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This paper is a follow-up on two previous ones, in which properties of blueshifted rays were
investigated in Lemaître–Tolman (L–T) and quasispherical Szekeres (QSS) spacetimes. In the present
paper, an axially symmetric QSS deformation is superposed on such a L–T background that was proved,
in the first paper, to mimic several properties of gamma-ray bursts. The present model makes z closer
to −1 than in the background L–T spacetime, and, as implied by the second paper, strong blueshifts exist
in it only along two opposite directions. The QSS region is matched into a Friedmann background. The
big bang (BB) function tBðrÞ, which is constant in the Friedmann region, has a gate-shaped hump in the
QSS region. Since a QSS island generates stronger blueshifts than a L–T island, the BB hump can be
made lower—then, it is further removed from the observer and implies a smaller observed angular radius
of the source. Consequently, more sources can be fitted into the sky—all these facts are confirmed by
numerical computations. Null geodesics reaching present observers from different directions relative to
the BB hump are numerically calculated. Patterns of redshift across the image of the source and along the
rays are displayed.

DOI: 10.1103/PhysRevD.97.064047

I. MOTIVATION AND BACKGROUND

In Lemaître [1]–Tolman [2] (L–T) and Szekeres [3,4]
spacetimes, some of the light rays emitted at the big
bang (BB) reach all observers with infinite blueshift

(1þ z ¼def νe/νo ¼ 0, where νe and νo are frequencies of
the emitted and observed radiation, respectively). This is in
contrast to Robertson-Walker spacetimes, where all light
from the BB is observed with z ¼ ∞ [5,6]. The quantity z,
traditionally called redshift, being negative (and then called
blueshift) means that the frequency observed is higher than
the frequency at the emission point, and z → −1 implies
νo → ∞. The existence of blueshifts in L–T models was
predicted by Szekeres in 1980 [7], in a casual remark
without proof, and then confirmed by Hellaby and Lake in
1984 [8] by explicit calculation.
Two conditions are necessary for infinite blueshift:
(1) TheBB time at the emission point of the raymust have

a nonzero spatial derivative in comoving-synchronous
coordinates (the BB is “nonsimultaneous”).

(2) The ray is emitted at the BB in a radial direction.
Condition (2) was derived in Ref. [8], but seems to have
been overlooked by all later authors until Ref. [9], even
though it follows quite simply from the geodesic equations.
The two conditions together seem to be also sufficient, but a
general proof of their sufficiency still does not exist; it is
only implied by the full list of separate cases [8] and hinted
at by numerical calculations [9,10].

The Szekeres spacetimes [3,4], in general, have no
symmetry, thus no radial directions. In view of condition
(2) it was not clear whether any rays with infinite blueshift
exist in them. This question was addressed in Ref. [11]. It
was shown that in an axially symmetric quasispherical
Szekeres (QSS) spacetime, z ¼ −1 can possibly happen on
axial rays, i.e., those that intersect every space of constant
time on the symmetry axis. It was then confirmed by a
numerical calculation in an exemplary QSS model that
1þ z < 10−5 along axial rays emitted from the BB. It was
also shown, by a blind numerical search, that rays with
1þ z < 0.07, and with similar spatial profiles of z along
neighboring rays, exist in an exemplary fully nonsymmetric
QSS model.
Since the L–T and Szekeres models have been proven

to successfully describe several observed features of our
Universe [12,13], and they predict a possible existence of
blueshifts, one must thoroughly test the implications of
blueshifts in order to either find a place for them among
the observed phenomena or conclude that the BB in the
real Universe must have been simultaneous. With this
motivation, it was shown in Ref. [9] that a L–T region
with a gate-shaped “hump” on the BB profile matched into
a Friedmann background can mimic some observed proper-
ties of gamma-ray bursts (GRBs), such as the frequency
range (0.24 × 1019 to 1.25 × 1023 Hz), the existence of
afterglows and the large distances to the sources. Placing
several different L–T regions in the same Friedmann
background would then account for the large number of*akr@camk.edu.pl
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possible sources. However, the model of Ref. [9] was
unsuccessful on two accounts:
(1) The gamma-ray flashes and the afterglows lasted

for too long. The model contains a parameter that
should allow for controlling the durations, but
insufficient numerical accuracy did not permit actual
use of it.

(2) The radiation was emitted isotropically instead of
being collimated into narrow beams, as the observed
GRBs are supposed to be [14].

Also, the model of Ref. [9] left some problems
open. The main one was as follows: How small
could the humps on the BB profile be made while
still generating the right range of frequencies of the
observed radiation.1

Reference [11] was the first step in improving the model
of Ref. [9]. It showed by examples that strongly blueshifted
rays in QSS spacetimes exist only along two opposite
directions. That paper also proved that in a QSS model the
minimum 1þ z is smaller than in a L–T model that has the
same BB profile.
The present paper builds upon this last observation. The

model considered here is a QSS deformation superposed on
the L–T region of Ref. [9]. Since the QSS deformation
results in a smaller 1þ z at the observer, the minimum
value of 1þ z found in Ref. [9] can be achieved with a
lower BB hump. This implies a greater distance between
the source of radiation and the observer, and a smaller
angular diameter of the source seen in the sky. The progress
achieved with respect to Ref. [9] is rather moderate, but this
cannot be the ultimate limit of improvement: The class of
BB profiles used here was found by trial and error (see
Sec. XII), and it is impossible that the optimal shape could
be hit upon in this way.
The L–T and Szekeres metrics are solutions of the

