equation

�
d2

du2
þ u2

4
þ λ

�
fλðuÞ ¼ 0 ð3:3Þ

in the dimensionless time and transverse momentum
variables

u≡
ffiffiffiffiffiffiffiffiffi
2

jeEj

s
ðkz þ eEtÞ; λ≡ k2⊥ þm2

2jeEj > 0 ð3:4Þ

with fkðtÞ relabeled as fλðuÞ. One immediately observes
that the frequency function (3.2) is strictly positive every-
where on the real time axis, for m2 > 0.
The function δk entering the adiabatic condition (2.14) in

this case is

δλðuÞ ¼
1

2

ð3u2 − 8λÞ
ðu2 þ 4λÞ3 ð3:5Þ

from which some properties of particle creation in an
electric field background can already be deduced. First, one
notices that

δλðuÞ →
3

2u4
→ 0 as u →∓ ∞ ð3:6Þ

for any λ or k. Thus the adiabatic condition (2.14) is
asymptotically satisfied for the persistent, strictly constant
and uniform electric field, in both the t →∓ ∞ limits, and
asymptotic j0; ini and j0; outi vacuum states exist in which
the solutions of (3.3) approach (2.10) and its complex
conjugate arbitrarily accurately. This implies in turn that the
scattering problem (2.16) is well posed, and the Bogoliubov
coefficients Bk are finite and well defined for each k.
In fact the exact solutions of (3.3) are parabolic cylinder

functions, whose asymptotic behaviors and analytic proper-
ties are well known. From these solutions and their
properties one finds [5,26–28]

Bk ¼ −ie−πλ ¼ −i exp
�
−
π

2

k2⊥ þm2

jeEj
�

ð3:7Þ
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exactly, for any λ > 0. As anticipated by our general
discussion in the last section, if this value is substituted
into (2.23) we obtain an indeterminate result, since jBkj2 is
independent of kz and the integral over kz in (2.23) is
linearly divergent. This is clearly associated with the fact
that the parallel component of the conserved (canonical)
momentum kz enters the mode equation (3.3) together with
the time t only through the gauge invariant combination
kz þ eEt≡ pzðtÞ, which is the physical kinetic momen-
tum, so that a linear divergence in kz is associated with
the infinite time in which the E-field is applied in
obtaining (3.7).
Now from (3.5) the maximum violation of the adiaba-

ticity condition (2.14) is

maxfjδλðuÞjg ¼ 1

16λ2
at u ¼ 0;

pzðtÞ ¼ kz þ eEt ¼ 0 ð3:8Þ

so that the time at which this maximum violation occurs is
the time

teventðkzÞ ¼ −
kz
eE

⇒ k̄zðtÞ ¼ −eEt ð3:9Þ

when a mode of a given kz has zero kinetic momentum
along the field. By symmetry of (3.3) under u → −u we
may expect that (3.9) is the time that may be identified with
a creation event in the mode with longitudinal canonical
momentum kz, and k̄zðtÞ denotes the value of kz of the
Fourier mode experiencing its creation event at time t.
Equation (3.9) is the relation between kz and the time of
particle creation that allows the Jacobian factor

���� d3kdV4

����
k¼k̄ðtÞ

¼ d2k⊥
V

���� dk̄zdt

���� ¼ jeEj
V

d2k⊥ ð3:10Þ

appearing in (2.24) to be computed, eliminating any
integral over kz, while the value of k⊥ is unrestricted
and must still be integrated over to give a well-defined
result for the vacuum decay rate by the Differential Method
(2.24). The absolute value must be taken for the Jacobian in
order for a positive increment in dkz to correspond to a
positive increment in time dt for eE > 0, which we may
assume henceforth with no loss of generality.
The maximal violation of adiabaticity at u ¼ 0 in (3.8)

goes to zero as λ → ∞, so that, as expected, heavier
particles with larger transverse momenta are more difficult
to create, however falling only as a power λ−2 for large λ,
whereas the actual asymptotic value of the created particles
in the mode specified by λ falls exponentially with λ,
cf. (3.7). The contrast between the λ−2 power of the
maximum of jδλðuÞj vs the exponential λ dependence of
Bk illustrates the distinction between local or transient

violations of (2.14) vs global or secular particle creation
effects which persist at late times.
The asymptotic value of the Bogoliubov coefficients in

(2.16) can be obtained by consideration of the global
analyticity properties of the solutions of (3.3), or in the
WKB approximation by the behavior of the adiabatic phase
(2.9) in the complex time domain [48–50]. The adiabatic
phase (2.9) expressed in dimensionless u, λ variables is

ΘλðuÞ ¼
1

2

Z
u

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4λ

p
¼ u

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4λ

p

þ λ ln

�
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4λ

p

2
ffiffiffi
λ

p
	

ð3:11Þ

in this case, when measured from the symmetric point at
u ¼ 0. Since ω2

k ¼ eEðu − uλÞðuþ uλÞ/2 has two isolated
zeroes in the complex domain, at

u ¼ �uλ ¼ �2i
ffiffiffi
λ

p
ð3:12Þ

where ω2
k vanishes linearly, linear turning point WKB

methods may be applied in the complex domain. From each
linear turning point, three Stokes lines (of constant real Θλ)
and three anti-Stokes lines (of constant imaginary Θλ)
emerge at 60° to each other. The solution of the mode
equation (3.3) that has the asymptotic limits (2.16) may be
found by analytic continuation in the upper half complex u
plane along the solid anti-Stokes lines of constant ImΘλðuÞ
illustrated in Fig. 1.
The square root and logarithm in (3.11) are defined as the

analytic continuation from the real axis of their principal
value everywhere in the complex u plane, with the branch
cut taken to be along the positive and negative imaginary
axes for juj > 2

ffiffiffi
λ

p
. The constant ImΘλ of the phase

function along its anti-Stokes lines in the upper half plane
is given by its value at the critical point þuλ,

FIG. 1. The solid (blue) lines are the three anti-Stokes lines of
constant ImΘλ emerging from the two complex zeroes, (3.12) of
(3.2). The dashed (red) line is the Stokes line of constant ReΘλ

connecting the two critical points, which crosses the real axis at
u ¼ 0, defining the time (3.9) of the particle creation event.
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ImΘλðuλÞ ¼ Im½λ lnðiÞ� ¼ πλ

2
ð3:13Þ

and the adiabatic mode function (2.10) is a good approxi-
mation to the exact solution everywhere along the u contour
defined by the solid blue anti-Stokes line in the upper half-
plane, except in the vicinity of the complex turning point
u ¼ uλ. There a standardWKB linear turning point analysis
and matching of the asymptotic solutions on the two halves
of the anti-Stokes contour determines

Bλ ¼ −i exp½−2ImΘλðuλÞ� ¼ −ie−πλ ð3:14Þ

which coincides with the exact value (3.7) in this simple
example of only one linear complex critical point in the
upper half u plane.
The number density of particles in momentum k as

t → ∞, if started in the initial state vacuum at t → −∞, is
therefore

jBλj2 ¼ exp½−4ImΘλðuλÞ� ¼ e−2πλ ¼ exp

�
−
πðk2⊥ þm2Þ

eE

�
ð3:15Þ

and the solutions of the mode equation (3.3) exhibit a fairly
sharp transition, illustrated in Fig. 2, from the early to late
time asymptotic forms (2.16) at u ¼ 0 where the Stokes
line of constant ReΘλ crosses the real time axis at u ¼ 0
in Fig. 1.

The particle creation event is defined by the rapid rise in
adiabatic particle number defined by (2.15), together with
Eqs. (4.9a) and (5.11)–(5.13) of Ref. [5], and illustrated in
Fig. 2.2 For comparison the universal, optimally adiabatic,
or superadiabatic particle number N̄ λ [51,52], given in
terms of the adiabatic phase integral by

N̄ λðuÞ ¼
1

4
exp½−4ImΘλðuλÞ�

�
erfc

�
−ΘλðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImΘλðuλÞ

p ��
2

¼ e−2πλ

4

�
erfc

�
−

ffiffiffiffiffi
2

πλ

r
ΘλðuÞ

��2

; ð3:16Þ

is also shown as the orange curve in Fig. 2 for the E-field.
The time of the event at u ¼ 0 coincides in this case with
the maximum value of jδλðuÞj, (3.8). Apart from nonuni-
versal transients illustrating the quantum uncertainty in
defining particle number at the transition, which depend
upon the adiabatic order of particle number definition, the
particle creation event is characterized by a permanent
secular rise (3.15). This asymptotic particle number is
unambiguously defined and independent of adiabatic order,
but exponentially small in λ for large λ, and is determined
by the global analysis of the adiabatic phase (3.11), and its
critical point uλ (3.12) in the complex time domain.
This detailed description of the Stokes lines of the

adiabatic phase and time (3.9) when each kz mode goes
through its creation event determines the Jacobian factor
(3.10) in the Differential Rate formula (2.24) for the
constant E-field background. Equivalently, it also informs
us how to regulate the kz integral in a finite time T in the
integral formula (2.23). For if one starts in the adiabatic
vacuum with mode function (2.10) for all modes at some
finite initial time t0, one sees from (3.8) and (3.9) that only
those modes for which

pzðt0Þ < 0∶ teventðkzÞ > t0 but

pzðt1Þ > 0∶ teventðkzÞ < t1 ð3:17Þ

experience their particle creation event between t0 and t1.
Thus, we may approximate

jBkj2 ≃
�
e−2πλ for − eEt1 < kz < −eEt0
0 otherwise

ð3:18Þ

and in the finite elapsed time T ¼ t1 − t0 only modes in the
kz interval of the window linearly growing in time in (3.18)
give a nonvanishing contribution to the vacuum decay rate.
With the step function approximation of (3.18), Eq. (2.23)
then yields

