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Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss
of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar
field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved
density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in
equilibrium at a common temperature T. For T ¼ 0, we obtain the reduced density matrix in a perturbative
expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and
heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix
for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The
Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the
nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced
density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent
effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time
independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case
the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial
conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the
relation between the entanglement entropy ultraviolet divergences and renormalization.

DOI: 10.1103/PhysRevD.97.065008

I. INTRODUCTION, MOTIVATION AND GOALS

Effective field theory describes physical phenomena
below some energy scale or on large spatiotemporal scales
and is widely used in different fields. Such an effective
description has now become a paradigmatic pillar in critical
phenomena [1], condensed matter [2], hydrodynamics
[3,4], particle and nuclear physics [5–9] and cosmology
[10–13]. At a fundamental level, an effective field theory
emerges upon coarse graining, namely tracing or integrat-
ing out, high energy or short distance degrees of freedom or
fluctuations on small time scales. One implementation of
the concept of coarse graining is the renormalization group
approach a lá Wilson [14].
Consider a full theory describing interacting low and

high energy degrees of freedom; in principle, this complete
theory has all the information about all degrees of freedom;
namely all the correlation functions can in principle be
obtained. Tracing or integrating out the high energy degrees

of freedom to obtain an effective field theory for the low
energy degrees of freedom leads, therefore, to a loss of
information. If the quantum state that describes the full
theory is a pure state, namely a zero entropy state, tracing
out the heavy degrees of freedom yields a reduced density
matrix for the low energy degrees of freedom which
typically describes a mixed state. Therefore integrating
out high energy or short distance degrees of freedom to
yield an effective field theory in principle leads to a mixed
state with nonvanishing entropy. The Von-Neumann
entropy is a measure of the loss of information in the
process of coarse graining. The concept of a reduced
density matrix originally introduced in pioneering work
on quantum Brownian motion [15,16] is now at the heart of
the description of quantum open systems [17,18]. This
effective coarse grained description while ubiquitous in
condensed matter and quantum information [19] has also
received attention in quantum field theory out of equilib-
rium [20–23], and more recently in cosmology [24–28] and
particle physics [29–33] with intriguing connections to the
information paradox in black hole physics [34]. The
effective field theory approach out of equilibrium yields
a stochastic description for the low energy degrees of
freedom [20,21,23], and as a framework for quantum open
systems opens the possibility of extending the emerging
field of quantum thermodynamics [35] to the realm of
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quantum field theory. This possibility has been bolstered
recently with a quantum field theory extension of fluc-
tuation theorems, with fundamental connections to entropy
production and information [36].

A. Motivation and goals

Since at a fundamental level an effective field theory
emerges after integrating or tracing out high energy (or
short distance) degrees of freedom and describes only the
low energy degrees of freedom, the reduction from the full
field theory (whatever its origin may be) to the effective one
entails a loss of information and a concomitant increase of
the entropy. Our study is motivated by this observation and
seeks to understand the Von-Neumann entropy associated
with the effective field theory in a model that includes the
essential features and allows us to draw more general
conclusions. This study is a natural continuation of a
previous one [23] that established the relation between
nonequilibrium effective field theory, stochastic field
theory and the quantum master equation approach. We
consider a light scalar field coupled to other heavy scalar
fields considering that the light field is in its ground state
initially, whereas the heavy fields are in thermal equilib-
rium at a common temperature T; the limit T → 0 projects
the ground state in the heavy sector. We evolve the initial
density matrix in time and trace over the heavy degrees of
freedom obtaining the reduced density matrix for the light
field, and obtain the Von-Neumann entropy associated with
the reduced density matrix in the asymptotic long time
limit. This entropy is different from the geometric (area)
entropy [37–40] but both originate from tracing out (coarse
graining) degrees of freedom. We analyze the emergence of
the entanglement entropy upon coarse graining both from a
perturbative and nonperturbative point of view. The latter
allows us to study in detail the effects of thresholds and the
case in which the light field thermalizes with the heavy
fields.

II. THE MODEL AND PERTURBATIVE
EVOLUTION

We consider the model of a light real scalar field ϕ of
mass m0 coupled to two real heavy scalar fields ψ and χ of
masses M1, M2, respectively. The Lagrangian density is

L ¼ 1

2
∂μϕ∂μϕ −

1

2
m2

0ϕ
2 þ 1

2
∂μψ∂μψ −

1

2
M2

1ψ
2

þ 1

2
∂μ χ∂μ χ −

1

2
M2

2 χ
2 − gϕψ χ: ð2:1Þ

The bare mass m0 is renormalized (see below), with the
renormalized mass denoted mr; without loss of generality
we consider the hierarchy M1 ≥ M2 ≫ mr.
In this section we study the perturbative evolution of an

initial factorized state at zero temperature to highlight
several of the main conceptual aspects, relegating to the

next section the study of the evolution of an initial density
matrix nonperturbatively, including thermal effects. We
take the initial state to be

jΨð0Þi ¼ j0iϕ ⊗ j0iψ ⊗ j0i χ : ð2:2Þ

The time evolution of this state up to second order in a
perturbative expansion in the interaction picture is given by

jΨðtÞi ¼ jΨð0Þi þ jΨð1ÞðtÞi þ jΨð2ÞðtÞi þ � � � ð2:3Þ

where

jΨð1ÞðtÞi ¼ −i
Z

t

0

HIðt1Þdt1jΨð0Þi ð2:4Þ

jΨð2ÞðtÞi ¼ ð−iÞ2
Z

t

0

Z
t1

0

HIðt1ÞHIðt2Þdt1dt2jΨð0Þi

¼ −i
Z

t

0

HIðt1ÞjΨð1Þðt1Þidt1 ð2:5Þ

and

HIðtÞ ¼ g2
Z

d3xϕðx⃗; tÞψðx⃗; tÞχðx⃗; tÞ ð2:6Þ

is the interaction Hamiltonian in the interaction picture.
With the time evolved state we obtain the reduced density
matrix by tracing the pure state density matrix jΨðtÞihΨðtÞj
over the ψ , χ fields, namely,

ρrðtÞ ¼ Trψ ; χðjΨðtÞihΨðtÞjÞ: ð2:7Þ

The first and second order states jΨð1;2Þi are obtained from
the free field expansions for the various fields; for example,

ϕðx⃗; tÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EϕðkÞ

p ½ak⃗e−ikx þ a†
k⃗
eikx�; ð2:8Þ

and similarly for the other fields. We find

jΨð1ÞðtÞi ¼
X
k⃗;q⃗

Cð1Þðk⃗; q⃗; tÞj1k⃗iϕ ⊗ j1q⃗iψ ⊗ j1p⃗i χ ;

p⃗ ¼ −q⃗ − k⃗; ð2:9Þ

this is an entangled multiparticle state of the light and heavy
fields.
In second order, there are several contributions obtained

from the second equality in Eq. (2.5); however only two of
these contribute to the reduced density matrix (2.7) up to
second order: (a) annihilate all particles from jΨð1Þi
returning to the full vacuum state jΨð0Þi, or (b) create
another ϕ particle annihilating the single particle states of
ψ , χ, yielding
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jΨð2ÞðtÞi ¼ Cð2Þ
a ðtÞjΨð0Þi

þ
X
k⃗

Cð2Þ
b ðk⃗; tÞj1k⃗; 1−k⃗iϕ ⊗ j0iψ ⊗ j0i χ þ � � � ;

ð2:10Þ

the dots stand for multiparticle states that do not contribute
to the reduced density matrix up to second order in the
coupling g. This second order state describes correlated
pairs of light particles. The coefficients CðnÞ are of order gn;
they can be obtained straightforwardly but we do not use
their explicit expressions. Our purpose in this section is to
highlight the nature of the reduced density matrix, relegat-
ing to the next section a more detailed study of the reduced
density matrix in the more general case.
Up to second order the reduced density matrix reads

ρrðtÞ ¼ ρ0ðtÞj0ih0j
þ
X
q⃗

½ρ1ðq⃗; tÞj1q⃗ih1q⃗j þ ρ2ðq⃗; tÞj1q⃗; 1−q⃗i

× h0j þ ρ�2ðq⃗; tÞj0ih1q⃗; 1−q⃗j� þ � � � : ð2:11Þ

The explicit form of the reduced density matrix elements
ρ0;1;2 is obtained from the coefficients CðnÞ; they are not
needed for the purpose of our arguments in this section.
Although the reduced density matrix (2.11) looks like a
mixed state, it is not a priori obvious that it is. Is it possible
to find a state jαðtÞi so that

jαðtÞihαðtÞj ¼? ρrðtÞ; ð2:12Þ

if so the density matrix describes a pure, not a mixed state.
Informed by the form of ρrðtÞ in terms of states of single
particles and correlated pairs, let us write generically up to
second order

jαðtÞi ¼ α0ðtÞj0i þ
X
q⃗

½α1ðq⃗; tÞj1q⃗i þ α2ðq⃗; tÞj1q⃗; 1−q⃗�;

ð2:13Þ

where the coefficients αnðtÞ ∝ gn. Comparing jαðtÞihαðtÞj
to ρrðtÞ Eq. (2.11) we see that we can identify jα0ðtÞj2 ¼
ρ0ðtÞ; α2ðq⃗; tÞ ¼ ρ2ðq⃗; tÞ; however the product state
jαðtÞihαðtÞj yields a term of the form

P
q⃗ðα1ðq⃗; tÞj1q⃗i

h0j þ H:c:Þ, which is of order g; furthermore, there
would also be second order contributions of the formP

q⃗≠q⃗0 ðα1ðq⃗; tÞα�1ðq⃗0; tÞj1q⃗ih1q⃗0 j þ H:c:Þ. Neither of these
contributions is present in ρrðtÞ; in particular, there is no
term of OðgÞ in ρrðtÞ precisely because the trace over the
heavy degrees of freedom requires pairs of ψ , χ fields. The
trace over the intermediate ψ , χ states rules out a reduced
state of the form j1q⃗ih0j, and forces q⃗ ¼ q⃗0 by momentum

conservation in single particle states j1q⃗ih1q⃗0 j. This analysis
leads us to conclude that, indeed, ρrðtÞ describes a mixed
state. An interpretation of the second order contributions to
ρrðtÞ is depicted in Fig. 1.
The main results of this perturbative study are the

following:
(a) The reduced density matrix is the effective dynamical

description of the light degrees of freedom and
describes a mixed state containing both single particles
and correlated pairs of particles. The matrix elements
are a direct consequence of the entanglement between
the light and heavy fields, the latter being traced over.

