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While the postulate of covariance of Maxwell’s equations for all inertial observers led Einstein to special
relativity, it was the further demand of general covariance—form invariance under general coordinate
transformations, including between accelerating frames—that led to general relativity. Several lines of
inquiry over the past two decades, notably the development of metamaterial-based transformation optics,
has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in
ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in
general dielectric media residing in curved background space-times. In particular, I derive a relation for the
spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium
parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and
show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation
provides a basis for a unified approach to ray and congruence tracing through media in curved space-times
that may smoothly vary among positively refracting, negatively refracting, and vacuum.
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I. INTRODUCTION

The standard vectorial representation of Maxwell’s
equations,

∇ · B⃗ ¼ 0; ∇ × E⃗þ ∂B⃗
∂t ¼ 0; ð1aÞ

∇ · D⃗ ¼ ρ; ∇ × H⃗ −
∂D⃗
∂t ¼ j⃗; ð1bÞ

has been the electrodynamics workhorse since it was
codified by Heaviside well over a century ago. But this 3-
vector representation harbors a hidden assumption: that
space-time is Minkowskian. We may forgive Heaviside this
trespass, coming 30 years before Einstein’s seminal paper on
general relativity, but no description of electrodynamics
would be truly completewithout incorporating the properties
of the underlying space-time in which the fields exist.
While the relativistic nature of electrodynamics is fully

acknowledged, the general space-time formulation is rarely
employed in applications. Standard, widely regarded texts
on electrodynamics or relativity typically only discuss
tensorial electrodynamics of the vacuum [1–3]. But ponder-
able media do not displace space-time, as a whale displaces
water. Rather, they are completely surrounded and per-
meated by the geometry of space-time—even the whale in
water feels gravity. Thus no theory of macroscopic electro-
dynamics within media is truly complete without incorpo-
rating the properties of the underlying space-time in which
the medium resides.

Here on Earth, most practical applications of electrody-
namics do not require the heavy artillery of general
relativity, but there are still good reasons to be interested
in a space-time covariant formulation of electrodynamics
within media. In particular, it is closely related to a
convergence of ideas in transformation optics, analog
gravity, premetric electrodynamics, and Lorentz violating
space-times that have emerged over the past 15 years.
Transformation optics uses ideas about the similarity of

the refractive properties of dielectric media with the light-
bending properties of curved space-times to design optical
media with unusual properties or functionality, such as
negatively refracting media and invisibility cloaks [4–8].
The advent of structured composite metamaterials that
possess some of the unnatural properties required to actually
realize these unusual devices [9–11] provides an exciting
demonstration that the geometrical, space-time manifold
aspects of electrodynamics and light propagation are not
just an academic abstraction, but can have real applications in
engineering. Progress understanding and developing this
new theoretical technology relies on the type of covariant
formulation of electrodynamics in media studied here
[12–20].
Analog models of curved space-times seek to replicate

certain aspects of extreme gravitational systems, such as
light propagation near black holes, in a nongravitational
laboratory-accessible system, such as sound or surface
waves in flowing fluids [21–24], or, more relevantly, light
propagating through a suitable dielectric medium [25–34].
Once again it is the space-time covariant formulation of
electrodynamics in media and the geometrical aspects of*robert@cosmos.phy.tufts.edu
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light propagation on manifolds that enables detailed study
of dielectric analog space-times and their limitations [35].
Premetric electrodynamics is based on the observation that

the space-time metric does not enter Maxwell’s equations
directly, but only through its associated Hodge dual [36,37].
By promoting the Hodge dual in Maxwell’s equations to an
independent structural field on a metric-free manifold, one
may gain new insights into the structure of electrodynamics.
Last, Lorentz-violating space-times play a significant

role in theories of quantum gravity and physics beyond the
standard model, and it has been shown that Lorentz
violation in effective field theories is connected to
pseudo-Finsler geometries [38–40]. The Lorentzian nature
of space-time was inspired by Maxwell’s equations in
vacuum, but it is known that the birefringence exhibited by
general linear media is connected to pseudo-Finsler geom-
etries [41–43], providing a natural setting for further
musings on the nature of space-time.
In short, Finsler geometry is just Riemannian geometry

without the quadratic restriction [44]. Riemannian metric
geometry is based on a line element of the form

ds ¼ Fðx1;…; xn; dx1;…; dxnÞ; ð2Þ
where F is a function on the tangent bundle such that

F2 ¼ gαβðxÞdxαdxβ; ð3Þ
which provides the metric structure

gαβðxÞ ¼
∂F2

∂xα∂xβ : ð4Þ

Finsler geometry relaxes this quadratic restriction on F, so
that one may still define the metric in a similar way, but it is
no longer independent of the cotangent basis. In other
words, the metric depends not only on the point on the
manifold but also on which direction you look [45].

A. Goal of this paper

The goal of this paper is to construct a covariant form of
electrodynamics in linear media residing in a curved
background space-time. Some elements of this formalism
have been introduced and used in several papers studying
transformation optics and dielectric analog space-times
[16,31,46]. Here, those initial elements are extended, given
a rigorous derivation, and combined into a comprehensive
framework. In particular, the relationship between the four-
dimensional ð2

2
Þ material tensor χ and the usual spatial

material parameters ε, μ, hγ, and eγ is derived ab initio, and
an expression for the pseudo-Finslerian optical metric is
derived for quite general media and given in terms of the
aforementioned usual spatial material parameters.
In keeping with the tenets of general covariance, the

sought after formalism should be independent of the chosen
coordinates in the sense that there exists a well-defined

method of shifting between coordinates, and therefore
should be expressible entirely in terms of four-dimensional
tensorial objects and the metric. The exterior calculus of
differential forms is particularly well suited to the study of
electrodynamics and will be adopted here.
Certainly this is not the first paper to study the covariant

form of electrodynamics in media, which has a long history
starting with Minkowski, Gordon, and Tamm in the early
part of the last century [47–49], followed by Balazs, Quan,
Plebanski, Post, and Ehlers [50–54] in the middle of the last
century, and in more modern times by Perlick [41], Novello
and Salim [55], Novello, Lorenci, Salim, and Klippert [56],
Novello and Bittencourt [57], Visser, Barceló, and Liberati
[58], Balakin and Zimdahl [59], and notably as part of the
premetric community by Hehl, Obukhov, Rubilar,
Lämmerzahl, and Itin [36,42,60]. Indeed, after more than
100 years it is still a fruitful area of research, with a very
recent and thorough analysis by Schuster and Visser that is
strongly related to the work pursued here [61], where they
also consider a background metric and introduce the space-
time splitting with respect to a timelike observer.
There are a number of mathematical similarities and

common themes between these previous works and what
is presented here. For example, differential forms are also
used extensively by the premetric community, so some of the
equations here have close counterparts in premetric
electrodynamics.
It is quite common in the literature to adopt a 6-vector

approach when dealing with electrodynamics in media; in
other words, instead of the usual space-time formulation
whereby ðD⃗; H⃗Þ and ðE⃗; B⃗Þ are select components of two-
forms, they are put into two six-component vectors. While
there is nothing invalid about such an approach, it does suffer
from two drawbacks: (1) it subtly assumes an explicit 3þ 1
decomposition of the space-time, which means that the field
components have been rather rigidly defined, and makes the
transformation properties somewhat less obvious, and (2) it
makes the theory less compatible with other generally
relativistic calculations one might want to perform, such
as examining the Raychaudhuri equation for a congruence of
light passing through ponderable media [46]. Instead, every-
thing done here is fully covariant, four-dimensional, coor-
dinate-free, and largely index-free. Of course, reference to
the usual spatial parameters naturally requires a 3þ 1 split,
but here this is donewith respect to a timelike vector field that
need not align in any special way with a choice of
coordinates. I believe this point of view provides additional
insight into the structure of the theory byhighlighting the role
of the observer who must ultimately be making measure-
ments on the fields and the medium, and is a mechanism also
employed in Refs. [59,61].
The paper is organized as follows. Section II briefly

reviews the crucial aspects of 3-vector electrodynamics
in dielectric media that must be generalized to the four-
dimensional setting. Section III introduces the mathematical
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notation that will be used throughout the rest of the paper.
Section IV introduces the tensorial version of electrodynam-
ics in media and the differential and integral forms of
Maxwell’s equations, while Sec. V derives the relationship
between the four-dimensional tensors and the “usual” spatial,
or transverse, material tensors. Section VI presents the
geometric optics limit of the theory, while Sec. VII derives
the pseudo-Finslerian optical metric in this limit, and
Sec. VIII shows how the pseudo-Finslerian optical metric
becomes pseudo-Riemannian in certain circumstances.
Finally, Sec. IX describes how all of these derivations
relate to something tangible like ray tracing. I conclude with
Sec. X.

II. 3-VECTOR CLASSICAL
ELECTRODYNAMICS IN MEDIA

Since the goal of this paper is to study the covariant
formulation of electrodynamics in dielectric media, it is
useful to first review the familiar aspects of 3-vector
electrodynamics in media that we wish to treat. In the
three-dimensional Cartesian coordinates of flat Minkowski
space-time, Maxwell’s equations take the form of Eqs. (1)
where E⃗ and D⃗ are, respectively, the electric field and
electric flux density, and B⃗ and H⃗ are, respectively, the
magnetic flux density and the magnetic field, and where the
speed of light has been scaled to c ¼ 1. The electric and
magnetic fields E⃗ and B⃗ may be derived from scalar and
vector potentials ϕ and A⃗ by

B⃗ ¼ ∇ × A⃗; E⃗ ¼ −∇ϕ −
∂A⃗
∂t : ð5Þ

However, as far as finding solutions is concerned, the set of
Eqs. (1) and (5) is incomplete. A supplemental condition is
required on the set of fields fE⃗; B⃗; D⃗; H⃗g, which is typically
provided through the basic constitutive relations

D⃗ ¼ εE⃗; B⃗ ¼ μH⃗: ð6Þ
In vacuum, ε ¼ ε0 and μ ¼ μ0 are constants (and for c ¼

1 we have ε0 ¼ μ0 ¼ 1), but inside dielectric media the
permittivity ε and permeability μ may not only be inho-
mogeneous but may not even be isotropic, described
instead by matrix-valued functions. The reduction of
dielectric media to a set of supplemental parameters in
Maxwell’s equations belies an underlying quantum field
theoretic, or at least a microscopic, description of the
interaction of electromagnetic fields and matter [62,63], but
at the macroscopic level it is sufficient to use an effective
theory that accounts for the average atomic response to the
applied fields. The basic idea of this model is that an
electron in an atom is slightly displaced by an applied
electric field. The electron feels a restoring force deter-
mined by the nucleus. The exact form of the restoring force
may be modulated by the presence of other electrons and

neighboring dipole moments, but in the “Lorentz” approxi-
mation it is modeled as being of Hooke’s law variety—
linear in the displacement. Thus the applied electric field
induces a dipole moment p⃗, the magnitude of which
depends, to lowest order, linearly on both the applied field
and the effective spring constant. Sufficiently far from the
dipole moment the dipole field is proportional to p⃗, and the
net electric field is