FIG. 2. The mean number of particles created from the vacuum
by a constant, uniform electric field as a function of rescaled time
u, for λ ¼ 1. The first two curves (blue and green) are the

adiabatic particle numbers N ðnÞ
k , defined by (2.15) for n ¼ 1, 2

with fk ¼ fλðþÞðuÞ the in-state solution of (3.3), given by
Eqs. (4.9a) and (5.11)–(5.13) of Ref. [5]. The third curve (orange)
with no intermediate maxima and minima is the superadiabatic
particle number (3.16) [51,52]. Apart from transient effects
dependent on the adiabatic order, all three curves rise rapidly
from zero in the vicinity of u ¼ 0 and tend to the same asymptotic
value e−2π ¼ 1.86744 × 10−3 of (3.15) as u → ∞.

2The first line of Eq. (5.13) of Ref. [5] contains a typographical
error in its last term which should read 3 _ω2

k/8ω
3
k.
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Γ ¼ lim
T→∞

1

T

Z
−eEt0

−eEt1

dkz
2π

Z
d2k⊥
ð2πÞ2 lnð1þ e−2πλÞ

¼ eE
2π

Z
d2k⊥
ð2πÞ2 ln

�
1þ exp

�
−
πðk2⊥ þm2Þ

eE

��

¼ eE
2ð2πÞ2

Z
∞

0

dk2⊥
X∞
n¼1

ð−Þnþ1

n
exp

�
−
πnðk2⊥ þm2Þ

eE

�

¼ ðeEÞ2
ð2πÞ3

X∞
n¼1

ð−Þnþ1

n2
exp

�
−
πnm2

eE

	
ð3:19Þ

which agrees with Schwinger’s proper time method for the
calculation of the decay rate of a uniform electric field into
scalar particle/antiparticle pairs [25]. Clearly the identical
expression is obtained from the Differential Method (2.24)
upon making use of (3.10) which eliminates the kz integral,
T dependence and limit entirely, giving directly the second
line of (3.19). We next verify (3.19) by turning the E-field
on and off adiabatically, letting it last for a very long time T
and extrapolating to the limit indicated in the Integral
Method (2.23) numerically.

IV. ADIABATIC SWITCHING ON/OFF
OF A UNIFORM ELECTRIC FIELD

Before discussing the E-field profile needed to compute
the vacuum decay rate by the Integral Method, we mention
first the modified E-field time profile

EðtÞ ¼ Eẑsech2ðt/TÞ ð4:1Þ

that has been considered in the literature [30,53], for
which the electric field vanishes asymptotically in both
the t →∓ ∞ limits. This corresponds to the spatially
uniform gauge potential

AzðtÞ ¼ −ET tanhðt/TÞ ð4:2Þ

for which the mode equation (2.2) with

ω2
kðtÞ≡ ½kz þ eET tanhðt/TÞ�2 þ k2⊥ þm2 ð4:3Þ

may be solved exactly in terms of hypergeometric functions
[30,53]. The frequency has the asymptotic limits

lim
t→�∞

ωkðtÞ≡ ω�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkz � eETÞ2 þ k2⊥ þm2

q
ð4:4Þ

which are constants. Thus the positive frequency particle and
negative frequency antiparticle modes are the unique zero-
field modes in each asymptotic limit. From the analytic
properties of the exact hypergeometric function solutions
of the mode equation (2.2) with (4.3), the Bogoliubov
coefficients of the scattering problem (2.16) may also be
computed analytically, with the result [28,30,53]

jAkðTÞj2¼
cosh2

h
π
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eET2Þ2−1

p i
þ sinh2½π

2
ðωþ

k þω−
kÞT�

sinhðπωþ
kTÞsinhðπω−

kTÞ
ð4:5aÞ

jBkðTÞj2¼
cosh2

h
π
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eET2Þ2−1

p i
þ sinh2 ½π

2
ðωþ

k −ω−
kÞT�

sinhðπωþ
kTÞsinhðπω−

kTÞ
ð4:5bÞ

satisfying (2.17) for all k and T.
The Bogoliubov coefficient jBkðTÞj2 is well behaved

for large jkzj ≫ eET (with T fixed), falling off like
expð−2πjkzjTÞ and vanishing exponentially in that limit.
Hence, for any finite T the integral over kz and the total
number of particles created is finite. In the opposite limit,
with kz fixed

lim
T→∞

jBkðTÞj2 ¼ exp

�
−
πðk2⊥ þm2Þ

eE

�
¼ e−2πλ ð4:6Þ

the value in the constant electric field (3.15) independent of
kz is recovered. Thus, the large kz and large T limits of (4.5b)
do not commute. The behavior of jBkðTÞj2 as a function of kz
and ofT is shown inFig. 3,with the flattening for small jkzj as
T → ∞ according to (4.6) illustrated.
The time profile (4.1) cannot be used to compute the

decay rate of a constant E-field by the Integral Method
(2.23), because the E-field (4.1) is not constant over times
of order T. Although the turning on and off of the E-field in
(4.1) is adiabatic, the time for the transition also grows with
T and hence as Fig. 3 shows, the particle production (4.5b)
falls off smoothly in jkzj, rather than sharply outside a well-
defined window in kz, as required to match the flat plateau

FIG. 3. Particle density jBkðTÞj2 of (4.5b) for the E-field (4.1),
as a function of kz/

ffiffiffiffiffiffi
eE

p
for λ ¼ 1. The curve that falls off the

most rapidly in jkzj (blue) is for
ffiffiffiffiffiffi
eE

p
T ¼ 20, the middle one

(green) is for
ffiffiffiffiffiffi
eE

p
T ¼ 40, and the outer one (orange) is forffiffiffiffiffiffi

eE
p

T ¼ 60, showing the approach to e−2πλ (dashed line) near
kz ¼ 0.
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behavior (3.18) for a constant E-field. However, we may
extract the constant E-field Schwinger rate from (4.1)–(4.6)
through the Differential Rate formula (2.24), provided we
compute the Jacobian (3.10), restricted to finite values of kz
in the limit T → ∞, where (4.6) holds, corresponding to
finite times jtj ≪ T when the E-field (4.1) is constant.
In that limit because of (4.6) and making use of the
Jacobian (3.10) based on the constant E limit, the second
line of (3.19), and finally Schwinger’s vacuum decay rate
for a constant E-field, is recovered.
In order to use the Integral Method (2.23), one needs

instead at least a two-parameter family of time profiles in
which the parameter controlling the duration of the field is
separate and distinct from the parameter controlling the
time during which the field is switched on and off again.
An analytical function with these properties is

EðtÞ ¼ Eẑ
2
ftanh½bðt − t0Þ� − tanh½bðt − t1Þ�g ð4:7Þ

some examples of which are shown in Fig. 4. This profile has
the property that EðtÞ vanishes well before some initial time
t0 and well after some final time t1 where t1 − t0 ≡ T > 0.
Now T can be taken arbitrarily large, while EðtÞ has
approximately the constant value Eẑ between t0 and t1,
and is adiabatically switched on and off on an arbitrary time
scale of order b−1, cf. Fig. 4. Thus, if b is small enough, the
particle creation during the adiabatic switching on and off of
the E-field may be kept small, and rendered negligible
compared to the particle creation during the arbitrarily long
interval of time T when the field is constant.
The gauge potential corresponding to (4.7) may be taken

to be

AzðtÞ ¼ −
E
2b

ln

�
cosh ½bðt − t0Þ�
cosh ½bðt − t1Þ�

�
−
Eðt0 þ t1Þ

2
ð4:8Þ

which behaves as

AzðtÞ ≃ −E

8>><
>>:

t0 t ≪ t0
t t0 ≪ t ≪ t1
t1 t1 ≪ t

ð4:9Þ

for bðt1 − t0Þ ¼ bT ≫ 1. For this potential no analytic
solution for the mode equation (2.2) is known and we must
rely on a numerical solution. The Bogoliubov coefficients
jBkj2 are finite as is the integral over all modes, and the
decay rate is now computed by the Integral Method (2.23),
taking the T → ∞ limit numerically. The numerical results
for the integrand lnð1þ jBkj2Þ shown in Fig. 5 (unlike
Fig. 3) now show the expected linear opening of the
approximately constant window function in kz as T ¼
t1 − t0 is increased.
For a uniform E-field in two spacetime dimensions,

dropping the transverse d2k⊥/ð2πÞ2 integral, the integral
rate (2.23) is

FIG. 4. The electric field for the profile (4.7) in units of its maximum as a function of time with t1 ¼ −t0. The curves in the left panel
show fixed b/

ffiffiffiffiffiffi
eE

p ¼ 1, with
ffiffiffiffiffiffi
eE

p
t1 ¼ 20 (blue), 40 (green), 60 (orange). The curves in the right panel show fixed

ffiffiffiffiffiffi
eE

p
t1 ¼ 60 with

b/
ffiffiffiffiffiffi
eE

p ¼ 0.1 (blue), 0.25 (green), 1 (orange).