(b) Up to second order, the mixed nature of the reduced
density matrix is revealed in the contribution from the
single particle states j1q⃗ih1q⃗j. This aspect is important
in the discussion of the origin of entropy in the time
evolution of the density matrix discussed in the next
section.

(c) Up to second order and restricting to the one and
two (pair) particle states, the eigenvalues of the
reduced density matrix are p1 ¼ 1þOðg2Þ; p2≃
Oðg2Þ. Therefore we expect the Von-Neumann en-
tropy S¼−

P
npn lnðpnÞ to be of order S≃g2 lnð1=g2Þ.

This entropy is a consequence of the entanglement
between the light and heavy fields and must be
interpreted as an entanglement entropy [40]. In com-
paring the pure state jαðtÞihαðtÞj to ρrðtÞ Eq. (2.11) it
is clear that the entanglement entropy describes the
loss of information in the states that are missing from
ρrðtÞ. The kinematic entanglement between the light
and heavy fields prevents these (missing) states from
appearing in the reduced density matrix after tracing
the heavy fields.

III. TIME EVOLUTION OF THE DENSITY
MATRIX: EFFECTIVE ACTION

In the previous section we provided a perturbative
interpretation of the reduced density matrix and the origin
of the entanglement entropy from the coarse graining
process; we now obtain the time evolution of the full
density matrix from the effective action up to second order
in the coupling.
It is argued below that the reduced density matrix

obtained from the effective action corresponds to a non-
perturbative Dyson resummation of one-loop diagrams.

FIG. 1. The second order contributions to the reduced density
matrix.
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In order to simplify notation in the analysis below, we
collectively define the heavy fields in terms of a doublet,

h≡ ðψ ; χÞ; ð3:1Þ

writing the total Lagrangian density and Hamiltonian as

Lðϕ; hÞ ¼ L0;ϕðϕÞ þ L0;hðhÞ þ LIðϕ; hÞ ð3:2Þ

H ¼ H0;ϕ þH0;h þHI; HI ¼ g
Z

d3xϕðx⃗Þψðx⃗Þχðx⃗Þ;

ð3:3Þ

where L0, H0 refer to the free field Lagrangian density and
Hamiltonian, respectively.
Consider the initial density matrix at a time t ¼ 0 to be of

the form

ρð0Þ ¼ ρϕð0Þ ⊗ ρhð0Þ: ð3:4Þ

We consider that initially the ϕ field is in its vacuum
state,

ρ̂ϕð0Þ ¼ ðj0ih0jÞϕ; ð3:5Þ

and the initial density matrix of the h ¼ ðψ ; χÞ fields is
taken to describe a statistical ensemble in thermal equilib-
rium at a common temperature T ¼ 1=β, namely

ρ̂hð0Þ ¼
e−βH0;h

Trhe−βH0;h
: ð3:6Þ

The zero temperature limit projects the vacuum state for the
heavy fields; in this limit we establish a correspondence
with the perturbative analysis of the previous section.
In the Schroedinger representation (field basis) the

matrix elements of ρϕð0Þ, ρhð0Þ are given by

hϕjρϕð0Þjϕ0i ¼ ρϕ;0ðϕ;ϕ0Þ; hhjρhð0Þjh0i ¼ ρh;0ðh; h0Þ;
ð3:7Þ

this is a functional density matrix as the fields have spatial
arguments. This initial density matrix evolves out of
equilibrium since it does not commute with the full
interacting Hamiltonian,

ρðtÞ ¼ UðtÞρð0ÞU−1ðtÞ; UðtÞ ¼ e−iHt; ð3:8Þ

where the total Hamiltonian is given by Eq. (3.3). The
matrix elements of the time evolved density matrix in the
field basis are given by

ρðϕf; hf;ϕ0
f; h

0
f; tÞ ¼ hϕf; hfjUðtÞρ̂ð0ÞU−1ðtÞjϕ0

f; h
0
fi

¼
Z

DϕiDhiDϕ0
iDh0ihϕf; hfjUðtÞjϕi;

hiiρϕ;0ðϕi;ϕ
0
iÞρh;0ðhi; h0iÞ

× hϕ0
i; h

0
ijU−1ðtÞjϕ0

f; h
0
fi: ð3:9Þ

The
R
Dϕ etc. are functional integrals where the spatial

arguments have been suppressed. The matrix elements of
the time evolution forward and backward can be written as
path integrals, namely

hϕf; hfjUðtÞjϕi; hii ¼
Z

DϕþDhþei
R

d4xL½ϕþ;hþ� ð3:10Þ

hϕ0
i; h

0
ijU−1ðtÞjϕ0

f; h
0
fi ¼

Z
Dϕ−Dh−e−i

R
d3xL½ϕ−;h−�

ð3:11Þ

with the shorthand notation

Z
d4x≡

Z
t

0

dt
Z

d3x; ð3:12Þ

and L½ϕ; h� is given by (3.2). The boundary conditions on
the path integrals are

ϕþðx⃗; t ¼ 0Þ ¼ ϕiðx⃗Þ; ϕþðx⃗; tÞ ¼ ϕfðx⃗Þ;
hþðx⃗; t ¼ 0Þ ¼ hiðx⃗Þ; hþðx⃗; tÞ ¼ hfðx⃗Þ; ð3:13Þ

ϕ−ðx⃗; t ¼ 0Þ ¼ ϕ0
iðx⃗Þ; ϕ−ðx⃗; tÞ ¼ ϕ0

fðx⃗Þ;
h−ðx⃗; t ¼ 0Þ ¼ h0iðx⃗Þ; h−ðx⃗; tÞ ¼ h0fðx⃗Þ: ð3:14Þ

The field variables ϕ�, h� along the forward (þ) and
backward (−) evolution branches are recognized as those
necessary for the Schwinger-Keldysh [20,41–43] closed
time path approach to the time evolution of a density matrix.
The reduced density matrix for the light field ϕ is

obtained by tracing over the fields h ¼ ψ ; χ, namely

ρrðϕf;ϕ0
f; tÞ ¼

Z
Dhfρðϕf; hf;ϕ0

f; h
0
f ¼ hf; tÞ; ð3:15Þ

we find

ρrðϕf;ϕ0
f; tÞ ¼

Z
DϕiDϕ0

iK½ϕf;ϕ0
f;ϕi;ϕ0

i; t�ρϕðϕi;ϕ0
i; 0Þ:

ð3:16Þ
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The propagating kernel K is given by

K½ϕf;ϕi;ϕ
0
f;ϕ

0
i; t� ¼

Z
Dϕþ

Z
Dϕ−ei

R
d4x½L0½ϕþ�−L0½ϕ−��eiF ½ϕþ;ϕ−� ð3:17Þ

with the following boundary conditions on the forward (ϕþ) and backward (ϕ−) path integrals,

ϕþðx⃗; t ¼ 0Þ ¼ ϕiðx⃗Þ; ϕþðx⃗; tÞ ¼ ϕfðx⃗Þ;
ϕ−ðx⃗; t ¼ 0Þ ¼ ϕ0

iðx⃗Þ; ϕ−ðx⃗; tÞ ¼ ϕ0
fðx⃗Þ: ð3:18Þ

F ½ϕþ;ϕ−� is the influence action, arising from the trace over the heavy fields, given by

eiF ½ϕþ;ϕ−� ¼
Z

DhiDh0iDhf

Z
DhþDh−ei

R
d4x½L0ðhþÞþLIðϕþ;hþÞ�e−i

R
d4x½L0ðh−ÞþLIðϕ−;h−Þ�ρhðhi; h0i; 0Þ; ð3:19Þ

the boundary conditions on the path integrals are

hþðx⃗; t ¼ 0Þ ¼ hiðx⃗Þ; hþðx⃗; tÞ ¼ hfðx⃗Þ; h−ðx⃗; t ¼ 0Þ ¼ h0iðx⃗Þ; h−ðx⃗; tÞ ¼ h0fðx⃗Þ ¼ hfðx⃗Þ; ð3:20Þ

where the last equality reflects the trace over the
h≡ ψ , χ fields.
In the path integral (3.19), ϕ� act as an external

c-number source coupled to the composite operator
ψðxÞχðxÞ along each branch; therefore, it follows that

eiF ½ϕþ;ϕ−� ¼ Tr½Uðt;ϕþÞρhð0ÞU−1ðt;ϕ−Þ�; ð3:21Þ

where Uðt;ϕ�Þ is the time evolution operator in the ψ , χ
sectors in the presence of external sources ϕ�, namely

Uðt; JþÞ ¼ Tðe−i
R

t

0
Hh½ϕþðt0Þ�dt0 Þ;

U−1ðt;ϕ−Þ ¼ T̃ðei
R

t

0
Hh½ϕ−ðt0Þ�dt0 Þ ð3:22Þ

where

Hh½ϕ�ðtÞ� ¼ H0;h þ g
Z

d3xϕ�ψ χ; ð3:23Þ

and T̃ is the antitime evolution operator as befits evolution
backward in time. The calculation of the influence action is
facilitated by passing to the interaction picture for the
Hamiltonian Hh½ϕðtÞ�, defining

Uðt;ϕ�Þ ¼ e−iH0;htU ipðt;ϕ�Þ ð3:24Þ

and the e�iH0;ht cancel out in the trace in (3.21). Now the
trace can be obtained systematically in perturbation theory
in g. Up to Oðg2Þ and with notation (3.12) we find [23]

F ½ϕþ;ϕ−� ¼ ig2

2

Z
d4x1

Z
d4x2fϕþðx1Þϕþðx2ÞGþþðx1 − x2Þ þ ϕ−ðx1Þϕ−ðx2ÞG−−ðx1 − x2Þ

− ϕþðx1Þϕ−ðx2ÞGþ−ðx1 − x2Þ − ϕ−ðx1Þϕþðx2ÞG−þðx1 − x2Þg: ð3:25Þ

The correlation functions are given by

G−þðx1 − x2Þ ¼ hψðx1Þψðx2Þihχðx1Þχðx2Þi ¼ G>ðx1 − x2Þ; ð3:26Þ

Gþ−ðx1 − x2Þ ¼ hψðx2Þψðx1Þihχðx2Þχðx1Þi ¼ G<ðx1 − x2Þ; ð3:27Þ

Gþþðx1 − x2Þ ¼ G>ðx1 − x2ÞΘ ðt1 − t2Þ þG<ðx1 − x2ÞΘ ðt2 − t1Þ; ð3:28Þ

G−−ðx1 − x2Þ ¼ G>ðx1 − x2ÞΘ ðt2 − t1Þ þG<ðx1 − x2ÞΘ ðt1 − t2Þ; ð3:29Þ

in terms of interaction picture fields, where

hð� � �Þi ¼ Trð� � �Þρhð0Þ: ð3:30Þ
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Furthermore, for real scalar fields as considered here it
follows that

G>ðx1 − x2Þ ¼ G<ðx2 − x1Þ: ð3:31Þ
These correlation functions describe one-loop contributions
as shown in Fig. 2 and are precisely the correlations that
enter in the perturbative study in the previous section (see
Fig. 1).
The effective action out of equilibrium is given by

Seff ½ϕþ;ϕ−� ¼
Z

t

0

dt
Z

d3xfL0;ϕðϕþÞ − L0;ϕðϕ−Þg

þ F ½ϕþ;ϕ−�: ð3:32Þ
The influence action can be simplified and written solely

in terms of the two independent correlation functions
G>;G< by the following steps [23]:

(i) For the contribution with ϕþðx1Þϕþðx2Þ, in the term
G<ðx1 − x2ÞΘðt2 − t1Þ [see Eq. (3.28)] relabel
t1 ↔ t2 and use the property (3.31).

