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In this work, we use the renormalization group method in the study of the behavior of a quartic fermionic
self-interaction in a Gross-Neveu-Thirring model in 2 4 1 dimensions, in the context of Horava-Lifshitz
theory. We show that if we include high derivatives in the spatial part of the free Lagrangian density for a
critical exponent z = 2 the model becomes renormalizable by power counting, thus improving the
ultraviolet (UV) behavior of theory. We determine the renormalization group (RG) functions at one-loop

order and we obtain the fixed points of effective beta function (). We find that it is asymptotically free for

the case < 0.
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I. INTRODUCTION

One of the very well-known symmetries in nature at
the scale of observable energy is the Lorentz invariance
[1]. However, there recently has been great interest in
the possibility that in more fundamental theories small
violations are induced to the Lorentz invariance [2,3].
A minimal expected feature of any model that con-
siders violation of Lorentz invariance is the relativistic
manifestation of this invariance at low energies, so
that the Lorentz symmetry is seen as an emergent
scenario.

Another point of great interest that has received much
attention lately is the analysis of the possible effects of
space-time anisotropy. These studies involve different
areas, such as gravity and cosmology [4], string theory
[5], and condensed matter systems [6]. In particular, in the
context of quantum field theory, this possibility emerges as
an alternative for the study of nonrenormalizable theories,
once it improves the UV behavior of the perturbative series
despite violating the symmetry of Lorentz [7]. The breaking
of Lorentz symmetry has been studied in several situations,
encompassing commutative models [8], the standard
extended model [9] and the physics of graphene [10],
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which provide conditions for parameters of the Lorentz
symmetry breaking [11].

In the context of the Lorentz invariance break, as in
Lifshitz-like models, we explore the possibility that a
nonrenormalizable model can be renormalized by adjusting
the parameter of Lifshitz scaling that measures the degree
of anisotropy between space and time. This is due to
behavior of Lifshitz-like anisotropic scaling symmetry in
which time and space scale differently: x* — A2x°%, x' — Ax!
[12,13], where the exponent z characterizes the scaling
symmetry. Because of this anisotropic scaling, the Lorentz
symmetry is explicitly broken for z # 1. In the sense of the
power count, the power in the spatial component of the
momentum in the denominator of the free propagator is
increased by the factor z. Thus, a suitable choice of z can
lead to a better UV behavior of the theory, or in the sense of
interactions, make a previously nonrenormalizable theory
into a renormalizable one.

The paper is organized as follows. In Sec. II, we
present the Lifshitz-type fermionic quartic self-interaction
model and the Feynman rules. In Sec. III we show the
renormalization group equations and the calculations of
renormalization group functions. In Sec. IV we use the
Zimmerman’s reduction mechanism of the coupling
constants through which we will find the effective beta
function of the system, and we will investigate the fixed
points of the model, as well as the mass renormalization.
In Sec. V we review the main results obtained in this
paper and in the Appendix we show some details of the
calculations.

© 2018 American Physical Society
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II. THE MODEL

The Lagrangian density of the model in 2 + 1 space-time
dimension is given by

L =yliy®dy + iby'd; + a(iy'0;)* = My + g1 (yrwr)?
+ (7 w)* + g3 (Fr'y)?, (1)

where z designates the highest degree of the spatial
derivatives, (y°,y") are Dirac matrices, and M is the bare
mass fermion field. The g; are the coupling constants
associated with each term of four fermions. The parameters
a and b correspond to the strong and soft break of the
Lorentz symmetry, respectively [14]. The part associated
with the Thirring term has been separated into two terms
(time and space parts), each generated by its coupling
constant. The effective dimension of the Lagrangian
density is z 4+ d [14], where d represents spatial dimension.
By taking a as a dimensionless parameter, we find for
Dim[b] = z — 1 and the canonical effective dimension of
the fermionic field is Dim[y| = d/2. Therefore, for a
generic Feynman diagram G, the degree of divergence
will be given by

d(G) = d+z—Dimly]Ny - 3 (d + z - Dim[y]u, "),

(2)

where N is the number of external fermionic lines and
u,t are the fermionic lines joining at the interaction
vertex v. For a purely fermionic theory with a quartic non-
derivative self-interaction, the renormalizability requires
that the value of the critical parameter must be z = d = 2.
In this situation, Eq. (2) becomes d(G) = 4 — Ny, which
reflects the fact that with this choice the model is renor-
malizable perturbatively, i.e., g;, g, and g3 are dimension-
less. Thus, the divergent diagrams have two and four
external lines and are quadratic and logarithmically diver-
gent, respectively. In this work we will use a variant of the
dimensional regularization to render finite the relevant
diagrams, and for that reason we will introduce a new
coupling constant g; — u¢g;, where p is a renormalization
parameter, i = 1,2, 3 and € = 2 — d which must be set zero
at the end.