E⃗net ¼ E⃗appliedþ p⃗¼ E⃗appliedþχEE⃗applied¼ð1þ χEÞEapplied;

ð7Þ

where the electric susceptibility χE is linear in the average
effective spring constant for the material. This may readily
be extended to anisotropic and inhomogeneous material
responses by changing the scalar χE into a position
dependent matrix ¯̄χEðx⃗Þ. The matrix nature of ¯̄χE means
the restoring force felt by the electron depends on the
direction of displacement, and the value of ¯̄χEðx⃗Þ represents
an averaging over a small region around the point x⃗.
In the aggregate theory the electric flux density is related

to the electric field via a constitutive relation that is
typically written as

D⃗ ¼ E⃗þ P⃗; ð8Þ

where the polarization density P⃗ is found through a suitable
averaging procedure of the dipole moment density. So far
we have only considered P⃗ as linear in E⃗ for the simple
Hooke’s law model. More generally, one could also
consider anharmonic dipole behavior and higher order
multipole moment contributions to D⃗ rather than just
linearized dipoles, and each multipole contribution to the
total polarization can be expanded in terms of E⃗ so that
[64–66]

Di ¼ χijEj þ γijk∇jEk þ ζijkEjEk þ � � � : ð9Þ

Linear media for which γ is identically zero are said to be
linearly anisotropic. In linearly anisotropic media the eigen-
states of propagation are states of linear polarization. Linear
media for which χ ¼ 0 and γ ≠ 0 are said to be circularly
anisotropic. In circularly anisotropicmedia the eigenstates of
propagation are states of circular polarization. In a general
mediumwith χ ≠ 0 and γ ≠ 0 the eigenstates of propagation
are states of elliptical polarization.
Similar to the electric response, ponderable media may

exhibit a magnetic response to an applied field, which in the
aggregate is usually expressed through the corresponding
relation

B⃗ ¼ H⃗ þ M⃗; ð10Þ

where M⃗ is the magnetization vector.

COVARIANT ELECTRODYNAMICS IN LINEAR MEDIA: … PHYS. REV. D 97, 065001 (2018)

065001-3



III. SOME REMARKS ON
MATHEMATICAL NOTATION

The next step is to generalize the Heavisidian 3-vector
mathematics of classical electrodynamics to the tensorial
quantities that have meaning in a four-dimensional space-
time. As much as possible, I will endeavor to use an index-
free notation to eliminate unnecessary clutter and to ensure
that the methodology is truly coordinate independent. The
purpose of this section is to clarify the notation that is used
throughout the following sections, and in particular to help
make the notation accessible to those who have experience
with electrodynamics from the 3-vector perspective but
limited experience with general relativity. There are many
excellent resources providing more detailed explanation of
the mathematical concepts being used, such as Refs. [67,68].
A concise introduction to the required topics of differential
geometry used for electrodynamics, with a focus on trans-
formation optics, is available in Ref. [69] or Ref. [14].
In 3-vector notation, v⃗ is the coordinate-free expression

for an object that, relative to a coordinate basis such as the
Cartesian basis fî; ĵ; k̂g, has the alternative expression
vxîþ vyĵþ vzk̂. If the basis is understood, then we can
get away with just referring to the coefficients fvx; vy; vzg.
Relabeling x; y; z → 1; 2; 3, then we can refer to either the
coordinate-independent v⃗ or the coordinate coefficients va,
a ¼ 1, 2, 3. In what follows, the coordinate-free notation
for four-dimensional tensorial objects will be bold, e.g. v or
F, and indices that range over all four space-time coor-
dinates will be given Greek letters, e.g. vα or Fμν. The
position and ordering of indices carry meaning and are
similar to the difference between row and column vectors,
but indices can be raised and lowered with the space-time
metric. The metric has two subscript indices, g ¼ gαβ,
while its inverse has two superscript indices, g−1 ¼ gαβ.
The types of indices carried by an object will be given when
it is introduced. In the index-free notation I will denote
index raising and lowering in two different ways.
(1) When a single index is raised or lowered, I will

indicate it with the metric or its inverse, for example

g−1 ·F¼ gαβFβμ; F ·g−1¼Fβμgμα; μ ·g¼μμ
αgαβ:

ð11Þ

(2) When all indices are raised or lowered (e.g. for
single-index objects), I will use the musical isomor-
phisms, for example

u♭¼ g ·u¼ gαβuβ ¼ uα; k♯ ¼ g−1 ·k¼ gαβkβ ¼ kα:

ð12Þ

Note that I have used a dot notation to indicate contraction on
adjacent indices, similar to commonmatrixmultiplication, e.g.

F · u ¼ Fαβuβ; u · F ¼ uαFαβ; μ · B ¼ μμ
νBν:

ð13Þ

For more complicated contractions, the index expression will
be given for clarity. Mixed index objects, such as μ in the
previous example,will be interpretedas linear endomorphisms
on a vector space; e.g. μ takes an element B of the cotangent
space and maps it to a new element of the cotangent spaceH.
Tensorial objects can be multiplied together in two ways

such that the number of indices increases.
(1) The tensor product⊗ creates an (mþ n)-index tensor

from an m-index tensor and an n-index tensor, e.g.

u ⊗ u ¼ uαuβ; u♭ ⊗ k♯ ¼ uαkβ: ð14Þ

(2) The wedge product ∧ is an antisymmetric version of
the tensor product, with the caveat that the tensors
share the same index type. I will extend the usage of
the wedge product to mixed-index objects, where the
wedge shall only apply in the common exterior
algebra, i.e. to indices of the same type, e.g.

u♭ ∧E¼u♭ ⊗E−E⊗u♭ ¼ uαEβ−uβEα¼ δμναβuμEν;

ð15Þ

u♭ ∧ δ ¼ δμναβuμ; ε ∧ u ¼ δσρμνεα
μuν: ð16Þ

Last, two tensors next to each other with no symbol
between them will indicate contraction on all possible
indices, as in

⋆F ¼ ⋆αβ
μνFμν; ðδ ∧ uÞF ¼ δμναβu

βFμν: ð17Þ

IV. TENSORIAL ELECTRODYNAMICS

Returning to Maxwell’s Eqs. (1), the apparent symmetry
of the equations, and the fact that E⃗ and B⃗ may be obtained
from the coupled set of potentials in Eqs. (5), hints at a
deeper connection between the various fields. This con-
nection may be better illuminated from the vantage of a
unified space-time and the well defined operations of
differential geometry on manifolds. The scalar and vector
potentials may be combined into the four-dimensional
potential 1-form A, which in flat space-time is simply
related to the usual scalar and vector potentials

A ¼ Aμ ¼ ð−ϕ; A⃗Þ: ð18Þ

It turns out that electrodynamics is particularly well suited
to description by exterior calculus. Turning to flat space-
time and adopting Cartesian coordinates, the exterior
derivative of A can be expressed in matrix form as
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ðdAÞμν ¼ Aν;μ − Aμ;ν ¼

0
BBBBBB@

0 ∂ϕ
∂x þ ∂Ax∂t

∂ϕ
∂y þ

∂Ay

∂t
∂ϕ
∂z þ ∂Az∂t

− ∂ϕ
∂x −

∂Ax∂t 0
∂Ay

∂x − ∂Ax∂y
∂Az∂x − ∂Ax∂z

− ∂ϕ
∂y −

∂Ay

∂t
∂Ax∂y − ∂Ay

∂x 0
∂Az∂y − ∂Ay

∂z
− ∂ϕ

∂z −
∂Az∂t

∂Ax∂z − ∂Az∂x
∂Ay

∂z − ∂Az∂y 0

1
CCCCCCA
; ð19Þ

the elements of which clearly show the relations Eqs. (5) in
component form. Making the identifications suggested by
Eqs. (5), we find that in the unified space-time approach the
components of E⃗ and B⃗ are combined into a 2-form

F ¼ dA ð20Þ

called the field strength tensor. In the four-dimensional
description, E⃗ and B⃗ are no longer distinct objects, but are
instead merely selected components of the tensor F. The
exterior derivative increases the number of tensor indices
by one, so the exterior derivative of the 1-form Aμ is the 2-
form Fμν, the coefficients of which were written as a 4 × 4

matrix in Eq. (19). The space of 1-forms has coordinate
basis fdxαg, the space of 2-forms has basis fdxα ∧ dxβg,
the space of 3-forms has basis fdxα ∧ dxβ ∧ dxγg, etc., so
the matrix expression of a 2-form represents the coefficients
of a linear combination of basis elements

F¼ 1

2
Fμνðdxμ ∧ dxνÞ¼Eaðdxa ∧ dtÞþ1

2
Babðdxa ∧ dxbÞ:

ð21Þ

Just as the component functions used to describe a vector
differ among observers according to their independent
coordinate systems, so too do the component functions
of F differ among observers. Thus while one observer may
only see nonzero values for F in the components labeled by
Ea, another observer using different (space-time) coordi-
nates might see nonzero components that she labels by Bab.
The field strength tensor F encodes information about

the electric field strength Ea and the magnetic flux Bab.
It is no coincidence that we identify the “field” aspect with
the time-space components of F and the “flux” aspect with
the space-space components; the rules for integration on
manifolds lead naturally to the integral forms of Faraday’s
law and Gauss’ law for magnetism, where B⃗ has a clear
interpretation as a flux through a spatial surface, as
discussed in Sec. IV B. In a similar manner we need to
encode information about the fields H⃗ and D⃗, so it should
come as no surprise that we let the excitation tensor

G ¼ −Haðdxa ∧ dtÞ þ 1

2
Dabðdxa ∧ dxbÞ ð22Þ

encode information about the magnetic field strength Ha
and electric flux Dab.
Comparing Eq. (22) with Eq. (21) it seems clear that if

we want to conserve index type, then the simple vacuum
relationships D⃗ ¼ E⃗ and H⃗ ¼ B⃗ need to be replaced by
something else when talking about Ea and Dab or Ha and
Bab. The 3-vector relations of Eqs. (6) must therefore be
relating the coefficients of 2-forms to those of 1-forms
without the explicit use of an operation that is designed for
such a task. In fact, in vacuum the dual nature of these fields
is related by just such an operator, called the Hodge dual,

G ¼ ⋆F; ð23Þ

as discussed in more detail in the next subsection.

