
 

Conformal anomaly from gauge fields without gauge fixing
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We show how the Weyl anomaly generated by gauge fields, can be computed from manifestly gauge
invariant and diffeomorphism invariant exact renormalization group equations, without having to fix the
gauge at any stage. Regularization is provided by covariant higher derivatives and by embedding the
Maxwell field into a spontaneously broken Uð1j1Þ supergauge theory. We first provide a realization that
leaves behind two versions of the original Uð1Þ gauge field, and then construct a manifestly Uð1j1Þ
supergauge invariant flow equation which leaves behind only the original Maxwell field in the
spontaneously broken regime.
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I. INTRODUCTION

Over a period of some years, a framework has been
developed for gauge theory which allows continuum
computations without fixing the gauge. This is achieved
by utilizing the freedom to design manifestly gauge
invariant versions of the continuum realization of
Wilson’s renormalization group (christened exact RG
in Ref. [1]). Such manifest gauge invariance was first
incorporated into the exact RG in Ref. [2], however in
the limited context of pure Uð1Þ gauge theory.
Following Ref. [3] it was generalized and extensively
studied first for SUðNÞ Yang-Mills theory, then QCD [4]
and QED [5,6]. For these gauge theories, regularization
is based on gauge-invariant higher derivatives set at
some ultraviolet cutoff scale Λ, supplemented by gauge
invariant Pauli-Villars fields [7] with particular flavors
and interactions so that their regularization properties
are preserved under RG flow. It was later realized that
the resulting structure could be simply understood as
arising from spontaneously broken SUðNjNÞ super-
Yang-Mills theory [8,9]. In this scheme, the original
gauge field A1

μ is joined by a copy gauge field A2
μ with

wrong sign action, and a complex fermionic (i.e.,
wrong-statistics) gauge field Bμ:

Aμ ¼
�
A1
μ Bμ

B̄μ A2
μ

�
ð1:1Þ

This extra regularization works because these degrees
of freedom cancel each other, as happens with Parisi-
Sourlas supersymmetry [10], at least sufficiently that,
together with appropriately chosen covariant cutoff
functions, the theory is then regularized to all orders
in perturbation theory [11–13]. The symmetry is then
broken spontaneously along the fermionic directions,
endowing the Bμ with a mass at the cutoff scale Λ.
The computational methods were generalized in
Refs. [14–18] so that universal results could be
extracted in a way which was manifestly independent
of the detailed form of the regularization structure, and
such that general group invariants could be handled
[19]. Using these techniques, the initial computation of
the one-loop β function at infinite N [3] was generalized
to finite N [15,18,20,21], then to two loops [19,22–25],
extended to all loops in Refs. [26,27] and to compu-
tation of gauge invariant operators in Refs. [28,29]. For
reviews and further advances see Refs. [30–32].
In Ref. [33] the first steps were made in generalizing

these ideas so as to yield a manifestly diffeomorphism
invariant exact RG for use in quantum gravity.1 On the one
hand the renormalization group structure of quantum
gravity is surely of importance [35–38] and on the other
hand one can expect conceptual and computational
advances from a framework which allows computations
to be done while keeping exact diffeomorphism invariance
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at every stage, i.e., without gauge fixing. Indeed as shown
in Ref. [33], it turns out that these computations can then be
done without first choosing the space-time manifold and in
particular without introducing a separate background met-
ric dependence. A solution to the difficult issue of back-
ground independence is thus automatic in this formalism.2

However, only the flow equation for classical gravity was
developed in Ref. [33]. In this paper we make the first step
toward including manifestly diffeomorphism invariant
quantum effects involving gravity.
We will be concerned with the conformal, a.k.a. Weyl or

trace, anomaly [46–48]3 generated by gauge fields.
Although this does not involve dynamical gravity, it is
clearly important to understand how the known universal
answer can arise in this framework, i.e., such that gauge
invariance is maintained at all stages. Indeed, since the
conformal anomaly can be read off from the logarithmically
divergent curvature-squared terms at one loop, it is propor-
tional to the signed number of fields (i.e., with fermionic
fields appearing with opposite sign). Thus in the usual
calculation [46–48], the ghost degrees of freedom are
indispensable. The manifestly gauge invariant formalism
reviewed above, proceeds without ghosts. Thus the ques-
tion arises: working on a curved spacetime, is gauge fixing
now necessary to recover the correct Weyl anomaly or not?
As we will see in fact the correct Weyl anomaly is
reproduced without gauge fixing. This is thus a dramatic
confirmation of a formalism that was developed and tested
only in flat space calculations. Needless to say, it is also the
first time that a manifestly gauge invariant computation has
been achieved for the gauge field contribution to the
conformal anomaly.
For this exercise it is sufficient to consider Maxwell

theory, i.e., free Uð1Þ gauge fields. As already mentioned,
manifest gauge invariance can be straightforwardly incor-
porated in flow equations for pureUð1Þ gauge theory in flat
space [2], where in fact only the gauge field A1

μ appears.
Even for manifestly gauge invariant QED, the gauge field
degrees of freedom are not altered or supplemented: only
the Dirac fields need regularization with opposite statistics
Pauli-Villars partners [5,6]. This is because it is straightfor-
ward to regularize a Uð1Þ gauge field gauge invariantly
using only a cutoff profile c which is a function of partial
derivatives rather than covariant derivatives:

L ¼ 1

4
F1
μνc−1ð−∂2=Λ2ÞF1μν: ð1:2Þ

(Throughout we will be working with Euclidean signature.)
However the arguments above already show that such a
framework could not possibly give the correct Weyl

anomaly. In fact once we use a nonflat metric (and thus
replace the partial derivatives in c−1 with covariant deriv-
atives) we introduce interactions with the metric which
destroy the regularization, since this is then again effec-
tively covariant higher derivative regularization, which is
known to fail at one loop [33,52,53]. Therefore even for
pure Maxwell theory, we need a wrong-statistics counter-
part to play the role of the Pauli-Villars field. Following the
same chain of reasoning as reviewed above, in order for this
to be embedded in an exact RG framework, we are led to
developing versions of spontaneously broken Uð1j1Þ
theory for this purpose.
As we will see the wrong-statistics fields that are

introduced then ensure the correct Weyl anomaly. In fact
the result can be directly compared to a more conventional
calculation, although only after rearranging contributions
from the wrong-statistics vector and Goldstone fields,
reflecting the fact that the supergauge invariance, while
spontaneously broken, is nevertheless manifest throughout.
Actually, a wholesale adaptation of the previously

developed manifestly gauge invariant methods is not quite
what we want, because the A2