Einstein equations with a dust source, so they cannot apply
to the real Universe at such early times when pressure
cannot be neglected. It is assumed that they may apply
onward from the end of the last-scattering (LS) epoch. The
mean mass density at LS, denoted ρLS, in the now-standard
ΛCDM model is known [9]; see Sec. IV. For every past-
directed null geodesic in a QSS (or L–T) region, the mass
density at the running point is numerically calculated.
When this density becomes equal to ρLS, the integration is
stopped. Thus, 1þ z between LS and the present time is
bounded from below, zLS ≥ zmin > −1. The computational
problem is to arrange the BB profile so that it makes zLS
sufficiently near −1 (1þ zLS < 1.689 × 10−5 [9]), but does
not lead to perturbations of the CMB radiation larger than

observations allow. Among other things, this implies that
the model must be capable of making the angular diameter
of the radiation sources smaller than the observed diameter
of the GRBs (currently2 ≈1°; see Sec. XI).
In Secs. II and III, the subfamily of QSS models

employed here is presented. It is an axially symmetric
QSS region matched into a Friedmann background with
curvature index k ¼ −0.4. In Sec. IV, the parameters of the
background model are specified. They are different from
those of the ΛCDM model [15,16]—it was convenient to
keep them the same as in the earlier papers by this author
[9,10]. In Sec. V, the equations of null geodesics in the QSS
region are presented. In Sec. VI, basic properties of redshift
are described, and the conditions for z ¼ −1 in an axially
symmetric QSS model are spelled out. In Sec. VII, the
equation of the extremum redshift surface (ERS) is
derived,3 on which z has maxima or minima along axial
rays. In Sec. VIII, the numerical parameters of the model
used here are adapted to the GRBs of lowest frequency. In
Sec. IX, exemplary nonaxial plane rays reaching the
present observers are numerically determined. The observ-
ers are placed in three directions with respect to the QSS
region: (I) in prolongation of the dipole minimum, (II) in
prolongation of the dipole maximum, and (III) in prolon-
gation of the dipole equator of the boundary of the
QSS region. For each observer, the redshift profiles across
the image of the radiation source are presented in tables.
In Sec. X, redshift profiles along the nonaxial rays
reaching Observer (I) are displayed to show that analogues
of the ERS exist also along nonaxial directions. In
Sec. XI, it is estimated that ≈11; 000 radiation sources
of Sec. VIII could be fitted into the celestial sphere. The
necessary and possible improvements of the model are
discussed in Sec. XII. Section XIII contains the summary
and conclusions.
The present paper is a study in the geometry of the QSS

spacetimes and in properties of their blueshifted rays.
Also, it introduces methods that can be used in further
refinements of the model. The observed parameters of the
GRBs were used as a beacon pointing the way, but the
configuration derived here needs further improvements
before it can be considered a model of a GRB source;
see Sec. XI.
Most results of numerical calculations are quoted up to

17 decimal digits. Such precision is needed to capture time
intervals of ≈10 min at the observer, which is ≈2 × 10−16

in the units used here; see Sec. III. (The 10 min is a
representative time during which GRBs are visible to the
detectors [9].)

1It is easy to obtain small 1þ z with a high hump on
the BB, but then the radiation source is close to the observer
and has a large angular diameter in the sky. With a lower
hump, the diameter gets smaller, but 1þ z gets larger. Keeping
both the diameter and 1þ z sufficiently small is the main
difficulty.

2Private communication in 2015 from Linda Sparke, then at
NASA. The 1° is the current resolution of the detectors rather
than the true diameter.

3Sections II, IV, V and VII are partly copied from
Ref. [11].
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II. QSS SPACETIMES

The metric of the QSS spacetimes is [3,4,6,17]

ds2¼dt2−
ðΦ;r−ΦE;r /EÞ2

1þ2EðrÞ dr2−
�
Φ
E

�
2

ðdx2þdy2Þ; ð2:1Þ

E ¼def S
2

��
x − P
S

�
2

þ
�
y −Q
S

�
2

þ 1

�
; ð2:2Þ

PðrÞ, QðrÞ, SðrÞ and EðrÞ being arbitrary functions such
that S ≠ 0 and E ≥ −1/2 at all r.
The source in the Einstein equations is dust (p ¼ 0) with

the velocity field uα ¼ δ0
α. The surfaces of constant t and r

are nonconcentric spheres, and ðx; yÞ are stereographic
coordinates on each sphere. At a fixed r, they are related to
the spherical coordinates by

x ¼ Pþ S cotðϑ/2Þ cosφ;
y ¼ Qþ S cotðϑ/2Þ sinφ: ð2:3Þ

The functions ðP;Q; SÞ determine the centers of the
spheres in the spaces of constant t (see illustrations in
Ref. [11]). Because of the nonconcentricity, the QSS
spacetimes, in general, have no symmetry [18].
With Λ ¼ 0 assumed, Φðt; rÞ obeys

Φ;t2 ¼ 2EðrÞ þ 2MðrÞ
Φ

; ð2:4Þ

where MðrÞ is an arbitrary function. We consider models
with E > 0, then

Φðt; rÞ ¼ M
2E

ðcosh η − 1Þ;

sinh η − η ¼ ð2EÞ3/2
M

½t − tBðrÞ�; ð2:5Þ

where tBðrÞ is one more arbitrary function; t ¼ tBðrÞ is the
BB time, at which ΦðtB; rÞ ¼ 0. We assume Φ;t > 0 (the
Universe is expanding).
The mass density implied by (2.1) is