A. Differential form of Maxwell’s equations

An important property of the exterior derivative is that it
is nilpotent, so d2ω ¼ 0 for any differential form ω. Since
F ¼ dA, it immediately follows that

dF ¼ 0: ð24Þ

This single equation is equivalent to the pair of homo-
geneous Maxwell’s equations, which can be seen by
explicitly calculating the exterior derivative of ddA in
Minkowski space-time [1].
The homogeneous equation does not contain any infor-

mation about the space-time and can be thought of as a
constraint equation for the fields. Information about the
space-time appears in the inhomogeneous equations, where
it enters through the Hodge dual, ⋆. The Hodge dual is
defined for any pseudo-Riemannian manifold that pos-
sesses a metric and a volume form, and it contains all the
space-time information of the metric tensor. In particular,
the fundamental electromagnetic fields are differential
forms (antisymmetric tensors). Let ΛkTpM and ΛkT�

pM
denote, respectively, the spaces of alternating tensor k-
products of tangent and cotangent spaces of manifold M at
point p. An alternating k-vector field (k-blade) is an
element of ΛkTM ¼ ⋃p∈MΛkTpM, while an alternating
k-covector field (k-form) is an element of ΛkT�M ¼
⋃p∈MΛkT�

pM. The metric (and its inverse) provides a
map between tangent and cotangent spaces by raising and
lowering indices, and is thus extensible to a map
g∶ΛkTM → ΛkT�M, while the covariant volume form
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(and its inverse) provides a map ω∶ΛkTM → Λðm−kÞT�M.
The composition of these two maps defines the Hodge
dual as a map ⋆∶ΛkTM → Λðm−kÞTM or ⋆∶ΛkT�M →
Λðm−kÞT�M, such that

ð25Þ

is (modulo some numerical factors) commutative. For
example, the Hodge dual of the 2-form F has the compo-
nent expression

⋆F ¼ 1

2
ðω∘g−1ÞF ¼ 1

2

ffiffiffiffiffiffi
−g

p
ϵαβσρgσμgρνFμν; ð26Þ

where g ¼ detðgÞ and ϵαβσρ is the completely antisymmet-
ric Levi-Cività symbol. An important property of ⋆ is that

⋆⋆ω ¼ ð−1Þlω; ð27Þ

where the power depends on the dimension of the manifold
and the degree of ω. For a 2-form in a four-dimensional
space-time l ¼ 1, and this is the only case we will be
concerned with.
Consider now the Yang-Mills action

S ¼
Z

1

2
F ∧ ⋆F − A ∧ J; ð28Þ

where J ¼ ⋆j is the charge-current 3-form source. Varying
the action with respect to A provides the inhomogeneous
Maxwell equation

d⋆F ¼ J: ð29Þ

In the presence of ponderable media, an incident field F
can induce multipole moments of J that can contribute to
the source term even if the total monopole (i.e. free) charge
contribution to J may vanish. In such a case the solutions to
Maxwell’s equations include the particular solution

d⋆P ¼ Jmultipole: ð30Þ

Then the general solution satisfies

dF ¼ 0; ð31Þ

d⋆ðFþ PÞ ¼ dG ¼ Jfree; ð32Þ

and we now have a generalization of Eqs. (8) and (10) in the
form of

G ¼ ⋆ðFþ PÞ: ð33Þ

Generalizing Eq. (9), the polarization tensor P should, in
principle, be expandable in terms of F and its derivatives.
Of interest here is when the polarization is linear in F,
whence the previous constitutive relation simplifies to

G ¼ ⋆χF; ð34Þ

or in indices

Gμν ¼ ⋆μν
αβχαβ

σρFσρ: ð35Þ

Recall that the constitutive relation in vacuum is simply
G ¼ ⋆F. The vacuum may therefore be considered a trivial
linear dielectric medium for which χ vac ¼ id.

B. Integral form of Maxwell’s equations

We have seen the differential form version of Maxwell’s
equations, but in the 3-vector approach to electrodynamics
one frequently wants to work with the integral form of the
equations. How do the integral equations follow from this
four-dimensional approach? Begin with the homogeneous
equation dF ¼ 0. Since dF is a 3-form, it can only be
integrated over a three-dimensional submanifold Ω ⊂ M,Z

Ω
dF ¼

Z
∂Ω

F ¼ 0; ð36Þ

where the intermediate step follows from the generalized
Stokes theorem. The integral of the 2-form F is over ∂Ω,
the two-dimensional boundary of Ω.

1. Faraday’s law

Consider a simple example in flat space-time and using
Cartesian coordinates. In a curved space-time one would
have to pull back the integrand to a submanifold of a chart.
To proceed with the integration one must first choose Ω,
which we suppose to be the three-dimensional surface
consisting of the xy plane extending into t. In other words,
the restriction of dF to Ω is ðdFÞtxydt ∧ dx ∧ dy. At first
glance one may suppose to write the boundary terms as
Ftxdt ∧ dxþ Ftydt ∧ dyþ Fxydx ∧ dy, but special atten-
tion must be paid to the orientation of ∂Ω, which must be
compatible with the orientation of Ω, which in turn must be
compatible with the orientation of M (the orientation of
which is given by the volume form ⋆1). In particular, the
prescription for integration wherebyZ

∂Ω
Fdx1 ∧ dx2 →

Z
∂Ω

Fdx1dx2 ð37Þ

introduces a certain blindness to the orientation sinceZ
∂Ω

−Fdx2 ∧ dx1 → −
Z
∂Ω

Fdx1dx2: ð38Þ
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By comparing with Eq. (21) we see that F restricted to the
boundary selects the terms

Fj∂Ω ¼ Fxtdx ∧ dtþ Fytdy ∧ dtþ Fxydx ∧ dy: ð39Þ
The integral becomesZ

∂Ω
F ¼

Z
Fxtdxdtþ

Z
Fytdydtþ

Z
Fxydxdy

⇒
Z

Exdxþ Eydy ¼ −
∂
∂t

Z
Bzdxdy; ð40Þ

which straightforwardly generalizes toZ
E⃗ · dr⃗ ¼ −

∂
∂t

Z
B⃗ · n̂dA: ð41Þ

2. Gauss’ law for magnetic fields

This time choose a spatial volume for Ω. In this case we
clearly have

Fj∂Ω ¼ Fxydx ∧ dyþ Fyzdy ∧ dzþ Fzxdz ∧ dx; ð42Þ

and it follows that Z
∂Ω

B⃗ · n̂dA ¼ 0: ð43Þ

A similar treatment of the inhomogeneous equation
dG ¼ J provides Ampere’s law and Gauss’ law for electric
fields.

3. Vector potential source equations

Integrating the homogeneous and inhomogeneous
Maxwell equations over appropriate submanifolds gave
us the usual integral forms of Maxwell’s equations. But
these are not the only well-known results from electrody-
namics. Where, for example, does the Biot-Savart law
come from? The Biot-Savart law calculates F by differ-
entiating the vector potential A. For sourceless free fields,
one usually considers A as given and the calculation F ¼
dA is straightforward. But how does one determine Fwhen
A is dynamically sourced by some charge-current distri-
bution J? As a starting point, one could try to determine A
by integrating both sides of Maxwell’s inhomogeneous
equation Z

Ω
d⋆dA ¼

Z
Ω
J: ð44Þ

The next expected step might beZ
∂Ω

⋆dA ¼
Z
Ω
J; ð45Þ

but thenwe can go no further and it seemswe have reached an
impasse. Instead of a direct integration, A must be obtained
fromMaxwell’s inhomogeneous equation with the assistance
of Green’s technique. In the Minkowski vacuum with only
free charges, this Green function approach leads to
Jifemenko’s equations [1].

C. Properties of the constitutive relation

The constitutive quantity χ may be thought of as a map
from 2-forms to 2-forms, which means that it can have at
most 36 independent components. Because of this, it is
possible to reformulate everything in terms of 2 six-
dimensional vectors ðE⃗; B⃗Þ and ðD⃗; H⃗Þ, and a 6 × 6
constitutive matrix, and this approach is frequently taken
in the literature. I do not follow this approach for three
reasons: (1) the extraction of E⃗ and B⃗ is usually done by
hand in a somewhat ad hoc way that typically relies on a
Minkowski space-time decomposition; (2) the vectors B⃗
and D⃗ obscure the 2-form nature of these fields, which
becomes more apparent in the integral formulation of
Maxwell’s equations, where B⃗ and D⃗ appear in integrals
over a 2-surface; and (3) since modern computer algebra
systems can easily handle large matrix calculations, there is
no computational advantage to using a six-dimensional
formulation, while at the same time a preferred use of the
four-dimensional differential forms formulation is consis-
tent with the rest of general relativity, and hence allows the
possibility to incorporate the electrodynamics developed
here in the standard relativistic framework.
We can demand that χ is independently antisymmetric on

its covariant and contravariant indices. This symmetry
condition reduces the number of free parameters to exactly
the required 36. There are additional symmetries with
respect to which it may sometimes be useful to decompose
χ . In particular, consider the decomposition

χ ¼ Pχ þ Aχ þ Sχ ; ð46Þ
where

Sχαβμν ¼
1

2
ðχαβμν − χμναβÞ; ð47aÞ

Aχαβ
μν ¼ fðxÞ⋆αβ

μν; ð47bÞ

Pχαβμν ¼
1

2
ðχαβμν þ χμναβÞ − Aχαβμν; ð47cÞ

which ensure the symmetry properties

Pχαβμν¼Pχμναβ; Aχαβμν¼Aχμναβ; Sχαβμν¼−Sχμναβ: ð48Þ

Note that the symmetries here are defined with respect to
the metric by lowering the second set of indices on χ , and is
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therefore not a fundamental decomposition of χ on its own.
In the premetric literature these are referred to as the
principal, axion, and skewon parts [37,70,71]. Premetric
electrodynamics replaces the Hodge dual appearing in the
action of Eq. (28) with something like χ , so one should note
that their χ has a somewhat different, although related,
meaning to the χ used here. In particular, one could
possibly identify ðg ⊗ gÞχ premetric ¼ ffiffiffiffiffiffi−gp

χ, but it should
also be noted that the goals of premetric electrodynamics
are somewhat different, and for electrodynamics in real
media one should, strictly speaking, vary the action of
Eq. (28) and subsequently identify particular solutions that
are linear in the homogeneous field, as done in the
derivation above, rather than as an ansatz in the action.
The symmetric principal part Pχ has 20 components and
is responsible for the usual macroscopic dielectric response
parameters; the axion part Aχ has only one independent
component; and the antisymmetric skewon part Sχ has
15 components. Additional symmetry conditions can there-
fore be imposed on χ that eliminate the skewon or axion
parts, based, for example, on thermodynamic or energy
conservation arguments, or by the lack of an observed
directive effect in naturally occurring stationary media
[53,72]. Since here I am interested in allowing the
most general medium possible, I do not pursue such a
decomposition.