μ sector is left unbroken. For
the purposes of flat space computations in non-Abelian
Yang-Mills theory, this is not a problem [11–13,54,55]
because all interactions with this sector are irrelevant,
starting with

trF1
αβF

1
γδtrF

2
ϵζF

2
ηθ ð1:3Þ

(with indices contracted in some way), and thus the A2

sector decouples in the continuum limit, providing we work
in D ≤ 4 dimensions [13]. For a computation of the
conformal anomaly however, and more generally the purely
gravitational action at one loop, the A2 sector will also
contribute and thus we expect to find twice the right answer
whatever the space-time dimension.4 We will confirm that
this is indeed the case.
While the above framework is enough to work out the

Yang-Mills contribution to the pure gravitational action at
one loop, its use would clearly be limited beyond this while
the unphysical A2 sector remains as part of the continuum
theory. We therefore also build an alternative formulation
with spontaneous breaking of both the Bμ and the A2

μ field so
that all these fields gain masses at the regularization scale Λ.
This thus leaves only the original unbrokenMaxwell field A1

μ

at low energies, which, as we will see, then gives exactly the
correct value for the conformal anomaly.

II. DIFFERENTIAL OPERATORS

Before proceeding, it is useful to collect together proper-
ties of the curved space differential operators that will2For a discussion of this issue in the asymptotic safety

literature see, e.g., Refs. [39–45].
3The Weyl anomaly has been investigated in flow equations in

Refs. [49–51].
4The wrong sign in the action does not contribute to the metric

dependence at one loop.
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naturally appear when working with gauge fields. For
scalar fields ω, the operator that naturally appears, e.g., as
the kernel in the kinetic term, is just the Laplace-Beltrami
operator

Δ0ω ≔ −∇μ∇μω: ð2:1Þ

(With the sign, it is positive semidefinite.) However for a,
e.g., Uð1Þ, gauge field5 the kernel from the simplest action

1

4

Z
dDx

ffiffiffi
g

p
FμνFμν ¼ 1

2

Z
dDx

ffiffiffi
g

p
AμΔT

1Aμ; ð2:2Þ

(where F ¼ dA, or in components Fμν ¼ ∇μAν −∇νAμ), is
the differential operator ΔT

1 ¼ δd, where d is the exterior
derivative, and δ the codifferential. In components:

ΔT
1Aμ ≔ Δ1Aμ þ∇μ∇νAν ¼ −∇2Aμ þ∇ν∇μAν: ð2:3Þ

Here we have also introduced the (positive semidefinite)
Laplace–de Rham operator

ðdþ δÞ2 ¼ dδþ δd; ð2:4Þ

which on a one-form is explicitly

Δ1Aμ ≔ −∇2Aμ þ Rμ
νAν ð2:5Þ

(coinciding with the Lichnerowicz Laplacian). Abelian
gauge invariance (i.e., d2 ¼ 0) ensures that ΔT

1 annihilates
longitudinal one-forms, as is easily explicitly verified:

ΔT
1∇μω ¼ −∇2∇μωþ∇ν∇μ∇νω ¼ 0: ð2:6Þ

On the other hand since d and δ commute with ðdþ δÞ2,
while on a scalar field de Rham ¼ Beltrami:

ðdþ δÞ2ω ¼ δdω ¼ Δ0ω; ð2:7Þ

we must have:

∇μΔ1Aμ ¼ Δ0∇μAμ; Δ1∇μω ¼ ∇μΔ0ω; ð2:8Þ

as is also readily verified using the component formulas.
Thus using (2.3), we see thatΔ1 andΔT

1 commute. Ignoring
normalizable zero-modes (or working on a manifold which
has none), ΠL ¼ d 1

ðdþδÞ2 δ is a longitudinal projector for

one-forms, equivalently

ΠLAμ ≔ −∇μ
1

Δ0

∇νAν: ð2:9Þ

Therefore the transverse projector is

ΠT ≔ 1 − ΠL: ð2:10Þ

By d, δ algebra, or using (2.8), we have

Δ1ΠTAμ ¼ ΠTΔ1Aμ ¼ ΔT
1Aμ; ð2:11Þ

i.e., ΔT
1 is just the transverse projection of Δ1. Splitting

Aμ ¼ ΠTAμ þ ΠLAμ ≕AT
μ þ∇μAL; ð2:12Þ

the transverse eigenmodes of Δ1 are the nonzero eigenm-
odes of ΔT

1 , while longitudinal eigenmodes of Δ1 are
eigenmodes of Δ0AL ¼ λAL, since then

Δ1∇μAL ¼ λ∇μAL: ð2:13Þ

As a result a trace involvingΔ1 projected into the transverse
modes can be expressed as

TrTfðΔ1Þ≡ TrΠTfðΔ1Þ ¼ TrfðΔ1Þ − TrfðΔ0Þ; ð2:14Þ

while the trace over the longitudinal sector is

TrLfðΔ1Þ≡ TrfðΔ1Þ − TrΠTfðΔ1Þ ¼ TrfðΔ0Þ: ð2:15Þ

III. MANIFESTLY GAUGE INVARIANT FLOW
EQUATION ON A CURVED SPACETIME

We give a brief review of manifestly gauge invariant flow
equations for Yang-Mills theory, making some minimal
adaptations so that they apply to Maxwell theory propa-
gating in a curved spacetime. As explained in the intro-
duction, this will actually yield a Uð1Þ ×Uð1Þ theory,
where the second copy has wrong sign action. From this we
can nevertheless extract the one-loop pure gravitational
contribution. Then in Sec. VIII we will give an improved
flow equation which leaves behind only a single physical
Maxwell gauge field.
Recall that the basic idea is that the flow of the

Boltzmann measure expð−SÞ should be a total functional
derivative, i.e., for some generic fields ϕ:

Λ∂Λe−S ¼
δ

δϕ
ðΨe−SÞ ð3:1Þ

(corresponding to the statement that each RG step is
equivalent to an infinitesimal field redefinition ϕ ↦ ϕþ
ΨΛ−1δΛ) [3,56]. Importantly, this ensures that the partition
function Z ¼ R

Dϕ expð−SÞ, and hence the physics
derived from it, is invariant under the RG flow. Working
with a fixed background metric gμν and in general D
dimensions, we will show how to generalize the previous
formulations for Yang-Mills while preserving this crucial

5For simplicity, in this section we write Aμ ≡ A1
μ, and trust the

reader not to be confused with later usage.
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feature, and in such a way that the solution remains
straightforwardly calculable.
As we sketched in the introduction the previous for-

mulations were developed over a number of years to cope
with the most general cases. For our purposes we can
closely follow the one set out in Ref. [18]. Indeed we will
see that the flow equation still takes the generic form

Λ∂ΛS ¼ −a0½S;Σg� þ a1½Σg�; ð3:2Þ

where

Σg ¼ g2S − 2Ŝ; ð3:3Þ

Ŝ being the so-called seed action, and g being the gauge
coupling which, since we work in general D spacetime
dimensions, has mass dimension 2 −D=2. The coupling
has been factored out so that it plays the role of a loop
counting parameter: the loop expansion of the effective
action being given by

S ¼ 1

g2
S0 þ S1 þ g2S2 þ � � � ; ð3:4Þ

where S0 is the classical effective action, S1 the one-loop
correction, and so on. This ensures that (super)gauge
invariance is manifestly maintained at each order in g.
As a consequence the supercovariant derivative is given by

Dμ ¼ ∇μ − iAμ; ð3:5Þ

The bilinear functional operator that generates the tree-level
contributions is manifestly supergauge invariant:

a0½S;Σg� ¼
1

2

δS
δAμ f _△

AAg δΣg

δAμ
þ 1

2

δS
δC

f _△
CCg δΣg

δC
; ð3:6Þ

as is the linear functional that generates the loop correc-
tions:

a1½Σg� ¼
1

2

δ

δAμ f _△AAg δΣg

δAμ
þ 1

2

δ

δC
f _△

CCg δΣg

δC
: ð3:7Þ

These expressions are exactly as in Ref. [18].6 We now
explain what the various terms mean. Unlike in Ref. [18],
we are interested in regularizing Uð1Þ gauge theory. We
therefore need to use a gauge field A valued as a generator
ofUð1j1Þ. The gauge field therefore takes the same form as
given in Eq. (1.1), except that here each field is thus a single
component rather than a matrix and, unlike in the SUðNjNÞ
case, there is no resulting restriction to strA ¼ 0. The same
goes anyway for the superscalar field

C ¼
�
C1 D

D̄ C2

�
; ð3:8Þ

which will inflict spontaneous symmetry breaking on the
supergauge invariance, breaking it down to the diagonal
Uð1Þ ×Uð1Þ carried by the bosonic gauge fields Ai

μ, while
supplying cutoff size masses to the complex fermionic Bμ

field which thus turns into a gauge invariant Pauli-Villars
regulator field. As explained in Ref. [18], an elegant way to
impose that the spontaneous symmetry breaking scale
tracks the cutoff scale Λ, is to take C to be dimensionless,
so wewill do the same here. Then we can choose a potential
so that the effective vacuum expectation value can be [18]:

hCi ¼ σ ð3:9Þ

at any scale Λ. Following previous convention, we write the
third Pauli matrix as

σ ≡ σ3 ¼
�
1 0

0 −1
�
: ð3:10Þ

This matrix appears frequently also as a result of the
supergroup symmetry, for example through the supertrace:

strX ≔ trðσXÞ; ð3:11Þ

X being a supermatrix and str being the supergroup
invariant version the trace. The result of (3.9) is precisely
to give a mass ∼Λ to the off-diagonal entries in A, i.e., to
the complex B field.
Since for the Uð1j1Þ theory, A is not subject to a

constraint, both A and C functional derivatives are freely
acting and are thus defined as follows:

δ

δC
≔

�
δ=δC1 −δ=δD̄
δ=δD −δ=δC2

�
; ð3:12Þ

or in components

δ

δC

i

j
≔

δ

δCki
σkj ; ð3:13Þ

the supergauge functional derivatives being defined in the
same way. The advantage of this definition is that the
Uð1j1Þ invariance remains manifest, for example we have:

∂
∂C strCY ¼ Y; ð3:14Þ

and thus

strX
∂
∂C strCY ¼ strXY; ð3:15Þ6Since supergauge invariance ensures Dμ

δS
δAμ

¼ i½C; δSδC�, longi-
tudinal terms can be absorbed into the C part [18].
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and

str
∂
∂CXCY ¼ strXstrY ð3:16Þ

where X and Y are arbitrary constant supermatrices [8,18].
In order to maintain local supergauge invariance in

(3.2) it is then only necessary to ensure that the bi-local
kernels _△

AAðx; yÞ and _△
CCðx; yÞ are suitably covariantized

by including A interactions, after which an invariant is
constructed by taking an overall supertrace. This is essen-
tially the meaning of the curly brackets. In fact it proved
helpful to extend the definition so that7

XfWgY ¼ XfWgAY −
1

4
½C; X�fWmgA½C; Y�; ð3:17Þ

where XðxÞ and YðyÞ are supermatrix fields produced by
the functional derivatives in (3.6),Wmðx; yÞ is a new kernel
that simplifies calculations in the broken phase, and f� � �gA
stands for the gauge covariantization just described. In flat
space, the most general form of gauge covariantization is
described in ref. [18], following [7,8,15], and can be
couched in terms of a path integral over Wilson lines.
We will not need the details for this paper. However we will
need a covariantization to cope with a nontrivial metric.
The most general case can again be couched in terms of an
integral over Wilson lines for the Levi-Civita connection, as
remarked in Ref. [33]. In this latter paper we however made
the simplest choice, promoting space-time partial deriva-
tives to covariant derivatives in a prescribed way (corre-
sponding implicitly to some specific choice of measure for
the Wilson lines). We will do something similar in this
paper. Thus for a scalar flat-space kernel:

Wðx; yÞ ¼
Z

dDp
ð2πÞD Wðp2;ΛÞeip:ðx−yÞ

¼ Wð−∂2
x;ΛÞδðx − yÞ; ð3:18Þ

we make the replacement

Wð−∂2
x;ΛÞ ↦ WðΔ0x;ΛÞ=

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
; ð3:19Þ

where Δ0 is the Laplace-Beltrami operator introduced in
(2.1). Following the framework of, e.g., Ref. [33], the factor
of 1=

ffiffiffi
g

p
is inserted to give the kernel the correct overall

density of weight -1 so that combined with the
ffiffiffi
g

p
factors

from the two functional derivatives in (3.6) and after
integrating over x and y (without further factors

ffiffiffi
g

p
) the

result is clearly generally covariant. (Note that ∇α com-
mutes with 1=

ffiffiffi
g

p
which can have either x or y dependence,

and thus the kernel is symmetric as assumed.) Recognizing

that the vector kernel _△AA is associated with one-forms, the
elegant choice is to make this a function of the Laplace–de
Rham operatorΔ1, cf. (2.5). We will see in the remainder of
the paper how this choice ensures that computations remain
almost as simple as their flat-space counterparts. As in
Ref. [18], we discard the terms where the left-most C
functional derivative in (3.7) hits the C decorations in
(3.17). This can be imposed by a limiting procedure [3], see
also [7,8].
Ŝ is used to determine the form of the classical effective

kinetic terms and the kernels _△. It therefore has to
incorporate the covariant higher derivative regularization
and allow the spontaneous symmetry breaking we require.
As we will review shortly, the kernels _△ are determined by
the requirement that after spontaneous symmetry breaking,
the two-point vertices of the classical effective action S0,
and Ŝ can be set equal. This is imposed as a useful technical
device, since it allows classical vertices to be immediately
solved in terms of already known quantities.

IV. KERNELS AND TWO-POINT VERTICES
IN A CURVED BACKGROUND

In this paper we are interested only in the one loop
contribution to pure gravity. This arises by first solving for
the classical action S0. For this we extract the 1=g2 part of
(3.2), using (3.3) and (3.4):

Λ
∂
∂ΛS0 ¼ −a0½S0; S0 − 2Ŝ�: ð4:1Þ

Then the one-loop piece S1 can be solved for, by sub-
stituting back into the flow equation (3.2). We see that the
pure gravity contribution arises from a1½S0 − 2Ŝ� where we
need only the C and A two-point vertices in S0 and Ŝ. We
also see we can dispense with the Uð1j1Þ gauge covarian-
tization f� � �gA.
Just as in Ref. [18], there are no A one-point vertices

(e.g., as a result of Poincaré invariance or charge con-
jugation invariance). Expanding around C ↦ C þ σ, where
by design C ¼ σ is at the minimum of the potential, there
are no C one-point vertices either. Therefore we also do not
need theUð1j1Þ gauge covariantization in the classical flow
(4.1) of the two-point vertices. As just stated in the previous
section, these are set equal to the seed action two-point
vertices. Since Ŝ is our choice, the flow actually serves to
determine the kernels. Indeed specializing to the two-point
vertices, (4.1) now simply becomes

Λ
∂
∂Λ Ŝ ¼ a0½Ŝ; Ŝ� ðfor two-point verticesÞ: ð4:2Þ

Universal quantities are however independent of the
choices made, which are part of the freedom in (3.1) to
reparametrize the fields [3,56].

7In non-Abelian Yang-Mills, the couplings of A2 and A1 run
differently, motivating further decorations [19], however this is
not needed for the calculation pursued here.
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From (3.3), since g has mass dimension 2 −D=2, Ŝ has
dimension 4 −D, i.e., the Lagrangian component has
dimension four, independent of space-time dimension
(similarly from (3.4) for S0). Since the above gives
structurally the same equations for the flow of the two-
point vertices as in ref. [18], we can therefore follow closely
in this section the derivations given there. We thus split the
supermatrix fields into their block (off-)diagonal compo-
nents Aμ ¼ dþAμ, Bμ ¼ d−Aμ, C ¼ dþC and D ¼ d−C
where

d�X ¼ 1

2
ðX � σXσÞ: ð4:3Þ

Choosing a single supertrace form for Ŝ, we need to
determine the differential operators that form the two-point
vertices ŜAAμν , Ŝ

BB
μν , Ŝ

BDσ
μ , ŜCC and ŜDD [18]. In each case

the superscript gives the order of the fields as they appear
in the supertrace (up to cyclicity), for example ŜBDσ

μ ð∇Þ
sits in the seed action as the term

strσ
Z

dDx
ffiffiffi
g

p
BμŜBDσ

μ D; ð4:4Þ

where we have used cyclicity of the supertrace to put σ first.
The flow equations resulting from (4.2) then take exactly
the same form as in Ref. [18]:

Λ∂ΛŜ
CC ¼ ŜCC _△

CCŜCC;

Λ∂ΛŜ
AA ¼ ŜAA _△

AAŜAA;

Λ∂ΛŜ
BB
μν ¼ ðŜBB _△

BBŜBBÞμν þ ŜBDσ
μ

_△
DDŜBDσ

ν ;

Λ∂ΛŜ
BDσ
μ ¼ ŜBB _△

BBŜBDσ
μ þ ŜBDσ

μ
_△
DDŜDD;

Λ∂ΛŜ
DD ¼ ŜDBσμ _△

BBŜBDσ
μ þ ŜDD _△

DDŜDD; ð4:5Þ

(where the last two follow from the third by spontaneously
broken supergauge invariance) and where the kernels

_△
AA ¼ _△

AA; _△
CC ¼ _△

CC ð4:6Þ

and

_△
BB ¼ _△

AA þ _△
AA
m ; _△

DD ¼ _△
CC þ _△

CC
m ; ð4:7Þ

are also of the same form except that following the standard
convention in gravitation, see, e.g., Eqs. (2.2) and (2.3), the
indices on the differential operators ŜAA, ŜBB, _△

AA, and
_△
BB have been suppressed where it is unambiguous to do

so, and in the last line of (4.5) we recognize that the first
vertex that appears on the right-hand side needs now to be
distinguished from the second (as discussed below).
The only changes to the solutions found in Ref. [18] are

thus induced by the covariantizations of the seed-action

two-point vertices required to cope with the background
metric gμν. We are free to choose these. Thus we set