κρ ¼ 2ðM;r −3ME;r /EÞ
Φ2ðΦ;r −ΦE;r /EÞ

; κ ¼def 8πG
c2

: ð2:6Þ

This density distribution is a mass dipole superposed on a
spherically symmetric monopole [4,19]. The dipole, gen-
erated by E;r /E, vanishes where E;r¼ 0. The density is
minimum where E;r /E is maximum and vice versa [20].
The arbitrary functions must be such that 0 < ρ < ∞ at

all t > tBðrÞ. The conditions that ensure this are [20]

M;r
3M

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS;r Þ2 þ ðP;r Þ2 þ ðQ;r Þ2

p
S

∀ r; ð2:7Þ

E;r
2E

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS;r Þ2 þ ðP;r Þ2 þ ðQ;r Þ2

p
S

∀ r: ð2:8Þ

These inequalities imply [20]

M;r
3M

≥
E;r
E

;
E;r
2E

>
E;r
E

∀ r: ð2:9Þ

The extrema of E;r /E with respect to ðx; yÞ are [20]

E;r
E

����
extreme

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS;r Þ2 þ ðP;r Þ2 þ ðQ;r Þ2

p
S

; ð2:10Þ

with þ corresponding to maximum and − to minimum.
In the following, we will call these two loci “dipole
maximum” and “dipole minimum,” respectively.
The L–Tmodels follow from the QSSmodels as the limit

of constant ðP;Q; SÞ. Then the constant-ðt; rÞ spheres
become concentric, and the spacetime becomes spherically
symmetric. The Friedmann limit is obtained when E/M2/3

and tB are constant [in this limit, ðP;Q; SÞ can be made
constant by a coordinate transformation]. A QSS space-
time can be matched to a Friedmann spacetime across an
r ¼ constant hypersurface.
Because of p ¼ 0, the QSS models can describe the past

evolution of the Universe no further back than to the last
scattering hypersurface (LSH). See Sec. VIII for informa-
tion on how to determine it in our model.

III. THE QSS MODELS CONSIDERED
IN THIS PAPER

We will consider such QSS spacetimes whose L–T limit
is Model 2 of Ref. [9]. The r-coordinate is chosen so that

M ¼ M0r3; ð3:1Þ

andM0 ¼ 1 (kept in formulas for dimensional clarity) [10].
From this point on, the r-coordinate is unique. The function
EðrÞ, assumed in the form

2E/r2 ¼def − k ¼ 0.4; ð3:2Þ

is the same as in the background Friedmann model.
The units used in numerical calculations were introduced

and justified in Ref. [21]. Taking [22]

1 pc¼3.086×1013 km; 1 y¼3.156×107 s; ð3:3Þ

the numerical length unit (NLU) and the numerical time
unit (NTU) are defined as follows:

1 NTU ¼ 1 NLU ¼ 9.8 × 1010 y ¼ 3 × 104 Mpc: ð3:4Þ

The BB profile belongs to the same 5-parameter family
as in Ref. [9]; see Fig. 1. It consists of two curved arcs and a
straight line segment joining them. The upper-left arc,
shown as a thicker line, is a segment of the curve
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r6

B1
6
þ ðt − tBf − A0Þ6

B0
6

¼ 1; ð3:5Þ

where

tBf ¼−0.13945554689046649NTU≈−13.67×109 years;

ð3:6Þ

see Sec. IV for comments on this value. The lower-right arc
(also shown as a thicker line) is a segment of the ellipse

ðr − B1 − A1Þ2
A1

2
þ ðt − tBf − A0Þ2

A0
2

¼ 1: ð3:7Þ

The straight segment4 passes through the point ðr; tÞ ¼
ðB1; tBf þ A0Þ where the full curves (shown as dotted lines)
would meet; x0 determines its slope.
The free parameters are A0, A1, B0, B1 and x0. Figure 1

does not show the values used in numerical calculations;
in particular, x0 and A1 are greatly exaggerated. The actual
values in Model 2 of Ref. [9] are

0
BBBBBB@

A0

B0

A1

B1

x0

1
CCCCCCA

¼

0
BBBBBB@

0.000026 NTU

0.0001 NTU

1 × 10−10

0.015

2 × 10−13

1
CCCCCCA

ð3:8Þ

(A1, B1 and x0 are dimensionless). This profile will be the
starting point for modifications.
The QSS model used here is axially symmetric, with

PðrÞ ¼ QðrÞ ¼ 0 and SðrÞ the same as in Ref. [11]:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p
; ð3:9Þ

where a > 0 is a constant, and so

E ¼ 1

2S
ðx2 þ y2 þ S2Þ: ð3:10Þ

This SðrÞ obeys (2.7) and (2.8), which, using (3.1)
and (3.2), both reduce to

1/r > S;r /S: ð3:11Þ

The equation of the dipole “equator” E;r¼ 0 is

x2 þ y2 ¼ S2; ð3:12Þ

the axis of symmetry is x ¼ y ¼ 0. The extrema of the
dipole are, from (2.10),

E;r
E

����
extreme

¼ � S;r
S

: ð3:13Þ

At r > rb, where

rb ¼ A1 þ B1 ¼ 0.0150000001; ð3:14Þ

the BB profile becomes flat, and the geometry of the model
becomes Friedmannian. See Sec. V for remarks on the
choice of coordinates in that region.