FIG. 5. The numerically computed integrand lnð1þ jBkj2Þ for
the rate as a function of kz for four different values of t1 when
λ ¼ b/

ffiffiffiffiffiffi
eE

p ¼ 1 and t0 ¼ −t1. Going out from kz ¼ 0 in either
direction the curves correspond to

ffiffiffiffiffiffi
eE

p
t1 ¼ 10 (blue), 20 (green)

30 (orange), and 40 (red).

ANDERSON, MOTTOLA, and SANDERS PHYS. REV. D 97, 065016 (2018)

065016-12



Γ2D ¼ lim
T→∞

1

T

Z
∞

−∞

dkz
2π

lnð1þ jBkj2Þ: ð4:10Þ

which is shown as a function of T in Fig. 6, with the limit
extrapolated to the Schwinger result in d ¼ 2 for T−1 ¼ 0.
The linear fit to the 1/T extrapolation shows that the finite
edge effects and particle creation due to the switching on
and off of the E-field around t ¼ t0 and t ¼ t1 remain finite
while the constant E-field contribution to (4.10) increases
linearly as the time interval T increases.
The electric current from the created charged particle

pairs at the end of the process, i.e. at late times after the
electric field has been turned off, is easily evaluated. In this
case, the vacuum-subtracted z component of the electric
current for the two-dimensional case at late times, is [43]

hjzijd¼2 ¼ 2e
Z

∞

−∞

dkz
2π

ðkz − eAzÞ
�
jfkðtÞj2 −

1

2ωk

�

¼ 2e
Z

∞

−∞

dkz
2π

ðkz − eAzÞ
ωk

½jBkj2þReðAkB�
ke

−iωktÞ�

→ 2e
Z

∞

−∞

dkz
2π

ðkz − eAzÞ
ωk

jBkj2 ð4:11Þ

which contains a nonoscillating constant jBkj2 term from
the created particles, as well as a rapidly oscillating
quantum interference AkB�

k term. The latter gives rise to
a rapidly oscillating transient contribution that decays away
with time due to phase cancellations (left panel of Fig. 7).
In contrast the contribution from the created particles gives
a constant contribution to the current at late times, whose
value depends linearly upon the total time T during which
the electric field was applied (right panel of Fig. 7), as
expected from the linearly opening window in kz from
(3.18). This linear growth with T shows that the back-
reaction of the current of the particles created by a
persistent electric field must eventually be taken into
account, no matter how small the coupling e [54].

V. VACUUM DECAY OF DE SITTER SPACE:
FLAT SPATIAL SECTIONS

The globally complete closed S3 spatial sections and
contracting part of de Sitter space have been considered in
detail in [5,6], showing that global de Sitter space is unstable
to particle creation, with exponentially growing energy
density. Here we specialize to the flat spatial sections of
spatially homogeneous and isotropic Friedman-Lemaitre-
Robertson-Walker (FLRW) spacetimes with the metric line
element

ds2 ¼ −dt2 þ a2ðtÞdx2 ð5:1Þ

FIG. 7. Left panel: The oscillating AkB�
k part of the current (4.11) with λ ¼ 1 as a function of time for the case t1 ¼ −t0 ¼ 30ðeEÞ−1/2

corresponding to T ¼ 60ðeEÞ−1/2, showing that it averages to zero and that its oscillations are damped at late times after the E-field is
turned off. Right panel: The constant nonoscillating jBkj2 particle contribution to the current (4.11) with λ ¼ 1 at late times, as a function
of the time T for which the E-field was turned on. The solid line is a linear T fit to the numerical data.

FIG. 6. The two-dimensional rate (4.10) as a function of T−1 for
the case λ ¼ b/

ffiffiffiffiffiffi
eE

p ¼ 1. The crosses are our numerical data. The
solid line going through them is a least squares fit to the data
which is extrapolated to T−1 → 0. The horizontal line segment
gives the value of the rate for this value of λwhen the electric field
is static, according to the Schwinger Rate (3.19), modified for
d ¼ 2 dimensions, which gives Γ2D/eE ¼ 2.96936 × 10−4, and
to which the numerical results extrapolate.
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presumed most relevant for cosmology. In the FLRW
background geometry (5.1) the scalar wave equation
ð−□þm2 þ ξRÞΦ ¼ 0 (with R the scalar curvature) sep-
arates. Hence, the scalar fieldmaybe represented as a Fourier
sum analogous to (2.1), with mode solutions of the form
Φ ∼ ϕkðtÞeik·x. Removing the scale factor by defining the
complex mode function fkðtÞ ¼ aðtÞ32ϕkðtÞ gives a mode
equation for fkðtÞ which is again of the form (2.2) with a
time-dependent frequency

ω2
kðtÞ ¼

k2

a2
þm2 −

h2

4
−

_h
2
þ ð6ξ − 1Þð2h2 þ _hÞ ð5:2Þ

where h≡ _a/a for general aðtÞ. We consider here the case of
conformal coupling ξ ¼ 1

6
to simplify the algebra, although

the same methods may be applied for any ξ. For de Sitter
space aðtÞ ¼ adSðtÞ ¼ expðHtÞ, with h ¼ H a constant
and _h ¼ 0. Then defining the dimensionless time variable
u≡Ht and dimensionless momentum k≡ jkj/H, the oscil-
lator equation (2.2) becomes

�
d2

du2
þ ω2

kγðuÞ
�
fkγðuÞ ¼ 0 ð5:3Þ

with the time-dependent dimensionless frequency function
given by

ω2
kγðuÞ ¼ k2e−2u þ γ2 and with γ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2
−
1

4

r
: ð5:4Þ

We restrict ourselves here to the massive case m2 > H2/4,
in the principal series spin-0 representation of the SOð4; 1Þ
de Sitter isometry group [55], so that γ is real and positive,
as is ω2

kγðuÞ.
The adiabatic parameter appearing in (2.14) in this

case is

δkγðuÞ ¼
k2e−2u

8ω6
kγ

ðk2e−2u − 4γ2Þ

¼ 1

8ω2
kγ

�
1 −

γ2

ω2
kγ

	�
1 −

5γ2

ω2
kγ

	
ð5:5Þ

which reveals that as in the E-field case (3.6), so also in de
Sitter space

lim
u→∓∞

δkγðuÞ ¼ 0 for every k; γ ≥ 0: ð5:6Þ

Hence, there is a well-defined adiabatic j0; ini and j0; outi
vacuum state asymptotic in each infinite time limit of de
Sitter space, the scattering problem (2.16) is again well
posed, and the Bogoliubov coefficients Bk finite and well

defined for every k. In between the asymptotic limiting
times (5.6), at a finite u of order lnðk/γÞ the absolute value
of jδkγj attains the maximum

max jδkγj ≃
0.065 642 3

γ2
ð5:7Þ

which may be compared to (3.8) in the E-field case.
Determining the correct magnitude of the secular particle

creation effect and its detail in real time again requires a
global analysis of the adiabatic phase integral in the
complex time domain. Changing variables to the physical
momentum (in units of H)

z≡ k
a
¼ ke−u ð5:8Þ

so that ωkγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

p
, one finds the adiabatic phase

integral

ΘγðzÞ≡
Z

uðzÞ

ukγ

duωkγðuÞ ¼ −
Z

z

γκ

dz
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

q

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

q
þ γ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ γ2

p
þ γ

z

�

→

�−z z → ∞
−γ ln z z → 0þ

ð5:9Þ

for the flat Poincaré sections of de Sitter space. The lower
limit of integration has been set so that Θγ ¼ 0 at z ¼ κγ,
with the corresponding ukγ the time at which the Stokes line
crosses the real axis, cf. (5.19) below. Thus, we define κ as
the solution of the transcendental equation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 1

p
þ 1

κ

�
⇒ κ ≃ 0.662 743: ð5:10Þ

As in the constant E-field case, the solutions of the mode
equation (5.3) in persistent or “eternal” de Sitter space are
known analytically. The change of variable to z defined in
(5.8) converts (5.3) to Bessel’s equation with imaginary
index �iγ, so that the solutions may be expressed in terms
of J�iγðzÞ. The particular linear combination in terms of a
Hankel function

fkγðþÞðuÞ≡ 1

2

ffiffiffiffi
π

H

r
e−

πγ
2 e

iπ
4Hð1Þ

iγ ðzÞ

¼
ffiffiffiffi
π

H

r
e
πγ
2 e

iπ
4

e2πγ − 1
½eπγJiγðzÞ − J−iγðzÞ� ð5:11Þ

which has been normalized according to (2.4), has the
asymptotic behavior
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fkγðþÞðuÞ →
eizffiffiffiffiffiffiffiffiffi
2Hz

p ↔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hωkγ
p expf−iΘγðzÞg

as z → ∞ ð5:12Þ

matching the positive frequency adiabatic mode f̃ð0Þk in this
limit. Thus, the solution (5.11) defines the j0; ini vacuum
state as u → −∞ according to the m2 − iϵ prescription,
in the flat spatial sections of de Sitter space (5.1). The
particular solution (5.11) is also that of the Bunch-Davies
state which is Oð4; 1Þ de Sitter invariant [2].
On the other hand, the particular solution to (5.3)

fðþÞ
kγ ðuÞ≡ Γð1þ iγÞffiffiffiffiffiffiffiffiffi

2Hγ
p 2iγJiγðzÞ →

ziγffiffiffiffiffiffiffiffiffi
2Hγ

p

↔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hωkγ
p expf−iΘγðzÞg as z → 0 ð5:13Þ

is the properly normalized j0; outi adiabatic vacuum
positive frequency solution which agrees with the adiabatic
form at late times, u → þ∞, in accordance with (5.9).

