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In this paper, we discuss the noncommutative QED2 in the S-matrix framework. We are interested in

perturbatively proving that the exact Schwinger mass μ2 ¼ e2
π does not receive noncommutative corrections

to any order in loop expansion. In this sense, the S-matrix approach is useful since it allows us to work with
the effective action Γ½A� (interaction term) to compute the corresponding gauge field 1PI two-point function
at higher orders. Furthermore, by means of α�-cohomology, we generalize the QED2 S-matrix analysis in
the Moyal star product to all translation-invariant star products.
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I. INTRODUCTION

Because of the lack of proper answers to some important
questions in our description of nature, it is rather natural to
look for alternative proposals in order to gain insights to
improve our knowledge and fundamental theories. In this
sense, reducing the spacetime dimensionality has proved to
be one of the richest scenarios where ideas can be
successfully tested. Low-dimensional field theory models
are widely used in the description of many physical
phenomena, whose applicability range from planar physics
in condensed matter (2þ 1) spacetime [1] to many fer-
mions and integrable systems in (1þ 1) spacetime [2]. In
particular, despite sharing relevant phenomena with more
realistic models, many two-dimensional field theory mod-
els have a distinguishable property of being exactly
solvable such as fermionic quartic interactions (Thirring
model) [3] and quantum electrodynamics (QED2) [4,5].
The most interesting two-dimensional field theory model

is the massless QED2, known as the Schwinger model. This
model displays two important features, that local gauge

symmetry does not necessarily imply the existence of a
massless gauge field, which is an example of dynamical
mass generation, and that, due to the linear behavior of the
electrostatic potential, fermions do not appear in the
physical states and hence the spectrum of this theory
includes a free massive boson. In summary, this shows
that the fermionic field is confined, which is in total
analogy with the quark confinement phenomenon happen-
ing in quantum chromodynamics (QCD)—in this sense
massless QED2 is considered as a toy model for QCD4. All
of these interesting aspects have been extensively studied in
several works such as [4–8].
On the other hand, in the pursuit of a better under-

standing of quantum behavior of gravity we have witnessed
an intense activity in the last few decades in attempts to
unveil the structure of nature at very short distances [9],
from which the most important theories we might refer to
are string theory and quantum loop gravity, etc. Moreover,
among the several interesting features resulting from such
descriptions, the quantum realm of systems under the
influence of strong gravitational fields, one can say that
the loss of the smoothness of the spacetime and that a
minimal length is necessarily present are the most striking
ones [10]. A framework which encompasses all the desired
features is the noncommutative spacetime, where the
spacetime coordinates are noncommutative, satisfying an
algebra ½x̂μ; x̂ν� ¼ iΘμν, where Θμν is a skew-symmetric
matrix, measuring the spacetime noncommutativity
through uncertainty relation Δx̂μΔx̂ν ∼ jΘμνj [11].
Interestingly, spacetime noncommutativity gives rise to

new and interesting features on field theories, basically
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inducing a non-Abelian structure on the fields due to the
star product. Such features have been extensively studied
in many different field theoretical contexts; some recent
studies are Refs. [11–19]. Since the Schwinger model has
played an important part as a QCD4 toy model, naturally
it was analyzed in many contexts by the introduction of
spacetime noncommutativity, unveiling interesting proper-
ties of noncommutative QED2 [20–27].
Among the new features analyzed in the noncommu-

tative Schwinger, one may see that the noncommuta-
tivity does not affect the deconfining behavior of the
model [22]. Now with regard to the dynamical mass
generation for the gauge field, it has been shown that
the Schwinger mass does not receive any noncommu-
tative corrections at one-loop level and from higher
orders as well [24,27]. Furthermore, one-loop analysis
for the noncommutative supersymmetric Schwinger
model indicates that the generated mass for the gauge
superfield is independent from the noncommutative
parameter [26].
Although many features of QED2 have been extensively

studied in a noncommutative framework, we believe that
there are some blank points which deserve more attention,
mainly concerning correction to the photon mass. Our
interest here might be seen as a continuation of [27] in
which the contribution of the higher-order graphs to the
photon self-energy using the standard method was com-
puted. While in the present work, we propose the S-matrix
approach for the photon one-loop effective action Γ½A� to
more conveniently concentrate on the analysis of the
higher-loop noncommutative corrections to the physical
pole of the photon propagator. Actually, in this approach,
the S-matrix analysis is applied to Γ½A� and then diagrams
with a single (multi)-fermion loop(s) at any order are
generated. Furthermore, as a bonus of our analysis, we
show that the calculation of the relevant noncommutative
phase factor for any complicated diagram can be exactly
specified in an elegant way, without resorting to the
Feynman rules used in [27].
In this paper, in order to examine higher-order contri-

butions to the photon 1PI two-point function, we will
approach noncommutative Schwinger model in a S-matrix
framework. We start Sec. II by establishing the main
aspects of the photon one-loop effective action Γ½A�, as
well presenting some statements involving this functional
in commutative and noncommutative spacetime. In
Sec. III, we write down and compute explicitly high-order
elements of the S-matrix for the effective action Γ½A�. This
analysis provides us with powerful but easy tool to
determine the respective contributions order by order to
the 1PI photon two-point function. Afterwards, in Sec. IV
we generalize the obtained results in the Moyal star product
to all translation-invariant star products by means of
α�-cohomology. In Sec. V we summarize the results and
present our final remarks.

II. ONE-LOOP EFFECTIVE ACTION

In the present section, we introduce the noncommutative
Schwinger model by constructing the noncommutative
extension of massless fermionic fields interacting with
an Abelian gauge field. For this purpose, we consider
the following action:

S ¼
Z

d2x

�
ψ ⋆ iγμDμψ −

1

4
Fμν ⋆ Fμν þ Lg:f þ Lgh

�
;

ð2:1Þ
where the covariant derivative is defined as Dμψ ¼
∂μψ þ ieAμ ⋆ ψ and the field strength tensor Fμν ¼
∂μAν − ∂νAμ þ ie½Aμ; Aν�⋆, where ½ ; �⋆ is the Moyal
bracket. The Moyal star product between the functions
fðxÞ and gðxÞ is defined as

fðxÞ ⋆ gðxÞ ¼ fðxÞ exp
�
i
2
Θμν∂⃖μ ∂⃗ν

�
gðxÞ: ð2:2Þ

The gauge fixing and the ghost terms in the action (2.1) can
be written in a Becchi-Rouet-Store-Tyutin (BRST) exact
form [28]

Lg:f þ Lgh ¼ s
�
c̄ ⋆
�
ξ

2
B − Ω½A�

��
ð2:3Þ

where B is the Nakanishi-Lautrup field and Ω is a generic
gauge condition, i.e., Ω½A� ¼ 0. The above Lagrangian
(2.1) is invariant under the BRST Slavnov transformations

sAμ ¼ Dμc; sψ ¼ iec ⋆ ψ ; sc ¼ iec ⋆ c;

sc̄ ¼ −B; sB ¼ 0: ð2:4Þ

In what follows we shall take the following consider-
ations: the noncommutative structure of the spacetime is
determined as usual by ½xμ; xν� ¼ iΘμν, in which Θμν is a
constant antisymmetric parameter, containing one non-
vanishing component Θ01 in two dimensions. However,
in order to avoid the unitarity violation, we choose to work
in Euclidean signature [12]. Furthermore, for the sake of
simplicity, the light-cone coordinates x� ¼ x1 � ix2 are
chosen. In a two-dimensional gauge theory, the light-cone
gauge A− ¼ 0 is a rather suitable condition, since, in this
gauge, the photon self-interaction terms are eliminated and
the gauge theory is ghost free, similarly written as the
commutative Abelian gauge theories [29].
Now, in order to analyze the one-loop effective action for

the photon, we shall use the Feynman path-integral
formalism. The path integral of the present model is readily
given by

Z ¼
Z

DAμDψDψeiðSgþSfÞ: ð2:5Þ
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Here, we have separated the total action S (2.1) into two
parts Sg and Sf indicating the pure gauge and the fermionic
matter parts, respectively. The action Sg in the light-cone
gauge includes the third and the fourth terms of the action
(2.1), without a ghost term. Integrating out the fermionic
fields yields the one-loop effective action for the gauge
field

eiΓ½A� ¼
Z

DψDψeiSf ; ð2:6Þ

where the effective action Γ½A� is defined as follows:

Γ½A� ¼ ln
det ði=∂ − e=A⋆Þ

det ði=∂Þ ¼ −
X∞
n¼1

1

n
tr

��
i
i=∂
�
ð−ie=A⋆Þ

�
n
:

ð2:7Þ

Because of the perturbative structure of noncommutative
QED, the obtained series is asymptotically convergent and
thus the partition function (2.5) is revised as

Z ¼
Z

DAμeiðSgþΓ½A�Þ: ð2:8Þ

Since our main focus is the perturbative calculation of Γ½A�,
it is more convenient to replace Eq. (2.7) by the following
expression:

Γ½A� ¼
X∞
n¼1

Z Yn
i¼1

d2xiAμ1ðx1Þ…AμnðxnÞΓμ1…μnðx1;…; xnÞ;

ð2:9Þ

where Γμ1…μn refers to a one-fermion-loop graph with n
external photon lines, as shown in Fig. 1. The explicit form
of the tensor Γμ1…μn is illustrated as

Γμ1…μnðx1;…; xnÞ ¼ −
ð−eÞn
n

Z Yn
i¼1

d2ki
ð2πÞ2 ð2πÞ

2δ
�X

i

ki
�
e−i
P

i
ki:xie−

i
2

P
i<j

ki∧kjep∧
P

n
i¼1

kiΞμ1…μnðk1;…; kn−1Þ; ð2:10Þ

with the notation ki ∧ kj ¼ Θμνkiμkjν and the expression Ξμ1…μn is given by

Ξμ1…μn ¼
Z

d2p
ð2πÞ2

tr½γμ1ð=pþ =k1Þγμ2ð=pþ =k1 þ =k2Þγμ3…ð=pþPn−1
i¼1 =kiÞγμnð=pÞ�

p2ðpþ k1Þ2ðpþ k1 þ k2Þ2ðpþPn−1
i¼1 kiÞ

2
; ð2:11Þ

where p is the momentum of fermionic loop and ki’s are the
momenta of the external gauge fields.
As is easily seen in Eq. (2.11), the effect of the non-

commutativity has been encoded into two phases:

e−
i
2

P
i<j

ki∧kj and ep∧
P

n
i¼1

ki , although the second one
is removed due to the energy-momentum conservation
constraint. Therefore, the noncommutative phase factor
does not depend on the momentum of the fermion loop and
this property is independent from the number of exter-
nal legs.
Before proceeding with our analysis, it is worth present-

ing some overall comments about the general structure of
Γ½A�, in particular, its initial terms in the series form (2.7),
for both commutative and noncommutative QED in various
dimensions:
(1) Commutative case

(i) d ¼ 4: The first term of (2.7) contributing to the
photon one-point function vanishes whereas
the second term gives the nonzero one-loop

correction to the two-point gauge field function,
without any mass generation for the photon.
The next term, n ¼ 3, includes the contribution
of two triangle diagrams with two different
orientations of the fermion loop which cancel
mutually, according to the Furry’s theorem:
diagrams with an odd number of external
photons are vanishing.

Moreover, for n ¼ 4, there are six indepen-
dent diagrams whose divergences cancel each
other and we are left with a finite result
producing a four-photon interaction term
named as the Euler-Heisenberg effective action
for the soft photons (with lower energy than the
fermion mass) [30,31]. In the case of other
remaining terms, i.e., n ¼ 2k with k ≥ 3, we
expect to have graphs with finite amplitudes
since QED is a renormalizable quantum field
theory in four dimensions.

FIG. 1. The relevant graph for the nth term of the one-loop
effective action.
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(ii) d ¼ 3: We first notice that QED3 is a super-
renomalizable theory, giving us a finite value
for the integrals appearing at loop level. Sec-
ond, since charge conjugation is a symmetry of
QED Lagrangian in any dimensions, then
QED3 is charge conjugation invariant as well.
This invariance allows us to use Furry’s theo-
rem to conclude that the amplitudes of graphs
with odd values of n are readily removed.

Besides, by taking into account these con-
siderations, we realize that the nonzero terms of
the series expansion (2.7) are given by n ¼ 2k
with k ≥ 1 which produce the finite amplitudes.

For n ¼ 2, a finite amplitude for the vacuum
polarization tensor is obtained, consisting of
even and odd-parity parts, whereas in d ¼ 4 a
single even parity divergent amplitude is found.
The presence of this additional odd-parity term
originates from the trace of an odd number of
gamma matrices, which in three dimensions
leads to topological mass generation for the
photon. In configuration space, these even and
odd-parity parts induce the ordinary Maxwell-
Chern-Simons action, at the large fermion
mass limit [32]. In the next to leading order
of n ¼ 2, gauge invariant higher-derivative
contributions to the Maxwell-Chern-Simons
action are found [33].

(iii) d ¼ 2: In this dimension, we have a super-
renormalizable theory which is analytically
solvable for massless fermions, named as the
Schwinger model, while the massive Schwinger
model does not have an exact solution [5,6].
Once again, due to the Furry’s theorem, we are
left with only even terms, n ¼ 2k in (2.7),
which for n ¼ 2, we observe a dynamical mass
generation for the photon at one-loop order.
However, the nonperturbative analysis demon-
strates that Γ½A� for the Schwinger model is
exactly determined [8,34], presented as

Γ½A� ¼ e2

π

Z
d2k
ð2πÞ2 ÃμðkÞ

�
gμν −

kμkν

k2

�
Ãνð−kÞ;

ð2:12Þ

which explicitly shows that the photon has
received a mass term, Schwinger mass,
μ2 ¼ e2

π ; moreover, this mass generation is
compatible with gauge invariance [5]. Indeed,
by comparing Eqs. (2.12) and (2.9), it is
immediately seen that Γμ1…μn is nonzero only
for n ¼ 2. This means that there is only a
quadratic term for the gauge field in the
effective action Γ½A�, while the remaining terms

are vanishing, which is in contrast to the four-
dimensional case. The perturbative analysis
indicates that the Schwinger mass is one-loop
exact and does not receive any additional
corrections from higher loops. A detailed per-
turbative proof on the exactness of the
Schwinger mass is provided in Appendix A.

(2) Noncommutative case
(i) d ¼ 4: The term n ¼ 1 does also vanish and the

amplitude of the second term n ¼ 2 is the same
as its commutative counterpart, a divergent
quantity with even parity. Unlike the commu-
tative case, the next term n ¼ 3, corresponding
to the one-loop correction to the cubic gauge
vertex, is not zero since Furry’s theorem is not
applicable here [13]. Finally, for n ¼ 4, we
obtain a one-loop correction to the quartic
gauge vertex which is divergent as well, in
contrast to the finite result arising from com-
mutative analysis; further details are found
in Ref. [35].

(ii) d ¼ 3: The absence of charge conjugation
symmetry in the noncommutative setup im-
poses that n ¼ 2kþ 1 graphs are now non-
vanishing. The explicit computations of the
terms n ¼ 2, 3, 4 lead to three finite amplitudes,
in which the sum of them induces the NC-
Maxwell-Chern-Simons theory, at the large
fermion mass limit [36,37]. In the next to
leading order, the higher-derivative contribu-
tions to the NC-Maxwell-Chern-Simons action,
together with a discussion on the gauge invari-
ance of the induced higher-derivative terms,
have also been investigated in [38].

(iii) d ¼ 2: There are several papers on the study of
noncommutative extension of the Schwinger
model and its bosonized version, e.g., Refs. [20,
21,24,27], where in [24,27], it is shown that the
Schwinger mass, μ2 ¼ e2

π , remains unchanged
and does not receive any noncommutative
corrections.

In what follows, we will illustrate how we can generate
the higher-order contributions to the photon n-point func-
tions using the effective action Γ½A�, Eq. (2.9). We are
interested, in particular, in computing whose graphs which
give higher-loop corrections to the photon self-energy in
the presence of massless fermions. To this end, we shall
proceed in computing the S-matrix elements for the
effective action Γ½A�.

III. DIAGRAMMATIC DESCRIPTION
OF S-MATRIX ELEMENTS FOR Γ½A�

Based on the aforementioned discussion in Sec. II, here
we would like to follow the work of [27] with a new
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approach, since we are interested in computation of the all-
order noncommutative corrections to the Schwinger mass.
However, as is well known, the standard computation of the
noncommutative (NC) phase factor for any diagram with an
arbitrary number of loops is not an easy task. Thus, we are
now presenting a stronger tool to produce this phase factor,
which is technically easier than the use of the Feynman
rule. Hence, the correct and simpler determination of the
NC phase factor might be seen as an important feature of
our S-matrix analysis. Moreover, in this approach, any
complicated diagrams with an arbitrary number of loops are
automatically generated.
We intend to study the ordinary S-matrix elements for

the one-loop effective action Γ½A�. However, this action is
completely different from the ordinary interacting theories
such as QED, QCD, etc., since Γ½A� includes a series with
an infinite number of interaction terms; hence, caution is
necessary. As is well known, the S-matrix elements for
a perturbative interacting theory described by Hint are
written in terms of the interaction part of the action as

S ¼ T exp ½i R d4xHint� [39], where the symbol “T” denotes
the time-ordering operator. Now, since we are interested in
generating higher-order elements for the S-matrix for the
case of interacting photons in the Schwinger model, we
replace the usual interacting action Hint by the new
dynamics described by the effective action Γ½A�, so that
the elements of the S-matrix are presented as