In the Feynman rules, the fermion free propagator of the
theory is given by

ilY’po + by'pi + ap® + M, .
ps — (b* + 2aM)p* — a’p* — M?|

SF(p)(1|(12 = [ (3)

and the vertices are given by ig;A ® A, ig, I’ ® I'y, and
igyl" ® I';, where

ARA= 5a1a25a3a4 - 50:10:450:30129 (4)

ro QL= yg]a2y003a4 - yglaﬂ/Oagaz’ (5)
I QI = yé]azyiagm - 7/5110:4}/1‘0:30:2’ (6)

and &, means identity matrix.

III. RENORMALIZATION GROUP EQUATION

The equation of the renormalization group obtained from
the use of dimensional regularization is the t’Hoft-
Weinberg equation given by [15]:

0 0 0 0
—+oy=—+Pi—+P—+f 33—
ﬂaﬂ MaM B 991 P> ErS B3 g3

0 0
_ (Nr) —
+ . 9 + % Neyy T 0, (7)

where T'Vr) = TWe)(p, ..., py) represents the renormal-
ized vertices functions and py, ..., py stand for the external
momenta. The two-point and four-point vertex functions
can be written as

2 . i 2
thl)az = 1[70170 + b]/ pPi— a(p)2 - M]maz + 1211212 (8)

and

T, = ig14°A ® A+ igypT® @ Ty
+ig T ® T + I s (9)
where [, flzl)az and [, E:T)azasou represent the quantum corrections.
We can renormalize these functions using the following
procedure: by considering an amplitude of the form
IWNr) = poloNr) + finite(Nr), the renormalized amplitude
can be obtained by the operation

(1= T)pI™Vr) = finite®™r) + xInpRes™r),  (10)

where x = 1 and x = 2, for the function of two and four
points, respectively, 7 is an operator which removes the
pole term in the amplitudes, and Res™*) represents the
residue of the diagrams with Ny external lines, which are
given by the coefficients of the term 1/e.

A. Two-point Green’s functions

At 1-loop order the diagrams of two points are shown in
Fig. 1, and they have an analytical structure given by

o . [d [ d'k
Iaala2*—4l//l /E W{ngr[SF(k)]émaz

9 Tr[y°Sp(k)lyo, . + 93Tf[7iSF(k)]7’iala2 b1

apa

and
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FIG. 1. One loop correction for two-point functions. Figure
(a) involves the trace of the Dirac matrices. Diagram (b) is the one
loop correction absent from the trace. The dotted line represents
the different types of interaction vertices.

ala, /dko/(ddl)(d {9157 (k)] aq

+ %lr0Sr(K)Y ) gy, + 9317iSF(K)Y |0} (12)

By using the method described in the Appendix and

= v

ajay

@ .. 2 b 1
Ialazzl/,l g1 wg‘i’flnltel ) 2”a2g

b1
- 2g3 + finites | 06,4, (13)
2ra® :

we get

B. Four-point Green’s functions

The 4-point diagrams are shown in Fig. 2. They are
logarithmically divergent in the UV regime. Therefore, to
extract the divergent term we can calculate these diagrams
by taking the external momenta equal to zero. Thus, we can
write

Ol k k Oy A Sk
..... o3 Oy oz N A Oy
(a) (b) (c)
A A A
ar . ko % o1 . O
. . N
O
N
_k )
a; A A oy o3 A Oy

FIG. 2. Diagrams representing the 1-loop corrections of the
4-point vertex functions for external momenta equal to zero. The
continuous lines stand for the fermion propagator and the dotted
lines indicate all the types of interaction contained in the
Lagrangian (1), providing a total of 30 diagrams. Diagram
(e) represents the contribution that contains the trace of Dirac
matrices, while the other diagrams ((a)—(d)) do not contain the
trace operation.