IV. THE BACKGROUND MODEL

Our Friedmann background is defined by

Λ ¼ 0; k ¼ −0.4; tB ¼ tBf ; ð4:1Þ

where k is the curvature index and tB is the BB time given
by (3.6); t ¼ 0 is the present time. The tBf is the asymptotic
value of the function tBðrÞ in the L–T model that mimicked
accelerating expansion [10]. This differs by ∼1.6% from
ð−TÞ, where T is the age of the Universe given by the
Planck satellite team [15],

T ¼ 13.819 × 109 y ¼ 0.141 NTU: ð4:2Þ

The density at the last scattering time is [9]

κρLS ¼ 56.1294161975316 × 109 ðNLUÞ−2: ð4:3Þ

This value follows from the model of the cosmological
recombination process [23–25] and is independent of the
after-recombination model. With (4.1), ρLS implies the
redshift relative to the present time,

1þ zbLS ¼ 952.611615159: ð4:4Þ

rrrrrrr

x0

r

B0

B1

x0

y0

A0

A1

x1

y1

r = 0 t = tBf

r

t
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x0

r

B0

B1

x0

y0

A0

A1

x1

y1

r = 0 t = tBf

r

t

FIG. 1. Parameters of the bang-time profile in the quasispher-
ical Szekeres region; see text for explanation.

4It was introduced to keep dtB/dr finite everywhere.
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This differs by ∼12.7% from the ΛCDM value [15,16]

zLS ¼ 1090: ð4:5Þ

The present temperature of the CMB radiation is directly
measured, so if (4.4) were taken for real, the temperature of
the background radiation at emission would be ∼3380 K
instead of ∼3000 K dictated by current knowledge. To
reconcile our model with these data, many recalculations
would be required. Since our model needs other improve-
ments anyway, we will stick to (4.1), to be able to compare
the present results with the earlier ones.

V. NULL GEODESICS IN THE AXIALLY
SYMMETRIC QSS SPACETIMES

In an axially symmetric QSS metric, x and y can be
chosen such that P ¼ Q ¼ 0; then x ¼ y ¼ 0 is the
symmetry axis [26,27]. However, the loci x ¼ ∞ and
y ¼ ∞ are coordinate singularities (they are at the pole
of the stereographic projection), and numerical integration
of nonaxial geodesics breaks down on crossing those sets.
Therefore, we introduce the new coordinates ðϑ;φÞ by

x ¼ Sb cotðϑ/2Þ cosφ; y ¼ Sb cotðϑ/2Þ sinφ; ð5:1Þ

where Sb is S at the Szekeres/Friedmann boundary:

Sb¼defSðrbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ rb2

q
: ð5:2Þ

This changes (2.1) and (2.2) to

ds2 ¼ dt2 −
N 2dr2

1þ 2EðrÞ −
�
Φ
F

�
2

ðdϑ2 þ sin2ϑdφ2Þ; ð5:3Þ

F ¼def Sb
2S

ð1þ cosϑÞ þ S
2Sb

ð1 − cos ϑÞ;

N ¼def Φ;r −ΦF ;r /F : ð5:4Þ

The dipole equator F ;r ¼ 0 is now at cotðϑeq/2Þ ¼ S/Sb (so
ϑeq ¼ π/2 at the QSS boundary). On the boundary sphere
r ¼ rb, we have F ¼ 1 and ðϑ;φÞ become the spherical
coordinates with the origin at r ¼ 0.
Along a geodesic we denote

ðkt; kr; kϑ; kφÞ ¼def dðt; r;ϑ;φÞ
dλ

; ð5:5Þ

where λ is an affine parameter. The geodesic equations
for (5.3)–(5.4) are

dkt

dλ
þNN ;t
1þ2E

ðkrÞ2þΦΦ;t
F 2

½ðkϑÞ2þsin2ϑðkφÞ2�¼0; ð5:6Þ

dkr

dλ
þ2

N ;t
N

ktkrþ
�
N ;r
N

−
E;r

1þ2E

�
ðkrÞ2þ2

S;r sinϑΦ
SF 2N

krkϑ

−
Φð1þ2EÞ

F 2N
½ðkϑÞ2þ sin2ϑðkφÞ2� ¼ 0; ð5:7Þ

dkϑ

dλ
þ 2

Φ;t
Φ

ktkϑ −
S;r sin ϑN
SΦð1þ 2EÞ ðk

rÞ2 þ 2
N
Φ

krkϑ

þ F ;ϑ
F

½−ðkϑÞ2 þ sin2 ϑðkφÞ2�
− cos ϑ sinϑðkφÞ2 ¼ 0; ð5:8Þ

dkφ

dλ
þ 2

Φ;t
Φ

ktkφ þ 2
N
Φ

krkφ

þ 2

�
cos ϑ
sinϑ

−
F ;ϑ
F

�
kϑkφ ¼ 0: ð5:9Þ

The geodesics determined by (5.6)–(5.9) are null when

ðktÞ2− N 2ðkrÞ2
1þ2EðrÞ−

�
Φ
F

�
2

½ðkϑÞ2þsin2ϑðkφÞ2�¼0: ð5:10Þ

Note that kφ ≡ 0 is a solution of (5.9) while ϑ≡ 0 and
ϑ≡ π (axial rays) are solutions of (5.8).
To calculate kr on nonaxial null geodesics, Eq. (5.10)

will be used, which is insensitive to the sign of kr.
A numerical program for integrating the set {(5.6),
(5.8)–(5.10)} will have to change the sign of kr wherever
kr reaches zero.
There exist no null geodesics on which kφ ≡ 0 and ϑ has

any constant value other than 0 or π. This follows from
(5.8): Suppose kφ ≡ 0 everywhere and kϑ ¼ 0 at a point.
Then, if sinϑ ≠ 0, the third term in (5.8) will be nonzero
[because jSΦð1þ 2EÞj < ∞, S;r ≠ 0 from (3.9), N ≠ 0
from no-shell-crossing conditions [20] and kr ≠ 0 from
(5.10)], and so dkϑ/dλ ≠ 0. Consequently, in the axially
symmetric case the only analogues of radial directions are
ϑ ¼ 0 and ϑ ¼ π. The fact reported under (6.4) below is
consistent with this.
The coefficient 1/Φ in (5.8) and (5.9) becomes infinite at