(ii) For the contribution ϕ−ðx1Þϕ−ðx2Þ, in the term
G>ðx1 − x2ÞΘðt2 − t1Þ [see Eq. (3.29)] relabel
t1 ↔ t2 and use the property (3.31).

(iii) For the contribution ϕþðx1Þϕ−ðx2Þ, multiply
G<ðx1−x2Þ by Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 and in
the term with Θðt2 − t1Þ relabel t1 ↔ t2 and use the
property (3.31).

(iv) For the contribution ϕ−ðx1Þϕþðx2Þ, multiply
G>ðx1−x2Þ by Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 and in
the term with Θðt2 − t1Þ relabel t1 ↔ t2 and use the
property (3.31).

Finally we find

F ½ϕþ;ϕ−� ¼ ig2
Z

d3x1d3x2

Z
t

0

dt1

×
Z

t

0

dt2fϕþðx⃗1; t1Þϕþðx⃗2; t2ÞG>ðx1 − x2Þ

þϕ−ðx⃗1; t1Þϕ−ðx⃗2; t2ÞG<ðx1 − x2Þ
−ϕþðx⃗1; t1Þϕ−ðx⃗2; t2ÞG<ðx1 − x2Þ
−ϕ−ðx⃗1; t1Þϕþðx⃗2; t2ÞG>ðx1 − x2ÞgΘðt− t1Þ;

ð3:33Þ

where G≶ are given by Eqs. (3.26) and (3.27). This is
the general form of the influence function up to second

order in the coupling. The reduced density matrix is finally
given by

ρrðϕf;ϕ0
f; tÞ ¼

Z
DϕiDϕ0

i

×
Z

DϕþDϕ−eiSeff ½ϕþ;ϕ−;t�ρϕðϕi;ϕ0
i; 0Þ;

ð3:34Þ

where the path integrals over ϕ� are performed with the
boundary conditions (3.18) and Seff is given by (3.32).
Equation (3.34) explicitly shows that the reduced density
matrix evolves in time via the effective action.
The matrix elements of the initial density matrix ρϕð0Þ in

the field basis are more conveniently written in terms of the
spatial Fourier transform of the field in a spatial volume V,

ϕðx⃗Þ ¼ 1ffiffiffiffi
V

p
X
k⃗

ϕk⃗e
−ik⃗·x⃗: ð3:35Þ

The density matrix describing the vacuum state of free
fields is given by

ρϕðϕi;ϕ0
i; 0Þ ¼

Y
k⃗

Nke
−Ω0k

2
½ϕk⃗;iϕ−k⃗;iþϕ0

k⃗;iϕ
0
−k⃗;i�;

Ω0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

q
; ð3:36Þ

the frequency Ω0k corresponds to the bare free field mass
m0, and the normalization factor Nk is fixed by the
requirement that

Z
Dϕiρϕðϕi;ϕ0

i ¼ ϕi; 0Þ ¼ 1: ð3:37Þ

We emphasize that while the reduced density matrix is
obtained by tracing over the heavy degrees of freedom, the
total density matrix evolves in time unitarily; this entails
that TrρðtÞ ¼ Trρð0Þ; this fact along with the normalization
(3.37) yields

Z
Dϕfρ

rðϕf;ϕ0
f ¼ ϕf; tÞ ¼ 1: ð3:38Þ

This result is a consequence of unitary time evolution and
normalization of the initial density matrix, and is important
in the discussion below.

A. Correlation functions of heavy fields

The correlation functions of the heavy fields G>, G< can
be written in terms of a spectral representation; for details
see Ref. [23] and Appendix A,

FIG. 2. The generic correlation function Gðx1 − x2Þ is a ψ − χ
loop.
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G≶ðx − x0Þ ¼ 1

V

X
k⃗

G≶
k ðt − t0Þeik⃗·ðx⃗−x⃗0Þ; G≶

k ðt − t0Þ ¼
Z

dk0
ð2πÞ ρ

≶ðk0; kÞe−ik0ðt−t0Þ ð3:39Þ

with [23]

ρ>ðk0; kÞ ¼ ρðk0; kÞ½1þ nðk0Þ�; ρ<ðk0; kÞ ¼ ρðk0; kÞnðk0Þ; nðk0Þ ¼
1

eβk0 − 1
; β ¼ 1=T; ð3:40Þ

where ρðk0; kÞ is the spectral density and T is the common temperature of the heavy fields ψ , χ. The spectral density for the
case considered here of two scalar fields of massesM1,M2 at a common temperature T has been obtained in Ref. [23]; it is
given by

ρðk0; k;TÞ ¼ ρldðk0; k;TÞΘð−Q2Þ þ ρdðk0; k;TÞΘððM1 −M2Þ2 −Q2ÞΘðQ2Þ
þ ρ2pðk0; k;TÞΘðQ2 − ðM1 þM2Þ2Þ; Q2 ¼ k20 − k2; ð3:41Þ

where the explicit expressions for the different contribu-
tions are summarized in Appendix A. Two important
properties of the spectral density are relevant in the
analysis,

ρðk0; k;TÞ ¼ −ρð−k0; k;TÞ; ρðk0 > 0; k;TÞ > 0:

ð3:42Þ

The contribution ρldðk0; k;TÞ with support below the
light cone (Q2 < 0) corresponds to the process of Landau
damping. This is a medium dependent contribution that
vanishes in the T → 0 limit. It describes collisionless
damping in a medium as a consequence of dephasing [44].
The contribution ρdðk0; k;TÞ also describes a process

solely available in the medium. On the renormalized mass
shell Q2 ¼ m2

r , and for M1 > M2 þmr it describes the
decay ψ → χϕ (since M1 > M2 þmr). This part of the
spectral density also vanishes for T → 0; however at T ≠ 0
it has support on the renormalized mass shell of the light
field ϕ. This term has a quantum kinetic interpretation [23]
in terms of the in-medium processes ψ ↔ χϕ. As dis-
cussed below, this contribution is responsible for the
thermalization of the light field ϕ with the bath of heavy
fields when the spectral density has support on the
renormalized mass shell of the light field. We refer to
the case with M1 > M2 þmr, when the spectral density of
the heavy fields has support on the (renormalized) mass
shell of the light field as the resonant case.
A relevant example of this scenario in particle physics is

given by a charged current vertex in the standard model,
with the heavier field (Ψ) being the W vector boson, the
field χ being a charged lepton (for example the electron)
and the lightest field ϕ being a neutrino. At high temper-
ature W ↔ eνe and the inverse process contributes to
neutrino thermalization as a consequence of detailed
balance [45].
The contribution ρ2pðk0; k;TÞ corresponds to the usual

two particle cut for Q2 > ðM1 þM2Þ2; it is the only

contribution to the spectral density that does not vanish
in the T → 0 limit (nðk0Þ → −Θð−k0Þ), where it is given by
(see Appendix A)

ρðk0; k;T ¼ 0Þ ¼ signðk0Þ
8πQ2

f½Q2 − ðM1 −M2Þ2�

× ½Q2 − ðM1 þM2Þ2�g1
2

Θ½Q2 − ðM1 þM2Þ2�: ð3:43Þ

The Θ function in (3.43) corresponds to the two particle
threshold.

B. Path integral derivation of the effective action

Introducing the spatial Fourier transforms of ϕ� as in
(3.35), we introduce the variables

Ψk⃗ðtÞ ¼
1

2
ðϕþ

k⃗
ðtÞ þ ϕ−

k⃗
ðtÞÞ; Rk⃗ðtÞ ¼ ðϕþ

k⃗
ðtÞ − ϕ−

k⃗
ðtÞÞ

ð3:44Þ

with the boundary conditions

Ψk⃗;i ≡Ψk⃗ð0Þ ¼
1

2
ðϕk⃗;i þ ϕ0

k⃗;i
Þ;

Ψk⃗;f ≡Ψk⃗ðtÞ ¼
1

2
ðϕk⃗;f þ ϕ0

k⃗;f
Þ; ð3:45Þ

Rk⃗;i ≡ Rk⃗ð0Þ ¼ ðϕk⃗;i − ϕ0
k⃗;i
Þ;

Rk⃗;f ≡ Rk⃗ðtÞ ¼ ðϕk⃗;f − ϕ0
k⃗;f
Þ: ð3:46Þ

The effective action becomes
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iSeff ¼
X
k⃗