Since fðþÞ
kγ ðuÞ differs from fkγðþÞðuÞ, the in and out vacuum

states defined by these positive frequency solutions differ
according the Feynman definition. Comparison of (5.13)
with (5.11) allows us to read off the exact Bogoliubov
coefficients of the scattering problem (2.16)

Aγ ¼
ffiffiffiffiffiffiffiffi
2πγ

p
e
iπ
4

2iγΓð1þ iγÞ
e
3πγ
2

e2πγ − 1
ð5:14aÞ

Bγ ¼ −
ffiffiffiffiffiffiffiffi
2πγ

p
e
iπ
4

2iγΓð1þ iγÞ
e
πγ
2

e2πγ − 1
ð5:14bÞ

which are independent of k and satisfy jAγj2 − jBγj2 ¼ 1.
The square of the latter coefficient

jBγj2 ¼
1

e2πγ − 1
¼ e−2πγ

X∞
n¼0

e−2πnγ ≠ 0 ð5:15Þ

is the average number of particles created in any k mode at
late times in the CTBD j0; ini state as reckoned by the
adiabatic j0; outi vacuum. These exact results tell us that
the de Sitter invariant CTBD j0; ini state is not the vacuum
state at late times, and is unstable to pair creation, with the
average number of particles created at late times given
by (5.15).
Moreover from (5.9) the particle creation event takes

place at z ∼ γ, at which the adiabatic phase (5.9) transitions
from its large z (early time) to its small z (late time)
behavior. Applying the complex adiabatic phase method,
first using the z variable, reveals again just two complex
critical points where the frequency function ω2

kγ vanishes,
namely, at

z ¼ �iγ ð5:16Þ

analogous to (3.12) in the E-field case. Evaluating (5.9) at
the complex critical point −iγ gives

ImΘγð−iγÞ ¼
πγ

2
ð5:17Þ

defining the anti-Stokes lines, and

ReΘγðzÞ ¼ ReΘγð−iγÞ ¼ 0 ð5:18Þ

defining the Stokes lines shown in Fig. 8.
We see from (5.9), (5.18) and Fig. 8 that the Stokes line

crosses the real z axis at z ¼ κγ or

ukγ ¼ HteventðkÞ ¼ ln

�
k
κγ

	
ð5:19Þ

with κ given by (5.10). This time at which the given kmode
experiences its creation event, determined by the global
analysis of the Stokes line of the complex adiabatic phase
integral crossing the real axis, differs slightly from the time
when the local adiabatic condition is maximally violated.
The WKB adiabatic phase also determines the approxi-

mate magnitude of particle creation through

jBγj2 ≃ exp½−4ImΘγð−iγÞ� ¼ e−2πγ ð5:20Þ

which agrees with (5.15) calculated from the exact Bessel
function solutions of (5.3) only to leading order in e−2πγ

when γ ≫ 1. The reason for this discrepancy (and differ-
ence with the exact E-field result) is that the z variable only
spans the domain ð0;∞Þ, unlike the infinite range ð−∞;∞Þ
of the u time variable in the E-field case, so that the
complex turning point method utilized previously is not
strictly valid in the z variable. On the other hand, if one uses

FIG. 8. The solid (blue) lines denote the anti-Stokes lines of
constant ImΘλ emerging from the two complex turning points of
(5.16) with γ ¼ 1. The dashed (red) lines are the Stokes lines
of constant ReΘλ connecting the two critical points, the rightmost
of which crosses the real axis at z ¼ κγ ¼ κ given by (5.10).
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the originalu ¼ Ht variable of (5.1), which does run over the
infinite time domain, then there is an infinite number of
complex turning points, at u ¼ lnðk/γÞ þ iπðnþ 1

2Þ; n ∈ Z,
four of which are shown in Fig. 9. The leading order WKB
value (5.20) is the contribution from the complex turning
point in the upper half u plane nearest to the real axis, which
dominates if γ ≫ 1. The infinite series of complex turning
points further from the real axis implies that there is a sum
of exponentially smaller contributions in γ from these addi-
tional complex turning points, and this is manifest in the
exact result (5.15).
The time-dependent adiabatic particle number is defined

by Eq. (2.15) [5,43–45,47] with fk ¼ fkγðþÞ of (5.11) for
the initial CTBD vacuum, and where to lowest nonvanish-
ing adiabatic order

Wð0Þ
k ¼ Hωkγ ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2e−2u þ γ2

q
ð5:21aÞ

Vð1Þ
k ¼ −

_ωkγ

ωkγ
¼ H

�
1 −

γ2

ω2
kγ

	
ð5:21bÞ

while to second order in the adiabatic expansion

Wð2Þ
k ¼ H

�
ωkγ þ

3

8

_ω2
kγ

ω3
kγ

−
1

4

ω̈kγ

ω2
kγ

	
¼ Hωkγð1þ δkγÞ

¼ Hωkγ þ
H

8ωkγ

�
1 −

γ2

ω2
kγ

	�
1 −

5γ2

ω2
kγ

	
ð5:22Þ

with Vk ¼ Vð1Þ
k still given by (5.21b). A comparison of

N ðnÞ
k ðuÞ defined by (2.15) for both choices n ¼ 1, 2, along

with the superadiabatic particle number defined in this case
by [51,52]

N̄ γðuÞ ¼
jBγj2
4

�
erfc

�
−ΘγðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImΘγð−iγÞ

p ��
2

¼ 1

4ðe2πγ − 1Þ
�
erfc

�
−

ffiffiffiffiffi
2

πγ

s
ΘγðuÞ

��2

ð5:23Þ

normalized to the correct value of jBγj2 in (5.15) is shown
in Fig. 10. This confirms that the particle number rises
rapidly as the Stokes line is crossed, the global analysis of
the adiabatic phase in the complex plane determining most
accurately the time of the particle creation event (5.19)
[5,52].
The vacuum decay rate for the expanding half of de Sitter

space covered by the Poincaré flat spatial coordinates (5.1)
starting in the j0; ini CTBD vacuum can be determined
by the Differential Method (2.24). In this case only the
magnitude jkj ¼ Hk is fixed by the Stokes line crossing, so
that inverting (5.19)

k̄ðtÞ ¼ κγeHt ¼ κγadSðtÞ ð5:24Þ
gives the value of k of the mode experiencing its creation
even at time t. Since the integration measure in (2.24) is
d3k ¼ H3k2dkdΩk̂ and the four-volume factor is dV4 ¼
Va3dSðtÞdt, we have from (5.24) the Jacobian

���� d3kdV4

����
k¼k̄ðtÞ

¼ H3dΩk̂

Va3dS

k̄2dk̄
dt

¼ κ3γ3H4

V
dΩk̂ ð5:25Þ

FIG. 9. The Stokes and anti-Stokes lines of Fig. 8 mapped to the
complex u plane, for k ¼ γ ¼ 1, resulting in an infinite number of
complex critical points at u ¼ iπðnþ 1

2
Þ along the imaginary axis,

four of which are shown. The solid (blue) lines are the anti-Stokes
lines, and the dashed (red) lines are the Stokes lines, one of which
crosses the real axis at ukγ ¼ lnð1/κÞ ¼ 0.411 368, from (5.19)
with k ¼ γ ¼ 1.