3
4 . 2 4
1£’1>0203a4 (pext = 0) = lﬂz Z gigj(15j>)a]a2a3a4v (14)
i,j=1

where,

UD) s, = 18+ 10+ 180+ 190 118 (15)

with
dk dk )
/ T [ Gy s @ VSIOASWA L,
Cha, A’S(k)/\ SU)Ajlaa, - (16)
k Ak
= [ 52 | G NSIOASEOA L, ® M,
A]S k) lS(k) ]a]a4 ® A(t;(lz} (17)
dk, ddk .
Ca / / A]]alaz ® [A]S(k)Ai](z3a4
Nga, ® [NS(K)A] 40, } (18)
dhy [ d'% .
Y /’ / (1], ® [ASCON o
A]]a](14 ® [A S(k) ](l';{lz} (19)
dk . )
19 = / dk / d (N, © A, THNS(ONS(D)
A, .. ® A, TIAS(K)AS(K)]}, (20)
where we have defined A}, = 8,5, A2y = 105 Aby = 1hg

and for simplicity, we adopt 1514) I (a?azam

performing the integrals in Eqs. (16)—(20) (for details see
the Appendix) and collecting the results, we obtain

41 41
19 = i/ﬂe{ {g% [—— + finiten] + 9 [—— + ﬁnitezz] }
ae nae

-81
X A ® A + {g% |:7m€ + finite33:|

and so on. By

81 . =81 ..
+ 9193 |—— + finite 3 | + g3 |—— + finitey;
rae za e
xI"QTI'; + g9, |——+finite|, | x IV @ I'y ¢.
ma e
(1)

From Egs. (10), (13), and (21) we can easily identify the
residues
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ib? ib? ib?
Reslz—z, ReS2:——2, RCS3:——2,
2ra 2ra na
8i 8i 16i
RCSIIZ——, R6822:——, RCS33:——,
ra ra ra
16i 16i 16{
RCSIQI——, RCSB:——, R6523:——.
ra ra ra

We can determine the functions of the renormalization
group inserting into Eq. (7) the following expansions

o = Zéijkgligégév (22)
Tk
Yy =D Vikgighoh. (23)
ik
and
B: = P, 9% (24)
ik

where £=1,2,3,a,b, with the sum restricted to
i+ j+ k<2 and then use Eq. (13) and Eq. (21). The
coefficients &, ¥;jks ﬂ(“)ijk’ and ﬂ(,,)ijk are given in terms of
the residues of the 2-point functions, whereas the coef-
ficients ﬂ(‘:)ijk (¢ =1, 2, 3) are given in terms of the 4-point
residues. In this way, we obtain

Yy =Pa =P =0,

oy = g1Res; + goRes, + g3Ress,

B1 = giRes;; + giResy,

Pr = g192Res .

B3 = giReszs + gigsRes3 + grgsResys,  (25)

and thus
b2
=5 (91— 9> — 293), (26)
b=~ (3 + ) 7)
! o\ T 5%)
16
Pr=——01%, (28)
wa
6 ,
p3 = T (5 + 9195 + 9293). (29)

which are the functions of the renormalization group of the
model at one-loop order. We note that the beta functions for
the parameters a and b are zero, which means that up to this
order both remain constant independent of the renormal-
ization point.

IV. REDUCTION OF COUPLING CONSTANTS

The structure of the beta functions of the model makes
the analysis of the fixed points very complicated, since we
have three beta functions, each with three coupling con-
stants to be analyzed simultaneously. Then, for the analysis
of the fixed points, we will use the Zimmermann’s
reduction formalism of coupling constants [16]. The idea
of this formalism is to reduce the three constants to an
effective coupling constant, which, in principle, can be any
of the three (g;, g, or g3). Such a scheme has been applied
in a variety of situations including the cases of non-
renormalizable models, treated as effective theories, and
also in massive theories [17]. Following Zimmermann’s
formalism, we consider one of the constants of the model to
be effective, for instance g;, such that

B =pg1 93 =pagi- (30)
The relationship between the effective coupling constant
and the original coupling constant satisfies the following
differential equation [16],

dg;

B Bi

with

limg; =0,
.%"’09}

and i =1, 2, 3 are indices which corresponds to the
effective beta function that a priori can be any of the
three of the model and j =1, 2, 3 (j # i) are indices for
the original beta function. So

P = p1b1. Ps = papr- (31)
Since we are taking f3; as the effective beta function, the
beta functions given by Egs. (27), (28), and (29) are
replaced in the previous expressions. We replace the
Egs. (30) giving a system of equations of the three original
beta functions as a function of the effective coupling
constant

P1 = :l:lv

, _Pi=2p -1
2 2 s

where p; and p, are the coefficients of the reduction.