�Z
t

0

dt1i½ _R−k⃗ðt1Þ _Ψk⃗ðt1Þ − Ω2
0;kR−k⃗ðt1ÞΨk⃗ðt1Þ�

− g2
Z

t

0

dt1

Z
t

0

dt2R−k⃗ðt1ÞΨk⃗ðt2ÞðG>
k ðt1 − t2Þ −G<

k ðt1 − t2ÞÞΘðt1 − t2Þ

−
1

2

Z
t

0

dt1

Z
t

0

dt2R−k⃗ðt1ÞRk⃗ðt2ÞN kðt1 − t2Þ
�
; ð3:47Þ

where

N kðt1 − t2Þ ¼
g2

2
ðG>

k ðt1 − t2Þ þG<
k ðt1 − t2ÞÞ ð3:48Þ

and in the last term in (3.47) we symmetrized in t1, t2 using
the identity (3.31). In Ref. [23] the nonequilibrium effective
action was shown to be equivalent to a stochastic descrip-
tion with noise whose correlation function is completely
determined by the kernel (3.48).
The path integrals over Ψ, R are Gaussian and can be

carried out by standard methods: write

Rk⃗ðt1Þ ¼ Rc
k⃗
ðt1Þ þ rk⃗ðt1Þ; Ψk⃗ðt1Þ ¼ Ψc

k⃗
ðt1Þ þ ξk⃗ðt1Þ;

ð3:49Þ

where Rc, Ψc are classical paths obeying the boundary
conditions

Ψc
k⃗
ð0Þ≡ Ψk⃗;i ¼

1

2
ðϕk⃗;i þ ϕ0

k⃗;i
Þ;

Ψc
k⃗
ðtÞ≡ Ψk⃗;f ¼

1

2
ðϕk⃗;f þ ϕ0

k⃗;f
Þ; ð3:50Þ

Rc
k⃗
ð0Þ≡ Rk⃗;i ¼ ðϕk⃗;i − ϕ0

k⃗;i
Þ;

Rc
k⃗
ðtÞ≡ Rk⃗;f ¼ ðϕk⃗;f − ϕ0

k⃗;f
Þ; ð3:51Þ

and rðtÞ, ξðtÞ are the fluctuations around the classical paths
and obey

rk⃗ð0Þ ¼ rk⃗ðtÞ ¼ 0; ξk⃗ð0Þ ¼ ξk⃗ðtÞ ¼ 0: ð3:52Þ

Rc, Ψc are chosen so that there is no linear term in rk⃗ðt1Þ;
ξk⃗ðt1Þ in the effective action, leading to the following
coupled equations of motion,

Ψ̈c
k⃗
ðt1Þ þ Ω2

0;kΨc
k⃗
ðt1Þ þ

Z
t1

0

Σkðt1 − t2ÞΨc
k⃗
ðt2Þdt2 ¼ ηk⃗ðt1Þ

ð3:53Þ

and

R̈c
k⃗
ðt1Þ þ Ω2

0;kR
c
k⃗
ðt1Þ þ

Z
t

t1

Σkðt2 − t1ÞRc
k⃗
ðt2Þdt2 ¼ 0;

ð3:54Þ

where

Σkðt1 − t2Þ ¼ −ig2½G>
k ðt1 − t2Þ −G<

k ðt1 − t2Þ�; ð3:55Þ

ηk⃗ðt1Þ ¼ i
Z

t

0

N kðt1 − t2ÞRc
k⃗
ðt2Þdt2: ð3:56Þ

These equations of motion are very similar to those
obtained in Ref. [46] for quantum Brownian motion; they
must be solved with the boundary conditions (3.50)
and (3.51).

C. Solutions of the equations of motion

In order to obtain Seff we must now find the solutions to
the equations of motion for Ψc, Rc.
The equation of motion (3.54) can be written in a form

similar to (3.53) by introducing

Z k⃗ðτÞ ¼ Rc
k⃗
ðt1Þ; τ ¼ t − t1; ð3:57Þ

leading to

d2

dτ2
Zk⃗ðτÞ þ Ω2

0;kZ k⃗ðτÞ þ
Z

τ

0

Σkðτ − τ0ÞZk⃗ðτ0Þdτ0 ¼ 0;

τ0 ¼ t − t2: ð3:58Þ

With the spectral representations of the correlation
functions (3.39) and (3.40) we find

Σkðt − t0Þ ¼ −ig2
Z

dk0
ð2πÞ ρðk0; kÞe

−ik0ðt−t0Þ; ð3:59Þ

N kðt − t0Þ ¼ g2

2

Z
dk0
ð2πÞ ρðk0; kÞ coth

�
βk0
2

�
e−ik0ðt−t0Þ;

ð3:60Þ
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therefore the self-energy iΣ and N kernels obey the
generalized fluctuation dissipation relation as shown
in Ref. [23].
The solutions of the (3.53) and (3.57) are obtained by a

Laplace transform. Defining the Laplace transforms

Ψ̃c
k⃗
ðsÞ≡

Z
∞

0

dte−stΨc
k⃗
ðtÞ; ð3:61Þ

η̃k⃗ðsÞ≡
Z

∞

0

dte−stηk⃗ðtÞ; ð3:62Þ

Z̃ k⃗ðsÞ≡
Z

∞

0

dte−stZ k⃗ðtÞ; ð3:63Þ

along with

Σ̃ðk; sÞ≡
Z

∞

0

dte−stΣkðtÞ ¼ −
g2

2π

Z
∞

−∞

ρðk0; kÞ
k0 − is

dk0;

ð3:64Þ

we find

Ψ̃c
k⃗
ðsÞ ¼

_Ψc
k⃗
ð0Þ þ sΨk⃗;i þ η̃k⃗ðsÞ

s2 þ Ω2
0;k þ Σ̃ðk; sÞ ; ð3:65Þ

and

Z̃ k⃗ðsÞ ¼
_Z k⃗ð0Þ þ sZ k⃗ð0Þ

s2 þΩ2
0;k þ Σ̃ðk; sÞ : ð3:66Þ

These solutions can be written more succinctly in real
time in terms of the function GkðtÞ that obeys the following
equation of motion and initial conditions,

G̈kðt1Þ þ Ω2
0;kGkðt1Þ þ

Z
t1

0

dt2Σkðt1 − t2ÞGkðt2Þ ¼ 0;

Gkðt1 ¼ 0Þ ¼ 0; _Gkðt1 ¼ 0Þ ¼ 1; ð3:67Þ

whose Laplace transform is given by

G̃kðsÞ ¼
1

s2 þ Ω2
0;k þ Σ̃ðk; sÞ : ð3:68Þ

The differential equation along with the initial conditions
(3.67) imply that

G̈kðt1Þjt1¼0 ¼ 0: ð3:69Þ

The function Gkðt1Þ is obtained by carrying out the inverse
Laplace transform,

Gkðt1Þ ¼
Z
C

ds
2πi

est1

s2 þ Ω2
0;k þ Σ̃ðk; sÞ ; ð3:70Þ

where the contour C is parallel to the imaginary axis in the
complex s plane to the right of all the singularities of G̃kðsÞ.
Once we obtain Gkðt1Þ, the solutions of the equations of
motion (3.53) and (3.58) are given by

Ψc
k⃗
ðt1Þ ¼ Ψk⃗;i

_Gkðt1Þ þ _Ψc
k⃗
ð0ÞGkðt1Þ

þ
Z

t1

0

Gkðt1 − t2Þηk⃗ðt2Þdt2; ð3:71Þ

and

Zk⃗ðτÞ ¼ Z k⃗ð0Þ _GkðτÞ þ _Z k⃗ð0ÞGkðτÞ: ð3:72Þ

The coefficients are determined by the boundary conditions
(3.50) and (3.51). Using the relation (3.57) the boundary
condition (3.51) yields

Rc
k⃗
ðt1Þ ¼ Rk⃗;i

Gkðt − t1Þ
GkðtÞ

þ Rk⃗;f

�
_Gk⃗ðt − t1Þ −

_Gk⃗ðtÞ
GkðtÞ

Gkðt − t1Þ
�
; ð3:73Þ

and

Ψc
k⃗
ðt1Þ ¼ Ψk⃗;i

�
_Gk⃗ðt1Þ −

_Gk⃗ðtÞ
Gk⃗ðtÞ

Gkðt1Þ
�
þ Ψk⃗;f

Gkðt1Þ
GkðtÞ

þ
�
Ψk⃗;ηðt1Þ −Ψk⃗;ηðtÞ

Gkðt1Þ
GkðtÞ

�
; ð3:74Þ

where

Ψk⃗;ηðt1Þ ¼ ig2
Z

t

0

dt2

Z
t1

0

dt0Gkðt1 − t0ÞN kðt0 − t2ÞRc
k⃗
ðt2Þ;

ð3:75Þ

in this expression Rc
k⃗
ðt2Þ is the solution (3.73).

These solutions imply a nonperturbative Dyson resum-
mation of one-loop self-energy diagrams that yield Gkðt1Þ.

D. Time evolution

It remains to obtain the explicit form of Gkðt1Þ. The
function (3.68) generally features (complex) poles with
negative real part for stability, and multiparticle cuts along
the imaginary axis; hence the contour C runs parallel to and
to the right of the imaginary axis, namely s ¼ iωþ ϵ, with
−∞ ≤ ω ≤ ∞, ϵ → 0þ. Therefore
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Gkðt1Þ ¼ −
Z

dω
2π

×
eiωt1

½ðω − iϵÞ2 −Ω2
0;k − ΣRðω; kÞ − iΣIðω; kÞ�

;

ð3:76Þ

which is recognized as the Fourier transform of the retarded
propagator with the Dyson resummation of self-energy
contributions, with

ΣRðω; kÞ ¼ −
g2

2π

Z
dp0P

�
ρðp0; kÞ
p0 − ω

�
; ð3:77Þ

ΣIðω; kÞ ¼
g2

2
ρðω; kÞ; ð3:78Þ

where P½� � �� is the principal part and ΣRðω; kÞ, ΣIðω; kÞ are
even and odd functions of ω respectively as a consequence
of the property (3.42).
Renormalization: In a renormalizable theory the real part

of the self-energy is twice subtracted, and the subtractions
are absorbed into mass and wave function renormaliza-
tions; therefore we write

ΣRðω; kÞ ¼ ΣRðΩk; kÞ þ ðω2 −Ω2
kÞΣ0

RðΩk; kÞ
þ ðω2 −Ω2

kÞ2Σ̃Rðω; kÞ; ð3:79Þ

where Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

r

p
is the renormalized frequency and

mr the renormalized mass. The (“on-shell”) renormaliza-
tion conditions are

Ω2
0;k þ ΣRðΩk; kÞ ¼ Ω2

k; Z−1 ¼ ½1 − Σ0
RðΩk; kÞ�;