FIG. 10. The mean number of particles created from the
vacuum as a function of time in de Sitter space for γ ¼ 1 and

k ¼ 1. The three curves are for adiabatic particle numbers N ðnÞ
k

defined by different orders of the asymptotic expansion (2.13),
(5.21), and (5.22) [5], for n ¼ 1, 2, and the superadiabatic particle
number defined by (5.23) [52]. Note that the zeroth order
adiabatic curve (blue) has the highest peak while the super-
adiabatic curve (orange) has no peak. Although differing some-
what in transient details around u ¼ ukγ ¼ 0.411 368 of (5.19),
all three curves rise rapidly from zero near there and tend to the
same asymptotic value jBγ j2 ¼ ðe2π − 1Þ−1 ¼ 1.870 94 × 10−3

(dashed line) of (5.15) as u → ∞.
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which is independent of t, the factors of a3dSðtÞ having
canceled. Thus, only the integral over the directions of k̂
remains in (2.24), which since

R
dΩk̂ ¼ 4π andN ¼ 1 for a

single real scalar, gives

ΓdS ¼
κ3γ3H4

4π2
lnð1þ jBγj2Þ ¼ −

κ3γ3H4

4π2
ln ð1 − e−2πγÞ

ð5:26Þ

for the decay rate of the CTBD vacuum state of de Sitter

space into scalar particle pairs of mass m ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 1

4

q
,

with κ given by (5.10). This result, with the prefactor
determined by the real time Stokes line crossing is a
principal result of our analysis. Interestingly, ΓdS tends
to zero in the limit γ → 0 as −γ3 ln γ, while

ΓdS →
κ3m3H
4π2

exp

�
−
2πm
H

	
for m ≫ H ð5:27Þ

in the large mass or flat space limit, similarly to (3.19) for
the electric field case. We note from (5.24) that the physical
wavelength ðadS/Hk̄Þ ¼ ðκγHÞ−1 of the Fourier mode at the
time of its particle creation event is of the order of the de
Sitter Hubble horizon if γ ∼ 1, but can be much smaller
than the horizon if m ≫ H; γ ≫ 1.
Note also that although there is no integral over k to

perform in (5.26), this value of ΓdS obtained from the
Differential Rate definition (2.24) is identical to what
would be obtained by an Integral Rate formula in pure
de Sitter space if the de Sitter window step function value of

jBkj2 ¼
� jBγj2; k̄ðt0Þ ≤ k ≤ k̄ðt1Þ
0; otherwise

ð5:28Þ

were used. Because of the kinematic factor of k2dk in
(2.23) the integral is clearly dominated by the largest value
of k contributing at the largest value of the FLRW scale
factor for an expanding universe, and one may replace the
lower limit of k̄ðt0Þ ¼ κγadSðt0Þ in (5.28) by zero, in the
limit of large adSðt1Þ ¼ eu1 . Thus, (2.23) with (5.28) leads
again to (5.26), if divided by the integrated four-volume
V
R t1
t0 dta

3
dSðtÞ → 1

3H Ve3u1 in the same limit.
The result (5.26) is half of what would be obtained in

global de Sitter space in leading exponential order for the
closed S3 spatial sections in the same limit, the reason
being there are two creation events in each k mode in the
closed spatial sections, one in the contracting phase and one
in the expanding phase. Thus, except for one creation event
in each mode as opposed to two, the same phenomenon of
vacuum decay takes place in the Poincaré patch of a de
Sitter universe that is only expanding, usually considered in
FLRW cosmological models, as in the globally complete
closed S3 spatial sections. The vacuum decay rate (5.26)

also differs from the result of [3,5] by a finite prefactor
because of the difference of N ¼ 1 vs N ¼ 2, and the
differing estimate of the constant prefactor in the K cutoff
of the mode sum in (2.23), which is determined to be k̄ðt1Þ
in the present work by the detailed analysis of the particle
creation event in real time by the Stokes line crossing.

VI. ADIABATIC SWITCHING DE SITTER
ON AND OFF

As in the E-field case, we investigate two different time
profiles for switching the de Sitter background on and off,
the first with a single adiabatic parameter

hðtÞ≡ _a
a
¼ Hsech2ðt/TÞ ð6:1Þ

suggested by analogy to (4.1), and the second

hðtÞ≡ _a
a
¼ H

2
tanh½bðt − t0Þ� −

H
2
tanh½bðt − t1Þ� ð6:2Þ

suggested by the ðb; TÞ E-field profile (4.7) illustrated
in Fig. 4.
In the first case (6.1) the FLRW scale factor may be taken

to be

aðtjTÞ ¼ exp½HT tanhðt/TÞ� ð6:3Þ

with an arbitrary multiplicative constant of integration set
equal to unity. As t →∓ ∞, aðtjTÞ goes to a constant and
the flat space vacua are uniquely defined. Since the solution
of the mode equation (2.2) with (5.2) is not known
analytically for this scale factor, we present the numerical
results for particle creation jBkj2 in Fig. 11, which may be
compared to Fig. 3. As in the electric field profile (4.1),
jBkðTÞj2 falls off at large momenta for any finite T, the
falloff becoming more and more gradual as T becomes
larger, in which limit a flat plateau at small k that is
characteristic of the constant h → H de Sitter value (5.15)
is attained. Again the k → ∞ (fixed T) and T → ∞ (fixed
k) limits of jBkðTÞj2 do not commute, and the gradual
falloff of jBkðTÞj2 for those k going through their creation
events when hðtÞ is not constant makes the FLRW time
profile (6.3) inappropriate for the Integral Method of
determining the decay rate for pure de Sitter space.
However, again as in the case of the one parameter time
profile (4.1), the Differential Method for determining the
vacuum decay rate of de Sitter space may be applied to the
FLRW time profile (6.3) and its jBkðTÞj2 in the adiabatic
limit T → ∞, provided the differential Jacobian (5.25) is
computed for the modes in the central plateau of Fig. 11
where hðtÞ → H is constant. Then, the result for pure de
Sitter space (5.26) is reobtained.
In the second case of the time profile (6.2), the FLRW

scale factor may be taken to be
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aðtjt0; t1; bÞ ¼ exp

�
H
2b

ln

�
cosh½bðt − t0Þ�
cosh½bðt − t1Þ�

�
þHðt0 þ t1Þ

2

�
ð6:4Þ

in which the multiplicative constant of integration has been
chosen so that the scale factor has the simple behaviors

aðtjt0; t1; bÞ →
8<
:

eHt0 t ≪ t0
eHt t0 ≪ t ≪ t1
eHt1 t1 ≪ t

ð6:5Þ

in each region for bðt1 − t0Þ ≫ 1. Thus, as in (6.3), the
scale factor is a constant in both the very early and very late
time limits, the spacetime becomes flat in those limits and
again both the j0; ini and j0; outi vacuum states and the
particle number are unambiguously well defined for
t →∓ ∞. The k integral in the probability overlap (2.20)
again is finite. The de Sitter-like region for t0 < t < t1 in
between can be made arbitrarily long, while the adiabatic
turning on and off of the de Sitter background takes a finite
time of order b−1, which needs to be large enough so that
the transition is gentle and adiabatic, and does not in itself
lead to significant particle creation. This condition requires
that b ≪ H.
Figure 12 shows numerical results for the particle

number jBkj2 in the final static region, as u → þ∞.
Note that the pure de Sitter value of jBkj2, (5.15) is
obtained for small k ≪ γeu1 ≡ γeHt1 . However, the falloff
from this constant de Sitter “plateau” value is very gradual
unlike the integrand in Fig. 5. The value of jBkj2 also begins
to fall off markedly at k values much smaller than the value
κγeu1 expected from (5.24) and (5.15). In the integral rate

formula (2.23), the integral over dk is weighted by k2.
This integrand is shown in Fig. 13, which because of the
falloff of jBkj2 at large k achieves a maximum value still
considerably less than would be expected from the pure de
Sitter result (5.15), and at a considerably lower value of k
than κγeu1 .
In the Integral Method the u1 volume dependence in the

integrated four-volume

V4 ¼ V
Z

t1

t0

dta3ðtjt0; t1; bÞ

⟶
u1→∞ V

H
e3u1F

�
H
b

	
⟶
b→0 2V

3H
e3u1e−

3H
2b ln 2 ð6:6Þ

should be canceled by the range of k integration in the
integral

R
k2dk lnð1þ jBkj2Þ for large u1 ¼ Ht1. In (6.6)

FIG. 12. The mean number density of created particles jBkj2
in the final state after the de Sitter background is switched off
according to the time profile (6.4), for u1 ≡Ht1 ¼ 50;
t0 ¼ −t1; b ¼ 0.1H, and m ¼ H. The dashed line is the constant
(5.15), here 4.352 28 × 10−3 expected for pure de Sitter space and
γ ¼ ffiffiffi

3
p

/2, and the solid hash marker is the value of k̄ ¼ κγeu1 ¼
2.975 77 × 1021 expected from (5.24).

FIG. 13. The decay rate integrand k2 lnð1þ jBkj2Þ of (2.23)
for the scale factor (6.4) on a log-log plot for the case
u1 ¼ 50; b ¼ 0.1H, and m ¼ H.