V. RELATION TO 3-VECTOR QUANTITIES

Since most people have a more intuitive feeling for the
three-dimensional vectors and medium parameters, it
would be nice to explicitly show how χ is related to the
usual permeability, permittivity, and magnetoelectric cou-
plings. In the process, we may gain some better under-
standing of electrodynamics in media. One of the
remarkable things about electrodynamics is that the fields
are spacelike, but since there is no global definition of time,
splitting space-time into space and time depends on the
choice of observers, from which it follows that the
identification of electric and magnetic fields is observer
dependent. Indeed, the electric and magnetic fields are only
defined relative to some observer. When dealing with
tensorial electrodynamics, the electric and magnetic field
components are often extracted from F and G by hand in
some (locally, at least) Minkowski space-time, but we may
gain some insight by explicitly retaining the role of the
observer. Since the covariance between observers holds in
curved space-times, where they may not necessarily be
related by simple Lorentz transformations, this approach
retains full covariance of the theory.

A. Space-time splitting

Consider an observer moving with 4-velocity u with
squared magnitude gðu; uÞ ¼ ðu♭ · uÞ (or, strictly speaking,
let u be a hypersurface orthogonal timelike vector field

representing a family of observers). Relative to this
observer, define the electric and magnetic 1-form fields by

E ¼ ðu♭ · uÞ−1u · F and B ¼ −ðu♭ · uÞ−1u · ⋆F; ð49Þ

which have the index expressions

Eβ ¼ðu♭ ·uÞ−1Fαβuα and Bβ ¼−ðu♭ ·uÞ−1⋆αβ
μνFμνuα:

ð50Þ

Notice that by the antisymmetry of F, we can express E and
B with the somewhat more symmetric expressions

E¼−
1

2
ðu♭ ·uÞ−1ðδ∧ uÞF and B¼ 1

2
ðu♭ ·uÞ−1ðδ∧ uÞ⋆F:

ð51Þ
Although these last expressions are somewhat tautological,
they will be useful shortly. It is immediately clear by the
antisymmetry properties of F and ⋆ that u · E ¼ u · B ¼ 0.
Thus the 1-form fields E and B are orthogonal to u. We can
reconstruct F by

F ¼ u♭ ∧ Eþ ⋆ðu♭ ∧ BÞ; ð52Þ
which has the index expression

Fμν ¼ 2ðu½μEν� þ ⋆μν
αβu½αBβ�Þ: ð53Þ

The dual fields have a similar structure. According to
observer u, they are

D¼−ðu♭ ·uÞ−1u ·⋆G and H¼−ðu♭ ·uÞ−1u ·G; ð54Þ

while

G ¼ −u♭ ∧ H þ ⋆ðu♭ ∧ DÞ: ð55Þ
Clearly, D and H are also orthogonal to u, u · D ¼
u ·H ¼ 0.

B. Obtaining usual parameters from χ

We have seen that within linear dielectric media, the
constitutive relation is G ¼ ⋆χF. We can use this to
connect to the usual concepts of permittivity, permeability,
and magnetoelectric couplings in the following way. From
Eq. (54) one finds

D ¼ −ðu♭ · uÞ−1u · ⋆G
¼ −ðu♭ · uÞ−1u · ð⋆⋆χFÞ ¼ ðu♭ · uÞ−1u · χF

¼ ðu♭ · uÞ−1u · χ ðu♭ ∧ Eþ ⋆ðu♭ ∧ BÞÞ
¼ −ðu♭ · uÞ−1½2ðu · χ · u♭Þ · Eþ 2ðu · χ⋆ · u♭Þ · B�
¼ εc · Eþ bγc · B; ð56Þ
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where the fourth line follows from the antisymmetry of χ in
its second set of indices. Similarly, for H one finds

H ¼ −ðu♭ · uÞ−1u · G

¼ −ðu♭ · uÞ−1u · ⋆χF
¼ −ðu♭ · uÞ−1u · ⋆χ ðu♭ ∧ Eþ ⋆ðu♭ ∧ BÞÞ
¼ ðu♭ · uÞ−1½2ðu · ⋆χ · u♭Þ · Eþ 2ðu · ⋆χ⋆ · u♭Þ · B�
¼ eγc · Eþ ξ · B: ð57Þ

To summarize, we now have the parameters

εc ¼ −2ðu♭ · uÞ−1ðu · χ · u♭Þ;
ðεcÞβμ ¼ −2ðuλuλÞ−1uαχαβμνuν; ð58aÞ

ξ ¼ 2ðu♭ · uÞ−1ðu · ⋆χ⋆ · u♭Þ;
ξβ

μ ¼ 2ðuλuλÞ−1uα⋆αβ
λκχλκ

σρ⋆σρ
μνuν; ð58bÞ

bγc ¼ −2ðu♭ · uÞ−1ðu · χ⋆ · u♭Þ;
ðbγcÞβμ ¼ −2ðuλuλÞ−1uαχαβλκ⋆λκ

μνuν; ð58cÞ

eγc ¼ 2ðu♭ · uÞ−1ðu · ⋆χ · u♭Þ;
ðeγcÞβμ ¼ 2ðuλuλÞ−1uα⋆αβ

λκχλκ
μνuν: ð58dÞ

Note that Eqs. (58) are space-time expressions, so each of
these is a 4 × 4 tensor rather than a 3 × 3 matrix. However,
since u · D ¼ 0, one can readily see that we must have

u · εc ¼ 0; uαðεcÞαβ ¼ 0 ð59Þ

and similar for the other material tensors. Since u is
orthogonal to E and B in the domain of each material
tensor, it follows that each of εc, ξ, bγc, and eγc are linear
automorphisms of the three-dimensional subspace of the
cotangent bundle T�ðMÞ orthogonal to u; thus it is also true
that

εc · u♭ ¼ 0; ðεcÞαβuβ ¼ 0 ð60Þ

and similar for ξ, bγc, and eγc. For example, in a local
Cartesian frame comoving with the observer, such that
uα ¼ ð1; 0; 0; 0Þ, one would find

ðεcÞαμ ¼

0
BBBBB@

0 0 0 0

0 εcxx εcyx εczx

0 εcxy εcyy εczy

0 εcxz εcyz εczz

1
CCCCCA: ð61Þ

In this comoving picture (equivalently the observer is “at
rest”), the 3-vectormatrix relations are recovered simply by

taking the purely spatial part of the tensor relations in a
local Cartesian frame.
Since the timelike vector field u defines a spacelike

foliation of the manifold, and electrodynamics takes place
in the purely spatial three-dimensional subspace orthogonal
to u, then it is useful to define an operator

h ¼ δ −
u♭ ⊗ u

ðu♭ · uÞ ; hβα ¼ δβα −
uαuβ

uμuμ
ð62Þ

that projects out the purely spatial part of a vector or
1-form, relative to u. In other words, h annihilates any
component proportional to u. Note that h · h ¼ h and that
the Kronecker delta projects to h · δ · h ¼ h, so h serves as
the Kronecker delta on the subspace orthogonal to u.
Consequently, in this four-dimensional notation, the vac-
uum permeability and permittivity are μ ¼ ε ¼ h. By
Eqs. (59) and (60) we can see that since εc, ξ, bγc, and
eγc are already orthogonal to u, then h · εc · h ¼ εc, etc.

C. Reconstruction of χ from transverse parameters

Now it is possible to reconstruct χ out of the transverse
parameters. Acting on both sides of the constitutive relation
G ¼ ⋆χF with ⋆, one finds

χF ¼ −⋆G
¼ ⋆ðu♭ ∧ HÞ þ u♭ ∧ D

¼ ⋆ðu♭ ∧ ðeγc · Eþ ξ · BÞÞ þ u♭ ∧ ðεc · Eþ bγc · BÞ
¼ ⋆ðu♭ ∧ eγcÞ · Eþ ⋆ðu♭ ∧ ξÞ · B
þ ðu♭ ∧ εcÞ · Eþ ðu♭ ∧ bγcÞ · B: ð63Þ

Using Eqs. (51) for E and B, this becomes

χF ¼ 1

2
ðu♭ · uÞ−1½−⋆ðu♭ ∧ eγc ∧ uÞ

þ ⋆ðu♭ ∧ ξ ∧ uÞ⋆ − ðu♭ ∧ εc ∧ uÞ
þ ðu♭ ∧ bγc ∧ uÞ⋆�F: ð64Þ

Rearranging terms a little, the sought after identity is
clearly

χ ¼ 1

2
ðu♭ · uÞ−1½−ðu♭ ∧ εc ∧ uÞ þ ⋆ðu♭ ∧ ξ ∧ uÞ⋆

− ⋆ðu♭ ∧ eγc ∧ uÞ þ ðu♭ ∧ bγc ∧ uÞ⋆�: ð65Þ

The corresponding index expression is

χγδ
σρ ¼ 2ðuλuλÞ−1½−u½γðεcÞδ�½σuρ�

þ ⋆γδ
αβu½αðμ−1Þβ�½μuν�⋆μν

σρ − ⋆γδ
αβu½αðeγcÞβ�½σuρ�

þ u½γðbγcÞδ�½μuν�⋆μν
σρ�: ð66Þ
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So far, I have related χ to the set of transverse
components fεc; ξ; eγc; bγcg, corresponding to the pair of
constitutive relations

D ¼ εc · Eþ bγc · B;

H ¼ ξ · Bþ eγc · E ð67Þ

that relate the set of fields fD;Hg to the set fE;Bg.
Although these relations follow most naturally from the
four-dimensional constitutive relation G ¼ ⋆χF, they are
not the only way of expressing the transverse constitutive
relations. In traditional electrodynamics, the constitutive
relations usually relate the set of fields fD;Bg to the set
fE;Hg via