ŜAA ¼ 2ΔT
1=c1; ŜCC ¼ Λ2Δ0=c̃0 þ 2λΛ4; ð4:8Þ

and

ŜBB ¼ 2ΔT
1=c1 þ 4Λ2=c̃1; ŜDD ¼ Λ2Δ0=c̃0; ð4:9Þ

where λ > 0 is a constant dimensionless parameter [18],
and ci ¼ cðΔi=Λ2Þ and c̃i ¼ c̃ðΔi=Λ2Þ are cutoff functions
[18] of the appropriate Laplace–de Rham operator.
Similarly

ŜBDσ
μ ¼ 2iΛ2∇μc̃−10 ¼ 2iΛ2c̃−11 ∇μ and

ŜDBσ
μ ¼ 2iΛ2∇μc̃−11 ¼ 2iΛ2c̃−10 ∇μ; ð4:10Þ

where we used (2.8). The second version follows from
integration by parts in (4.4), followed by cycling the
supertrace and anticommuting σ. In Ref. [18] it was not
needed, since in flat space the two coincide.
Substituting (4.8), (4.9), and (4.10) into (4.5), yields the

kernels, and thus the integrated kernels defined via

_△ ¼ −Λ∂Λ△: ð4:11Þ

The integration constant is determined by ensuring that the
corresponding△ vanish for large eigenvalue. We now show
that we get for the (integrated) kernels, the obvious
covariantization of the results found in [18]. The first
two equations in (4.5) are solved by straightforward
integration:

△CC ¼ ðŜCCÞ−1 ¼ 1

Λ2

c̃0
Δ0 þ 2λΛ2c̃0

; △AA ¼ c1
2Δ1

;

ð4:12Þ

where the second is the inverse of ŜAA in the transverse
space. Multiplying the third equation in (4.5) by the
transverse projector ΠT, isolates

△BB ≡△BBðΔ1Þ ¼
1

2

c1c̃1
Δ1c̃1 þ 2Λ2c1

; ð4:13Þ

the inverse of ΠTŜ
BB in the transverse space. Substituting

for the vertices and rearranging the last equation in (4.5)
gives

△DD ¼ c̃0=ðΛ2Δ0Þ − 4△BB
0 =Δ0 ¼

1

Λ2

c̃20
c̃0Δ0 þ 2Λ2c0

;

ð4:14Þ

where △BB
0 ≡△BBðΔ0Þ, i.e., (4.13) with Δ1 replaced by

Δ0. The above formulas are indeed direct maps of the
results in Ref. [18].
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V. TWICE THE MANIFESTLY GAUGE
INVARIANT CONFORMAL ANOMALY

From (3.2), (3.3), and (3.4), and the equality of classical
and seed-action two-point vertices, we have that the purely
gravitational part of the one-loop effective action is
computed from

Λ∂ΛS1 ¼ −a1½Ŝ�: ð5:1Þ

The functional derivatives in (3.7) are evaluated using
(3.16), after expressing the block (off)-diagonal fields in
terms of the originals via (4.3). The supergroup contribu-
tion is then � 1

2
ðstrσÞ2 ¼ �2, i.e., the signed number of

each flavor. Combined with the sign in (5.1) and the 1=2
from (3.7), we thus have that the purely gravitational piece
satisfies:

Λ∂ΛS1 ¼ Tr½−ŜAA _△
AA þ ŜBB _△

BB − ŜCC _△
CC þ ŜDD _△

DD�:
ð5:2Þ

where Tr stands for a space-time trace, taking into account
the relevant Lorentz representation. Thus for A this is a
trace over transverse modes, for B a trace over all vector
modes, and for C and D it is a trace over scalar modes. The
bosonic contributions are straightforward to simplify using
the equations of the previous section:

Tr½ŜAA _△
AA þ ŜCC _△

CC� ¼ Λ∂ΛTr lnðΔT
1=c1Þ

þ Λ∂ΛTr lnðΛ2Δ0=c̃0 þ 2λΛ4Þ:
ð5:3Þ

Noting the first equation in (4.14), we have

TrŜDD _△
DD ¼ Λ∂ΛTr lnðΛ2Δ0=c̃0Þ − 4Λ2Tr _△BB

0 =c̃0;

ð5:4Þ

while using the first equation of (2.3) and cyclicity of the
spacetime trace,

TrŜBB _△
BB¼Λ∂ΛTr lnðΔ1=c1þ2Λ2=c̃1Þ−2TrΔ0

_△
BB
0 =c0:

ð5:5Þ

Combining the last terms in the above two equations gives
ŜBB0 _△

BB
0 , which again simplifies. Thus, substituting every-

thing back into (5.2), we can trivially integrate with respect
to Λ. Also cancelling Tr lnΛ2 betweenD and C sectors, we
thus get

S1 ¼ Tr½− lnðΔT
1=c1Þ þ lnðΔ1=c1 þ 2Λ2=c̃1Þ

− lnðΔ0=c0 þ 2Λ2=c̃0Þ þ lnðΔ0=c̃0Þ
− lnðΔ0=c̃0 þ 2λΛ2Þ�: ð5:6Þ

From (2.15), the third term on the right-hand side is just
subtracting the longitudinal B contribution. Indeed using
(2.14), we can alternatively write:

S1 ¼ −TrT ½lnðΔT
1=c1Þ − lnðΔT

1=c1 þ 2Λ2=c̃1Þ�
þ Tr½lnðΔ0=c̃0Þ − lnðΔ0=c̃0 þ 2λΛ2Þ�: ð5:7Þ

In this form we recognize that the result coincides with
twice what would be produced by more conventional
calculational methods, reflecting the fact that we have
two copies Ai of theUð1Þ gauge field. Thus the first trace is
the contribution of two transverse vector fields regularized
by covariant higher derivatives and Pauli-Villars. The
second trace coincides with twice the Jacobian from the
change of variables Aμ ¼ AT

μ þ∇μω, again regulated by
covariant higher derivatives and a Pauli-Villars field.
Using (2.14) we can map (5.7) to a calculation which is

even closer to a standard textbook exposition. By replacing
the transverse trace by a trace over the full vector
representation we get:

S1 ¼ −Tr½lnðΔ1=c1Þ − lnðΔ1=c1 þ 2Λ2=c̃1Þ�
þ Tr½lnðΔ0=c0Þ − lnðΔ0=c0 þ 2Λ2=c̃0Þ�
þ Tr½lnðΔ0=c̃0Þ − lnðΔ0=c̃0 þ 2λΛ2Þ�: ð5:8Þ

Now from (2.5) the first term is the one loop contribution
for two Uð1Þ gauge fields in Feynman gauge, regulated by
covariant higher derivatives and a Pauli-Villars field,
whereas the second two terms can be identified with the
ghost contributions regulated by covariant higher deriva-
tives and Pauli-Villars fields (with the option to choose
different parameters for the regularization in the second
ghost action).
Either way we see that, following now standard treat-

ments, for example computing the Schwinger-Dewitt
coefficients in a heat kernel expansion (see, e.g., [48]),
will yield twice the trace anomaly contribution from
massless vector fields:

ð4πÞ2gαβhTαβi ¼ 2b

�
CμνρσCμνρσ þ

2

3
∇2R

�

þ 2b0�Rμνρσ
�Rμνρσ; ð5:9Þ

where C is the Weyl tensor, the 2=3 coefficient is
nonuniversal, and b ¼ 1=10 and b0 ¼ −31=180 the stan-
dard universal values.
Let us comment on some issues associated to the

regularization. The equation in (5.8) is guaranteed finite
by covariant higher derivatives and Pauli-Villars fields
[11–13], and indeed this regularization is all that is needed
to derive the trace anomaly. However a general problem
with Pauli-Villars regularization is that it only makes the
integrals conditionally convergent [3,57–59]. This leads to
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the so-called momentum routing problem, which is a
consequence of the fact that the result is ambiguous up
to surface terms. The neatest way to deal with this in
general is to continue in the space-time dimension away
from D ¼ 4 (in either direction), where the surface terms,
which are total derivatives in momentum space, can be
unambiguously identified and discarded [3]. In the simple
case of the conformal anomaly as computed using (5.8),
this level of sophistication is not needed, it being clear from
the expression how to add the various terms together.
We compute the result using the Schwinger-Dewitt

method in the next section. As is well known, the latter
grew out of the point splitting method of regularization or
alternatively proper time regularization. We do not use
these methods. They are not needed since the traces are
finite from the start. We only use the method to provide an
elegant way to extract the local terms whilst preserving
background diffeomorphism invariance. An alternative (but
more cumbersome) way of achieving the same result would
be to expand the determinants using Feynman rules derived
in normal coordinates.

VI. TWICE THE CONTRIBUTION TO THE
GRAVITATIONAL BETA FUNCTIONS

The coefficients b and b0 also appear in the gravitational
beta functions induced by the gauge fields. These are
obtained by taking a derivative with respect to Λ of (5.8)
obtaining the traces

Λ∂ΛS1 ¼ Tr1½W0ðΔ0Þ� þ Tr0½W0ðΔ0Þ� ð6:1Þ

with the functions

W1ðΔ1Þ ¼
4ðc̃ðΔ1

Λ2ÞðΛ2cðΔ1

Λ2Þ − Δ1c0ðΔ1

Λ2ÞÞ þ Δ1cðΔ1

Λ2Þc̃0ðΔ1

Λ2ÞÞ
c̃ðΔ1

Λ2ÞðΔ1c̃ðΔ1

Λ2Þ þ 2Λ2cðΔ1

Λ2ÞÞ
ð6:2Þ

W0ðΔ0Þ ¼
4Δ0c̃ðΔ0

Λ2Þc0ðΔ0

Λ2Þ − 4cðΔ0

Λ2ÞðΔ0c̃0ðΔ0

Λ2Þ þ Λ2c̃ðΔ0

Λ2ÞÞ
c̃ðΔ0

Λ2ÞðΔ0c̃ðΔ0

Λ2Þ þ 2Λ2cðΔ0

Λ2ÞÞ

þ 4λðΔ0c̃0ðΔ0

Λ2Þ − Λ2c̃ðΔ0

Λ2ÞÞ
2λΛ2c̃ðΔ0

Λ2Þ þ Δ0

: ð6:3Þ

Evaluating the traces (6.1) using the early time heat kernel
expansion up to second order in curvature we have

Tr½W0ðΔ0Þ� ¼
1

ð4πÞ2 ðQ2½W1�B0ðΔ1Þ þQ1½W1�B1ðΔ1Þ

þQ0½W0�B2ðΔ0Þ þ � � �Þ; ð6:4Þ

and

Tr½W1ðΔ1Þ� ¼
1

ð4πÞ2 ðQ2½W1�B0ðΔ1Þ þQ1½W1�B1ðΔ1Þ

þQ0½W0�B2ðΔ1ÞÞ þ � � � ; ð6:5Þ

where BnðΔiÞ are the traced heat kernel coefficients for the
operators Δ0 and Δ1 and Qm½Wi� are functionals of the
functions (6.2). Explicitly the heat kernel coefficients are
given by

B0ðΔ1Þ ¼ 4

Z
dDx

ffiffiffi
g

p
;

B1ðΔ1Þ ¼ −
1

3

Z
dDx

ffiffiffi
g

p
R;

B2ðΔ1Þ ¼
Z

d4x
ffiffiffi
g

p �
−

1

30
∇2Rþ 7

60
C2 −

8

45
�Rμνρσ

�Rμνρσ þ 1

36
R2

�
;

B0ðΔ0Þ ¼
Z

dDx
ffiffiffi
g

p
;

B1ðΔ0Þ ¼
1

6

Z
dDx

ffiffiffi
g

p
R;

B2ðΔ0Þ ¼
Z

d4x
ffiffiffi
g

p �
1

180

�
3

2
CμνρσCμνρσ −

1

2
�Rμνρσ

�Rμνρσ

�
þ 1

72
R2 þ 1

30
∇2R

�
:

For m > 0 the Qm½Wi� functionals are given by the scheme dependent integrals

Qm½Wi� ¼
1

ΓðmÞ
Z

∞

0

dzzm−1WiðzÞ ð6:6Þ

whereas the Q0 functionals are given by

KEVIN FALLS and TIM R. MORRIS PHYS. REV. D 97, 065013 (2018)

065013-8



Q0½W1� ¼ W1ð0Þ ¼ 2; Q0½W0� ¼ W0ð0Þ ¼ −4 ð6:7Þ

which are independent of the choice of cutoffs c and c̃.
Consequently we find that the logarithmic terms give the
trace anomaly

Λ∂ΛS1 ¼ 2
1

ð4πÞ2
Z

d4x
ffiffiffi
g

p ½Λ4a0 þ a1Λ2R

þ bðCμνρσCμνρσ þ∇2RÞ þ b0�Rμνρσ
�Rμνρσ þ � � ��

ð6:8Þ

with b ¼ 1=10 and b0 ¼ −31=180 as in (5.9). The scheme
dependent coefficients are given by a0 ¼ 4Q2½W1� þ
Q2½W0� and a1 ¼ − 1

3
Q1½W1� þ 1

6
Q1½W0� are nonuniversal

since they depend on the form of the cutoff functions c and
c̃ and determine the running of the vacuum energy and the
Newton’s constant.

VII. SPONTANEOUS SYMMETRY BREAKING
BY THE VECTOR REPRESENTATION

We have just seen that we get twice the desired
gravitational contribution, because the A2 part of the
regularization structure remains massless. We now repair
this problem with the regularization.
Up until now we have treated the two diagonal entries in

(1.1) equally, using A ¼ dþA, where dþ is defined in (4.3).
Splitting this further down to A ¼ A1σþ þ A2σ−, where
σ� ¼ ð1� σÞ=2, and

A1 ¼ σþAσþ; A2 ¼ σ−Aσ−; ð7:1Þ

we want to give a mass to A2 while leaving A1 massless.
Therefore we must spontaneously break the σ− direction
while leaving σþ direction unbroken. That is not possible
using only commutators (roughly speaking, the supergroup
adjoint representation) since 1 commutes with anything and
thus

½σþ; X� ¼ −½σ−; X�;

for an arbitrary supermatrix. The next simplest thing
to do therefore is to introduce a ‘fundamental’ a.k.a. vector
representation,8 redefining

C ¼
�
D

C

�
: ð7:2Þ

For regularizing SUðNjNÞ this would not have worked,
firstly because the number of degrees of freedom are

incorrect to be eaten by B (and A2), and secondly again
because 1 commutes with anything. We pause briefly to
sketch why the latter property would have led to an issue. In
SUðNjNÞ, the supergauge field can be alternatively
expanded as A ¼ A01þAATA, where the generators TA
are both traceless and supertraceless since strA ¼ 0 has
forbidden the appearance of a σ term. When interactions are
built on commutators, this furthermore implies that A0

appears nowhere in the action, resulting in the “no-A0”
shift symmetry δA0

μðxÞ ¼ λμðxÞ [13,18] which then needs
to be imposed as a consistency condition. (The alternative
procedure of redefining the Lie bracket in the gauge sector
to exclude terms ∝ 1 leads to equivalent consistency
conditions [13,18].) The second problem with breaking
the SUðNjNÞ symmetry using a representation (7.2) is that
A0 will now couple to the action exclusively through such
terms. It would therefore work as a Lagrange multiplier
field and force an unpromising nonlinear constraint. This
issue is analogous the problems which arise in regularized
SUðNjNÞ theory, if one attempts to impose that the matrix
scalar field (3.8) is supertraceless [13].
But SUðNjNÞ is not what we are interested in here.

Instead it turns out that the single superfield representation
(7.2) is exactly what is needed. First we notice that the
number of degrees of freedom is just right to give Bμ, B̄μ

and A2
μ masses, if C is taken to be complex, and if the

fermionic directions are broken and one of the bosonic
directions is broken. In particular, to achieve the breaking
of A2 ’s Uð1Þ, we need to get a vacuum expectation value in
the bottom half. That is why we placed the fermionic
component in the upper half and the bosonic component in
the lower half. Now suppose that

hCi ¼
�
0

1

�
: ð7:3Þ

Under the supergroup, the fields transform as: δAμ ¼
½Dμ;Ω� and δC ¼ iΩC. Writing [18]

Ω ¼
�
ω1 τ

τ̄ ω2

�

(where the ωi are real and τ is complex), we see that the
Goldstone modes are

iΩ
�
0

1

�
¼ i

�
τ

ω2

�
;

so indeed the fermionic and A2 directions are completely
broken as required. Furthermore, shifting C ↦ hCi þ C, we
see that unitary gauge thus consists in setting C ¼
hCið1þ CR=

ffiffiffi
2

p Þ, where CR=
ffiffiffi
2

p
is the real part of C.

Since from (3.5),

8Since SUðNjNÞ is an example of supergroup that is reducible
but not decomposable, terms such as fundamental and adjoint
carry caveats [13].
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DμC̄ ¼ ∇μC̄ þ iC̄Aμ;

we have that in unitary gauge the kinetic term for C
reduces to

−Λ2DμC̄DμC ¼ −
Λ2

2
∇μCR∇μCR

þ Λ2ð1þ CR=
ffiffiffi
2

p
Þ2ðBμB̄μ − A2

μA2μÞ:
ð7:4Þ

The choice of sign for the kinetic term, thus provides the
right sign mass for both B and A2, and shows that CR is a
regulator field with the wrong-sign action. (Expanding the
supertrace one sees that ∇B∇B̄ is the order that appears in
the kinetic term with positive sign.9) As before [18], we can
ensure this Higgs field gets a mass term that tracks the
cutoff, by making it dimensionless and assuming an
appropriate potential. The minimal Lagrangian would be

LC ¼ −Λ2DμC̄DμC −
λ

4
Λ4ðC̄C − 1Þ2; ð7:5Þ

supplying a mass (λΛ2) for the Higgs field CR in the
broken phase.