FIG. 11. Particle creation number density jBkðTÞj2 for the one
parameter quasi–de Sitter profile (6.1), as a function of k for
m ¼ H, γ ¼ ffiffiffi

3
p

/2. The curve that falls off the most rapidly in k
(blue) is for HT ¼ 20, the middle one (green) is for HT ¼ 40,
and the outer one (orange) is for HT ¼ 60, showing the approach

to jBγ j2 ¼ ðeπ
ffiffi
3

p − 1Þ−1 ¼ 4.352 28 × 10−3 (dashed line) of
Eq. (5.15) for small k/a. Compare to Fig. 3.
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F is a function of H/b which has the small b behavior
shown in the second limit. Figure 14 shows the independ-
ence of the value of the plateau level of jBkj2 for small
argument ke−u1 → 0, hence large u1. This shows that the
plateau value of jBkj2 exists for small enough ke−u1 , and
hence from (6.6), the e3u1 scaling expected and needed for
the dependence on the final time u1 to drop out of the rate
does indeed hold.
However, if we try to apply the Integral Method (2.23) to

define the vacuum decay rate by means of the profile (6.4),
the long gradual tail in jBkj2 as a function of k for larger k,
yields a rate that depends on b no matter how large u1 is.
In Fig. 15 we show the dependence of jBkj2 as a function

of rescaled ke−u1 for various values of b, showing that
the falloff from its de Sitter plateau value depends on b,
and occurs at a smaller value of ke−u1 for smaller values
of b. This implies a smaller contribution to the integralR
k2dk lnð1þ jBkj2Þ for smaller b.
Indeed, Fig. 16 shows the numerical results for the decay

rate (2.23) turning de Sitter space on and off according to
the profile (6.4). As expected, the decay rate rises for large
b due to the breakdown of the adiabatic condition (2.14)
and the creation of particles during the switching on and off
of de Sitter space in the short time b−1, coming to dominate
over the particle creation in the de Sitter background itself,
so we should exclude these large values of b. As b is
decreased the rate decreases due to the more rapid falloff of
the integrand shown in Fig. 15, reaching a minimum value
of (2.23) at b ≃ 0.1H, with a rise again for smaller b. This
rise for smaller b is the result of the multiplicative
exponential dependence of V4 upon b for small b ≪ H
in the last limit of (6.6), rather than additive dependence in
the E-field case.
The minimum in b shows that there is de Sitter vacuum

decay, no matter how slowly or rapidly the de Sitter phase is
ended, but that the probability of decay in the profile (6.4)
depends upon the time and manner spent exiting the de
Sitter phase around t ∼ t1, since the b dependence never
drops out. This makes the profile (6.4) finally inappropriate
for attempting to determine the pure de Sitter vacuum decay
rate by the Integral Method (2.23), since the edge effects
cannot be eliminated, no matter how large u1 is. Indeed, the
form of jBkj2 for large k in Figs. 12–14 with its gradual
falloff from the de Sitter plateau value for the FLRW
profile, (6.4) and (6.5), actually is more similar to that
obtained in the single parameter profiles (4.1) or (6.3),
in which the deviation from the constant plateau
value characteristic of the persistent E-field or de Sitter

FIG. 14. The mean particle number jBkj2 as function of rescaled
ke−u1 for u1 ¼ 50 (stars) and u1 ¼ 70 (crosses) in the case
b ¼ 0.1H,m ¼ H, showing its universal scaling behavior at large
u1, and de Sitter plateau for ke−u1 ≪ 1, in agreement with (5.15),
expected for pure de Sitter space with γ ¼ ffiffiffi

3
p

/2 (dashed line).

FIG. 15. Mean particle number jBkj2 vs rescaled momentum
ke−u1 for the profile (6.4) for the cases lower to upper of b ¼
0.05H (blue), b ¼ 0.1H (green), and b ¼ 0.2H (orange). The
dashed line is the pure de Sitter value (5.15). For the range of
values shown the data for the curves was computed for values of
u1 that are in the scaling range where, to a good approximation,
the value of jBkj2 depends only on the product ke−u1 . However,
the falloff of the tail still depends on b.

FIG. 16. Numerical results for the decay rate calculated by the
Integral Method (2.23) for the scale factor profile (6.4), with VT
replaced by the integrated FLRW four-volume V4 of (6.6). The
resulting Integral Rate is shown as a function of b on a log-log
scale for m ¼ H, γ ¼ ffiffiffi

3
p

/2. The horizontal line is the predicted
pure de Sitter rate (5.26) of 2.079 895 × 10−5 for this value of γ.
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background cannot be eliminated no matter how large T or
u1 is made.
The failure of the FLRW trial profile (6.4) to reproduce

the de Sitter rate (5.26) by the Integral Rate formula (2.23)
for arbitrarily large u1 is nevertheless interesting, and
stands in marked contrast to the corresponding calculation
with the E-field profile, (4.7) and (4.8), in flat space, where
the Schwinger rate is recovered in the extrapolation to the
limit of large T in Fig. 6. It shows that there is greater
sensitivity to the switching off of the de Sitter background
simultaneously over an exponentially large volume at late
times in the expansion, arising from both the dependence
upon b of the tail of the particle distribution going through
their creation events as the de Sitter phase ends shown in
Fig. 15, and the multiplicative exponential dependence on b
of the four-volume V4 in (6.6). Perhaps this greater
sensitivity than anything encountered in flat spacetime to
how the de Sitter phase is ended over all space uniformly at
distances much greater than the de Sitter future event
horizon should not be surprising. It suggests that not only is
the Bunch-Davies vacuum unstable to particle creation, and
de Sitter invariance is necessarily broken, no matter how
long the de Sitter phase lasts, but also that it may be
necessary to restrict any spatiotemporal variation of H to
within a single causal Hubble horizon, and study the
breaking of spatial homogeneity on the horizon scale
H−1, as well as time reversal symmetry in de Sitter space.

VII. ENERGY AND PRESSURE OF CREATED
PARTICLES: BACKREACTION

The results of the previous sections indicate that so long as
the exit from the de Sitter phase is gentle enough, any
particles created during that phase end up as particles in the
asymptotically static region where the definition of a particle
is unambiguous. This shows that the definition of adiabatic
particle number (2.15) is robust, in the sense that for either

n ¼ 1; 2 with (5.21) or (5.22), the time-dependent N ðnÞ
k

defined during the de Sitter phase, becomes as u → ∞
exactly the final time-independent particle number jBkj2 in
the flat space region, after the de Sitter background has been
turned off. There is no doubt that these are the real particles
observed in the final state. This may be verified also by
evaluating the energy density and pressure of the created
particles. After subtracting the vacuum value of the stress
tensor components obtained by setting Ak ¼ 1, Bk ¼ 0, we
obtain for the renormalized flat space energy density simply
[44,45]

ρ ¼ hTttiR ¼ 1

a3

Z
d3k
ð2πÞ3 ωkjBkj2 ð7:1Þ

where ωk and a → eu1 are the constant values of the
frequency (5.2) and scale factor in the asymptotic late time
limit for the profile, (6.4) and (6.5), after the expansion has
been turned off and spacetime is again flat. The correspond-
ing expression for the renormalized isotropic pressure is

p ¼ 1

3a3

Z
d3k
ð2πÞ3

�
ωk −

m2

ωk

	
jBkj2

þ 1

3a3

Z
d3k
ð2πÞ3

�
2ð6ξ − 1Þωk −

m2

ωk

�
× ReðAkB�

ke
−2iωktÞ ð7:2Þ

in flat space, where 6ξ − 1 ¼ 0 in the present study. Note that
because of the scaling behavior of jBkj2 illustrated in Fig. 14,
the change of variable from k to k/a shows that both the
energy density and the pressure are constants, independent of
u1 and therefore independent of the time spent in the de Sitter
phase. In other words ρ and p do not redshift to zerowith the
exponential de Sitter expansion. The reason for this is that
although each k mode certainly does redshift with the
expansion, particles are continually being created at the latest
time u1 to replenish them at the largest k ∼ k̄ðt1Þ ¼ κγeu1 , so
that the integrals (7.1) and (7.2) are independent of u1.
If these integrals are evaluated for the pure de Sitter

window value (5.28) and large u1, then making the change
of variable (5.8) we obtain

ρ ¼ H4jBγj2
2π2

Z
κγ

0

dzz2
�
z2 þ m2

H2

	1
2

¼ H4jBγj2
16π2

�
z

�
2z2 þ m2

H2

	�
z2 þ m2

H2

	1
2

−
m4

H4
ln

�
H
m

�
zþ

�
z2 þ m2

H2

	1
2

�	�
z¼κγ

ð7:3aÞ

p ¼ H4jBγj2
6π2

Z
κγ

0

dzz4
�
z2 þ m2

H2

	
−1
2

¼ H4jBγj2
16π2

�
z

�
2

3
z2 −

m2

H2

	�
z2 þ m2

H2

	1
2

þm4

H4
ln

�
H
m

�
zþ

�
z2 þ m2

H2

	1
2

�	�
z¼κγ

ð7:3bÞ

where jBγj2 is given by (5.15), κ is given by (5.10), we have
taken ξ ¼ 1

6
and also neglected the last interference term in

(7.2). This is justified because as shown in Fig. 17, this term
oscillates rapidly in the static out region and vanishes in the
late time limit, just as the oscillating AkB�

k quantum
interference term in the electric current does at late times
illustrated in the left panel of Fig. 7.
Because of the rapid oscillations and their damping, as

evidenced in Fig. 17, there is very effective phase
decoherence or dephasing in these terms, and the contri-
bution of the interference term in the mean pressure washes
out. This behavior is related to the fact that jBkj2 and the
diagonal elements of the density matrix in the particle
basis (2.18) or (2.21) are adiabatic invariants, whereas the
AkB�

k interference terms and off-diagonal elements of the
density matrix depend upon the phase expð−2iΘkÞ, which