S ¼ TeiΓ½A� ¼ 1þ
X∞
n¼1

SðnÞ; ð3:1Þ

where

SðnÞ ¼ in

n!
TðΓ½A�Þn: ð3:2Þ

Inserting Eq. (2.9) into Eq. (3.2) we obtain a more detailed
expression as

S ¼ 1þ
X
r

Z Yr
j¼1

d2xjTðAμ1ðx1Þ…AμrðxrÞÞΓμ1…μrðx1;…; xrÞ

−
1

2

X
r;s

Z Yr
j¼1

d2xj

Z Ys
l¼1

d2ylTðAμ1ðx1Þ…AμnðxrÞAν1ðy1Þ…AνsðysÞÞ

× Γμ1…μrðx1;…; xrÞΓν1…νsðy1;…; ysÞ þ � � � : ð3:3Þ

We notice that the second term of (3.3) contains only one
fermion loop while the next terms include more than one
fermion loop. Therefore, in order to study (3.3) more
precisely, we classify our analysis into two pieces: graphs
with a single fermionic loop and those with a multi-
fermionic loop. These are respectively discussed below
in Secs. III A and III B:

A. One-fermion-loop contribution to the
photon self-energy sector

This type of diagrams corresponds to n ¼ 1 of the series
(3.1), which is given by

Sð1Þ ¼ i
X∞
r¼1

Sð1;rÞ; ð3:4Þ

where Sð1;rÞ is defined by taking into account the expansion
presented in Eq. (3.3) as

Sð1;rÞ ¼
Z Yr

i¼1

d2xiTðAμ1ðx1Þ…AμrðxrÞÞΓμ1…μrðx1;…; xrÞ:

ð3:5Þ

Since our purpose is to compute quantum corrections to
the photon self-energy, based on our previous discussion,
we should consider an even value for r. So let us start with
r ¼ 2

Sð1;2Þ ¼ i
Z

d2xd2yTðAμðxÞAνðyÞÞΓμνðx; yÞ: ð3:6Þ

This expression can be simplified with the help of Wick’s
theorem [39]. Writing down the Wick’s expansion of Sð1;2Þ,
we obtain

Sð1;2Þ ¼ i
Z

d2xd2y∶½AμðxÞAνðyÞ þ AμðxÞAνðyÞ�∶Γμνðx; yÞ;

ð3:7Þ
where we can write the tensor Γμνðx; yÞ explicitly

Γμνðx; yÞ ¼ −
e2

2

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

d2p
ð2πÞ2 ð2πÞ

2δðqþ lÞ

× eiðq:xþl:yÞ trðγμð=pþ =qÞγν=pÞ
ðpþ qÞ2p2

e−
i
2
q∧l; ð3:8Þ

here ∶ ∶ denotes the normal ordering operation. The non-
commutative phase factor e−

i
2
q∧l is removed from (3.8)
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because of the energy-momentum conservation constraint
δðqþ lÞ. Consequently, the relevant Feynman graph in
Fig. 2, including a two-loop bubble diagram, is planar

Sð1;2Þbubble ¼ i
Z

d2xd2yDð0Þ
μν ðx; yÞΓμνðx; yÞ: ð3:9Þ

Since the free propagator satisfies the relation Dð0Þ
μν ðx; yÞ ¼

Dð0Þ
μν ðx − yÞ, due to the translational invariance [40], we

have

Z
d2xd2yDð0Þ

μν ðx − yÞeiðq:xþl:yÞ

¼ D̃ð0Þ
μν ðq;lÞ ¼ ð2πÞ2δðqþ lÞ−igμν

q2
: ð3:10Þ

Substituting Eq. (3.10) back into Eq. (3.9), and paying
attention to the identity

γμ=pγμ ¼ ð2 − dÞ=p; ð3:11Þ

which vanishes in two dimensions, we arrive at the result

that Sð1;2Þbubble ¼ 0.
Now, let us look at the next term r ¼ 4,

Sð1;4Þ ¼ i
Z Y4

j¼1

d2xjTðAμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞÞΓμνρσðx1;…; x4Þ: ð3:12Þ

Applying Wick’s theorem we find that

Sð1;4Þ ¼ i
Z Y4

j¼1

d2xj∶½Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4Þ

þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσ ðx4Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4Þ
þ AμðxÞAνðx2ÞAρðx3ÞAσ ðx4Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4Þ
þ other possible contractions�∶Γμνρσðx1;…; x4Þ; ð3:13Þ

where

Γμνρσðx1;…; x4Þ ¼ −
e4

4

Z Y4
j¼1

d2kj
ð2πÞ2 ð2πÞ

2δ

�X4
j¼1

kj

�
ei
P

4

j¼1
kj·xje−

i
2

P
j<l

kj∧klΞμνρσ; ð3:14Þ

in which Ξμνρσ is defined by inserting n ¼ 4 in Eq. (2.11). Since we are interested in analyzing those higher-loop graphs
contributing to the photon self energy, it is enough to consider terms with one contraction only. The relevant Feynman
graphs are depicted in Fig. 3. We observe that there are three independent graphs (a), (b), and (c), which are exactly the
graphs appearing at order e4 of the QED S-matrix, contributing to the photon propagator at two-loop level.
Moreover, we intend to establish explicit expressions for the diagrams of the Fig. 3, and show that their noncommutative

phase factors are exactly the same as the ones obtained by direct use of the Feynman rules of the fermion-photon interaction
in NC-QED. The corresponding S-matrix expressions for the diagrams of Fig. 3 are presented as

Sð1;4ÞðaÞ ¼ i
Z Y4

j¼1

d2xj∶Aμðx1ÞAνðx2Þ∶Dð0Þ
ρσ ðx3; x4ÞΓμνρσðx1;…; x4Þ;

Sð1;4ÞðbÞ ¼ i
Z Y4

j¼1

d2xj∶Aμðx1ÞAρðx3Þ∶Dð0Þ
νσ ðx2; x4ÞΓμνρσðx1;…; x4Þ;

Sð1;4ÞðcÞ ¼ i
Z Y4

j¼1

d2xj∶Aμðx1ÞAσðx4Þ∶Dð0Þ
νρ ðx2; x3ÞΓμνρσðx1;…; x4Þ: ð3:15Þ

FIG. 2. The Feynman graph description of Sð1;2Þ.
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Besides, using the relations (3.10) and (3.14), as well as the
Fourier transform for the gauge fields, we obtain a
simplified form for (3.15) as

Sð1;4ÞðaÞ ¼ e4

4

Z
d2q
ð2πÞ2

d2l
ð2πÞ2 ∶ÃμðqÞÃνð−qÞ∶

1

l2
Ξ̃μν
ðaÞ;

Sð1;4ÞðbÞ ¼ e4

4

Z
d2q
ð2πÞ2

d2l
ð2πÞ2 ∶ÃμðqÞÃρð−qÞ∶

1

l2
Ξ̃μρ
ðbÞe

−iq∧l;

Sð1;4ÞðcÞ ¼ e4

4

Z
d2q
ð2πÞ2

d2l
ð2πÞ2 ∶ÃμðqÞÃσð−qÞ∶

1

l2
Ξ̃μσ
ðcÞ; ð3:16Þ

where we have the following definition: Ξ̃μν
ðaÞ ¼ gρσΞ

μνρσ
ðaÞ ,

Ξ̃μρ
ðbÞ ¼ gνσΞ

μνρσ
ðbÞ , and Ξ̃μσ

ðcÞ ¼ gνρΞ
μνρσ
ðcÞ , and such tensor

expressions have the explicit form

Ξ̃μν
ðaÞ ¼

Z
d2p
ð2πÞ2

trðγμð=pþ =qÞγνð=pþ =qþ =lÞγρð=pþ =qÞγρ=pÞ
ðpþ qÞ4ðpþ qþ lÞ2p2

;

Ξ̃μρ
ðbÞ ¼

Z
d2p
ð2πÞ2

trðγμð=pþ =qÞγνð=pþ =qþ =lÞγρð=pþ =lÞγν=pÞ
ðpþ qÞ2ðpþ qþ lÞ2ðpþ lÞ2p2

;

Ξ̃μσ
ðcÞ ¼

Z
d2p
ð2πÞ2

trðγμð=pþ =qÞγν=pγνð=pþ =lÞγσ=pÞ
ðpþ qÞ2ðpþ lÞ2p4

;

ð3:17Þ

where q is the momentum of the external gauge field, while
l and p are momenta of the internal gauge and fermion
fields, respectively.
It is worth emphasizing that the presence of the energy-

momentum conservation constraint, in the form of Dirac
delta functions—originating from Fourier transform of the
free photon propagator in Eq. (3.10)—enable us to enforce

these constraints upon the NC phase factor e−
i
2

P
j<l

kj∧kl
and finally arrive at the correct phase factor. We notice,
nonetheless, that the graphs (a) and (c) are planar and the
graph (b) is nonplanar, as we expected [27].
The integrals of Eq. (3.17) can be analytically solved

when written in the light-cone coordinates. To this end, we
follow similar procedure to what was performed in [27],
basically revising the integrals in terms of the light-cone
coordinates. Then, we should decompose them into partial
fractions to reduce the degree of the denominator.
Moreover, we use the complex form of Green’s theorem
[41] and show that these integrals are vanishing; hence, we
find that the two-loop corrections to the photon two-point
function are absent. This important result permits us to
conclude that the Schwinger mass remains untouched at
two-loop order. Further details on the application of the
complex form of Green’s theorem for our purpose are
presented in Appendix B.
In the last case of the graphs with a single fermionic

loop, we take into account the contribution with r ¼ 6

Sð1;6Þ ¼ i
Z Y6

j¼1

d2xjTðAμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðx5ÞAξðx6ÞÞΓμνρσλξðx1;…; x6Þ