ð3:80Þ

where Z is the (on-shell) wave function renormalization
constant, and

Z−1 ¼ 1þ g2
Z

∞

0

dp0

π
P
�
p0ρðp0; kÞ
ðp2

0 − Ω2
kÞ2

�
; ð3:81Þ

where we used the property (3.42).
The retarded propagator in (3.76) now reads

Gkðω; kÞ ¼
1

½Z−1½ω2 − Ω2
k� − σðω; kÞ − iΣIðω; kÞ − iϵω� ;

ð3:82Þ

where σðω; kÞ ¼ ðω2 −Ω2
kÞ2Σ̃Rðω; kÞ is finite and vanishes

on the (renormalized) mass shell. This propagator feature
cuts along the real ω axis whenever ρðω; kÞ ≠ 0. The region
of support of ρðω; kÞ is given by Eq. (3.41). Considering
that the renormalized mass of the ϕ field is mr ≪ ðM1 þ
M2Þ the two particle cut determined by ρ2p in (3.41) is

above the mass shell and is the only contribution that
remains as T → 0.
If ðM1 −M2Þ2 > m2

r the finite temperature contribution
ρd to the spectral density (3.41) has support on the ϕ mass
shell at Q2 ¼ m2

r ; we refer to this as the resonant case.
In this case the ϕ on-shell pole is embedded in the
continuum moving off the physical onto a second or higher
Riemann sheet. On the other hand either at T ¼ 0 or if
ðM1 −M2Þ2 < m2

r the on-shell pole at Q2 ¼ m2
r is isolated

and below the multiparticle thresholds, we refer to this as
the nonresonant case. The analytic structure of the propa-
gator is displayed in Figs. 3 and 4 for the resonant and
nonresonant cases respectively (these figures do not display
the Landau damping cut for Q2 < 0 as it is not relevant for
the discussion).

1. Resonant case

In the resonant case, in perturbation theory the propa-
gator in (3.82) features complex poles near ω ¼ �Ωk; near

FIG. 3. Analytic structure of the propagator in the resonant
case, on-shell “poles” (denoted by the dots) is embedded in the
multiparticle continuum shown with zigzag lines.

FIG. 4. Analytic structure of the propagator for the nonresonant
case, isolated poles below multiparticle thresholds shown with
zigzag lines. The dots show the position of the single particle poles.
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these poles it can be approximated by a (narrow) Breit-
Wigner form,

Gkðω; kÞ ¼
Z

2ω�
p

1

½ω − ω�
p − i Γk

2
� ; ω�

p ¼ �Ωk; ð3:83Þ

where the width is given by

Γk ¼ Z
ΣIðΩk; kÞ

Ωk
¼ g2Z

2Ωk
ρðΩk; kÞ: ð3:84Þ

Since Z ≃ 1þOðg2Þ we can set Z ¼ 1 in (3.84) to leading
order in g. In the narrow width approximation, the complex
pole in the Breit-Wigner propagator dominates the long
time limit and yields

Gkðt1Þ ¼ Ze−
Γk
2
t1
sinðΩkt1Þ

Ωk
; ð3:85Þ

where contributions from the continuum background
are perturbatively small and subleading in the long
time limit.

2. Nonresonant case

In this case the isolated poles below the multiparticle
thresholds dominate the dynamics at long time. The
contribution at long time from the multiparticle continuum
is dominated by the behavior of the ρðω; kÞ near the
threshold, yielding an inverse power law decay; thus the
long time behavior in this case is given by

Gkðt1Þ ¼ Z
sinðΩkt1Þ

Ωk
þ F

sinðωtht1Þ
ωthðωtht1Þα

; ð3:86Þ

where F is a dimensionless perturbative coefficient (∝ g2)
that depends on the spectral density, ωth is the threshold
frequency and α is determined by the behavior of the
spectral density near threshold [44]. For example at T ¼ 0

in the case under consideration ωth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM1 þM2Þ2

p
and α ¼ 3=2. With ωth ≫ Ωk the contribution from the
continuum can be safely neglected for ωtht1 ≳ 1.
We are primarily interested in obtaining the reduced

density matrix in the long time limit, well after all the
transient dynamics associated with the instantaneous
“switching on” of the coupling between the fields ϕ and
ψ , χ has subsided. In this long time limit we can neglect the
contribution from the multiparticle (background) con-
tinuum both in the resonant and nonresonant cases. In
summary, in the long time limit

Gkðt1Þ ¼ Ze−
Γk
2
t1
sinðΩkt1Þ

Ωk
; resonant; ð3:87Þ

Gkðt1Þ ¼ Z
sinðΩkt1Þ

Ωk
; nonresonant: ð3:88Þ

Therefore we can obtain the long time limit in the
nonresonant case by setting Γk → 0 in the resonant case.
We now have all the necessary ingredients to obtain the

effective action and carry out the (functional) integral over
the initial values. In the solutions (3.73) and (3.74) we take
the long time limit for t with the results (3.87) and (3.88).
Furthermore, in the integrals up to time t in the quadratic
term in Rc in Seff (3.94) and in Ψk⃗;ηðtÞ in (3.74) and (3.75)
we carry out these integrals taking t → ∞, yielding the
following results:

_Ψk⃗;ηð0Þ ¼ 0; _Ψk⃗;ηð∞Þ ¼ iRk⃗;fKF; ð3:89Þ

Ψk⃗;ηð∞Þ ¼ iRk⃗;iηI þ iRk⃗;fηF; ð3:90ÞZ
∞

0

dt1

Z
∞

0

dt2Rc
−k⃗
ðt1ÞRc

k⃗
ðt2ÞN kðt1 − t2Þ ¼ R2

k⃗;i
J1 þ R2

k⃗;f
J2 þ 2Rk⃗;iRk⃗;fJ3; ð3:91Þ

_Ψc
k⃗
ð0Þ ¼ −Ψk⃗;i

� _Gk⃗ðtÞ
Gk⃗ðtÞ

�
þ

Ψk⃗;f

GkðtÞ
− i

�Rk⃗;iηI þ Rk⃗;fηF

GkðtÞ
�
; ð3:92Þ

_Ψc
k⃗
ðtÞ ¼ Ψk⃗;i

�
G̈k⃗ðtÞ −

_Gk⃗ðtÞ
Gk⃗ðtÞ

_GkðtÞ
�
þ Ψk⃗;f

_GkðtÞ
GkðtÞ

þ i

�
Rk⃗;fKF − ðRk⃗;iηI þ Rk⃗;fηFÞ

_GkðtÞ
GkðtÞ

�
; ð3:93Þ

where we used the result (3.69) in (3.92) and KF, ηI , ηF, J1;2;3 are given explicitly in Appendix B for the resonant case with
γ ¼ Γk=2. The nonresonant case is obtained from these expressions by setting γ ¼ 0.
In terms of the solutions of the equations of motion with the proper boundary conditions found above we find

iSeff ¼
X
k⃗

�
i½R−k⃗;f

_Ψc
k⃗
ðtÞ − R−k⃗;i

_Ψc
k⃗
ð0Þ� þ 1

2

Z
t

0

dt1

Z
t

0

dt2Rc
−k⃗
ðt1ÞRc

k⃗
ðt2ÞN kðt1 − t2Þ

�
þ iS̃ðtÞ: ð3:94Þ
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The term iS̃ðtÞ arises from the fluctuations rk⃗, ξk⃗ with
boundary conditions (3.52); it does not depend on the
boundary values of the fieldsΨk⃗;i;f, Rk⃗;i;f and only depends
on time. Its contribution to the path integral (propagating
kernel) is

eiS̃ðtÞ ≡ ÑðtÞ; ð3:95Þ

this is an overall time dependent normalization factor. We
do not need to calculate this factor because it is completely
determined by the identity (3.38), a consequence of unitary
time evolution of the full density matrix. Once we obtain
Seff for S̃ðtÞ ¼ 0 the normalization is fixed by the identity
(3.38). In the following discussion we refer to Seff as the
effective action with S̃ðtÞ ¼ 0; we account for this nor-
malization factor at the end of the calculation.
We emphasize that the effective action (3.94) results

from a nonperturbative Dyson resummation of one-loop
diagrams, therefore yielding the time evolution of the
reduced density matrix beyond the perturbative analysis
of Sec. II.

IV. VON-NEUMANN ENTROPY

With the final form for Ψc, Rc given above, the effective
action (3.94) for S̃ ¼ 0 can be obtained straightforwardly
by replacing (3.91)–(3.93) in (3.94) (for S̃ ¼ 0); it depends
explicitly on Ψk⃗;i;Ψk⃗;f;Rk⃗;i; Rk⃗;f and time t. The reduced
density matrix (3.34) with the initial density matrix (3.36)
is given by

ρrðϕf;ϕ0
f; tÞ ¼ Ñ

Z
DΨiDRie

iSeff ½Ψk⃗;i;Ψk⃗;f ;Rk⃗;i;Rk⃗;f ;t�

× e−
P

k⃗
Ω0k½Ψk⃗;iΨ−k⃗;iþ1

4
Rk⃗;iR−k⃗;i�; ð4:1Þ

where we used DϕiDϕ0
i ¼ DΨiDRi along with (3.45)

and (3.46). The overall normalization factor Ñ is fixed
by the condition (3.38). The functional integrals overΨi, Ri
are Gaussian and carried out straightforwardly, the general
final form of the reduced density matrix is found to be

ρrðΨf; Rf; tÞ
¼ NðtÞe−

P
k⃗
½AkðtÞΨk⃗;fΨ−k⃗;fþBkðtÞRk⃗;fR−k⃗;fþiCkðtÞΨk⃗;fR−k⃗;f �:

ð4:2Þ

The coefficients AkðtÞ; BkðtÞ; CkðtÞ are all real functions of
the various coefficients KF, ηI , � � � and depend explicitly on
time t. They are obtained in the long time limit for the
nonresonant and resonant cases separately below.