r ¼ 0, where Φ ¼ 0 [9], but all the suspicious-looking
terms are in fact finite there [11]. In the present paper the
only geodesics running through r ¼ 0 will be the axial
ones, on which (5.8) and (5.9) are obeyed identically.
Let the subscript o refer to the observation point. On

past-directed rays kt < 0, and the affine parameter along
each one can be chosen such that

kto ¼ −1: ð5:11Þ

Then, from (5.10) we have

ðkϑoÞ2 þ sin2 ϑðkφoÞ2 ≤
�
F o

Φo

�
2

; ð5:12Þ
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the equality occurs when the ray is tangent to a hypersur-
face of constant r at the observation event, kro ¼ 0.
On the boundary r ¼ rb between the QSS and

Friedmann regions, the coordinates on both sides must
coincide. Thus, for the Friedmann region one must use
the metric (5.3) with tB ¼ tBf given by (3.6) [E has the
Friedmann form (3.2) everywhere]. The metric then
becomes Friedmann with no further limitation on S. But
for correspondence with Ref. [9], we choose the coordi-
nates in the Friedmann region so that

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ rb2

q
¼ Sb: ð5:13Þ

Then, F ¼ 1 and ðϑ;φÞ are the spherical coordinates
throughout the Friedmann region.

VI. THE REDSHIFT IN AXIALLY SYMMETRIC
QSS SPACETIMES

Along a ray emitted at Pe and observed at Po,

1þ z ¼ ðuαkαÞe
ðuαkαÞo

; ð6:1Þ

where uα are the four-velocities of the emitter and of the
observer, and kα is the affinely parametrized tangent vector
field to the ray [5]. In our case, both uα ¼ δ0α, and then
(6.1) simplifies to 1þ z ¼ ket/kot. If the affine parameter is
rescaled so that (5.11) holds, then

1þ z ¼ −ket: ð6:2Þ
Equation (5.9) has the first integral:

kφ sin2 ϑΦ2/F 2 ¼ J0; ð6:3Þ
where J0 is constant. When (6.3) is substituted in (5.10),
the following results:

ðktÞ2 ¼ N 2ðkrÞ2
1þ 2E

þ
�
Φ
F

�
2

ðkϑÞ2 þ
�

J0F
sin ϑΦ

�
2

: ð6:4Þ

Equations (6.4) and (6.2) show that for rays emitted at
the BB, where Φ ¼ 0, the observed redshift is infinite
when J0 ≠ 0. A necessary condition for infinite blueshift
(1þ zo ¼ 0) is thus J0 ¼ 0, so
(a) either kφ ¼ 0, i.e. the ray proceeds in the hypersurface

of constant φ,
(b) or ϑ ¼ 0, π along the ray [J0/ sinϑ → 0 when ϑ → 0, π

by (6.3)].
Condition (b) appears to be also sufficient, but this has been
demonstrated only numerically in concrete examples of
QSS models ([11] and Sec. VIII here).
Consider a ray proceeding from event P1 to P2 and then

from P2 to P3. Denote the redshifts acquired in the intervals
½P1; P2�, ½P2; P3� and ½P1; P3� ¼ ½P1; P2� ∪ ½P2; P3� by z12,
z23 and z13, respectively. Then, from (6.1)

1þ z13 ¼ ð1þ z12Þð1þ z23Þ: ð6:5Þ

In particular, for a ray proceeding to the past from P1 to P2,
and then back to the future from P2 to P1,

1þ z12 ¼
1

1þ z21
: ð6:6Þ

VII. THE EXTREMUM REDSHIFT SURFACE

Consider a null geodesic that stays in the surface
fϑ;φg ¼ fπ; constantg; it obeys (5.8) and (5.9) identically.
On it, kr ≠ 0 at all points because with kϑ ¼ kφ ¼ 0 the
geodesic would be timelike wherever kr ¼ 0, so r can be
used as a parameter. Assume the geodesic is past-directed
so that (6.2) applies. Using (6.2) and changing the
parameter to r, we obtain from (5.6)

dz
dr

¼ NN ;t
1þ 2E

kr: ð7:1Þ

Since N ≠ 0 from no-shell-crossing conditions [20] and
kr ≠ 0, the extrema of z on such a geodesic occur where

N ;t ≡Φ;tr −Φ;t F ;r /F ¼ 0: ð7:2Þ

In deriving (7.2), ϑ ¼ π was assumed, but φ was an
arbitrary constant. Thus, the set in spacetime defined by
(7.2) is 2 dimensional; it is the extremum redshift surface
(ERS) [11].
From (2.4) and (3.2) we obtain

Φ;t¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0r
Φ

− k

r
; ð7:3Þ

Φ;tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0r
Φ

− k

r
þM0r3

Φ2
tB;r: ð7:4Þ

Using (7.3), (7.4) and (5.4) with ϑ ¼ π, Eq. (7.2) becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0r
Φ

− k

r �
1 − r

S;r
S

�
¼ −

M0r3

Φ2
tB;r: ð7:5Þ

To avoid shell crossings, tB;r < 0 must hold at all r > 0

[20,6],5 so the right-hand side of (7.5) is non-negative. The
left-hand side is positive with S given by (3.9). Using (2.5)
for Φ, remembering that k < 0 and denoting