¼ i
Z Y6

j¼1

d2xjΓμνρσλξðx1;…; x6Þ∶½Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðx5ÞAξðx6Þ

þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðx5ÞAξðx6Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAξðx6ÞAλðx5Þ
þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðx5ÞAξðx6Þ þ other possible contractions�∶: ð3:18Þ

Again, we have focused on the terms with two external legs, after performing Wick’s expansion. The contributing graphs
are depicted in Fig. 4. Now, we want to obtain the related forms of these three contracted terms,

μ

ν

ρ σμ νρ

σ

μμ

(a) (b) (c)

FIG. 3. The Feynman graph description of Sð1;4Þ; the graphs (a), (b), and (c) represent the two-loop contributions to the photon self-
energy.
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Sð1;6ÞðaÞ ¼ i
Z Y6

j¼1

d2xj∶Aμðx1ÞAσðx4Þ∶Dð0Þ
νξ ðx2; x6ÞDð0Þ

ρλ ðx3; x5ÞΓμνρσλξðx1;…; x6Þ;

Sð1;6ÞðbÞ ¼ i
Z Y6

j¼1

d2xj∶Aμðx1ÞAσðx4Þ∶Dð0Þ
νλ ðx2; x5ÞDð0Þ

ρξ ðx3; x6ÞΓμνρσλξðx1;…; x6Þ;

Sð1;6ÞðcÞ ¼ i
Z Y6

j¼1

d2xj∶Aμðx1ÞAσðx4Þ∶Dð0Þ
νρ ðx2; x3ÞDð0Þ

ξλ ðx5; x6ÞΓμνρσλξðx1;…; x6Þ; ð3:19Þ

where

Γμνρσλξðx1;…; x6Þ ¼ −
e6

6

Z Y6
j¼1

d2kj
ð2πÞ2 ð2πÞ

2δ

�X6
j¼1

kj

�
ei
P

6

j¼1
kj·xje−

i
2

P
j<l

kj∧klΞμνρσλξ; ð3:20Þ

and that Ξμνρσλξ is determined by inserting n ¼ 6 into Eq. (2.11). After carrying out some computational steps, we find out
that graphs (a) and (b) are nonplanar and that graph (c) is planar. The relevant results are listed as follows:

Sð1;6ÞðaÞ ¼ e6

6

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

d2k
ð2πÞ2 ∶ÃμðqÞÃσð−qÞ∶

1

l2k2
Ξ̃μσ
ðaÞe

−iq∧ðlþkÞ

Sð1;6ÞðbÞ ¼ e6

6

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

d2k
ð2πÞ2 ∶ÃμðqÞÃσð−qÞ∶

1

l2k2
Ξ̃μσ
ðbÞe

−i½q∧ðlþkÞþl∧k�;

Sð1;6ÞðcÞ ¼ e6

6

Z
d2q
ð2πÞ2

d2l
ð2πÞ2

d2k
ð2πÞ2 ∶ÃμðqÞÃσð−qÞ∶

1

l2k2
Ξ̃μσ
ðcÞ; ð3:21Þ

where ðl; kÞ are the momenta of the internal gauge fields and we have also defined

Ξ̃μσ
ðaÞ ¼ gνξgρλΞ

μνρσλξ
ðaÞ ; Ξ̃μσ

ðbÞ ¼ gνλgρξΞ
μνρσλξ
ðbÞ ; Ξ̃μσ

ðcÞ ¼ gνρgξλΞ
μνρσλξ
ðcÞ ; ð3:22Þ

which are explicitly described as

Ξ̃μσ
ðaÞ ¼

Z
d2p
ð2πÞ2

N μσ
ðaÞ

p2ðqþ pÞ2ðqþ pþ lÞ2ðqþ pþ lþ kÞ2ðpþ lþ kÞ2ðpþ lÞ2 ;

Ξ̃μσ
ðbÞ ¼

Z
d2p
ð2πÞ2

N μσ
ðbÞ

p2ðqþ pÞ2ðqþ pþ lÞ2ðqþ pþ lþ kÞ2ðpþ lþ kÞ2ðpþ kÞ2 ;

Ξ̃μσ
ðcÞ ¼

Z
d2p
ð2πÞ2

N μσ
ðcÞ

p4ðqþ pÞ2ðqþ pþ lÞ2ðpþ qÞ2ðpþ kÞ2 ; ð3:23Þ

with

μ

ν ρ

σ

λξ

μ μ μ σσσ

(a) (b) (c)

FIG. 4. The Feynman graph description of Sð1;6Þ; the graphs (a), (b), and (c) represent the one-fermion-loop contributions to the photon
self-energy at three-loop level.
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N μσ
ðaÞ ¼ trðγμð=qþ =pÞγρð=qþ =pþ =lÞγνð=qþ =pþ =lþ =kÞγσð=pþ =lþ =kÞγνð=pþ =lÞγρ=pÞ;

N μσ
ðbÞ ¼ trðγμð=pþ =qÞγρð=pþ =qþ =lÞγνð=pþ =qþ =lþ =kÞγσð=pþ =lþ =kÞγρð=pþ =kÞγν=pÞ;

N μσ
ðcÞ ¼ trðγμð=pþ =qÞγρð=qþ =pþ =lÞγρð=pþ =qÞγσ=pγνð=pþ =kÞγν=pÞ: ð3:24Þ

It is worth noting that the NC phase factors of the set of
expressions (3.16) and (3.21) are exactly the same as those
found by making direct use of the Feynman rule of the
NC-QED Lagrangian in Ref. [27].
Regarding the analytical computation of the integrals

over the fermion-loop momentum p in (3.23), we follow
exactly the approach previously discussed in the case of
Sð1;4Þ. Proceeding in this way, we find out that Ξ̃μσ

ðaÞ,

Ξ̃μσ
ðbÞ, and Ξ̃μσ

ðcÞ are all vanishing (see further details in
Appendix B). Therefore, this means that there are no
corrections to the photon two-point function or to the
Schwinger mass at three-loop level.
To conclude our discussion concerning diagrams of a

single fermionic loop, we consider the generic term Sð1;rÞ,
which is proportional to er, and that after Wick’s expansion
includes a r − 2 number of photon propagators and
produces different one-loop graphs contributing to photon
self-energy at order r. The appearance of a r − 2 number of
photon propagators in such a contribution, indeed generates
a r − 2 number of Dirac delta functions that render to easily
determine the NC phase factor.
However, it is important to emphasize that the NC phase

factors associated to all the nonplanar graphs are indepen-
dent from the fermion-loop momentum, depending only on
the external and internal photons momenta. Hence, for the
sake of simplicity, we first carry out the integral over the

fermion-loop momentum in the light-cone coordinates.
Performing some algebraic manipulations and using the
complex form of Green’s theorem eventually permit us to
realize that the amplitudes of these graphs are zero (in the
same sense as we have discussed for the previous cases).
It should be emphasized that all of the diagrams

discussed here include one-fermionic loop only and in
what follows the multi-fermionic-loop contributions are
considered as well, and we want to highlight that this
approach can easily give us the exact value of the NC phase
factor with increasing the number of fermion loops in a
simpler fashion than the use of Feynman rules.

B. Multi-fermion-loop contribution to the
photon self-energy sector

In this subsection we intend to establish the contribution
of graphs with more than one fermionic loop, correspond-
ing to n ≥ 2 in Eq. (3.1), to the photon self-energy part.
First, let us start with n ¼ 2, including two-fermion-loop
diagrams

Sð2Þ ¼ −
1

2

X∞
r¼1

X∞
s¼1

Sð2;r;sÞ; ð3:25Þ

with r and s running over the first and second fermionic
loop, respectively, as can be seen from

Sð2;r;sÞ ¼
Z Yr

i¼1

d2xi

Z Ys
j¼1

d2yjTðAμ1ðx1Þ…AμrðxrÞAν1ðy1Þ…AνsðysÞÞΓμ1…μrðx1;…; xrÞΓν1…νsðy1;…; ysÞ: ð3:26Þ

In the case in which n ≥ 2, when the Wick’s theorem is used to expand the T product it produces a number of connected
and disconnected diagrams. This is in contrast to the n ¼ 1 case, where it included solely connected graphs.
However, since we are interested in discussing the noncommutative corrections to the massive pole of the gauge field
propagator, we retain only the connected graphs in our analysis. Now, for illustration, we choose r ¼ 4 and s ¼ 2 in
Eq. (3.26)

Sð2;4;2Þ ¼ −
1

2

Z Y4
i¼1

d2xi

Z Y2
j¼1

d2yjTðAμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðy1ÞAξðy2ÞÞΓμνρσðx1;…; x4ÞΓλξðy1; y2Þ: ð3:27Þ