D ¼ ε · Eþ hγ ·H;

B ¼ μ ·H þ eγ · E: ð68Þ

It is easy to see that these two representations are related by

ξ¼ μ̄; εc ¼ ε− hγ · ξ · eγ; eγc ¼−ξ · eγ; bγc ¼ hγ · ξ:

ð69Þ

Of course, the matrix displayed in Eq. (61) clearly does not
have an inverse, and neither does ξ. However, the bar
notation on μ̄ denotes an inverse restricted to the three-
dimensional transverse subspace. Since any of the trans-
verse medium parameters, such as μ, are automorphisms of
the transverse subspace, then an inverse is well defined by
the requirement that

b · b̄ ¼ b̄ · b ¼ h ð70Þ

for any transverse map b. The restricted inverse is found
from

b̄αβ ¼
3hββ1β2αα1α2ðbβ1α1Þðbβ2α2Þ

hβ1β2β3α1α2α3ðbβ1α1Þðbβ2α2Þðbβ3α3Þ
; ð71Þ

where

hββ1β2αα1α2 ¼ ðu♭ · uÞ−1uμuνδνββ1β2μαα1α2 ð72Þ

is the generalized Kronecker symbol on the transverse
subspace.
The traditional representation of Eqs. (68) allows

Eq. (65) for χ to be recast as

χ ¼ 1

2
ðu♭ · uÞ−1½−ðu♭ ∧ ε ∧ uÞ þ ⋆ðu♭ ∧ μ̄ ∧ uÞ⋆

þ ⋆ðu♭ ∧ μ̄ · eγ ∧ uÞ þ ðu♭ ∧ hγ · μ̄ ∧ uÞ⋆
þ ðu♭ ∧ hγ · μ̄ · eγ ∧ uÞ�: ð73Þ

This expression can actually be factored to

χ ¼ 1

2
ðu♭ · uÞ−1½−ðu♭ ∧ ε ∧ uÞ þ ½⋆ðu♭ ∧ hÞ þ u♭ ∧ hγ�

· μ̄ · ½ðh ∧ uÞ⋆þ eγ ∧ u��; ð74Þ

which will be quite useful for obtaining the optical metric in
the next sections.

VI. GEOMETRIC OPTICS LIMIT

The geometric optics limit of the wave equation for light
is standard lore [73], and the presentation here essentially
follows the standard method, albeit in an index-free
tensorial notation. The wave propagation of light is
described by a second order equation, but Maxwell’s
equations provide two first order equations. The simplest
derivation of geometric optics is to first use F ¼ dA to write
the inhomogeneous Maxwell equation as

d⋆dA ¼ J ð75Þ

and show that this is a wave equation for the 1-form
potential A. Operating on both sides of this equation with
the Hodge dual, it may be rewritten in terms of the
codifferential of a k-form on an m-dimensional space-time
manifold

δ ¼ ð−1Þkðmþ1Þ−1⋆d⋆ ð76Þ

as

δdA ¼ −⋆J: ð77Þ

While the exterior derivative increases the degree of a
differential form by one, e.g. d of a 1-form results in a
2-form, the codifferential decreases the degree by one; so
while dA is a 2-form, δdA is a 1-form.
Propagating fields must satisfy a hyperbolic partial

differential equation, e.g. a wave equation. On curved
manifolds, the hyperbolic operator on differential forms
is the Laplace–de Rham operator [74]

Δ ¼ δdþ dδ: ð78Þ

Adding dδA to both sides of Eq. (77) we have the gauge-
independent wave equation

ΔA ¼ ðδdþ dδÞA ¼ −⋆J þ dδA: ð79Þ

On the other hand, fixing the gauge to the Lorenz
gauge

δA ¼ 0 ð80Þ
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shows that Maxwell’s inhomogeneous equation serves as a
wave equation for A in the Lorenz gauge, even in media
with bound source contributions. Separating out the dipole
contribution of J, the form of Maxwell’s equation

⋆d⋆χdA ¼ δχdA ¼ 0 ð81Þ

does indeed serve as the wave equation for A in neutral,
linear macroscopic media.
Since we are now dealing with a wave equation for A, we

can use a Jeffreys-Wentzel-Kramers-Brillouin (JWKB)
type of approximation by assuming a plane wave solution
of the form

A ¼ ÂðxμÞe−ðiλÞ−1SðxμÞ ð82Þ

and retaining the leading order terms in the limit λ → 0

[73]. In this scheme the amplitude Â is slowly varying
compared to the phase function S [53]. Plugging the JWKB
solution into the Lorenz gauge condition, one finds

δA¼ δðÂe−ðiλÞ−1SÞ¼ ðiλÞ−1e−ðiλÞ−1SððiλÞδÂ−gðdS;ÂÞÞ¼ 0:

ð83Þ

Keeping the leading order term in the limit λ → 0 leaves

gðÂ; dSÞ ¼ 0: ð84Þ

The 1-form k ¼ dS, or kν ¼ ∂νS, is the wave covector, and
Eq. (84) is the usual result that the Lorenz condition
requires Â to be orthogonal to the wave vector. Next,
calculating

δχdA ¼ ðiλÞ−1δ½e−ðiλÞ−1Sχ ½ðiλÞdÂþ Â ∧ dS��
¼ ðiλÞ−2e−ðiλÞ−1S½−gðdS; χ ½ðiλÞdÂþ Â ∧ dS�Þ
þ ðiλÞδχ ½ðiλÞdÂþ Â ∧ dS�� ¼ 0 ð85Þ

and taking the limit λ → 0, one finds

−gðdS; χ ðÂ ∧ dSÞÞ ¼ 0: ð86Þ

In terms of k, and exploiting the antisymmetry properties of
χ , this may be written as

−ðk♯ · χ · kÞ · Â ¼ 0; ð87Þ

or with index notation as

−gασχαβμνkσkνÂμ ¼ 0: ð88Þ

Thinking of

X ¼ −k♯ · χ · k ð89Þ

as a 4 × 4 matrix, it may be observed that the existence of a
nontrivial solution to Eq. (87) requires

detðXÞ ¼ 0: ð90Þ

In fact, this condition is satisfied identically. By the
antisymmetry of the second set of indices on χ , Â ∝ k is
already a trivial solution, so any nontrivial solution resides
in the three-dimensional subspace orthogonal to k, meaning
the matrix is effectively only three dimensional. There are
some different methods for dealing with this (see, for
example, Ref. [36]); I follow a purely algebraic argument
based on the classical adjugate matrix adjðXÞ (used
similarly by Refs. [46,60,61]). The adjugate is defined
such that

XadjðXÞ ¼ detðXÞI ð91Þ

and is closely related to the inverse; for if X is invertible,
then adjðXÞ ∝ X−1, but adjðXÞ is defined even if X−1 does
not exist. Since detðXÞ ¼ 0 identically, then it must be true
that XadjðXÞ ¼ 0. Since X is nonzero and arbitrary, the
subsidiary condition

adjðXÞ ¼ 0 ð92Þ

must be satisfied. Although this is a matrix condition, I
show below that

adjðXÞ ¼ Pðk ⊗ k♯Þ; ð93Þ

where P is a scalar polynomial of fourth order in k.
Therefore, the condition for nontrivial solutions to
Eq. (87) reduces to the scalar condition

P ¼ 0: ð94Þ

To see this, begin by inserting some extra Kronecker h
into the expression for χ given in Eq. (74) to write

χ ¼ 1

2
ðu♭ · uÞ−1½−ðu♭ ∧ hÞ · ε · ðh ∧ uÞ

þ ½⋆ðu♭ ∧ hÞ þ ðu♭ ∧ hÞ · hγ� · μ̄ · ½ðh ∧ uÞ⋆
þ eγ · ðh ∧ uÞ��: ð95Þ

Next, with this expression for χ , compute

X¼−k♯ · χ ·k

¼−
1

2
ðu♭ ·uÞ−1½−K ·ε ·Lþ½MþK · hγ� · μ̄ · ½Nþ eγ ·L��;

ð96Þ

where
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K ¼ k♯ · ðu♭ ∧ hÞ; Kδ
β ¼ kγuαh

β
κδακγδ ; ð97Þ

L ¼ ðh ∧ uÞ · k; Lμσ ¼ δσρκνhκμuνkρ; ð98Þ

M ¼ k♯ · ⋆ðu♭ ∧ hÞ; Mδ
β ¼ −2kγ⋆γδ

βαuα; ð99Þ

N ¼ ðh ∧ uÞ⋆ · k; Nμ
σ ¼ −2uν⋆νμ

σρkρ: ð100Þ

Note that these tensors only contain information about the
observer u, the wave covector k, and the space-time metric
(both in the ⋆ and in the musical isomorphisms that raise
and lower indices on u and k). Also note that the tensorsM
and N are eigentensors of K and L. In particular, one may
verify that

K ·M ¼ ðk · uÞM and N · L ¼ ðk · uÞN; ð101Þ

which allows the revision of Eq. (96) to

X ¼ −
1

2
ðu♭ · uÞ−1K · ½−εþ ½ðk · uÞ−1M þ hγ�

· μ̄ · ½ðk · uÞ−1N þ eγ�� · L: ð102Þ

By the properties of the adjugate, we have

adjðXÞ ¼ −
1

8
ðu♭ · uÞ−3adjðLÞ · adjð−εþ ½ðk · uÞ−1M þ hγ�

· μ̄ · ½ðk · uÞ−1N þ eγ�Þ · adjðKÞ: ð103Þ

One may readily verify that

adjðLÞ ¼ ðk · uÞ2k ⊗ u and

adjðKÞ ¼ ðk · uÞ2u♭ ⊗ k♯; ð104Þ

so that

adjðXÞ¼−
1

8
ðu♭ ·uÞ−3ðk ·uÞ4ðu · adjð−εþ½ðk ·uÞ−1Mþ hγ�

· μ̄ · ½ðk ·uÞ−1Nþ eγ�Þ ·u♭Þðk⊗ k♯Þ: ð105Þ

Since each tensor in adjð� � �Þ above is transverse, then the
quantity u · adjð� � �Þ · u♭ is equivalent to the determinant
restricted to the subspace orthogonal to u. This enables the
application of Sylvester’s determinant theorem to bring out ε,

adjðXÞ¼−
1

8
ðu♭ ·uÞ−3ðk ·uÞ4ðu ·adjðεÞ ·adjðQÞ ·u♭Þðk⊗k♯Þ;