We will consider the analysis by taking g; = g as the
effective coupling constant since the nature of the fixed
points of the reduced system remains the same for both
values of p; (+1 or —1). In this way, the effective beta
function of the reduced system is of the form
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— a=1
— a=2
— a=3
— a=4
g
FIG. 3. The behavior of the negative beta function.
= 16 _
pg) =-—7. (32)
na

and we note that effective beta function has a single fixed
point in § = 0, called a trivial fixed point (see Fig. 3).
The “effective coupling constant” satisfies

99(g.1) -
5 =P, (33)

with the condition g(g, 7 = 0) = ¢, (from now g; = g) and
t is a logarithmic energy scale. Thus, the solution which
comes from Eq. (32) is given by

_ g
)= - 34
g(g ) 1—1—%gt ( )

As shown in Fig. 4, (g, 1) — 0 when t — +o0 besides g
is finite at any finite value of the momentum. This
corresponds to a UV stable fixed point of  and ensures
that the perturbation theory in the vicinity of this fixed point
could be used, and its behavior at high moments exhibiting
an asymptotic freedom. Also, we must take into account the
existence of a pole at 7, = _1%' For 7 > 1, the running

coupling of the reduced system changes signal, however,

—0.04F N

0.02
— a=1
g 0.00 A
-0.02 - — a=3
;o — a=4

-100 =50 0 50 100
t

FIG. 4. The general behavior of the effective coupling constant,
corresponds to the solution of g with respect to ¢t — £oo,
considering the particular case where g = 0.025, for different
values of parameter a.

0.0007
0.0006F -
0.0005F -
0.0004F [\ N\ T asl
Mr 6,003} a2
0.0002f - ‘ A
0.0001 F- -] - Q& — a=4
0.0000E

0 200 400 600 800 1000
t

FIG.5. The general behavior of renormalized mass for different
values of a and fix b =1 and g = 0.025.

the nature of the fixed point remains unchanged. Other
choices for the effective coupling constant (such as g, or g3)
are possible, however, the trivial fixed point becomes
infrared stable, and the perturbation theory in the vicinity
of this point could not be investigated.

For §,, we have

b
Su(g:1) = —3(g.1), (35)
na
such that
oM
5M(9) -Mp = 8tR' (36)

Solving the Eq. (36), we obtain

b? —an
Mg(g,1) :Mexp(—t)—kﬁexp @—t
ar ar
Eil — —Ei{ — 37
X( l<16g+t> l<169>>’ 7

E;(x) = i% +y +% <Log[x] —Log H >

k=1

being,

where y corresponds to the Euler-Mascheroni constant and
we have considered My(g,t = 0) = M. From Eq. (37) we
see that the mass asymptotically disappears with 1 — oo
and that it presents a divergence when the momentum tends
to —oo, as we see in Fig. 5.

V. CONCLUSIONS

In this paper we investigate the renormalization group
functions in the Gross-Neveu-Thirring model in (2 + 1)
space-time at one loop order in the context of the Horava-
Lifshitz theory. We use a variant of dimensional regulari-
zation prescription to render finite the Feynman amplitudes.
This model presents an explicit Lorentz symmetry break, in
which time scales with z leading to an effective dimension
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d+ z, where d is spatial dimension and z in critical
exponent which characterizes space-time anisotropy. The
presence of the term that represents the stronger Lorentz
symmetry break in Lagrangian given by Eq. (1) makes the
model have a better behavior in the UV regime, and in the
specific case which z = 2, the model becomes renormaliz-
able in the coupling constants. As expected, the beta
functions of the parameters a and b are null, as well as
the anomalous dimension of the fermionic field since the
external momentum does not flow through the fermionic
loop. Thus, up to this order, it is not possible to verify in
which scale of energy the restoration of the Lorentz
symmetry could occur. Using the Zimmermann procedure
for the reduction of the coupling constants, and adopting g,
as the effective coupling constant, we show that the theory
exhibits a UV fixed point at origin, which means that theory
is asymptotically free. With this choice of effective cou-
pling, we note that the nature of the fixed points of the
theory does not change for the values py = lorp; = —1.In
addition, the Lorentz symmetry breaking contained in the
interactions of four-fermions are restored to the two
possible choices of p; (or p,). On the other hand, the
choice p; = —1 implies that §,; =0, and therefore,
Mg (t) = M exp™, which is independent of four-fermions
interactions, contrary for the case p; = 1 which gives the
renormalized mass shown in Eq. (37).