Making use of Wick’s theorem on Eq. (3.27), we find
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Sð2;4;2Þ ¼ −
1

2

Z Y4
i¼1

d2xi

Z Y2
j¼1

d2yjΓμνρσðx1;…; x4ÞΓλξðy1; y2Þ

× ∶½Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðy1ÞAξðy2Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðy1ÞAξðy2Þ
þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðy1ÞAξðy2Þ þ Aμðx1ÞAνðx2ÞAρðx3ÞAσðx4ÞAλðy1ÞAξðy2Þ
þ other possible contractions�∶: ð3:28Þ

Now, let us consider the first term of Eq. (3.28), corresponding to graph (b) of Fig. 5

Sð2;4;2ÞðaÞ ¼ −
1

2

Z Y4
i¼1

d2xi

Z Y2
j¼1

d2yj∶Aμðx1ÞAσðx4Þ∶ΓμνρσDð1Þ
νρ ;

Sð2;4;2ÞðbÞ ¼ −
1

2

Z Y4
i¼1

d2xi

Z Y2
j¼1

d2yj∶Aμðx1ÞAρðx3Þ∶ΓμνρσDð1Þ
νσ ;

Sð2;4;2ÞðcÞ ¼ −
1

2

Z Y4
i¼1

d2xi

Z Y2
j¼1

d2yj∶Aμðx1ÞAνðx2Þ∶ΓμνρσDð1Þ
σρ ; ð3:29Þ

where we have defined

Dð1Þ
νρ ¼ Dð0Þ

νλ ðx2 − y1ÞΓλξðy1; y2ÞDð0Þ
ξρ ðy2 − x3Þ;

Dð1Þ
νσ ¼ Dð0Þ

νλ ðx2 − y1ÞΓλξðy1; y2ÞDð0Þ
ξσ ðy2 − x4Þ;

Dð1Þ
σρ ¼ Dð0Þ

σλ ðx4 − y1ÞΓλξðy1; y2ÞDð0Þ
ξρ ðy2 − x3Þ: ð3:30Þ

Here we have introduced Dð1Þ
νρ by simplicity, where it

corresponds to the one-loop corrected photon propagator
due to a fermion loop, the gauge and ghost loops disappear
in two-dimensional light-cone coordinates. The detailed
forms of Γμνρσ and Γλξ were illustrated in Eqs. (3.14) and
(3.8) including two energy-momentum conservation con-
straints, δðP4

i¼1 kiÞ and δðP2
j¼1 ljÞ, respectively. Notice

that these constraints along with the new ones: δðk2þl1Þ×
δðk3þl2Þ, δðk2 þ l1Þδðk4 þ l2Þ, and δðk4 þ l1Þ×
δðk3 þ l2Þ, obtained from Eq. (3.30), allow us to specify
the value of the NC phase factors associated with graphs
(a), (b), and (c), respectively. Based on these consider-
ations, we can conclude that graphs (a) and (c) are planar
while graph (b) is nonplanar with the NC phase eil1∧k1 . It
should be emphasized that the diagrams of Fig. 5, which are

proportional to e6, give a three-loop contribution to the
photon two-point function and so they should be added
to the three-loop contributions coming from the one-
fermionic loop, i.e., Eq. (3.21). However, we will show
next that, similar to (3.21), the contribution (3.29) vanishes
and we do not find again any corrections at this order too.
To conclude the study of the diagrams of the multi-

fermion-loop type, we present a general relation for a graph
with an arbitrary number of fermion loops ðn ≥ 2Þ, using
Eqs. (3.1)–(3.3)

SðnÞ ¼ in

n!

X
r1;…;rn

Sðn;r1;…;rnÞ; ð3:31Þ

where Sðn;r1;…;rnÞ refers to a set of graphs with n fermion

loops at order e
P

n
i¼1

ri, in which r1;…; rn indicate the
number of the external gauge fields associated with each
fermion loop. For example, two multi-fermion-loop graphs
have been depicted in Fig. 6. As it can be easily checked,
both graphs (a) and (b) are at order e16 and belong to
Sð3;8;4;4Þ and Sð4;6;3;3;4Þ, respectively. Also, the first graph
includes 3 fermion loops with 8, 4, and 4 external legs,
while the second one includes 4 fermion loops with 6, 3, 3,

μ μμ μ

ν

ρ

σ

ρλ ξ σ ν

(a) (b) (c)

FIG. 5. The Feynman graph description of Sð2;4;2Þ; the graphs (a), (b), and (c) represent the two-fermion-loop contributions to the
photon self-energy at three-loop level.
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and 4 external legs. However, our analysis shows that
all of these higher-loop corrections are vanishing in two
dimensions.

IV. GENERALIZATION TO ALL
TRANSLATION-INVARIANT

NONCOMMUTATIVE STAR PRODUCTS

It seems worth stressing at this point that simplifying the
properties of the Moyal product was extensively used to
extract all of above achievements. However, one may as
well be interested in analyzing the present field theory
model when the usual Moyal product is replaced by another
noncommutative star product. So it is important to realize
that the obtained results and statements are valid independ-
ently of the chosen noncommutative star product.
To answer the previous statement, we shall restrict

ourselves to translation-invariant star products. In fact,
due to the Noether’s theorem, in order to preserve the
energy-momentum conservation law, it is mandatory to
restrict noncommutative star products to those which do not
depend explicitly on the coordinates of the chosen space-
time frame, which, in return, are commonly referred to as
translation-invariant noncommutative star products [42,43].
Essentially, using the theory of α�-cohomology [42,43]

to characterize the quantum behaviors of translation-
invariant noncommutative quantum field theories has
shown that [44,45]
(a) The whole quantum behavior of two translation-

invariant noncommutative versions of a specific
renormalizable quantum field theory with two α�-
cohomologous star products, say ⋆1 and ⋆2, coincide
precisely. In fact, the equality of scattering matrices of
theories L⋆1

and L⋆2
holds for any renormalizable

theory L and for each ⋆1 ∼ ⋆2 [44].
(b) Any given translation-invariant noncommutative is

α�-cohomologous to a unique Moyal star product [45].
Therefore, it follows that from assertion (a) the calcu-

lated scattering matrix of noncommutative Moyal QED2

holds exactly the same for any translation-invariant non-
commutative QED2, but only to the class of star products
that are α�-cohomologous to that of Moyal. Moreover,
since there is a unique Moyal product in two-dimensional
spacetime, thus according to (b), the given formula (3.3)
definitely provides the scattering matrix for any given

noncommutative energy-momentum preserving version
of QED2. In other words, according to [45], for a two-
dimensional spacetime, which presents only one
α�-cohomology class of noncommutative translation-
invariant star products, the calculated scattering matrix
(3.3) is the only energy-momentum preserving modifica-
tion of that obtained in standard Euclidean QED2.
Actually this result seems to be rather intriguing, since

the following two critical points hold only for the case of
Moyal noncommutative structures:
(1) It is well known that the Moyal product between two

functions disappears under the integration. In fact, in
the definition (2.9), this important property of the
Moyal star product has been used extensively
throughout our analysis, where the bosonic fields
have beenput next to eachother beforeΓμ1…μn with no
appearance of the noncommutative star product.
Nonetheless, although Eq. (2.7) holds for any general
noncommutative star product, generally labeled by ⋆,
in order to encompass such a general discussion, (2.9)
should be modified as

Γ⋆½A� ¼
X∞
n¼1

Z Yn
i¼1

d2xiðAμ1ðx1ÞAμ2ðx2Þ…AμnðxnÞÞ

× ⋆1⋆2…⋆nΓμ1���μnðx1;…; xnÞ; ð4:1Þ
where ⋆i is the star product for variable xi,
i ¼ 1;…; n.

(2) The phase factor of the noncommutative product in
formula (2.10) is essentially independent of the
momentum of fermions due to energy-momentum
conservation constraints present in the Feynman
graphs. As we have seen above, this significant
property helped us to integrate over the fermionic
momentum with no appearance of the phase factor;
this is rather similar to the case of standard commu-
tative QED, in which the two-dimensional Euclidean
spacetime leads to cancellation of the whole momen-
tum integral (see Appendix B for further detail).