ð106Þ

with

Q ¼ −hþ μ̄ · ½ðk · uÞ−1N þ eγ� · ε̄ · ½ðk · uÞ−1M þ hγ�
ð107Þ

and where ε̄ is the restricted inverse of ε, such that
ε̄ · ε ¼ ε · ε̄ ¼ h. Note that since ε is transverse, then
ε ¼ h · ε · h, which means that

adjðεÞ ¼ adjðh · ε · hÞ ¼ adjðhÞ · adjðεÞ · adjðhÞ: ð108Þ

But since

adjðhÞ ¼ ðu♭ · uÞ−1u♭ ⊗ u; ð109Þ

then

adjðεÞ ¼ ðu♭ · uÞ−2ðu · adjðεÞ · u♭Þu♭ ⊗ u: ð110Þ

This brings us to the final form

adjðXÞ ¼ Pðk ⊗ k♯Þ ð111Þ

as postulated, where

P ¼ −
1

8
ðu♭ · uÞ−4ðk · uÞ4ðu · adjðεÞ · u♭Þðu · adjðQÞ · u♭Þ:

ð112Þ

Thus, I have shown that the requirement detðXÞ ¼ 0, which
is satisfied identically for wave solutions of Maxwell’s
equations, provides the scalar condition P ¼ 0 with P given
above. This subsection began with the form of χ given in
terms of the traditional parameters by Eq. (74). This was not
necessary, and one could easily reexpress Q in terms of the
original set of transverse constitutive parameters derived
from G ¼ ⋆χF, but the approach followed provides a
connection to the set of parameters that are typically more
familiar, and remarkably, they facilitate the factorization ofP
to determine the optical metric and hence the light cones of
the medium, the subject of the next section.

VII. THE OPTICAL METRIC

The concept of the optical metric has a long history. From
the early days of general relativity it was known that the light-
deflecting properties of a massive spherical object could be
obtained without general relativity if the space around the
object were filled with an appropriately refracting medium
[75]. Gordon reversed this observation by asking whether a
refracting medium could be mathematically represented as a
curved vacuum space-time, and found the optical metric for
isotropic dielectricmediamoving in a background space-time
[48]. Tamm studied anisotropic media residing in a
Minkowski background space-time, but did not find the
optical metric for such media [49]. Plebanski identified a
mapping from a general curved space-time into a dielectric
media residing in a flat Minkowski space-time [52], which
essentially provides an avenue to map a medium into an
optical metric. However, since Plebanski’s derivation starts
from thevacuum, it is restricted to nonbirefringentmedia. The
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approach by Balakin and Zimdahl postulates two optical
metrics and then seeks to match them with the material
parameters [59], but does not appear to consider the back-
ground space-time in which the medium resides. The idea of
the optical metric has received a great deal of attention over
the years from different perspectives [36,37,42,60,61], many
of which have a focus on the conditions under which the
optical metric becomes pseudo-Riemannian. By contrast, the
derivation here seeks a tractable expression for the optical
metric in terms of the familiar transverse parameters: begin-
ning with Maxwell’s equations inside a general medium
residing in a background space-time, and showing how the
optical metric emerges in the geometrical optics limit.
As previously mentioned, P is a fourth order polynomial

in k, and wave solutions of Maxwell’s equations must
satisfy P ¼ 0. For normalized observers in vacuum,
P ¼ ½1

2
g−1ðk ⊗ kÞ�2 ¼ ½1

2
gμνkμkν�2 ¼ 0, which shows a

degeneracy in the solutions reflecting the fact that the
vacuum is not birefringent and all polarization states see the
same light cone. The strategy for media in a background
space-time will be to show that P can be written in the form
of two pseudo-Finslerian optical metrics

P ∝
�
1

2
g−1þ ðk ⊗ kÞ

��
1

2
g−1− ðk ⊗ kÞ

�
ð113Þ

that are degenerate for certain types of media and reduce to
g−1 in vacuum.
The remaining unknown quantity in P is u · adjðQÞ · u♭,

a tensorial, index expression for which is

u · adjðQÞ · u♭ ¼ 1

6
uαuβδ

βα1α2α3
αβ1β2β3

Qα1
β1Qα2

β2Qα3
β3 ; ð114Þ

where δβα1α2α3αβ1β2β3
is the generalized Kronecker delta. Thus we

need to consider the cube of the complicated matrix
expression for Q in Eq. (107), and then apply some
complicated combinatorics to each term. To do so with
the most general possible χ can lead one in dizzying circles
for months. Hence, to isolate the critical features of the
optical metric I will make a simplifying assumption on the
parameters but will try to keep them as general as possible.
It turns out that most of the complexity in the optical metric
comes from the magnetoelectric terms hγ and eγ. To see this,
consider the decomposition of hγ and eγ into antisymmetric,
trace, and traceless-symmetric parts as

hγ ¼ γ
h ♯ · ⋆ðu♭ ∧ hÞ þ TrðhγÞhþ hγS ð115Þ

and

eγ ¼ ðh ∧ uÞ⋆ · γ
e þ TrðeγÞhþ eγS: ð116Þ

Here, γ
h
and γ

e
are 1-forms, while eγS and hγS are traceless

and symmetric with respect to the background metric, i.e.
when both indices are either down or up. By comparing

with the definitions ofM and N in Eqs. (99) and (100), one
can see that the antisymmetric parts of hγ and eγ will
naturally combine withM andN in a special way, while the
trace and traceless-symmetric parts will contribute in a
much more complicated manner. Assume, therefore, that eγ
and hγ are each purely antisymmetric and that

TrðhγÞ ¼ TrðeγÞ ¼ eγS ¼ hγS ¼ 0: ð117Þ
This assumption imposes 12 constraints on χ , effectively
reducing the number of free parameters from 36 to 24,
which is still reasonably general, but significantly reduces
the complexity involved in finding the optical metric. One
might think that this condition simply reduces the number
of free parameters in χ by setting some of them to zero, for
example that all the magnetoelectric contributions from the
skewon part of χ , sχ vanish. This is not quite the case
because we are dealing with ðh/eÞγ rather than ðb/eÞγc which
are related by μ, but thus far μ has had no symmetry
conditions imposed on it.
With the preceding assumption on the magnetoelectric

couplings, the complexity is reduced because it allows Q to
be written as

Q ¼ −hþ ðk · uÞ−2μ̄ · ½ðh ∧ uÞ⋆ · ðkþ ðk · uÞγeÞ�
· ε̄ · ½ðkþ ðk · uÞγhÞ♯ · ⋆ðu♭ ∧ hÞ�: ð118Þ

This can be rewritten with some more tractable notation.
Let

Z
e ¼ ðδ ∧ uÞ⋆ · ðkþ ðk · uÞγeÞ;

Z
h ¼ ðδ ∧ uÞ⋆ · ðkþ ðk · uÞγhÞ; ð119Þ

and

W ¼ μ̄ · Z
e
· ε̄ · Z

h
: ð120Þ

Then the tensor Q has the rather more appealing form

Q¼−hþðk ·uÞ−2W ð121Þ

from which it becomes much more straightforward to
calculate the required adjugate. Expanding Eq. (114) leads to

u · adjðQÞ ·u♭¼−
1

6
uαuβδ

βα1α2α3
αβ1β2β3

hβ1α1h
β2
α2h

β3
α3

þ3

6
ðk ·uÞ−2uαuβδβα1α2α3αβ1β2β3

hβ1α1h
β2
α2ðWÞα3β3

−
3

6
ðk ·uÞ−4uαuβδβα1α2α3αβ1β2β3

hβ1α1ðWÞα2β2ðWÞα3β3 :
ð122Þ

The reason there is no ðk · uÞ−6 term is that
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uαuβδ
βα1α2α3
αβ1β2β3

ðZh α1 β1ÞðZ
h

α2
β2ÞðZh α3 β3Þ

¼ ðu♭ · uÞhα1α2α3β1β2β3
ðZh α1 β1ÞðZ

h

α2
β2ÞðZh α3 β3Þ ¼ 0: ð123Þ

This is because the expression in themiddle is proportional to

the three-dimensional determinant of Z
h
in the transverse

subspace, but it can readily be seen in Eq. (119) that Z
h
is

annihilated by both u and kþ ðk · uÞγh and hence is actually
only two dimensional, so its three-dimensional determinant
vanishes identically.
Next, consider the action of the generalized Kronecker

delta on products of h. One finds

uαuβδ
βα1α2α3
αβ1β2β3

hβ1α1h
β2
α2h

β3
α3 ¼ 6ðu♭ · uÞ; ð124aÞ

uαuβδ
βα1α2α3
αβ1β2β3

hβ1α1h
β2
α2 ¼ 2ðu♭ · uÞhα3β3 ; ð124bÞ

uαuβδ
βα1α2α3
αβ1β2β3

hβ1α1 ¼ ðu♭ · uÞhα2α3β2β3
: ð124cÞ

With this, we now have

u · adjðQÞ · u♭ ¼ −ðu♭ · uÞ
�
1 − ðk · uÞ−2TrðWÞ

−
1

2
ðk · uÞ−4ðTrðW ·WÞ − TrðWÞ2Þ

�
:

ð125Þ

Completing the square, this can be factored to

u · adjðQÞ · u♭ ¼ −ðu♭ · uÞ
�
1 −

1

2
ðk · uÞ−2TrðWÞ þ ðk · uÞ−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TrðW ·WÞ − 1

4
TrðWÞ2

r �

×

�
1 −

1

2
ðk · uÞ−2TrðWÞ − ðk · uÞ−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TrðW ·WÞ − 1