ANDERSON, MOTTOLA, and SANDERS PHYS. REV. D 97, 065016 (2018)

065016-20



oscillates rapidly as a function of either t or k in flat space.
Thus, the rapidly oscillating off-diagonal element of the
density matrix in the final state basis may be neglected, and
the initial pure vacuum state j0; ini may be treated as a
mixed state with positive entropy in the late time out basis.
In this approximation, well justified by the behavior of the
pressure term illustrated in Fig. 17, the particle creation, in
principle, unitary and reversible if all exact phase corre-
lations are preserved, becomes effectively Markovian and
irreversible [47].
The values of the energy and pressure in the asymptotic

final state are independent of the duration of the de Sitter
phase because of the scaling illustrated in Fig. 14, and both
are positive, as might have been expected for real particles.
Thus, the stress tensor of the created particles is completely
unlike that in the “eternal” expanding de Sitter background,
where the stress tensor tends to the de Sitter invariant
Bunch-Davies attractor value with ρþ p ¼ 0, all initial
state deviations from this value falling exponentially with
time [8]. This occurs because the oscillatory phase coherent
terms do notwash out at late times in fixed de Sitter space, as
they do in Fig. 17, but instead give a contribution of the same
order as that of the created particles, combining with them to
give the de Sitter invariant value at late times. This phase
coherence is due to the fact that all the Fourier modes in the
broad range of values γ ≪ k≲ γaðtÞ remain in phase,
because of the exponential suppression of both the t and k
dependence of (5.9), through k/a ¼ ke−Ht in de Sitter space.
Thus, as these modes pass outside the de Sitter Hubble
horizon, they have nearly the same time dependence and
add coherently in the integral over k, remaining of the same
order as the particle creation terms. Our results show that this
phase coherence of superhorizonmodes in pure deSitter space
is destroyed by the transition out of de Sitter, however gentle,
while the particle number term jBkj2 is robust, surviving the
transition due to its adiabatic invariance.
In order to estimate the backreaction of the created

particles, we note that the Einstein equation

dH
dt

¼ −4πGðρþ pÞ < 0 ð7:4Þ

for ρþ p > 0 in the final state tends to decrease the
curvature, assuming that the phase coherence of the super-
horizon modes is not preserved and the particle contribu-
tions dominate the stress tensor. From Eqs. (7.3) we have

ρþ p ¼ H4jBγj2γ3
6π2

κ3
�
κ2γ2 þ m2

H2

	1
2

> 0 ð7:5Þ

so that (7.4) leads to a fractional decrease in the expansion
rate of order

ΔH
H

≃ −
2

3π
GH2

γ4κ3

e2πγ − 1

�
κ2 þ 1þ 1

4γ2

	1
2 ð7:6Þ

for a Hubble expansion time HΔt ≃ 1. The backreaction is
small if GH2 ≪ 1 and contains the additional exponential
suppression from jBγj2 as in (5.27) if m ≫ H. It is
nevertheless nonzero and appears at one-loop order even
for a massive free field, in contrast to quantized graviton
contributions reported at two-loop order in [20].
Note that although the energy density and pressure (7.3)

are not exponentially redshifted away due to the constant
rate of particle creation in de Sitter space, neither do they
grow in the time T that the de Sitter phase persists, as the
electric current does in the E-field case, cf. Fig. 7. In the
E-field case the created particles are accelerated to rela-
tivistic velocities after their creation and contribute a
current which grows linearly with the window of modes
that go through their creation events, and hence that grows
secularly with time, producing a backreaction effect on the
electric field that clearly must eventually be taken into
account in a consistent dynamical system. This acceleration
of created particles to relativistic velocities appears more
similar to the contracting part of the time slicing of the full
de Sitter hyperboloid, in which the created particles are
blueshifted rather than redshifted and exponentially grow-
ing stress-energy perturbations occur [5,6].

VIII. DISCUSSION

In this paper we have presented a detailed analysis of
particle creation and vacuum decay in persistent back-
ground fields that are homogeneous in space, such as the
constant uniform electric field and de Sitter space. The
vacuum state of QFT in the presence of such background
external fields is specified not by analytic continuation to
Euclidean time, but by the Feynman-Schwinger m2 − iϵ
causal prescription which defines particle and antiparticle
excitations in real time. This defines a scattering problem
(2.16) for massive scalar fields which determines the mean
particle number created in pairs in each Fourier mode, and
relates the vacuum persistence probability (2.20) directly to
the number of created particles. The zero overlap between

FIG. 17. The phase coherent oscillating part of the pressure,
given by the last term in (7.2), for ξ ¼ 1

6
; m ¼ H; u1 ¼ 10, and

b ¼ H. The envelope of the rapid oscillations falls as
1/u2 at late times.
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the j0; ini and j0; outi states in (1.1) in the strict limit of
infinite four-volume is no pathology, but simply a conse-
quence of a constant vacuum decay rate Γ per unit time per
unit volume in a persistent background field. The four-
volume V4 ¼

R t1
t0 d

4x
ffiffiffiffiffiffi−gp

factor must be removed in order
to obtain a well-defined vacuum decay rate.
By analyzing the particle creation process in real time,

we have given an invariant Differential Rate formula (2.24)
for the vacuum decay rate in such persistent fields in which
no divergent integrals over momenta are encountered. The
evaluation of this Differential Rate relies upon an analysis
of the critical points of the adiabatic phase integral (2.9) in
the complex time domain, and the semiclassical definition
of the time at which this particle creation can be said to
occur. This time teventðkÞ is defined by the point at which
the Stokes line of the constant real part of the adiabatic
phase for the given Fourier mode k crosses the real time
axis, and thereby gives a relation between k and t that
determines the Jacobian in (2.24). In the case of the
constant, uniform electric field, Schwinger’s result for
the decay of the vacuum into charged particle/antiparticle
pairs is recovered in this way. In the case of de Sitter space,
the prefactor of the Bunch-Davies vacuum decay rate,
somewhat ill defined in earlier treatments, is also fixed,
with the principal result being (5.26).
We have also discussed an Integral Method (2.23) for

calculating the vacuum decay rate in persistent background
fields. This method relies upon replacing the external field
extending infinitely to the past and future in time, by one
which is adiabatically switched on from zero around some
finite time t0, allowed to persist for a long but finite time
until t1, and then adiabatically switched off again. This
defines the total number of particles in the asymptotic final
state unambiguously, and verifies that the adiabatic particle

number definition (2.15) N ðnÞ
k for either n ¼ 1, 2 is robust,

giving the correct average number of asymptotic particles
in a given Fourier mode after the background electric or
gravitational field is turned off. For this Integral Method of
defining the vacuum decay rate of a persistent field to work,
it is necessary to find a time-dependent background for
which any effects associated with switching the back-
ground field on and off can be made negligibly small in the
limit T ¼ t1 − t0 → ∞. We found a suitable two-parameter
family of external gauge potentials (4.7) for which this
condition is satisfied, and once again found the same
Schwinger decay rate for a long-persistent uniform electric
field by this Integral Method.
In the case of de Sitter space, the apparently natural

generalization of this two-parameter FLRW background
spacetime (6.4) does not yield the de Sitter decay rate,
because the asymptotic particle number at large k depends
upon the time scale b−1 with which the de Sitter back-
ground is turned off at late times, no matter how long the de
Sitter phase lasts. Since the two-parameter FLRW back-
ground (6.4) requires the switching off of de Sitter

background curvature everywhere in space in cosmic time,
far outside the de Sitter-Hubble horizon, one might suspect
that this spatially homogeneous background is particularly
artificial, and perhaps should be replaced with one that is
regulated also in its spatial extent at the horizon scale. The
failure of the Integral Method for strictly spatial homo-
geneous switching on/off of de Sitter space is indicative of a
greater sensitivity of de Sitter space to the long wavelength
modes lying outside their causal Hubble horizon, and hence
to spatial boundary conditions.
The main conclusion to be drawn from the existence of

particle creation and a nonzero decay rate (5.26) starting
from the de Sitter invariant Bunch-Davies state is that this
CTBD state is not a stable ground state of QFT in de Sitter
space, and that SOð4; 1Þ de Sitter symmetry is necessarily
broken, both in time, and possibly also in space, even by a
free massive quantum field without self-interactions. Stated
differently, the Feynman-Schwinger m2 − iϵ definition of
the vacuum of QFT and particle excitations is incompatible
with the requirements of de Sitter invariance, at least for
conformally coupled massive scalar fields with any finite
m > H/2, for which the particle concept is well defined.
In de Sitter space, analogously to the constant electric field
background, for which a time-independent Hamiltonian
bounded from below also does not exist, the m2 − iϵ
definition of particle excitations implies spontaneous vac-
uum decay and the spontaneous breaking of the time
reversal symmetry of the background [56].
Since the Feynman-Schwinger m2 − iϵ condition goes