Without the validity of these two points, it seems
somehow impossible to prove the final formula of scatter-
ing matrix in the case of Moyal product holds for a general
translation-invariant noncommutative star product. How-
ever, it must be emphasized that this interesting achieve-
ment is due to the cohomological point of view developed
in Refs. [44,45] to characterize translation-invariant non-
commutative field theories. To explain this in a simple
reasoning, it is enough to assert that any translation-
invariant noncommutative star product can be converted
to a unique Moyal product through of a redefinition of
fields, due to the “Hodge theorem” in α�-cohomology [44].
Particularly, the mentioned redefinition is basically

independent of the chosen type of fields and spacetime
dimensionality. Therefore, this redefinition can be absorbed
thoroughly by the path-integral measure and thus it never

(a) (b)

FIG. 6. Multi-fermion-loop diagrams: (a) belongs to Sð3;8;4;4Þ

and (b) belongs to Sð4;6;3;3;4Þ.
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actually contributes to the scattering matrix of the theory.
This is evidently a direct consequence of the “quantum
equivalence theorem” which states that the whole physical
effects of a (renormalizable) translation-invariant noncom-
mutative quantum field theory are preserved through
a α�-cohomology class [44].
Let us establish the aforementioned results with some

more details by means of a noncohomological approach.
Here we need some conventions. In what follows, the
Moyal product is represented with ⋆, while ⋆0 is used for
general translation-invariant star product. Moreover,
classical gauge field is shown with simple notation of A
whereas its second quantized version is denoted by Â.
Because of Eq. (3.1) the scattering matrix for star

product ⋆0 is

S⋆0 ¼ TeiΓ⋆0 ½Â� ¼ 1þ
X∞
n¼1

in

n!
TðΓ⋆0 ½Â�Þn; ð4:2Þ

where Γ⋆0 ½A� is defined via (4.1) for star product ⋆0.
Actually, if the effective action Γ⋆0 ½A� is given for a classical
field A, the scattering matrix S⋆0 is worked out by replacing
A by its second quantized form Â, which is then expanded
in terms of creation and annihilation operators over the
Fock space. Then, if we show that

Γ⋆0 ½A� ¼ Γ⋆½A0� ð4:3Þ
holds for some classical field A0 which is a transformed
version of A as

A0
μðxÞ ¼

Z
d2p
ð2πÞ2 ÃμðpÞeβðpÞe−ip:x; ð4:4Þ

where ÃμðpÞ is the Fourier transform of AμðxÞ and
β∶R2 → R is a smooth function. Then, we readily find
that Γ⋆0 ½Â� ¼ Γ⋆½Â�, which consequently leads to S⋆0 ¼ S⋆
due to the series equation (4.2), as we claimed above.1

It is worth recalling that a more precise expression of
Eq. (2.6) for Γ⋆0 ½A� is defined as

eiΓ⋆0 ½A� ¼
R
DψDψeiSf;⋆0 ðψ ;ψ ;AÞR
DψDψeiSf;⋆0 ðψ ;ψ ;0Þ

; ð4:5Þ

for a classical gauge field A, and we have defined

Sf;⋆0 ðψ ;ψ ; AÞ

¼
Z

d2x½ψ⋆0iγμ∂μψ − eψ⋆0Aμ⋆0ψ −mψ⋆0ψ �: ð4:6Þ

In Refs. [44,45], it has been shown that for any ⋆0 there
exists an appropriate function β∶R2 → R which for any set
of functions, say ff1;…; fng, implies

Z
d2xf1⋆0f2⋆0…⋆0fn ¼

Z
d2xf01⋆f02⋆…⋆f0n; ð4:7Þ

where the transformed functions ff01;…; f0ng are given as

f0ðxÞ ¼
Z

d2p
ð2πÞ2 f̃ðpÞe

βðpÞe−ip:x; ð4:8Þ

where f̃ is the Fourier transform of f. However, applying
the identities, Eqs. (4.7) and (4.8), into (4.6) we conclude
that

Sf;⋆0 ðψ ;ψ ; AÞ ¼ Sf;⋆ðψ 0;ψ 0; A0Þ: ð4:9Þ
It is not difficult to see that DψDψ ¼ KDψ 0Dψ 0 for

some constant K.2 Therefore, it follows from the above
discussion that (4.5) can be simply written as

eiΓ⋆0 ½A� ¼
R
DψDψeiSf;⋆0 ðψ ;ψ ;AÞR
DψDψeiSf;⋆0 ðψ ;ψ ;0Þ

¼
R
Dψ 0Dψ 0eiSf;⋆ðψ 0;ψ 0;A0ÞR
Dψ 0Dψ 0eiSf;⋆ðψ 0;ψ 0;0Þ

¼ eiΓ⋆½A0�; ð4:10Þ
or more precisely we find that Γ⋆0 ½A� ¼ Γ⋆½A0�, a result that
naturally leads to

S⋆0 ¼ S⋆: ð4:11Þ

We then see that the result, Eq. (4.11), holds as long the
above statements are true.

V. FINAL REMARKS

In this paper, we have discussed the noncommutative
QED2 in a S-matrix framework. This powerful tool was
used in order to establish a proper analysis on the
dynamical mass generation for the gauge field, where
we were interested in determining the exactness of the
Schwinger mass μ2 ¼ e2

π and that it does not receive
noncommutative corrections at any loop order. In this
sense the S-matrix approach was rather helpful since it
allows us to work with the effective action Γ½A� (interaction
term), and that S-matrix elements correspond to the desired
contributions (graphs) to the 1PI gauge function.
Our main interest was twofold: first, we wanted to

establish that the Schwinger mass is perturbatively exact
in noncommutative spacetime (as well in the commutative
one, See appendix A); second, we wished to use the
computation of S-matrix elements to fully determine the
noncommutative phase factors, which in general are
quite complicated to obtain when Feynman rules are used.
In this sense, we have divided our analysis in two parts:

1In fact, this is a direct consequence of the normalization of fields
via the Lehmann-Symanzik-Zimmermann reduction formula.

2In fact, this can be easily seen for a Fourier transformed
path-integral measure. First notice that Dψ̃Dψ̃ ¼ Q

p∈R2 ×
dψ̃ðpÞdψ̃ðpÞ ¼ Q

p∈R2e−2βðpÞdψ̃ 0ðpÞdψ̃ 0ðpÞ ¼ Q
q∈R2e−2βðqÞ×Q

p∈R2dψ̃ 0ðpÞdψ̃ 0ðpÞ ¼ KDψ̃ 0Dψ̃ 0.
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one-fermionic loop and multi-fermionic loop, because in
this way we are able to highlight all the necessary aspects in
order to show that 1PI gauge functions are vanishing at
higher loops, and only a planar graph is present at one-loop
order contributing to the generation of the Schwinger mass.
Because of the importance of the obtained results to the

noncommutative Schwinger mass, we used α�-cohomology
results to generalize our analysis on the Moyal star product
to all translation-invariant star products. This approach
allowed us to show that S⋆0 ¼ S⋆, i.e., that all S-matrix
elements are equal in a class of theories with translation-
invariant star products.
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APPENDIX A: A PERTURBATIVE PROOF IN
THE EXACTNESS OF THE SCHWINGER MASS

In 1962, Schwinger showed that, when the spacetime
dimensionality is lowered, the gauge invariance does not
necessarily impose a zero mass for the gauge particle [4,5].
He found an exact value for the photon mass in 1þ 1
dimensions by making use of a nonperturbative method.
On the perturbative side, the one-loop computation of the

Schwinger mass can be found in [39] but the higher-order
perturbative proof on the exactness of the Schwinger mass
has not yet been studied.
In this appendix, we present a technical method, as a

result of the super-renormalizability of QED2, and pertur-
batively show that the higher-order contributions to the
photon self-energy and the Schwinger mass are vanished.
Therefore, the Schwinger mass is one-loop exact and its
value is the same as the result found by the nonperturbative
analysis in [5].

Let us start by defining the Lagrangian density of the
massless commutative QED2,

L ¼ iψγμ∂μψ − eψγμAμψ −
1

4
FμνFμν; ðA1Þ

where γμ’s are two-dimensional matrices

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 −1
1 0

�
: ðA2Þ

The general structure of the photon self-energy is given as
usual

Πμνðq2Þ ¼ ðq2gμν − qμqνÞΠðq2Þ: ðA3Þ
The one-loop calculation yields us Πð1ÞðqÞ ¼ e2

πq2 and this

generates a nonzero pole for the one-loop corrected
propagator written as

Dð1Þ
μν ðqÞ ¼ −igμν

q2 − e2
π

: ðA4Þ

For comparison, the produced pole in the denominator of
the one-loop propagator is exactly the Schwinager mass
and hence we expect that higher-loop contributions to this
mass vanish exactly. Hence, we shall discuss next the two-
and three-loop orders, and similarly show that the next
orders not only do not correct the mass but are also
identically zero.