4
TrðWÞ2

r �
: ð126Þ

Returning now to Eq. (112) for P, we have

P ¼ 1

2
ðu♭ · uÞðu · adjðεÞ · u♭Þ−1HþH− ð127Þ

with

Hþ ¼ 1

2
ðu♭ · uÞ−2ðu · adjðεÞ · u♭Þ

�
ðk · uÞ2 − 1

2
TrðWÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TrðW ·WÞ − 1

4
TrðWÞ2

r �
ð128Þ

and

H− ¼ 1

2
ðu♭ · uÞ−2ðu · adjðεÞ · u♭Þ

�
ðk · uÞ2 − 1

2
TrðWÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TrðW ·WÞ − 1

4
TrðWÞ2

r �
: ð129Þ

Recall that wave solutions of Maxwell’s equations must
satisfy P ¼ 0. This condition can in turn be met through the
satisfaction of either of the conditions Hþ ¼ 0 or H− ¼ 0.
In other words, the medium exhibits two wave-propagation
eigenstates that follow different ray trajectories, i.e. bire-
fringence. TheH� serve as pseudo-Finslerian structures on
the manifold, and we may define the associated optical
metrics

gμν� ðx; kÞ ¼ ∂2H�
∂kμ∂kν ; ð130Þ

where the arguments of g−1� have been included explicitly to
show that the optical metric depends not just on the location
in the medium but also on the wave covector at any point.
This dependence on the wave covector means that waves
passing through the same point but propagating in different
directions will in general see different optical metrics. This
complicated dependence of the optical metrics on the wave
covector potentially makes them a somewhat less useful
concept than one might otherwise expect. The optical
metric defines the light cone, but the residual dependence
on k may prove to make an algebraic determination of the
light cone in practice rather difficult. Instead, all of the ray
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content for each polarization is contained in H�, as
discussed in Sec. IX.
The expressions for H� given above are not particularly

illuminating. Ideally, we should be able to isolate the k
dependence in an expression of the form

H� ¼ aαβkαkβ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bμνσρkμkνkσkρ

q
; ð131Þ

where aαβ and bμνσρ depend in some way on the usual
material parameters as functions of points on the manifold,
but are independent of k. Examining W, one finds

W ¼ μ̄ · ½ðδ ∧ uÞ⋆ · ðkþ ðk · uÞγeÞ�
· ε̄ · ½ðkþ ðk · uÞγhÞ♯ · ⋆ðu♭ ∧ δÞ�

Wα
κ ¼ −ðu♭ · uÞhλκρψβφgλτε̄σ

τgσψ μ̄αβgηφ

× ðδμρ þ γ
e
ρuμÞðδνη þ γ

e
ηuνÞkμkν

¼ Wα
κμνkμkν ð132Þ

from which it follows that H� attains the desired format

H� ¼ 1

2
ðu♭ · uÞ−2ðu · adjðεÞ · u♭Þ

��
uμuν −

1

2
Wα

αμν

�
kμkν

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
Wα

βμνWβ
ασρ −

1

4
Wα

αμνWβ
βσρ

�
kμkνkσkρ

s �
:

ð133Þ

With this explicit form of the dependence on k, it is
straightforward to show that the optical metrics may be
computed as in Eq. (130), and one may subsequently show
that

H� ¼ 1

2
gαβ� kαkβ ¼ 0 ð134Þ

provides the condition satisfied by light rays in dielectric
media. Although the index expression Eq. (132) for Wα

πμν

looks complicated, it is entirely expressed in terms of the
“usual” transverse parameters ε, μ, hγ, and eγ, and the
background metric, and it may easily be handled by any
computer algebra system.

VIII. REDUCTION TO PSEUDO-RIEMANNIAN
OPTICAL METRIC

A natural question of interest is, under what conditions
does birefringence vanish? For nonbirefringent media, the
independent light cones for each polarization become
degenerate and gþ ¼ g−, or equivalently, Hþ ¼ H−.
This condition requires the square root term of
Eqs. (128) and (129), or equivalently Eq. (133), to vanish,
whence the two associated pseudo-Finslerian optical

metrics defined by Eq. (130) degenerate to a single,
pseudo-Riemannian optical metric. For any given medium
there may exist particular choices of k for which the square
root term vanishes, corresponding to optical axes of the
medium. More generally, one would like to know which
constraints on the medium must be imposed such that the
square root vanishes for all k, which is a more difficult
question to answer. There are several possibilities that
should be investigated, but from the complexity of the
expression it seems clear that it will only vanish under quite
restrictive conditions. In particular, consider the restrictions

γ
e ¼ γ

h ¼ γ, and εαβ and ξαβ symmetric with respect to the
background metric.
First, return to Eq. (132) for W, and let

q ¼ kþ ðk · uÞγ; ð135Þ

then W has the simplified expression

Wα
κ ¼ −ðu♭ · uÞðhλκρψβφqρq

φÞε̄λψ μ̄αβ ð136Þ

(the metric has been absorbed by the symmetry of ε).
Notice that nowWα

κ is actually orthogonal to both u and q,
and is therefore effectively only two-dimensional. Define

j ¼ h −
ðh · qÞ ⊗ ðh · qÞ♯
ðh · qÞ · ðh · qÞ♯ ð137Þ

as the projection operator from the subspace orthogonal to
u to the subspace orthogonal to both u and q. One may
readily show that j · j ¼ j and that the Kronecker h on the
subspace orthogonal to u is projected to j · h · j ¼ j, and
thus j serves as the Kronecker tensor on the subspace
orthogonal to both u and q. Similar to Eq. (72), one finds

hσκρτθφqρq
φ ¼ ððh · qÞ · ðh · qÞ♯Þjσκτθ : ð138Þ

Equation (136) for Wα
κ now becomes

Wα
κ ¼ −ðu♭ · uÞððh · qÞ · ðh · qÞ♯Þjλκψβε̄λψ μ̄αβ: ð139Þ

Calculating the argument of the square root in H� in
Eq. (133), one finds

1

2
TrðW ·WÞ − 1

4
TrðWÞ2

¼ ðu♭ · uÞ2ððh · qÞ · ðh · qÞ♯Þ2

×

�
1

2
jσκτθj

μρ
νβε̄σ

τε̄μ
νμ̄κ

βμ̄ρ
θ −

1

4
ðjσκτθ ε̄στμ̄κθÞ2

�
: ð140Þ

Expanding the generalized Kronecker tensors into products
of j, this becomes
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1

2
TrðW ·WÞ − 1

4
TrðWÞ2

¼ ðu♭ · uÞ2ððh · qÞ · ðh · qÞ♯Þ2

×

�
1

2
Trðε̄jÞ2Trð μ̄2j Þ − Trðε̄jÞTrðε̄j · μ̄2j Þ þ

1

2
Trðε̄2j · μ̄2j Þ

−
1

4
Trðε̄jÞ2Trð μ̄jÞ2 þ

1

2
Trðε̄jÞTrð μ̄jÞTrðε̄j · μ̄jÞ

−
1

4
Trðε̄j · μ̄jÞ2

�
; ð141Þ

where

ε̄j ¼ j · ε̄ · j; μ̄j ¼ j · μ̄ · j: ð142Þ

This will vanish for two possible cases.

A. ε̄ and μ̄ proportional to h

Consider first the case where ε̄ and μ̄ are both propor-
tional to h; i.e. they are both isotropic so ε ¼ εh and
μ ¼ μh. Since j · h · j ¼ j, the sum over traces in Eq. (141)
becomes

ε−2μ−2
�
1

2
Trð jÞ2Trð j2Þ − Trð jÞTrðj · j2Þ þ 1

2
Trð j2 · j2Þ

−
1

4
Trð jÞ2Trð jÞ2 þ 1

2
Trð jÞTrð jÞTrð j · jÞ − 1

4
Trð j · jÞ2

�

¼ ε−2μ−2
�
1

2
Trð jÞ2Trð jÞ − Trð jÞTrð jÞ þ 1

2
Trð jÞ

−
1

4
Trð jÞ2Trð jÞ2 þ 1

2
TrðjÞ2Trð jÞ − 1

4
Trð jÞ2

�
¼ 0; ð143Þ

where the final equality follows from the fact that TrðjÞ ¼ 2.

B. μ̄= ε̄ (equivalently μ= ε)

Next, consider the case in which μ ¼ ε. In this case the
sum of traces becomes

1

4
½−Trð μ̄jÞ4 þ 4Trð μ̄jÞ2Trð μ̄2j Þ − 4Trð μ̄jÞTrð μ̄3j Þ
− Trð μ̄2j Þ2 þ 2Trð μ̄4j Þ�: ð144Þ

To see that this vanishes, rewrite it in the following clever
way:

−
2

24
½Trð μ̄jÞ4 − 6Trð μ̄jÞ2Trð μ̄2j Þ þ 3Trð μ̄2j Þ2

þ 8Trð μ̄jÞTrð μ̄3j Þ− 6Trð μ̄4j Þ�

−
1

6
Trð μ̄jÞ½Trð μ̄jÞ3 − 3Trð μ̄jÞTrð μ̄2j Þ þ 2Trð μ̄3j Þ�: ð145Þ

Now, each of the bracketed terms is the trace expression for
the determinant of a matrix, the first being the four-
dimensional determinant and the second being the three-
dimensional determinant; in other words, Eq. (145) is
equivalent to

−2Det4ð μ̄jÞ − Trð μ̄jÞDet3ð μ̄jÞ: ð146Þ

This vanishes because μ̄j, being the projection of μ̄ into the
two-dimensional subspace orthogonal to both u and q, is
effectively only two dimensional, and hence has identically
vanishing three- and four-dimensional determinants. We

may conclude that a medium with μ̄ ¼ ε̄ and γ
e ¼ γ

h
is also

not birefringent, and the pseudo-Finslerian optical metric
becomes pseudo-Riemannian in these two cases.