Since the dispersion relation of this model is the same as
the electrons in graphene bilayer in the Bernal-Stacking
configuration [18,19], the four fermion interactions could

j—ip—4—d

simulate other microscopic interactions [20], beyond the
long-range Coulombian interaction between electrons in
graphene [21]. Thus, it is possible that the approach used
in this work has some relevance in the study of two-
dimensional systems.
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APPENDIX: SOME DETAILS OF THE
CALCULATIONS

This appendix aims to detail the calculation of integrals
in the anisotropic case. All integrals, considering a break
of Lorentz symmetry up to a second derivative in the
spatial part of the Lagrangian, have the following general
structure [14,22]

- MZ)Z ’

J(x,y,2) z/
(A1)

and using the Schwinger parametrization [23], the final
result of the integral will be (for the details of this
calculation check the Appendix of Ref. [14])

dky d'k
2z (2m)4 (k3

kolk|”
e

J(x,y.2) ZW(—(—U%) U1+ (=1)) (ja?) S (iM?)alg

2

x+1 d y 1 d vy x y 3 d y «x
r 2b°M°’T e B B or e L e e 1
X < > >{6 b <4+4+2> ( 171 2—|—z)+b <4+4+2 177 2—|—z+

d vy d y «x 1 d vy d y «x 1

_ aper(¢ Y\ 4 _Y_ 2 _2 ar(¢ Y o\ Y _ X 2
3aM[2aMF<4+4>F< 171 2+ 2>+br<4+4+1 r 177 2+Z+2 (A2)

In order to find the solution we must assign the values of x,
y, 2, d(€), a, b e M in the above expression. After the
identification of these variables, we expand it to ¢ small and
then we can determine the pole term Res/e.

Now, consider Fig. 1(b) given by equation

—a [ 55 [ S Al

+ 5 [}/OSF(k) O]alaz +93 [ylSF(k) ]alaz}

‘7‘1“2

(A3)

where the propagator Eq. (3) is replaced, after operating
the matrices of Dirac and writing the denominator as

A(k) = 12 = Pk — a*k* = M2, being b? = b+ 2aM
allows us to consider that the vertex function of two points
is given by

dk
— 4i eaalaz{/ 0/

X (g1 + 9 +293)}-

I

e

ajay

(A4)

The absence of k, and k; in the above expression is due to
the fact that their contributions are zero. Using the integral

(A1), we get that 1\

ajay

is
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Ig’i?az = 4i'u€5‘110!2{a‘](0’2’ 1) + MJ(O’Ov 1)[91 +9+ 293]}7
(AS5)

where J(0,2, 1) and J(0, 0, 1) corresponds to Eq. (A1) with
the values for x, y and z respectively, after replacing them in
Eq. (A2) getting

2 1
— -+ Finite Terms,

J(0,2,1
I )= 87za

11
J(0,0,1) = i——— + Finite Terms.
dra e

So that the contribution given by Fig. 1(b) is

2

(2)
I -z -
2ra?

ajap

= _iﬂ€5a1a2 [gl + 92 + 293} (A6)

As for the four-point function, consider Fig. 2(e)
given by

1Y = —22{FA ® A[J(2,0,2) + b2J(0,2.2) + a>J(0,4,2) + M*J(0,0,2)] +

+a2J(0,4,2) + M?J(0,0,2)] + A" @ [[-J

dk
_ 2 2¢e 0
Zgl J/ / 27) d{ iy © Ny

®A S TIAS(K)ATS(K)]}- (A7)

la1a4

The procedure to solve I(;;) is to replace the propagator

and Dirac matrices respectively. Let us take the case where
i = j = 1 and after multiplying Dirac matrices we obtain

2 ez/dko/ Ak A®A
27)d A%(k)

+ (ak? + M?)?]

Tr[k + b2kik,,y'y™

Repeating this procedure in the 6 possible cases and
performing the standard procedure in the trace of the
Dirac matrices in the 2 x 2 representation, we arrive at a
structure similar to (A4). Recognizing that the integrals

present in /, ij) have the form of (A1), we can write [ £‘j> as

BA® A[J(2,0,2) — b3J(0,2,2)

(2,0,2) + b3J(0,2,2) + aJ(0,4,2) + M?J(0,0,2)]

+ 319.1° ® [y[at(0,2,2) + a*J(0,4,2) + M?J(0,0,2)] + g1 ;1" @ I';[aJ(0,2,2) + a*>J(0,4,2) + M?J(0,0,2)]

+ 93T @ T;[aJ (0,2,2) + a?J(0,4,2) + M?>J(0,0,2)]},

(A8)

where b3 = b* + 2aM?. Replacing the corresponding x, y, and z values in (A2) we have:

1
= z—— + Finite Terms,
nae

1
5=+ Finite Terms,

J(2,0,2) =
J(0,2,2) = Finite Terms,
J(0,4,2) = —

ma’ e
J(0,0,2) = Finite Terms.

Given Eq. (A8) and the previous results, we obtain that the contribution of / Ef? to the vertex function of four points is

I£4) iu g2F’ QI —-—

11 (A9)

"Qrae’
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