1. Two-loop contribution

Let us consider the two-loop graphs, depicted in Fig. 7.
The total two-loop contribution is given by

Πð2Þ
μν ðqÞ ¼

X
i¼a;b;c

Πð2;iÞ
μν ðqÞ; ðA5Þ

where the amplitudes are given by

Πð2;aÞ
μν ðqÞ ¼ e4

Z
d2p
ð2πÞ2

d2k
ð2πÞ2

N ðaÞ
μν

k2ðqþ pÞ2ðqþ pþ kÞ2ðqþ pÞ2p2
;

Πð2;bÞ
μν ðqÞ ¼ e4

Z
d2p
ð2πÞ2

d2k
ð2πÞ2

N ðbÞ
μν

k2ðqþ pÞ2ðqþ pþ kÞ2ðpþ kÞ2p2
;

Πð2;cÞ
μν ðqÞ ¼ e4

Z
d2p
ð2πÞ2

d2k
ð2πÞ2

N ðcÞ
μν

k2ðqþ pÞ2ðpþ kÞ2p4
; ðA6Þ

μ ν μμ νν

(a) (b) (c)

FIG. 7. The graphs (a), (b), and (c) represent the two-loop
contribution to the photon self-energy.
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with the simplified notation

N ðaÞ
μν ¼ trðγμð=qþ =pÞγρð=qþ =pþ =kÞγρð=qþ =pÞγν=pÞ;

N ðbÞ
μν ¼ trðγμð=qþ =pÞγρð=qþ =pþ =kÞγνð=pþ =kÞγρ=pÞ;

N ðcÞ
μν ¼ trðγμð=qþ =pÞγν=pγρð=pþ =kÞ=pγρÞ: ðA7Þ

Since QED2 is a super-renormalizable field theory, we
can use the explicit form of the gamma matrices to simplify
significantly the higher-loop contributions. Thus, we need
to find a covariant form for γμp to insert back into Eq. (A6).
Thus, at the first step we can write

p ¼ p0γ
0 þ p1γ

1 ¼
�

0 p−

pþ 0

�
; ðA8Þ

where p� ¼ p0 � p1. Multiplying p by γ0 and γ1, we have

γ0=p ¼
�
pþ 0

0 p−

�
; γ1=p ¼

�−pþ 0

0 p−

�
: ðA9Þ

Now, we introduce a convenient set of lightlike vectors
defined as

u0 ¼ 1; ū0 ¼ 1; u1 ¼ 1; ū1 ¼ −1; ðA10Þ

and allow us to finally arrive at

γμp ¼
�
ūμpþ 0

0 uμp−

�
; ðA11Þ

which is a diagonal matrix. Equivalently, we define

u0 ¼ 1; ū0 ¼ 1; u1 ¼ −1; ū1 ¼ 1; ðA12Þ

and we have

γμp ¼
�
ūμpþ 0

0 uμp−

�
: ðA13Þ

Furthermore, it is easy to verify that

uμuμ ¼ 0; ūμūμ ¼ 0: ðA14Þ

Actually, the lightlike property of u and ū helps us to
simplify significantly our loop calculations. These lightlike
vectors permit us to rewrite the numerators of Eq. (A7)
simply in terms of

N ðaÞ
μν ¼ tr

�
a1λ̄μν 0

0 a2λμν

�
; N ðbÞ

μν ¼ tr
�
b1λ̄μν 0

0 b2λμν

�
;

N ðcÞ
μν ¼ tr

�
c1λ̄μν 0

0 c2λμν

�
; ðA15Þ

where we have introduced the following notation: λ̄μν ¼
ūμūνūρūρ and λμν ¼ uμuνuρuρ and, conveniently, the coef-
ficients ai, bi, and ci, with i ¼ 1, 2, which are given by

8<
:

a1 ¼ ðqþ pÞþðqþ pþ kÞþðqþ pÞþpþ; a2 ¼ ðqþ pÞ−ðqþ pþ kÞ−ðqþ pÞ−p−;

b1 ¼ ðqþ pÞþðqþ pþ kÞþðpþ kÞþpþ; b2 ¼ ðqþ pÞ−ðqþ pþ kÞ−ðpþ kÞ−p−;

c1 ¼ ðqþ pÞþpþðpþ kÞþpþ; c2 ¼ ðqþ pÞ−p−ðpþ kÞ−p−:

ðA16Þ

We then see that with the assistance of the above lightlike
vectors and the identity equation (A13), the complicated
form of the three numerators appearing in Eq. (A7) can be
put into a simple diagonal form, as seen in the revised
expressions in Eq. (A15).
Finally, according to Eq. (A14), it is easy to realize that

λ̄μν ¼ λμν ¼ 0, which lead to N ðaÞ
μν ¼ N ðbÞ

μν ¼ N ðcÞ
μν ¼ 0.

Hence, without performing any integration, just a simple
γ-matrix algebra, we obtain

Πð2;aÞ
μν ðqÞ ¼ Πð2;bÞ

μν ðqÞ ¼ Πð2;cÞ
μν ðqÞ ¼ 0: ðA17Þ

Therefore, we can conclude that Πð2Þ
μν ðqÞ ¼ 0. This result

indicates that the Schwinger mass does not receive cor-
rections at two-loop level. In what follows, we study the

three-loop analysis contributing to the photon self-energy
sector.

2. Three-loop contribution

The relevant set of graphs for the three-loop contribution
for the photon self-energy are shown in Fig. 8. The
Feynman expressions for these graphs are given by

Πð3Þ
μν ¼

X
i¼a;b;c

Πð3;iÞ
μν þ

X
i¼d;e;f

Πð3;iÞ
μν : ðA18Þ

The first and the second sums refer to the diagrams with
one and two fermion loops (remember from the single- and
multi-fermionic loop discussion), respectively. Now, it is
easily found that the first sum is given by the expression
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Πð3;aþbþcÞ
μν ðqÞ ¼ e6

Z
d2p
ð2πÞ2

d2k
ð2πÞ2

d2l
ð2πÞ2

1

k2l2p2ðqþ pÞ2ðqþ pþ lÞ2

×

�
1

ðqþ pþ lþ kÞ2ðpþ lþ kÞ2
�

N ðaÞ
μν

ðpþ lÞ2 þ
N ðbÞ

μν

ðpþ kÞ2
�
þ N ðcÞ

μν

ðpþ qÞ2ðpþ kÞ2p2

	
; ðA19Þ

with the definition

N ðaÞ
μν ¼ trðγμð=qþ =pÞγρð=qþ =pþ =lÞγσð=qþ =pþ =lþ =kÞγνð=pþ =lþ =kÞγσð=pþ =lÞγρ=pÞ;

N ðbÞ
μν ¼ trðγμð=pþ =qÞγρð=pþ =qþ =lÞγσð=pþ =qþ =lþ =kÞγνð=pþ =lþ =kÞγρð=pþ =kÞγσ=pÞ;

N ðcÞ
μν ¼ trðγμð=pþ =qÞγρð=qþ =pþ =lÞγρð=pþ =qÞγν=pγσð=pþ =kÞγσ=pÞ: ðA20Þ

Also, the second sum, the two-fermionic-loop part, is presented as

Πð3;dþeþfÞ
μν ðqÞ ¼ e6

Z
d2p
ð2πÞ2

d2k
ð2πÞ2

Dρσ
ð1ÞðkÞ

p2ðpþ qÞ2
�

1

ðqþ pþ kÞ2
�

N ðdÞ
μνρσ

ðpþ qÞ2 þ
N ðeÞ

μνρσ

ðpþ kÞ2
�
þ N ðfÞ

μνρσ

p2ðpþ kÞ2
	
; ðA21Þ

where iDρσ
ð1ÞðkÞ ¼ gρσ

k2−e2
π

is representing the one-loop corrected photon propagator, as mentioned in Eq. (A4). Thus, we can

rewrite Eq. (A21) explicitly as

Πð3;dþeþfÞ
μν ðqÞ ¼ −ie6

Z
d2p
ð2πÞ2

d2k
ð2πÞ2

1

p2ðpþ qÞ2ðk2 − e2
π Þ

×

�
1

ðqþ pþ kÞ2
�

Ñ ðdÞ
μν

ðpþ qÞ2 þ
Ñ ðeÞ

μν

ðpþ kÞ2
�
þ Ñ ðfÞ

μν

p2ðpþ kÞ2
	
; ðA22Þ

where we have defined Ñ μν ¼ gρσN μνρσ, which read
explicitly

Ñ ðdÞ
μν ¼ trðγμð=pþ =qÞγρð=pþ =qþ =kÞγρð=pþ =qÞγν=pÞ;

Ñ ðeÞ
μν ¼ trðγμð=pþ =qÞγρð=pþ =qþ =kÞγνð=pþ =kÞγρ=pÞ;

Ñ ðfÞ
μν ¼ trðγμð=pþ =qÞγν=pγρð=pþ =kÞγρ=pÞ: ðA23Þ

The general structure of the revised numerators in terms of
the lightlike vectors u and ū is classified into two cases. For
Eq. (A20), it is easy to verify that

N ðjÞ
μν ¼ tr

 
αðjÞ1 β̄μν 0

0 αðjÞ2 βμν

!
; j ¼ a; b; c ðA24Þ

with β̄μν ¼ ūμūνūρūρūσūσ and βμν ¼ uμuνuρuρuσuσ . Now,
proceeding in the same lines as before, for the expressions
in Eq. (A23), we get

Ñ ðjÞ
μν ¼ tr

 
ηðjÞ1 ω̄μν 0

0 ηðjÞ2 ωμν

!
; j ¼ d; e; f ðA25Þ

with ω̄μν ¼ ūμūνūρūρ and ωμν ¼ uμuνuρuρ. The quantities

αðjÞ1 , αðjÞ2 , ηðjÞ1 , and ηðjÞ2 are defined as a function of the
momenta ðp; q; k;lÞ.
Besides, due to Eq. (A14), it is easily observed that β̄μν ¼

βμν ¼ 0 and ω̄μν ¼ ωμν ¼ 0. This result leads to the result

Πð3Þ
μν ¼ 0 and again we observe that no quantum correction

to the Schwinger mass is present at this order too. Next, we
discuss our analysis for the higher-loop order.