C. Expression for pseudo-Riemannian optical metric

Now that the conditions under which H� admit a
pseudo-Riemannian optical metric have been identified,
we may find a more explicit expression for it in terms of the
usual material parameters. Consider first the conditions
adopted in Case 2 above: that ε and μ are equal and
symmetric with respect to the background space-time
metric, and that eγ and hγ are antisymmetric with respect
to the background space-time metric and defined as

described in Eqs. (115) and (116) with γ
e ¼ γ

h ¼ γ.
Returning to the expression for W given by Eq. (136)
and setting ε̄ ¼ μ̄,

TrðWÞ ¼ Wα
α ¼ −ðu♭ · uÞhλαρψβφμ̄λ

ψ μ̄α
βqρqφ: ð147Þ

From Eq. (71) for the three-dimensional inverse on the
transverse subspace, it may be seen that

ðu♭ · uÞhλαρψβφμ̄λ
ψ μ̄α

β ¼ 2ðu · adjð μ̄Þ · u♭Þμφρ ð148Þ

and thus

TrðWÞ¼−2ðu · adjð μ̄Þ ·u♭Þμψθgψρqρqθ
¼−2ðu · adjð μ̄Þ ·u♭Þðgψρμψ θkρkθþgψρμψνγνkρuθkθ

þuρkργμgψμμψθkθþ γμgψμμψνγνuρuθkρkθÞ
¼−2ðu · adjð μ̄Þ ·u♭Þðgψρμψ θþgψρμψνγνuθ

þuργμgψμμψθþ γμgψμμψνγνuρuθÞkρkθ:
ð149Þ

Writing it in an index-free form

TrðWÞ¼−2ðu · adjð μ̄Þ ·u♭Þ½g−1 ·μþðg−1 ·μ ·γÞ⊗ u

þu⊗ ðγ ·g−1 ·μÞþðγ ·g−1 ·μ · γÞu⊗ u�ðk⊗ kÞ:
ð150Þ

ROBERT T. THOMPSON PHYS. REV. D 97, 065001 (2018)

065001-16



Finally, returning to Eqs. (128) and (129) and using the fact
that

ðu♭ · uÞ−2ðu · adjðμÞ · u♭Þðu · adjð μ̄Þ · u♭Þ ¼ 1; ð151Þ

one has

H� ¼ 1

2
½ððu♭ · uÞ−2ðu · adjðμÞ · u♭Þ

þ ðγ · g−1 · μ · γÞÞu ⊗ u

þ ðg−1 · μ · γÞ ⊗ uþ u ⊗ ðγ · g−1 · μÞ
þ g−1 · μ�ðk ⊗ kÞ: ð152Þ

Comparing with Eq. (134), it is clear that the optical metrics
of the medium are degenerate, g−1þ ¼ g−1− ¼ g−1, and

g−1 ¼ ððu♭ · uÞ−2ðu · adjðμÞ · u♭Þ þ ðγ · g−1 · μ · γÞÞu ⊗ u

þ ðg−1 · μ · γÞ ⊗ uþ u ⊗ ðγ · g−1 · μÞ þ g−1 · μ:

ð153Þ

Although it required a rather lengthy derivation to obtain
this expression, it may be verified by making a comparison
between P computed with Eq. (127) using this optical
metric and P computed directly from the adjugate of X as in
Eq. (93). Relative to the observer u, the purely spatial part
of the inverse metric is just μ (¼ε) with its first index raised
by the background space-time metric. The time-space
components of g−1 are somewhat more complicated, but
simplify when one considers g, where they become simply
proportional to the magnetoelectric coupling 1-form γ.
It is straightforward to check that the optical metric

reduces to the background space-time metric in vacuum.
Indeed, setting μ ¼ h and γ ¼ 0, and making use of
Eq. (109) for the adjugate of h, one has

g−1 ¼ ðu♭ · uÞ−1u ⊗ uþ g−1 · h

¼ g−1 ·

�
u♭ ⊗ u

ðu♭ · uÞ þ h

�
¼ g−1 · δ ¼ g−1: ð154Þ

It is also straightforward to check that Gordon’s optical
metric is recovered for the case of isotropic, nonmagne-
toelectrically coupled media comoving with the observer
[48]. Indeed, setting ε ¼ εh, μ ¼ μh, and γ ¼ 0, and
calculating H�, one finds

H� ¼ 1

2
½εðu♭ · uÞ−1u ⊗ uþ μ−1g−1 · h�ðk ⊗ kÞ: ð155Þ

Exploiting the conformal invariance of the metric we may
rescale by μ and expand h to obtain

g−1 ¼ g−1 þ ðu♭ · uÞ−1ðεμ − 1Þu ⊗ u: ð156Þ

Setting the normalization to ðu♭ · uÞ ¼ −1, the index
expression

gαβ ¼ gαβ − ðεμ − 1Þuαuβ ð157Þ

is identical to the optical metric found by Gordon
[48], [Eq. (16)].

IX. RAY TRACING AND KINEMATICS

To put the previous sections into a useful context and tie
up the discussion of geometric optics, I turn now briefly to
the question of ray tracing and the kinematics of con-
gruences. This topic was recently covered in some detail in
Ref. [46], where we studied the kinematics of light beams
traversing dielectric media in curved background space-
times, and derived the generalized Raychaudhuri equation
associated with them. The Raychaudhuri equation
describes how the cross section of a beam evolves along
the length of the beam and can essentially be thought of as
describing the focus of the beam. In Ref. [46] we started
with the proposition that P is factorizable, deferring the
proof for the present paper, and that the associated optical
metrics exist in the form derived here.
In the geometric optics limit, solution data consist of

space-time points p together with a wave-(co)vector k at p.
In other words, solutions consist of curves in the eight-
dimensional cotangent bundle C∶R → T�M, i.e. para-
metrized curves in phase space

CðτÞ ¼ ðpðτÞ; kðτÞÞ ¼ ðxμðτÞ; kμðτÞÞ: ð158Þ
Thus, the geometric optics limit discards the tensorial
nature of the fields and mathematically reduces the wave
equation to the propagation of scalar particles. A physical
ray trajectory C̃ is the projection of a solution curve C from
the cotangent bundle into the manifold M with the
projection operator

π∶T�M → M ð159Þ
such that

C̃ðτÞ ¼ πðCðτÞÞ ¼ pðτÞ: ð160Þ
Obtaining these physical trajectories on the manifold is the
goal of ray tracing, but it should be borne in mind that one
must actually solve for the solution curve C in the cotangent
bundle, and then project this to the manifold.
In the previous sections it was shown that solution curves

must satisfy the condition P ¼ 0, and, at least under certain
conditions on the magnetoelectric coupling, that
P ∝ HþH−. Thus any wave solution of Maxwell’s equa-
tions in the geometrical optics limit must everywhere
satisfy H ¼ 0 for either H ¼ Hþ or H ¼ H−. This means
thatH ¼ 0 anywhere along a solution curve C parametrized
by τ, and thus
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dH
dτ

¼ 0: ð161Þ

Since Hðp; kÞ is a function on the cotangent bundle, then

dH
dτ

¼
�
dxμ

dτ

�∂H
∂xμþ

�
dkμ
dτ

�∂H
∂kμ ¼ ẋμ

∂H
∂xμþ k̇μ

∂H
∂kμ ¼ 0;

ð162Þ

which implies Hamilton’s canonical equations

ẋμ ¼ ∂H
∂kμ ; k̇μ ¼ −

∂H
∂xμ : ð163Þ

The solution to this set of coupled equations determines the
trajectories in the phase space, and the xμðτÞ component
gives the ray trajectories on the manifold. With H as found
in the previous sections, Hamilton’s equations allow for ray
tracing through dielectric media in curved space-times,
where the medium may smoothly vary among positively
refracting, negatively refracting, and vacuum. Since the
frequency component is traced over together with the
spatial components of k, they should automatically account
for gravitational redshift and for frequency-shifting
media [76].
Let

vμ ¼ ẋμ ð164Þ

denote the tangent to C̃. Since H ¼ 1
2
g−1ðk ⊗ kÞ by

Eq. (134), then by the first of Hamilton’s equations it
follows that

v ¼ g−1 · k: ð165Þ

Thus the ray direction is related to the wave vector through
the optical metric. In a vacuum space-time or in isotropic
media one finds that v and k are “parallel.” The typical
statement that v and k are not parallel in more general media
belies the fact that despite having the light cone determined
by the optical metric g, measures of angle and distance are
still understood as being made with respect to the back-
ground metric g. With this realization, one may go further
than simple ray tracing to consider the behavior of con-
gruences of light, i.e. beams in media [46]. By analyzing
such congruences, it has been shown that dielectric analog
space-times—the idea of mimicking the behavior of light
propagation in a curved space-time with a corresponding
dielectric residing in flat space-time—are unfaithful in that
although one may be able to mimic some idea of the ray
trajectory of light, one cannot simultaneously replicate the
behavior of a congruence [35].
It should be emphasized that this result requires access to

the background metric of the space-time in which the
medium is embedded, which is of course the natural setting

for the many ongoing experimental efforts in dielectric
analog space-times. In a premetric setting, the optical
metric is the only metric available and the analysis in that
case is less clear, for while the optical metric of the vacuum
would be identical to the optical metric of the background-
free analog, the kinematics of congruences and the
Raychaudhuri equation depend on covariant derivatives
that in the vacuum are taken with respect to the back-
ground-metric compatible connection. Presumably, one
could by fiat impose a covariant derivative in a
background-free analog that is compatible with the optical
metric there and which might give agreement with the
vacuum kinematics, at least in certain cases, e.g. where the
initial manifold is vacuum and one chooses a trivial
projection. But if, for example, the initial manifold contains
a nonvacuum contribution to the optical metric, such as
from a refractive dust accretion disk in a Kerr background,
then the distinction between background and optical
metrics becomes immediately relevant in a determination
of the kinematics—a distinction that will not carry through
to the optical metric of a background-free analog. Such
background-free constructions can therefore, in special
cases, be consistent and distortion-free from a mathematical
perspective, but are nearly always inconsistent from the
perspective of real-world observers existing in background
space-times making measurements with real instruments,
and who may want to make other relevant (and in
particular, timelike) measurements.
This approach to ray tracing in dielectric media in curved

space-times may also be useful in astrophysical settings
such as light propagating through an accretion disk that
may possess some refractive properties.

X. SUMMARY AND CONCLUSIONS

The goal of this paper was to study the covariant
electrodynamics of general linear dielectric media within
a curved space-time. A (3þ 1) space-time splitting was
provided by a timelike vector field interpreted as a family of
observers moving in the curved space-time. This allowed
the discussion to be formulated in terms of the familiar
spacelike material parameters that would be measured by
these observers. Through the presence of the observers, the
correspondence between χ and the transverse ε, μ, hγ, and
eγ was obtained through an explicit derivation that ensures
true coordinate independence.
Of particular interest is the geometric optics limit and the

derivation of the optical metric. I followed a completely
ab initio derivation starting from the differential-forms
expression of Maxwell’s equations in linear media and
obtained an expression for the pseudo-Finslerian optical
metrics in terms of the familiar material parameters. I have
shown that these pseudo-Finslerian optical metrics reduce
to a pseudo-Riemannian optical metric for media obeying a
curved space-time generalization of the Plebanski condi-
tions, or for isotropic media. For such media in curved
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space-times I have obtained an explicit formula for the
optical metric, Eq. (153), and have shown that Gordon’s
optical metric is recovered exactly for isotropic media.
The formulation pursued here is particularly suited to

transformation optics [16], and it is anticipated that the
structure studied here will provide a framework for expand-
ing the transformation optics theory, for example to non-
linear, dispersive, and lossy media. Furthermore, the ability
to conduct ray tracing and study the kinematics of con-
gruences through media in curved space-times could have
application not only in transformation optics and dielectric

analog space-times but also in astrophysical settings such
as light (or radio wave) propagation through accretion disks
around massive compact objects, or in dark matter, e.g.
MACHO, surveys.
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