χ¼defsinh2ðη/2Þ ð7:6Þ

5References [20,6] did not spell out the condition r > 0 in
deriving the no-shell-crossing conditions, but it is implicitly
there.
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we obtain from (7.5)

χ4 þ χ3 ¼ −k3
�

rtB;r
4M0ð1 − rS;r /SÞ

�
2

: ð7:7Þ

With k < 0, (7.7) is solvable for χ at any r, since its left-
hand side is independent of r and can vary from 0 to þ∞
while the right-hand side is non-negative.
Note that where tB;r ¼ 0, Eqs. (7.7) and (7.6) imply

χ ¼ η ¼ 0; i.e. at those points the ERS is tangent to the BB.
Also, the ERS is tangent to the BB at r ¼ 0 unless
dtB/dr⟶r→0

∞. (This would imply dρ/dr⟶
r→0

∞, an infi-
nitely thin peak in density at r ¼ 0—an unusual configu-
ration, but not a curvature singularity [28].) The model
considered here will have tB;r ¼ 0 at r ¼ 0.
In the limit S;r ¼ 0, (7.7) reproduces the equation of the

extremum redshift hypersurface (ERH) of Ref. [10].
Equation (7.7) was derived for null geodesics proceeding

along ϑ ¼ π, where F ;r /F ¼ S;r /S > 0. With S given
by (3.9) we have

F1¼def1/ð1 − rS;r /SÞ ¼ ðr/aÞ2 þ 1 > 1; ð7:8Þ

so, at a given r, the ERS has a greater η (and so a greater
t − tB) than the corresponding ERH of the L–T model.
Also, the extrema of z along the dipole maximum occur at a
greater χ (and thus greater t − tB) when a is smaller. This
will be illustrated by Fig. 2 in the next section.
Conversely, for a ray proceeding along the dipole

minimum axis (where ϑ ¼ 0), the factor F1 is replaced by

F2 ¼def 1/ð1þ rS;r /SÞ ¼
a2 þ r2

a2 þ 2r2
< 1; ð7:9Þ

and so the ERS has a smaller t − tB than the ERH in L–T.
Also here, a smaller a has a more pronounced effect.
Extrema of redshift also exist along directions other than

ϑ ¼ 0 and ϑ ¼ π, as will be demonstrated by numerical
examples in Sec. X, but a general equation defining their
loci remains to be derived.

VIII. A GENERALIZED MODEL 2 OF REF. [9]

Along each past-directed null geodesic, the mass density
is calculated using (2.5)–(2.6). As explained in Sec. IV, in
any model the density at the LSH must be the same as in
(4.3). So, the instant of crossing the LSH is that where the
density becomes equal to (4.3).
The starting point for this paper is Model 2 of Ref. [9],

whose functions MðrÞ, EðrÞ and tBðrÞ are given by (3.1),
(3.2) and (3.5)–(3.8). In that model, the strongest blueshift
between the LSH and the present epoch was

1þ zmaxb ¼ 1.36167578 × 10−5: ð8:1Þ
It was calculated by the rule (6.5). The first factor,

1þ zols2 ¼ 1.07858890707746014 × 10−7; ð8:2Þ

was the blueshift between the LSH and r ¼ 0, achieved on
a path that will be called “Ray A.” The second factor,

1þ zpo2 ¼ 126.246039921; ð8:3Þ

was the redshift between r ¼ 0 and the present epoch on a
path going off from the same initial point as Ray A, but to
the future; it will be called “Ray B.”
On Model 2, axially symmetric QSS deformations given

by P ¼ Q ¼ 0, (3.9) and (3.10) are superposed. Numerical
experiments with rays proceeding along ϑ ¼ π were done
to improve on (8.1) as much as possible. As explained
under (7.8), smaller a increases the region under the ERS.
So, with the parameters of (3.8), a2 was gradually changed
from 10 through 1, 1/10, 10−2, 10−3 to 10−4. For each a the
quantity

tð0Þ − tBð0Þ¼defΔtc ð8:4Þ

was chosen such as to obtain a minimum 1þ z between the
LSH and r ¼ 0. This led to smaller 1þ z on Ray A only
down to a2 ¼ 0.001. With a2 still smaller, the ray either
flew over the BB hump and crossed the LSH in the
Friedmann region with a large z > 0 or dipped under the
LSH still within the QSS region with a small z > 0. No
intermediate value of Δtc led to z < 0 (but this disconti-
nuity could possibly be overcome with greater numerical
precision). The best result achieved with a2 ¼ 0.001
was 1þ z2 ¼ 8.87933914173189009 × 10−8.
In the next experiments, the slope of the straight segment

of the BB profile was gradually decreased; i.e x0 was
increased from 2 × 10−13 through 1 × 10−12 to 1 × 10−11,
with the other parameters unchanged. For each value of x0,
the Δtc leading to the smallest 1þ z was determined. The
best result achieved at this stage was

1þ z1 ¼ 6.74014204449235876 × 10−8: ð8:5Þ

Varying A1, B1, B0, and lowering the degree of (3.5) to 4
and to 2, led to nothing better than (8.5). So, this is taken as
the best improvement over the L–T model achieved using
an axially symmetric QSS deformation.
Figure 2 shows Ray A, with 1þ z1 given by (8.5), and

the corresponding ERS and BB profiles. Curve 1 is the
ERH profile of Model 2 from Ref. [9], and Curve 2 is the
ERS profile with a2 ¼ 10−5. As stated above, smaller a
gives more space under the ERS, but when it is too small it
creates a discontinuity in z that prevents z < 0 altogether.
The ERS profile has two branches on each side of r ¼ 0,

so some rays will intersect it four times and z along them
will have two local maxima and two local minima.
Examples will appear in Sec. X.
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On Ray B, the upward 1þ z is