In terms of ϕf, ϕ0
f the reduced density matrix reads

ρrðϕf;ϕ0
f;tÞ¼NðtÞΠk⃗e

−½ðAk
4
þBkÞððϕk⃗;fÞ2þðϕ0

k⃗;f
Þ2Þ−2ϕk⃗;fϕ

0
−k⃗;f

ðBk−
Ak
4
Þ�

×e
−iCkððϕk⃗;fÞ2−ðϕ0

k⃗;f
Þ2Þ
; ð4:3Þ

where ðϕk⃗;fÞ2 ≡ ϕk⃗;fϕ−k⃗;f; etc., as shorthand notation.
Although there are several alternative definitions of

entropy [19], we focus on obtaining the Von-Neumann
entropy because it has a natural thermodynamic interpre-
tation and allows us to study the possibility of
thermalization.
The Von-Neumann entropy is obtained from the eigen-

values pn of the density matrixZ
Dϕ0

fρ
rðϕf;ϕ0

fÞΦn½ϕ0
f� ¼ pnΦn½ϕf�; ð4:4Þ

namely

S ¼ −
X
n

pn ln½pn�: ð4:5Þ

We note that the phase e
−iCkððϕk⃗;fÞ2−ðϕ0

k⃗;f
Þ2Þ

in (4.3) does not
contribute to the eigenvalue equation: this phase is absor-
bed into a redefinition of the wave functionals, namely,
Φn½ϕf� → eiCkðϕfÞ2Φn½ϕf�; therefore we set Ck ¼ 0 in (4.3).
In Ref. [37] the Von-Neumann entropy for generic
Gaussian density matrices has been obtained; using the
results from this reference along with those from
Refs. [38,47,48] we find (up to an overall normalization)

Φn½ϕf� ¼ Hnð
ffiffiffiffiffiffi
ωk

p
ϕfÞe−ωkðϕfÞ2=2; ωk ¼ 2

ffiffiffiffiffiffiffiffiffiffi
BkAk

p
;

ð4:6Þ

where Hn are Hermite polynomials, and imposing the nor-
malization condition (3.38), which results in

P
npn ¼ 1,

we find

pn ¼
2

αk þ 1

�
αk − 1

αk þ 1

�
n
; αk ¼

ffiffiffiffiffiffiffiffi
4Bk

Ak

s
: ð4:7Þ

This result has a more illuminating interpretation in terms
of a thermal density matrix: introduce momentum and time-
dependent frequency ωkðtÞ and effective temperature TkðtÞ
via the following relations valid for 4Bk ≥ Ak (this inequal-
ity is confirmed explicitly below),

BkðtÞ þ
AkðtÞ
4

≡ ωkðtÞ
2

coth

�
ωkðtÞ
TkðtÞ

�
;

BkðtÞ −
AkðtÞ
4

≡ ωkðtÞ
2 sinh

h
ωkðtÞ
TkðtÞ

i ; ð4:8Þ
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where we have now exhibited the t dependence of the
coefficients explicitly. It follows from (4.8) that

ωkðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BkðtÞAkðtÞ

p
; e−

ωkðtÞ
TkðtÞ ¼ αk − 1

αk þ 1
; ð4:9Þ

with αk given by Eq. (4.7). Replacing the definitions (4.8)
in the reduced density matrix (4.3) and setting Ck ¼ 0
according to the discussion above, we find

ρrðϕf;ϕ0
f; tÞ

¼ NðtÞΠk⃗e
− ωkðtÞ
2 sinh½ωkðtÞ

TkðtÞ
�
½cosh½ωkðtÞTkðtÞ�ððϕk⃗;fÞ2þðϕ0

k⃗;f
Þ2Þ−2ϕk⃗;fϕ

0
−k⃗;f

�
:

ð4:10Þ

This is a thermal density matrix for a free Gaussian field of
frequency ωkðtÞ at an effective temperature TkðtÞ for each k⃗
[49]. Fixing the overall normalization from the condition
(3.38), the eigenvalues of this density matrix are the
thermal probabilities,

pn ¼ ½1 − e−
ωkðtÞ
TkðtÞ�ðe−

ωkðtÞ
TkðtÞÞn; ð4:11Þ

which coincide with (4.7) via the definitions (4.9). Since
the total reduced density matrix factorizes into a product for
each independent k⃗, the total Von-Neumann entropy is
given by

S ¼ −
X
k⃗

�
lnð1 − ζkðtÞÞ þ

ζkðtÞ lnðζkðtÞÞ
ð1 − ζkðtÞÞ

�
;

ζkðtÞ ¼ e−
ωkðtÞ
TkðtÞ: ð4:12Þ

This is the same expression obtained in Refs. [38,39] for
the geometric entropy with the variable ζ given by a
different function of parameters.
Before we proceed to obtain S for the nonresonant and

resonant cases, we comment on several noteworthy aspects
of the analysis above.
(a) It is clear from the result (4.3) that if 4Bk ¼ Ak the

reduced density matrix is of the form Φ½ϕf�Φ�½ϕ0
f�;

namely it describes a pure state; however if Bk þ
Ak=4 ¼ Ak=2 ≠ Ωk=2 it is a two-mode squeezed state
[50]. A nonvanishing entropy arises from the term (in
the exponent) that is linear in ϕf and linear in ϕ0

f [the
term proportional to Bk − Ak=4 in Eq. (4.3)]. When the
field is expanded in creation and annihilation operators
(2.8), these linear terms are associated with single
particle states, unlike the quadratic terms in ϕf, ϕ0

f

which are associated with pairs. It is this (linear) term
the one associated with the purity of the density matrix
and the entropy, thus establishing a direct correspon-
dence with the perturbative analysis in Sec. II which

concluded that the mixed nature of the reduced density
matrix at second order (2.11) is encoded in the
contribution from single particle states [see discussion
after Eq. (2.13)].

(b) A probability interpretation of the eigenvalues of the
density matrix is only available provided 4Bk ≥ Ak. It
is not a priori evident that this condition is fulfilled;
however, it is shown below to be fulfilled explicitly
both in the nonresonant and resonant cases in the
asymptotic long time limit.

(c) At this stage, the parameters TkðtÞ describe an
effective temperature because of the similarity of
the reduced density matrix to a thermal one even
when the ϕ, χ fields are initially in their ground state
which corresponds to T ¼ 0 when the spectral density
is given by (3.43), namely the nonresonant case. This
similarity suggests that the reduced density matrix
describes an incipient thermalization albeit with a
nonequilibrium temperature for each individual mode.

A. Nonresonant case

For the nonresonant case we set Γk ¼ 0 since the spectral
density does not have support on the (renormalized) mass
shell at k0 ¼ Ωk. The coefficients are obtained from the
results of Appendix B by setting γ ¼ 0. As discussed above
we neglect the coefficient Ck since it does not contribute to
the eigenvalues of the reduced density matrix. After
straightforward algebra we find

Ak ¼
1

Z2

�
Ω0kΩ2

k

Ω2
0kS

2 þ Ω2
kC

2

�
− 2Ω2

kFk; S ¼ sinðΩktÞ;

C ¼ cosðΩktÞ ð4:13Þ

Bk ¼
Z2

4

�
Ω0kΩ2

k

Ω2
0kS

2 þ Ω2
kC

2

�
þ KF

2
; ð4:14Þ

where Fk and KF are given by (B4) and (B7) for γ ¼ 0

respectively, Z is given by (3.81) andΩ2
0k,Ω2

k are related by
mass renormalization (3.80). Writing Z ¼ 1þ g2z1 þ � � �
where z1 can be read off (3.81), using that Ω2

0k −Ω2
k ∝ g2

from (3.80), and gathering terms up to order g2 we find

4Bk

Ak
¼ 1þ

�
4g2z1 þ

2KF

Ωk
þ 2ΩkFk

�
þ � � � ; ð4:15Þ

where the dots stand for terms of higher order in g.
Therefore, up to orderOðg2Þ we find for the nonresonant

case

4Bk

Ak
¼ 1þ 2g2

Ωk

Z
∞

0

dp0

π

ρðp0; kÞ
ðp2

0 − Ω2
kÞ2

×

�
ðp0 − ΩkÞ2 þ 2

ðp2
0 þΩ2

kÞ
ep0=T − 1

�
> 1; ð4:16Þ
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where the equality is a consequence of ρðp0 > 0; kÞ > 0.
From the relations (4.7), (4.9), and (4.12) we find

ζkðtÞ ¼ e−
ωkðtÞ
TkðtÞ ¼ g2

2Ωk

Z
∞

0

dp0

π

ρðp0; kÞ
ðp2

0 −Ω2
kÞ2

×

�
ðp0 −ΩkÞ2 þ 2

ðp2
0 þΩ2

kÞ
ep0=T − 1

�
þ � � � ð4:17Þ

Note that the finite temperature correction is manifestly
positive thereby increasing ζkðtÞ and the entropy.
To leading order in the coupling, we find at T ¼ 0 the

entanglement entropy density

S
V
¼ −g2

Z
d3k

ð2πÞ3Ωk

Z
∞

0

dp0

2π

ρðp0; kÞ
ðp0 þΩkÞ2

× ln

�
g2

Ωk

Z
∞

0

dp0

2π

ρðp0; kÞ
ðp0 þΩkÞ2

�
: ð4:18Þ

The result (4.18) is noteworthy: at T ¼ 0 the initial
density matrix describes a pure state, corresponding to a
tensor product of the ground states for the light and heavy
fields, and vanishing entropy. However tracing out the
heavy degrees of freedom in the time evolution leads to an
asymptotic reduced density matrix that describes a mixed
state which resembles a thermal density matrix with an
effective coupling dependent temperature for each mode.
This mixed state results from the entanglement between the
light and heavy fields via their interaction as exhibited in
the perturbative evaluation of the reduced density matrix in
Sec. II. Therefore this entropy is identified with the
entanglement entropy; the growth of entropy is a conse-
quence of tracing over the heavy degrees of freedom. The
coupling dependence of the entanglement entropy in this
case is in agreement with the perturbative arguments
in Sec. II.
We note that the effective frequency ωkðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
BkAk

p
is

time dependent; however the ratio e−ωkðtÞ=TkðtÞ given by
(4.17) is time independent; hence TkðtÞ is also time
dependent. The origin of the time dependence of ωkðtÞ
[hence of TkðtÞ] can be traced to the initial density matrix
(3.36) in terms of the bare frequency Ω0k. If, instead, the
initial density matrix were to be given in terms of the
renormalized frequencyΩk, then from (4.13) and (4.14) it is
clear that ωkðtÞ [and TkðtÞ] would be time independent.
Therefore the time dependence of the effective frequency
and temperature is a manifestation of the memory of the
initial conditions. We conclude that generally, the density
matrix does not relax to a stationary state; and even in the
asymptotic long time limit it retains memory of the initial
condition, although the Von-Neumann entanglement
entropy reaches an asymptotic stationary value. Only if
the initial density matrix corresponds to the renormalized
state, the asymptotic long time limit leads to a time-
independent stationary state in the sense that not only

the entanglement entropy but also both the effective
frequency and temperature become time independent.