VIII. MANIFESTLY GAUGE INVARIANT FLOW
EQUATION FOR MAXWELL THEORY

Now we implement this spontaneous symmetry breaking
scheme within a manifestly gauge invariant flow equation.
Following Sec. III we keep the definitions (3.2), (3.3), and
(3.4) but rather evidently (3.6) and thus (3.7) should be
replaced by

a0½S;Σg� ¼
1

2

δS
δAμ f _△

AAg δΣg

δAμ
þ 1

2

δS
δC

f _△
CCg δΣg

δC̄
; ð8:1Þ

a1½Σg� ¼
1

2

δ

δAμ f _△AAg δΣg

δAμ
þ 1

2

δ

δC
f _△

CCg δΣg

δC̄
; ð8:2Þ

where the functional derivatives with respect to C and C̄ are
just the functional derivatives with respect to the compo-
nents except that the functional derivative in δS=δC ≔
δrS=δC should be regarded as acting on the action (and thus
also Σg) from the right, so as not to introduce unnecessary
signs into the Grassmann components.10 The covariantiza-
tion of the kernels replaces (3.17) with

δ

δAμ f _△
AAg δ

δAμ
¼ δ

δAμ f _△
AAgA

δ

δAμ

− C̄
δ

δAμ f _△AA
m gA

δ

δAμ
C; ð8:3Þ

where Wm therefore now propagates a vector representa-
tion, and

δ

δC
f _△

CCg δ

δC̄
¼ δ

δC
f _△

CCgA
δ

δC̄
þ
�
δ

δC
⊗ C − C̄ ⊗

δ

δC̄

�

× f _△
CC
m g

�
δ

δC
⊗ C − C̄ ⊗

δ

δC̄

�
; ð8:4Þ

where _△
CC
m thus propagates the matrix (∼ “adjoint”)

representation. This tensor-product type C decoration can
be understood as arising from supergauge invariance
(compare footnote 6):

str

�
ΩDμ

δS
δAμ

�
¼ i

�
δS
δC

ΩC − C̄Ω
δS

δC̄

�
; ð8:5Þ

i.e., as before the C decoration in (8.4) can be exchanged for
longitudinal terms in (8.3).
The rest of the definition of the flow equation is as in

Sec. III. In particular, functional derivatives do not act on
the terms that decorate the kernels, only on the relevant
action S or Σg. Clearly the resulting flow equation man-
ifestly preserves local Uð1j1Þ invariance.

IX. KERNELS AND TWO-POINT VERTICES
FOR THE MAXWELL FLOW EQUATION

At the two-point level in the broken phase, the C and C̄
decorations are replaced with the vacuum expectation value
(7.3). Defining C ¼ ðCR þ iCIÞ=

ffiffiffi
2

p
and D via the com-

ponents in (7.2), and the vector fields by their components,
or equivalently and more conveniently via B ¼ d−A and
(7.1), we can find the resulting two-point flow equations
analogous to (4.5). Bearing in mind that we ensure that
(7.3) solves the effective equations of motion, unpacking
(8.3) and (8.4) reveals that theB andD kernels again collect
as in (4.7), the A2 and CI kernels coincide with these, and
the new unbroken sector has adopted the old A and C
expressions:

_△
A1A1 ¼ _△

AA; _△
CRCR ¼ _△

CC;

_△
A2A2 ¼ _△

BB; _△
CICI ¼ _△

DD: ð9:1Þ

As before, the seed action is our choice (subject to
preservation of all the required symmetries, in particular
spontaneously broken Uð1j1Þ invariance), and requiring
that the two-point vertices of the classical effective action
and the seed action can be set equal, then determines the

9The choice of sign in (7.4) is already implicit in the previous
formulation, as can be seen by taking the right-hand column of
(3.8) and forming the supertrace.

10Equivalently one takes a left-derivative using the bottom row
of (3.12), and includes an overall minus sign for the overall
supertrace, consistent with the identification in footnote 9
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kernels. The Ŝ kinetic terms for the vector fields follow
from covariant higher derivative regularization of the
superfield strength squared [18], while the C-sector is a
similarly regularized version of (7.5). By adjusting nor-
malizations, we can arrange for the seed action vertices to
closely parallel our previous expressions. In fact we can get
exactly (4.9) and (4.10) for B and D, while (4.8) can be
adopted by A1 and CR:

ŜA1A1 ¼ 2ΔT
1=c1; ŜCRCR ¼ Λ2Δ0=c̃0 þ 2λΛ4: ð9:2Þ

That leaves only the A2 and CI kinetic terms and the CIA2

mixing term. These are constrained by spontaneously
broken Uð1j1Þ invariance, and with our choice of normal-
izations can be taken to coincide with the BD sector:

ŜCICI ¼ ŜDD; ŜA2A2 ¼ ŜBB;

ŜA2CI
μ ¼ ŜBDσ

μ ; ŜCIA2
μ ¼ −ŜDBσ

μ : ð9:3Þ

In view of the matches (9.1) we already found for the
kernels, we see that the flow equation for these two-point
vertices coincide with (4.5) in the sense that the first
equation is now for ŜCRCR, the second for ŜA1A1, and the
last three again apply to the BD sector but also get copied
over to the A2CI sector using the maps (9.1) and (9.3). The
solutions for the integrated kernels are thus already given in
(4.12)–(4.14), where now we should rename △CC as
△CRCR , △AA as △A1A1 and recognize that △A2A2 ¼ △BB

and △CICI ¼ △DD.

X. MANIFESTLY GAUGE INVARIANT
CONFORMAL ANOMALY

There is almost nothing left to do. Clearly Eq. (5.2) is
replaced by

Λ∂ΛS1 ¼
1

2
Tr½−ŜA1A1 _△

A1A1 − ŜA2A2 _△
A2A2

− ŜCRCR _△
CRCR − ŜCICI _△

CICI

þ 2ŜBB _△
BB þ 2ŜDD _△

DD�; ð10:1Þ

but using the identifications of the previous section we see
that the A2 and CI parts just cancel half of the B and D
parts, and thus this becomes in the old notation:

Λ∂ΛS1¼
1

2
Tr½−ŜAA _△

AAþ ŜBB _△
BB− ŜCC _△

CCþ ŜDD _△
DD�;

ð10:2Þ

i.e., exactly half the result in (5.2). Therefore we obtain half
the expression in (5.8), (5.9), and (6.8), i.e., precisely the
standard trace anomaly, however here computed by main-
taining manifest gauge invariance at every stage.
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