1þ z1 up ¼ 6.39228356761256666 × 10−3: ð8:6Þ
Thus, the total (1þ z) between LSH and now is

1þ z2 ¼
1þ z1
1þ z1 up

¼ 1.05441849899 × 10−5: ð8:7Þ

This fits the lowest-frequency GRBs, for which [9]

1þ zmax ≈ 1.689 × 10−5; ð8:8Þ
with a wider margin than (8.1), so the BB hump can now be
lowered to yield (1þ z) closer to (8.8). The easiest way to
do this is to decrease B0 (see Fig. 1). Then Δtc is fine-tuned
to make ð1þ zolsÞ on Ray A as small as possible (1þ zols
gets larger when B0 gets smaller, so there is a limit on
decreasing B0). The B0 that allows sufficiently small
ð1þ zÞols is

B0 ¼ 0.000091; ð8:9Þ
and then the smallest 1þ z on Ray A is

1þ zols3 ¼ 1.11939135405414447 × 10−7: ð8:10Þ
For Ray B corresponding to Ray A of (8.10) (proceeding

along the dipole minimum), the 1þ z between r ¼ 0 and
the present epoch is

1þ z3 up ¼ 7.11151887923544557 × 10−3; ð8:11Þ
so (1þ z) between LSH and now along Rays A and B is

1þ z3 ¼
1þ zols3
1þ z3 up

¼ 1.574 × 10−5; ð8:12Þ

and the present observer is at

r ¼ robs ¼ 0.88983013520392229: ð8:13Þ

This is larger than rO2¼0.88705643159726955 in Model 2
of Ref. [9]. Thus, a Szekeres deformation superposed on a
L–T model results in moving the observer further from the
radiation source, which leads to a smaller angular diameter
of the source seen in the sky; see Sec. IX.
Rays A and B referred to above have

Δtc ¼ 0.00000863099500 NTU: ð8:14Þ

The corresponding results for rays propagating in the
opposite direction, i.e. along the dipole minimum between
the LSH and r ¼ 0 (Ray C), and along the dipole maximum
between r ¼ 0 and the observer (Ray D), are as follows.
The best value of 1þ z on Ray C is

1þ z1 dip min ¼ 1.73185662921682137 × 10−7; ð8:15Þ

achieved with

Δtc ¼ 0.00000981550000 NTU: ð8:16Þ

Then, 1þ z calculated toward the future along the dipole
maximum is

1þ z2 dmax up ¼ 7.26948511585012724 × 10−3: ð8:17Þ

So, the 1þ z between the LSH and the present time is

1þ z4 ¼
1þ z1 dip min

1þ z2 dmax up
¼ 2.382 × 10−5: ð8:18Þ

The present time was reached by the ray at

r̃obs ¼ 0.88935629118490100: ð8:19Þ

Thus, on this ray 1þ z is larger while robs is smaller.
In each case the numerical calculation overshot the

present time. For the ray that produced (8.11) and
(8.13), the value of t at the endpoint was

tend 1 ¼ 5.75302117391131287 × 10−11 NTU; ð8:20Þ

and for the ray that produced (8.17) and (8.19), it was

tend 2 ¼ 9.65282969667925857 × 10−10 NTU: ð8:21Þ

IX. NONAXIAL PLANE RAYS

So far, rays crossing the symmetry axis of the t ¼
constant spaces in the metric (5.3) and (5.4) were consid-
ered. Now, we will consider nonaxial rays (ϑ will no longer
be 0 or π all along the ray) propagating in a hypersurface of
constant φ. By (6.3), J0 ¼ 0 along them, and they obey

-0.13946

-0.13944

-0.13942

-0.1394

-0.13938

-0.13936

-0.13934

-0.13932

-0.1393

0 0.005 0.01 0.015 0.02

ERS
ERSthe ray

the ray + BB + ERS

BB

BB
BB + ERS

1

2

t

r

FIG. 2. The big bang profile and the axial ray with the smallest
1þ z in the Szekeres model. The short horizontal strokes are at
the ends of the straight BB segment. The dot shows where the ray
hits the LSH. See text for more explanation.
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(5.9) identically. Because of axial symmetry of the model,
the image will be the same for every φ.
We will consider pencils of rays flying through the

vicinity of the BB hump shown in Fig. 2 and reaching the
present observer situated in three locations:
Observer I: At

ðt; r; ϑÞI ¼ ðtend 1; robs; 0Þ; ð9:1Þ

with robs given by (8.13). This is the endpoint of Ray B.
Observer II: At

ðt; r; ϑÞII ¼ ðtend 2; r̃obs; πÞ; ð9:2Þ

with r̃obs given by (8.19). This is the endpoint of Ray D.
Observer III: At

ðt; r;ϑÞIII ¼ ð0; rp; π/2Þ; where rp ¼ ðrobs þ r̃obsÞ/2:
ð9:3Þ

The ϑIII is at the dipole equator on the boundary of the
Szekeres region. One ray reaching Observer III will have
ϑ ¼ π/2 throughout the Friedmann region.
The equations to be integrated are, from (5.6)–(5.10),

dt
dλ

¼ kt; ð9:4Þ

dkt

dλ
¼ −

NN ;t
1þ 2E

ðkrÞ2 −ΦΦ;t
F 2

ðkϑÞ2; ð9:5Þ

dϑ
dλ

¼ kϑ; ð9:6Þ

dkϑ

dλ
¼ −2

Φ;t
Φ

ktkϑ þ sin ϑS;rN
SΦð1þ 2EÞ ðk

rÞ2 − 2
N
Φ

krkϑ

þ sinϑðS2 − Sb2Þ
2SSbF

ðkϑÞ2; ð9:7Þ

dr
dλ

¼ kr; ð9:8Þ

kr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p

N

ffiffiffi
ξ

p
; ξ ¼def ðktÞ2 −

�
Φkϑ

F

�
2

: ð9:9Þ

The initial values for ðt; r; ϑÞ will be at the observer
positions specified above, the initial value for kt is
(5.11), and the rays will be calculated backward in time
from there. With kφ ¼ 0, Eq. (5.12) reduces to

ðkϑoÞ2 ≤
�
F o

Φo

�
2

: ð9:10Þ

As before, the equality occurs when kro ¼ 0.