smoothly over to that of the standard Minkowski vacuum
for any slowly time-varying adiabatic background, whether
electromagnetic or gravitational, independent of any sym-
metry of the background, analyticity in the mass parameter
is a more general principle of determination of the vacuum
of QFT, more firmly based on physical considerations of
causality than the Euclidean postulate. The compatibility of
Wick rotation in time to them2 − iϵ prescription is a special
property of zero-field Minkowski space where Poincaré
invariance dictates that correlation functions at x and x0

can only be a function of m2ðx − x0Þ2 ¼ −m2ðt − t0Þ2 þ
m2ðx − x0Þ2, with the result that analyticity in m2 and
Euclidean continuation are necessarily related. This equiv-
alence cannot be assumed in general, and in particular it
ceases to hold when additional parameters of the back-
ground field enter the time dependence of correlation
functions, when there is no invariant decomposition into
positive and negative frequency subspaces, or when a
Hamiltonian bounded from below does not exist in real
time, as in de Sitter space, in which cases continuation to
Euclidean time has no evident physical justification.
On any given FLRW time slice of constant t in the

spatially flat coordinates (5.1), the physical adiabatic
vacuum is Bunch-Davies only for Fourier modes with
wave numbers k ≫ k̄ðtÞ ¼ κγeHt, while for modes with
k ≪ k̄ðtÞ the vacuum state is described by the positive
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frequency out mode functions (5.13), with a smooth but
fairly rapid switch over at k ∼ k̄ðtÞ, illustrated in Fig. 10.
Since modes continue to redshift with the de Sitter
expansion, the dividing line k̄ðtÞ between the modes in
the Bunch-Davies vacuum and those whose vacuum state
is defined by (5.13) continues to grow in comoving wave
number k. This implies that particles are continuously
created at k ∼ k̄ðtÞ, and both the vacuum decay rate and the
total energy density and pressure (7.3) of the created
particles are independent of the duration of the de Sitter
expansion.
These particles surviving after the de Sitter background

has been switched off contribute a constant positive energy
density and pressure in the final state, which does not
redshift away, no matter how long the de Sitter phase
persists. Since the created particles have ρþ p > 0,
cf. (7.5), this suggests that their stress-energy will create
a backreaction that will decrease the curvature, and hence
decrease the effective cosmological “constant” Λeff ≡ 3H2

over time, in accordance with (7.5). We have estimated the
magnitude of the backreaction effect by (7.4)–(7.6) in the
case that exact spatial homogeneity is preserved, assuming
the quantum phase oscillation AkB�

k interference terms can
be neglected. This estimate of the backreaction (7.6) is
small for massive fields if GH2 ≪ 1. Nevertheless any
instability of de Sitter space due to particle creation effects
indicates that the Bunch-Davies state is not the stable
ground state of QFT coupled to Einstein gravity with a
cosmological constant, and that quantum particle creation
effects should be taken into account in a fully consistent
backreaction calculation. We have not considered light or
massless fields in this paper, but one may suspect that their
backreaction effects could be significantly larger.
In contrast to these results stands the fact that in fixed

eternal de Sitter space theOð4; 1Þ de Sitter invariant Bunch-
Davies state for a conformally coupled massive scalar field
possesses a renormalized mean field stress-energy tensor
hTμνi proportional to gμν. Hence, it induces only a constant
vacuum energy with p ¼ −ρ, that can be absorbed into a
finite renormalization of the cosmological constant, result-
ing in a self-consistent semiclassical solution with full de
Sitter symmetry [57]. Since the propagator in the Bunch-
Davies state possesses the short distance Hadamard behav-
ior matching to that of flat space, making it normalizable
and UV allowed, and since it is the only de Sitter invariant
state with this property [3,45], it is often considered a
preferred vacuum state, apart from any appeal to continu-
ation to Euclidean time. Despite the particle creation, if all
terms in the renormalized hTμνi are taken into account in a
fixed de Sitter background, the stress-energy remains de
Sitter invariant and fixed at its Bunch-Davies value.
Moreover, in this fixed expanding de Sitter background
the expansion even drives initial state perturbations in hTμνi
back to its Bunch-Davies value at late times [8]. Thus, the
late time pure de Sitter limit is quite different and not equal

to the late time limit of a FLRW time profile such as (6.4),
no matter how large the finite time t1 is taken, and no matter
how gently the de Sitter phase ends.
These facts are in no way inconsistent with each other,

since the interference terms of the superhorizon modes act to
cancel the particle creation terms in the CTBD state in exact
de Sitter space, but go to zero if the de Sitter background is
switched off, as Fig. 17 shows. The mere existence of a de
Sitter invariant state, however “natural” it might appear to be,
is also not sufficient to insure its stability. The adiabatic
vacuum, agreeing with the Bunch-Davies state for large
k ≫ k̄ðtÞ ¼ κγeHt, is also UV allowed, and physically
preferred according to the Feynman-Schwinger m2 − iϵ
definition. We have shown in this paper that by this
definition, the completely de Sitter symmetric Bunch-
Davies state is not the vacuum state of de Sitter space at
late times, but instead contains a definite mean number of
particle excitations above the physical j0; outi vacuum. We
emphasize that although the particles are clearly seen to be
real in the flat spacetime region after the de Sitter background
is turned off according to the profile (6.4), the particles in the
plateau for k ≪ eu1 in Figs. 14 and 15 are created in de Sitter
space itself, not in the transition out of de Sitter space. The
Differential decay rate (5.26) is explicitly due to this de Sitter
particle creation, not to any effect of the transition.
Nevertheless, the cancellation of the particle creation

terms and reversion to the Bunch-Davies value in de Sitter
space does present us with the question of what actually
happens in a fully self-consistent evolution, rather than one in
which the de Sitter background is either artificially eternally
fixed or artificially turned off. What are the implications of
the particle creation and decay rate (5.26) of the initial
Bunch-Davies vacuum state in the true physical situation of
fully dynamical gravitational plus matter fields?
At this point we can attempt an answer to this important

question only in the form of a speculation based on known
infrared effects in gravitational systems and analogies
with better studied many-body systems. The semiclassical
Einstein equations with source hTμνi amount to a large N
mean field approximation, in which the N matter fields
interact with the classical gravitational field, but not directly
with each other [47,54]. The gravitational interaction
between the created particles of the matter appears at first
order in 1/N [58]. Since these created particles are redshifted
to very small physical momenta at late times by the
expansion, and the gravitational interaction is long range,
these 1/N interaction terms, completely ignored in the
leading order, can lead to contributions to the next order
stress-energy tensor which grow secularly in time. This
behavior is generic to 1/N corrections tomean field evolution
in nonequilibrium systems [59], and has been seen both in
electric field backgrounds [60], and inflationary models
[10,17,19,20,61]. Clearly the investigation of such secular
effects requires a causal in-in formulation in real time.
Thus, the behavior of the long wavelength Fourier

modes may well be quite different than in the leading
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order semiclassical mean field description. Although the
full solution of infrared problems in dynamical cosmolo-
gies, or even full QED, is still lacking, experience with
other systems suggests that sophisticated resummation
methods are required to capture the leading order secular
terms, leading to decoherence, entropy generation and
irreversible behavior [59,62], for which a coarse grained
stress-energy tensor may be appropriate [63]. If interactions
are taken into account through Boltzmann transport equa-
tions, the adiabatic particle definition also provides the link
between QFT and a fully classical (completely phase
incoherent) particle limit. Clarifying these issues and the
behavior of the long wavelength modes in a fully dynami-
cal cosmology certainly will require the specification of the
QFT vacuum both in and out of the de Sitter phase. The full
solution could have important consequences for the reheat-
ing of the Universe at the end of inflation, and predictions
for the cosmic microwave background observed today.
Finally the sensitivity of the rate shown in Fig. 16 on

how the de Sitter phase ends, simultaneously over all space
at late times in the time profile (6.4), and the possibility of
significant backreaction effects and departure from the
mean field evolution on the horizon scale, may be related.
If the persistent de Sitter background were to be regulated
differently, in a way consistent with a finite causal Hubble
horizon, by modifying it with a spatial regulator rather than
switching it on and off in FLRW time everywhere in space,
the superhorizon modes would be treated quite differently,
or cut off entirely. Hence, it appears likely that sensitivity
to spatial boundary conditions through a regulator or other
physics on the horizon scale will survive in a more

complete treatment. If so, or if infrared interaction effects
are significant at this scale, this would imply spatial
homogeneity is broken on the horizon scale H−1, leading
to a spatially inhomogeneous rather than global FLRW
cosmology. Evidence for the additional breaking of spatial
homogeneity, as well as time reversal inherent in vacuum
decay of de Sitter space, due to the conformal anomaly was
presented previously in Refs. [6,64]. If spatial homogeneity
is broken, then the backreaction of the created particles in
a spatially inhomogeneous universe should be considered,
and vacuum dark energy, rather than being a spacetime
constant, will acquire spatial as well as time dependence
on the scale of the Hubble horizon, with potentially far-
reaching consequences for observational cosmology, con-
tinuing to the present quasi–de Sitter epoch.
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