B. Resonant case

In the resonant case Ωk is embedded in the continuum,
namely above the multiparticle threshold, and ρðΩk;kÞ≠ 0.
In this case, all integrals in Appendix B that yield the
coefficients KF; ηI; � � � are dominated by the sharp reso-
nances at p0 ¼ �Ωk; as a result, to leading order in g2

we find

KF ¼ Ω2
kFk; J1 ¼

Fk

Gk
2ðtÞ ; J2 ¼ Ω2

k
Fk

Gk
2ðtÞ ;

J3 ¼ −Ωk
cosðΩktÞ
sinðΩktÞ

Fk

GkðtÞ
: ð4:19Þ

In the long time limit Γkt → ∞, we neglect terms propor-
tional to GkðtÞ that vanish exponentially, with the result that

Ak ¼
1

2Fk
; Bk ¼

1

2
FkΩ2

k; ð4:20Þ

where Fk is given by Eq. (B3) and again neglecting the
(real) coefficient Ck which does not contribute to the
probabilities. In the narrow width limit with γ ¼ Γk=2 ≪
Ωk we find

Fk ¼
g2ρðΩk; kÞ
4Ω2

kΓk
coth

�
Ωk

2T

�
¼ 1

2Ωk
coth

�
Ωk

2T

�
; ð4:21Þ

where we have used Eq. (3.84) setting Z ¼ 1 to leading
order in g2 to arrive at the last equality. Therefore, in the
narrow resonance limit we find

Ak ¼
Ωk

coth½Ωk
2T�

þ � � � ; Bk ¼
Ωk

4
coth

�
Ωk

2T

�
þ � � � ;

ð4:22Þ

where the dots stand for terms of Oðg2Þ, leading to

BkðtÞ þ
AkðtÞ
4

¼ Ωk

2
coth

�
Ωk

T

�
þ � � � ;

BkðtÞ −
AkðtÞ
4

¼ Ωk

2 sinh½Ωk
T �

þ � � � ð4:23Þ

This is a remarkable result; the reduced density matrix
describes an equilibrium state of a free field of renormal-
ized frequency Ωk at temperature T, which is the common
equilibrium temperature of the heavy fields. Now the
probabilities pn are the thermal probabilities

pn ¼ ½1 − e−
Ωk
T �ðe−Ωk

T Þn ð4:24Þ
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and the total entropy associated with the reduced density
matrix is simply the thermal entropy of a free field at
equilibrium temperature T but with renormalized mass,

Sr

V
¼ −

Z
d3k
ð2πÞ3

�
lnð1 − ζkÞ þ

ζk lnðζkÞ
ð1 − ζkÞ

�
þ � � � ;

ζk ¼ e−
Ωk
T : ð4:25Þ

The conclusion is that in the resonant case, the light
field thermalizes with the heavy fields on a relaxation time
scale tthðkÞ ≃ 1=Γk. In the weak coupling limit and when
T ≪ M1;M2 this relaxation time may be very long, but
ultimately the reduced density matrix for the light field
becomes a thermal density matrix for a weakly interacting
light field.
For T ≠ 0 the initial density matrix (3.4) with (3.5) and

(3.6) describes the free heavy fields in thermal equilibrium;
therefore the entropy of the initial state is

Sin

V
¼ −

X
a¼1;2

Z
d3k
ð2πÞ3

�
lnð1 − ζakÞ þ

ζak lnðζakÞ
ð1 − ζakÞ

�
;

ζak ¼ e−
Wa
k
T ; ð4:26Þ

with Wa
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

a

p
. With M1;2 ≫ mr it follows that

ζk ≫ ζak ; a ¼ 1, 2 leading tooverall time dependent nor-
malization the inequality

Sr > Sin; ð4:27Þ

implying that entropy has increased during the time
evolution as a consequence of tracing out the heavy fields.
In obtaining the results (4.22) we have consistently

neglected terms of Oðg2Þ to leading order; keeping these
terms would require also including higher order loop
corrections (Oðg4Þ).

V. DISCUSSION

Several aspects of the results obtained above for the
nonresonant and resonant cases merit discussion.
(i) The time dependence of ωkðtÞ which leads to the time

dependence of the effective temperature TkðtÞ in the
nonresonant case can be shown to originate in the first
term in Eq. (3.93) and can be understood by setting g2 ¼ 0,
but taking Gk ¼ sinðΩktÞ=Ωk. This corresponds to evolving
an initial state which is simply the ground state of a free
field with the bare mass and bare frequency Ω0k with a free
field Hamiltonian of the field with the renormalized mass
and renormalized frequency Ωk. The initial density matrix
does not commute with the evolution Hamiltonian and the
time dependence ofωkðtÞ is a consequence of squeezing the
initial state by the creation annihilation of virtual pairs,
explaining the time evolution with cosð2ΩktÞ, namely twice

the frequency Ωk corresponding to the eigenstates of the
renormalized Hamiltonian. This is further understood if
Ω0k → Ωk in the initial state which now is an eigenstate of
the free field Hamiltonian with the renormalized mass. In
the nonresonant case the first term in (3.93) remains in the
long time limit and oscillates if Ω0k ≠ Ωk indicating that in
this case the reduced density matrix retains memory of the
initial condition. This memory results in the time depend-
ence of ωkðtÞ and consequently of TkðtÞ, when Ω0k ≠ Ωk;
however the entanglement entropy is independent of time.
In the resonant case the first term in (3.93) vanishes in

the long time limit and the reduced density matrix loses
memory of the initial state on the time scale 1=Γk.
(ii) For the nonresonant case at T ¼ 0 the entanglement

entropy is given by (4.18). In the super-renormalizable
model discussed here the spectral density approaches a
constant as p0 → ∞ and the p0 integrals in the entangle-
ment entropy are finite. However, the k integral diverges
with an upper momentum cutoff Λ, yielding

Snr
V

≃ g2Λ ln

�
Λ2

g2

�
: ð5:1Þ

In a renormalizable theory, for example if the light
scalar ϕ is Yukawa coupled to heavy fermions, the spectral
density grows ∝ p2

0 as p0 → ∞ and the p0 integrals
diverge linearly with an upper frequency-momentum cutoff
Λ. In the nonresonant case, this divergence in a renorma-
lizable theory yields an entanglement entropy Snr ∝
g2ðL=lÞ3 lnðM̃lÞ with L ¼ V1=3 being the size of the
system, l ∝ 1=Λ and M̃ a scale associated with the spectral
density (in a renormalizable theory g is dimensionless).
The dependence on the coupling is a result of tracing the
heavy degrees of freedom and has also been noticed within
a different setting in Ref. [51]. The geometric entropy
obtained in Refs. [38–40] from tracing out the degrees of
freedom within a spatial domain is Sgeo ∝ A=l2, where A is
the area that separates the spatial domain and l a short
distance cutoff; in the case of the Bekenstein-Hawking
black hole entropy l is the Planck scale.
(iii) In the resonant case the asymptotic long time limit

yields a reduced density matrix that is thermal at temper-
ature T, the common equilibrium temperature of the heavy
fields. It may be argued that an effective field theory is a
suitable description for T ≪ M1;M2, namely for scales
well below the energy scale of the heavy fields. In this case
the finite temperature contribution to the spectral density is
suppressed by terms of the form e−M1;2=T and so is the
relaxation rate Γk given by (3.84). Nevertheless, however
small Γk is, at asymptotically long time t ≫ 1=Γk the
reduced density matrix relaxes to a thermal density matrix
and if T ≫ mr the light quanta have a large occupation
number and with a thermal entropy much larger than the
entropy of the initial state. The entropy increase, from the
thermal entropy for the heavy fields, to the thermal entropy
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of the light fields (with much larger occupation number) is
a consequence of tracing out the heavy degrees of freedom
and the concomitant loss of information.

VI. CONCLUSIONS AND FURTHER QUESTIONS

Our study is motivated by the observation that an
effective field theory describing phenomena below some
energy scale emerges, fundamentally, from tracing over or
coarse graining the high energy degrees of freedom with a
concomitant loss of information. The information loss
entailed in the reduction from the full theory where the
low and high energy degrees of freedom are coupled to the
effective theory describing the low energy sector has to be
manifest as an increase in the entropy. In this article we
study the information loss as a consequence of tracing over
high energy degrees of freedom in a model of a light scalar
field coupled to two other heavy scalar fields. The initial
density matrix is factorized into the ground state for the
light field and a thermal ensemble at a common temperature
T for the heavy fields. The case of the heavy fields in their
ground state is recovered in the T → 0 limit. This initial
state is evolved in timewith the full interacting Hamiltonian
and the heavy degrees of freedom are traced out from the
time evolved density matrix up to second order in the
coupling, yielding a reduced density matrix for the light
degrees of freedom. The time evolution of the reduced
density matrix is determined by the effective action and
defines the effective field theory description of the dynam-
ics of the light degrees of freedom. From the reduced
density matrix we obtain the Von Neumann entropy in the
asymptotic long time limit.
We begin with a perturbative study which exhibits

explicitly the emergence of a mixed state upon tracing
the heavy degrees of freedom and the origin of the entropy
in the entanglement between the light and heavy degrees of
freedom as a consequence of their mutual interaction;
namely the entropy is recognized as the entanglement
entropy.
We then obtain the effective action in a nonperturbative