3. Higher-loop contribution

After the previous discussions we are ready to study a
general diagram with an arbitrary number of loops, con-
tributing to the photon self-energy. For example, let us
consider a complex graph of an arbitrary order n, depicted in
Fig. 9, and write qualitatively its Feynman expression

ΠðnÞ
μν ðqÞ ∝

Z Y
i

d2ki
ð2πÞ2

N μνðq; kiÞ
Mðq; kiÞ

; ðA26Þ

μ μ μν ν ν

μμ μνν ν

(a) (b) (c)

(d) (e) (f)

FIG. 8. The graphs (a)–(f) represent the one and two fermion-
loop contributions to the photon self-energy at three-loop level.
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where N μνðq; kiÞ ¼ trðγμ=B1γ
ρ=B2γ

σ=B3γν…γρ=BmγσÞ and
=Bi ¼ =Biðq; kiÞ. We notice that the presence of one photon
propagator at least, which is proportional to the metric,
forces a contraction of the indices giving either ūρūρ ¼ 0, or

uρuρ ¼ 0 and consequently resulting into ΠðnÞ
μν ðqÞ ¼ 0.

Indeed, this is a key point of our proposed method that
yields results without carrying out any integration over the
internal loop momenta. As an important result of our
present perturbative analysis, we conclude that the vacuum
polarization tensor in two dimensions receives quantum
corrections only from one-loop level. Hence the photon
propagator in Eq. (A4) is indeed one-loop exact and,
accordingly, its nonzero pole is also exact. This result is
in agreement with the Schwinger result [5], obtained by a
nonperturbative analysis.

APPENDIX B: DETAILED ANALYSIS OF THE
INTEGRALS OVER THE FERMION LOOP

In this appendix, we intend to carefully analyze the
integrals over the fermion loop appearing in our loop

calculation and prove that they actually vanish. For
simplicity, we choose to illustrate the analysis of the
second equation of (3.17), which was also discussed
in [27],

Ξ̃ðbÞ
μρ ¼

Z
d2p
ð2πÞ2

trðγμð=pþ =qÞγνð=pþ =qþ =lÞγρð=pþ =lÞγν=pÞ
ðpþ qÞ2ðpþ qþ lÞ2ðpþ lÞ2p2

:

ðB1Þ

According to the aforementioned discussion in Ref. [27],
we first revise this integral in the light-cone coordinate as

Ξ̃ðbÞ
−− ¼

Z
d2p
ð2πÞ2

trðγ−ð=pþ=qÞγ−ð=pþ=qþ=lÞγ−ð=pþ=lÞγ−=pÞ
ðpþqÞ2ðpþqþlÞ2ðpþlÞ2p2

:

ðB2Þ

Using p2 ¼ pþp− and the related details mentioned in
Appendix A of [27], we arrive at the expression

Ξ̃ðbÞ
−− ¼ 16

Z
dpþ
ð2πÞ

dp−

ð2πÞ
1

ðpþ qÞþðpþ qþ lÞþðpþ lÞþpþ
:

ðB3Þ

In order to simplify this result, we decompose the fraction
into partial fractions to reduce the degree of the denom-
inator. Thus, we find

Ξ̃ðbÞ
−− ¼ 16

Z
dp−

2π

dpþ
2π

1

l2þ

�
1

qþ

�
1

pþ
−

1

ðpþ qÞþ

�
−

1

ðl − qÞþ

�
1

ðpþ qÞþ
−

1

ðpþ lÞþ

�

−
1

ðlþ qÞþ

�
1

pþ
−

1

ðpþ qþ lÞþ

�
þ 1

qþ

�
1

ðpþ lÞþ
−

1

ðpþ qþ lÞþ

�	
: ðB4Þ

Now, we will show that each separated pairs in the
parentheses are identically zero and we are left with
Ξ̃ðbÞ
−− ¼ 0. To prove this result in the simplest way we

recall a technical theorem of standard calculus named as the
complex form of Green’s theorem, which is illustrated
below [41]:
Suppose that Bðz; z̄Þ∶C → C is continuous and has

continuous partial derivatives in a region R ⊊ C and on
its boundary C, then:

I
C
Bðz; z̄Þdz ¼ 2i

Z Z
R

∂B
∂z̄ dxdy: ðB5Þ

Now let us assume that the function Bðz; z̄Þ coincides with
z̄ð1z − 1

z−aÞ over the regionR, as shown in Fig. 10, for some FIG. 10. The relevant contour for the integral (B6).

FIG. 9. Higher-loop contribution to the photon self-energy.
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given a ∈ C. As it may be clear, the region is essentially a
large disc with radius r → ∞, with which two specific
points, the origin and the simple pole a ∈ C, as two smaller
discs, have been punctured out from (the subsets which
have been colored by gray). Let us show the rest part of the
disc, the union of gray colored points, with S, as shown
in Fig. 10.
Now by the above theorem, we can conclude that

Z Z
R

�
1

z − a
−
1

z

�
dxdy ¼ i

2

I
C
z̄

�
1

z
−

1

z − a

�
dz: ðB6Þ

Here we should suppose that the area of S is tiny enough,
i.e., the radiuses of gray discs, commonly shown by ε, tend
to zero. Therefore, it is also easy to show that

lim
ε→0

Z Z
S

�
1

z − a
−
1

z

�
dxdy ¼ 0: ðB7Þ

In fact, if S0 (resp. Sa) is the punctured disc at the origin

(resp. a), for jaj
2
≥ ε we have






Z Z

S

�
1

reiθ − a
−

1

reiθ

�
rdrdθ






≤
Z Z

S






�

1

reiθ − a
−

1

reiθ

�



rdrdθ
≤
Z

2π

0

dθ
Z

ε

0

�
2

a
þ 1

r

�
rdr

¼ 2πε

�
ε

a
þ 1

�
; ðB8Þ

which clearly vanishes as ε → 0. The same assertion can be
simply stated for the integration over Sa. Therefore,
Eq. (B6) is modified to

ZZ
R2¼C

�
1

z− a
−
1

z

�
dxdy¼ i

2
lim
r→∞

lim
ε→0

I
C
z̄

�
1

z
−

1

z− a

�
dz;

ðB9Þ

where the lhs is exactly what we need in our manipulations.
It is enough to calculate precisely the rhs for C. Let us
divide C to three different circles: (a) C0, the boundary of
S0, (b) Ca, the boundary of Sa, and (c) C0 the large circle
with radius r → ∞. As above, according to the symmetry,
the solution of part (a) works similarly for (b). Therefore,
we should work out (a) and (c). For part (a) we have that

lim
ε→0






I
C0

z̄

�
1

z
−

1

z − a

�
dz






¼ ilim

ε→0






Z

2π

0

ε2
�
e−iθ

ε
−

1

εeiθ − a

�
dθ






≤ ilim

ε→0
ε

�
1þ 2ε

jaj
�Z

2π

0

dθ ¼ 0: ðB10Þ

Therefore, according to (B9) we find

Z Z
R2¼C

�
1

z − a
−
1

z

�
dxdy ¼ i

2
lim
r→∞

I
C0
z̄

�
1

z
−

1

z − a

�
dz:

ðB11Þ

Now, it is enough to calculate the rhs of Eq. (B11). For
r ≫ jaj we read

I
C0
z̄

�
1

z
−

1

z − a

�
dz ¼

Z
2π

0

r2
�

1

reiθ
−

1

reiθ − a

�
dθ

¼
Z

2π

0

re−iθ
�
1 −

1

1 − a
r e

−iθ

�

¼
Z

2π

0

re−iθ
X∞
n¼1

�
a
r

�
n
e−inθdθ:

ðB12Þ

It is easily seen that for all N∈N, fN¼re−iθ
P

N
n¼1ðarÞne−inθ

belongs to L2ðS1Þ, and jfN j ≤ r2/ðr − aÞ ∈ L1ðS1Þ.
Consequently, due to the celebrated dominated conver-
gence theorem, one might conclude that

Z
2π

0

re−iθ
X∞
n¼1

�
a
r

�
n
e−inθdθ¼

X∞
n¼1

r

�
a
r

�
n
Z

2π

0

e−iðnþ1Þθdθ;

ðB13Þ

which vanishes obviously. Therefore, summarizing the
above results, we have that according to (B9), (B11),
and (B13) we read

Z Z
R2¼C

�
1

z − a
−
1

z

�
dxdy ¼ 0 ðB14Þ

as we expected. Hence, momentum integrals that can be put
into the form (B4) are vanishing due to the identity (B14).
Similarly, it is easy to show that the remaining integrals

in Eq. (3.17), Ξ̃ðaÞ
μν and Ξ̃ðcÞ

μσ , are vanishing and that no
noncommutative corrections to the Schwinger mass are
found at two-loop order.
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