Dyson resummation of one-loop correlations of the heavy
fields. There are two important cases: (i) when the (renor-
malized) mass shell of the light field is below the multi-
particle thresholds in the spectral density of the correlation
functions of the heavy fields, we refer to this as the
nonresonant case, and (ii) when it is within the continuum
(above thresholds) and the spectral density has support on
the renormalized mass shell of the light field, we refer to this
as the resonant case. When the masses of the heavy fields are
much larger than that of the light field, the resonant case can
only occur for T ≠ 0 when the mass difference of heavy
fields is larger than the mass of the light field [23]. In the
nonresonant case the reduced density matrix is formally
equivalent to a thermal density matrix of a free field although
with a momentum, time and coupling dependent effective
temperature. In this case the entanglement entropy is given

by Eq. (4.18); it depends on the coupling between light and
heavy degrees of freedom and the details of the spectral
density. In this nonresonant case the reduced density matrix
retains memory of the initial conditions even at asymptoti-
cally long time, and the time dependence of the effective
temperature is a consequence of squeezing in the initial
state. We show that the entanglement entropy in the
nonresonant case features ultraviolet divergences. In the
super-renormalizable case we find up to logarithmic correc-
tions S ∝ g2L3Λ and for a renormalizable theory we argue
that, up to logarithmic corrections, S ∝ g2ðLΛÞ3 with g
being the heavy-light coupling, L the linear size of the
system and Λ an ultraviolet cutoff.
In the resonant case the light field thermalizes with the

heavy fields at temperature T; the reduced density matrix is
completely determined by the thermal density matrix of a
(nearly) free field of renormalized mass at temperature T,
the (common) equilibrium temperature of the heavy fields.
Therefore the entanglement entropy in this case coincides
with the thermal entropy. In both cases we show that
the coarse graining (tracing) procedure that yields the
effective field theory leads to an increase in the entropy
concomitant with the loss of information in the coarse
graining procedure. In conclusion, our study demonstrates
quantitatively that effective field theories, emerging from
integrating out high energy degrees of freedom, are
characterized by an information loss. This is manifest in
the entanglement entropy associated with the reduced
density matrix of the low energy degrees of freedom which
in the case of thermalization becomes the thermal entropy.
Although we have studied a particular model, the resonant
and nonresonant cases are of broader relevance as they
highlight respectively the dependence of the entanglement
entropy on the couplings to and spectral densities of the
heavy fields, features that are, arguably, qualitatively
fairly robust.
Furthermore, within the context of cosmology, this study

strongly suggests that the entanglement entropy associated
with the decoupling of heavy fields that interact with a light
sector must also be included in the entropy budget.
Further questions: several further questions merit

exploration.
(1) Are there phenomenological consequences or ob-

servables associated with the entanglement entropy
of the effective field theory? In Ref. [52] it was
argued that in the case of particle decay, the products
are kinematically entangled and if one (or more) are
not detected (“invisible”) tracing them out of the
final state yields a density matrix which features an
entanglement entropy. This reference suggested
possible experimental probes of this entropy. Similar
conclusions but within different settings were ob-
tained in Refs. [53,54] for scattering experiments.
However, these discussions in the literature do not
directly address the issue of entanglement within the
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context of an effective field theory. Entanglement
between super and sub-Hubble degrees of freedom
with a concomitant entanglement entropy has been
discussed in Ref. [55] within the context of infla-
tionary cosmology; is there an observable cosmo-
logical consequence of this phenomenon? Within
the cosmological context, there is also the question
of how a particle species whose distribution function
has frozen out of equilibrium contributes to the
entropy budget.

(2) The entanglement entropy is revealed in the reduced
density matrix arising from tracing heavy degrees of
freedom out of the total time evolved density matrix
and becomes manifest in the in-in field theory
formulation. The usual treatment of an effective field
theory typically begins with writing down an effective
local Lagrangian density and performing in-out
(S-matrix) calculations of low energy observables.
In these calculations there is no hint of entanglement
between the low and high energy degrees of freedom
or its consequence, the entanglement entropy. Neither
cross sections in the effective field theory nor any
other observable calculated from S-matrix elements
bear any relation to the entanglement entropy or any
alternative quantity related to information loss. The
matching between the high energy and low energy
physics that is necessary to obtain the effective
couplings of the effective field theory is often cast
in terms of Wilson’s coefficients in an operator
product expansion; are these coefficients in any
way related to the entanglement entropy? Perhaps
with correspondence to the short distance divergences
of the entanglement entropy discussed above?

(3) We have argued that in a renormalizable theory, the
entanglement entropy in the nonresonant case fea-
tures divergences proportional to Λ3 with Λ being an
ultraviolet cutoff; in four space-time dimensions the
geometric entropy features a divergence ∝ Λ2 [38,39]
but also universal characteristics. Are there any
universal features in entanglement entropy of the
effective field theory? Perhaps a consequence of
underlying symmetries of the high energy sector?
In the resonant case we showed that in the asymptotic
long time limit the reduced density matrix becomes
the thermal density matrix of a (nearly) free field at
the (common) temperature of the heavy fields. We
extracted the leading terms dominated by the reso-
nance but neglected higher order terms which would
require higher loop contributions to the effective
action. Are these higher order terms also ultraviolet
divergent?

(4) We focused on obtaining the entanglement entropy
in the asymptotic long time limit. The time evolution
of entropy production is of interest; however, it
would probably require a rather intense numerical
study for a given spectral density and parameters,

certainly beyond the scope of this article. Such a
study would inform on the rate of entanglement
entropy production [51]. In the nonresonant case it is
likely that such a rate would depend on the initial
conditions since as discussed above the effective
temperature depends on time as a consequence of
squeezing and the memory of the initial conditions
even at asymptotically long time. In the resonant
case, this rate is very likely Γk which is the
relaxation rate towards equilibrium although this
conjecture should be scrutinized further.

(5) In the resonant case we found that the light field
thermalizes at the same (common) temperature of
the heavy degrees of freedom yielding a thermal
entropy, which is larger than the entropy of the initial
state. Unlike the nonresonant case, in this case the
details of the coupling to the heavy sector have been
“erased” as the thermal state does not reveal any
feature of this interaction. This is the result of the
sharp resonance in the weak coupling limit and
approximating the propagator by a narrow Breit-
Wigner form. However, we expect that including
width effects there will be corrections to the thermal
density matrix which are perturbatively small in the
weak coupling case but which nonetheless may lead
to distortions of the thermal spectrum and hint to
nonuniversal details of the interactions in the effec-
tive field theory encoded in the entropy. Such
corrections have been recently reported in a con-
densed matter setting [56]; the study of these
possible corrections within the realm of effective
field theory would be a worthy endeavor.

We expect to report on some of these issues in forth-
coming studies.
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APPENDIX A: SPECTRAL DENSITY

The spectral density for the case of two real bosonic
fields at a common temperature T was derived in Ref. [23]
where the reader is referred to for details. We summarize
here the final form; it is given by

ρldðq0;q;TÞ¼
signðq0Þ
8πβq

�
ln

�
1

1−e−βξðq0;qÞ

�
þM1↔M2

�
;

ðA1Þ

ρdðq0; q;TÞ ¼ −
signðq0Þ
8πβq

�
ln

�
1 − e−βwþ

1 − e−βw−

�
þM1 ↔ M2

�
;

ðA2Þ
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ρ2pðq0; q;TÞ

¼ signðq0Þ
8πQ2

f½Q2 − ðM1 −M2Þ2�½Q2 − ðM1 þM2Þ2�g1
2

þ signðq0Þ
8πβq

�
ln

�
1 − e−βwþ

1 − e−βw−

�
þM1 ↔ M2

�
; ðA3Þ

where

ξðq0; qÞ ¼
1

2jQ2j
n
jq0jαþ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4jQ2jM2

1

q �
; ðA4Þ

α ¼ Q2 þM2
1 −M2

2;

α2 − 4Q2M2
1 ¼ ½Q2 − ðM1 −M2Þ2�½Q2 − ðM1 þM2Þ2�;

ðA5Þ

and

w�ðq0; qÞ ¼
1

2Q2

n
jq0jα� q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 4Q2M2

1

q o
: ðA6Þ

APPENDIX B: COEFFICIENTS

The various integrals needed are of the form

I ¼
Z

t

0

dt1

Z
t

0

dt2Gaðt − t1ÞGbðt − t2ÞN kðt1 − t2Þ; ðB1Þ

where Ga;bðt − t1Þ are proportional to either the Green’s
function (3.85) or its time derivative, and N kðt1 − t2Þ is
given by (3.60). It is convenient to introduce

ρ̃ðp0; kÞ ¼
g2

2
ρðp0; kÞ coth

�
p0
2T

�
; ðB2Þ

we note that ρ̃ð−p0; kÞ ¼ ρ̃ðp0; kÞ. Now introduce τ1;2 ¼
t − t1;2, and take the asymptotic long time limit t → ∞ in
the upper limit of the integrals. One type of integral
required is

Fk ≡
Z

∞

0

dτ1

Z
∞

0

dτ2e−γτ1e−γτ2
sinðΩkτ1Þ

Ωk

sinðΩkτ2Þ
Ωk

×N kðτ2 − τ1Þ; ðB3Þ

where γ ¼ Γk=2. Using the representation (3.60) along with
the definition (B2), it is straightforward to find

Fk ¼
Z

dp0

2π

ρ̃ðp0; kÞ
½γ2 þ ðp0 þ ΩkÞ2�½γ2 þ ðp0 −ΩkÞ2�

: ðB4Þ

Similarly, we find

Z
∞

0

dτ1

Z
∞

0

dτ2e−γτ1e−γτ2 cosðΩkτ1Þ
sinðΩkτ2Þ

Ωk

×N kðτ2 − τ1Þ ¼ γFk; ðB5Þ

Z
∞

0

dτ1

Z
∞

0

dτ2e−γτ1e−γτ2 cosðΩkτ1ÞcosðΩkτ2ÞN kðτ2− τ1Þ

¼
Z

dp0

2π

ρ̃ðp0;kÞðγ2þp2
0Þ

½γ2þðp0þΩkÞ2�½γ2þðp0−ΩkÞ2�
: ðB6Þ

The coefficients are combinations of these three types of
integrals. We note that with γ ¼ Γk=2 ∝ g2, to leading order
in g2 we can safely neglect the γ2 term in (B6). In terms of
these basic integrals we find

KF ¼
Z

dp0

2π

p2
0ρ̃ðp0; kÞ

½γ2 þ ðp0 þΩkÞ2�½γ2 þ ðp0 − ΩkÞ2�
ðB7Þ

J1 ¼
Fk

G2
kðtÞ

; ðB8Þ

J2 ¼
Z

dp0

2π

ρ̃ðp0; kÞ½ðγ −Ωk
cosðΩktÞ
sinðΩktÞÞ2 þ p2

0�
½γ2 þ ðp0 þΩkÞ2�½γ2 þ ðp0 −ΩkÞ2�

; ðB9Þ

J3 ¼
ðγ −Ωk

cosðΩktÞ
sinðΩktÞÞ

GkðtÞ
Fk; ðB10Þ

ηI ¼
Fk

GkðtÞ
; ðB11Þ

ηF ¼ −Ωk
cosðΩktÞ
sinðΩktÞ

Fk: ðB12Þ
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