For observers in the Friedmann region, F o ¼ 1, as
explained under Eq. (5.13). For Observer I, Φo was
calculated by the program that found (8.11); it is

ðΦoÞobs 1 ¼ 0.40202832540890049: ð9:11Þ

The angle α between two rays at an observer can be
calculated as follows. The direction of a ray is determined
by the unit spacelike vector given by [6]

nα ¼ uα −
kα

kρuρ
; ð9:12Þ

where kα is the tangent vector to the ray anduα is the velocity
vector of the observer; nαuα ¼ 0. Since gαβnαnβ ¼ −1, the
angle between the two directions obeys

cos α ¼ −gαβnα1n
β
2: ð9:13Þ

Sinceuα ¼ δα0 everywhere, and k0 ¼ −1 at the observer, the
components of a general nα at the observer are

nαo ¼ ð0; kro; kϑo; kφoÞ: ð9:14Þ

Using (9.9), (5.3) and assuming kφo ¼ 0, we then obtain, for
the angle αRS between rays R and S,

cos αRS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
kϑRoΦo

F o

�
2

s
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
kϑSoΦo

F o

�
2

s

þ kϑRok
ϑ
So

�
Φo

F o

�
2

: ð9:15Þ

Both kϑo must obey (9.10), so j cos αRSj ≤ 1 and αRS obeying
(9.15) exists.
When ray R is axial (kϑRo ¼ 0), and the observer lies in

the Friedmann region where F o ¼ 1, (9.15) becomes

cos αRS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðkϑSoΦoÞ2

q
⇒ sin αRS ¼ kϑSoΦo: ð9:16Þ

This equation can be used to estimate the angular radius of
a radiation source in the sky; then α is the angle between the
direction of the central ray (going along the symmetry axis
for Observers I and II) and the direction of the ray that
grazes the edge of the source. The latter can be approx-
imately determined in numerical experiments.
The redshift in the Friedmann background between the

LSH and the present time, calculated numerically along a
null geodesic, is

1þ zb ¼ 951.83531161489873: ð9:17Þ

This differs slightly from (4.4), which was calculated from
1þ zbLS ¼ Rnow/RLS, where R is the Friedmann scale
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factor, and also from 1þ zcomp ¼ 951.91469714961829
calculated in Ref. [9]. The differences are caused by
numerical inaccuracies (in particular, a different numerical
step was used in [9]). Since all null geodesics in the
following will be calculated numerically, (9.17) will be
taken as the reference value.
The figures in this section show rays that stay over or

near the BB hump for some of the flight time. The initial
value of kr for each ray follows from (9.9) after the value
of kϑo is chosen. At all initial points, kr < 0, but ξ was
monitored along each ray, and when it went down to or
below zero, the sign of kr was reversed.6

A. Rays reaching Observer I

Table I lists the parameters of exemplary nonradial rays
received by Observer I, with the angular radii calculated by
(9.16). The angular radius of the whole BB hump (Ray 9 in
the table) here is somewhat smaller than the 1.00097° in the
L–T/Friedmann model of Ref. [9]. Decreasing this radius
was one of the aims of replacing the L–T region with
Szekeres.
In Figs. 3 and 4 the coordinates are

X ¼ −r cos ϑ; Y ¼ r sin ϑ: ð9:18Þ

Figure 3 shows the projections of the rays from Table I on a
surface of constant t along the flow lines of the dust in a
neighborhood of the QSS region. Figure 4 is a closeup view
on the vicinity of the BB hump. The dotted circle is at
r ¼ rb, the r-coordinate of the edge of the BB hump. The
cross marks the center r ¼ 0 of the dotted circle; the arrow
on the horizontal arm of the cross in Fig. 4 points in the
direction of the Szekeres dipole maximum. The large dots

in Fig. 3 mark the points where the rays intersect the LSH.
The endpoints of the rays are where the numerical
calculation determined their crossing the BB. Figures 3
and 4 are nearly the same as the corresponding ones for
the L–T/Friedmann model in Ref. [9]; there are only small
quantitative differences between them. They are shown
here to facilitate comparisons with the images of the rays
reaching Observers II and III further on.
Ray 0 is not included in the figures because, at

their scale, it would coincide with the Y ¼ 0 axis. It is
included in the table in order to show how 1þ zLSH
abruptly jumps from the near-zero value (8.12) on an axial
ray to a large positive value on a ray that is only slightly
nonaxial.
The redshifts initially increase with the viewing

angle. The maximum zLSH is achieved on Ray 8
inside the image of the source, not at its edge, and it is
larger than the background (9.17). The same thing hap-
pened in the L–T/Friedmann model [9], and will again
occur for Observers II and III further in this paper. Ray 9
just grazes the world-tube r ¼ rb, and zLSH on it is close to
(9.17). Its kϑo was determined by trial and error: For each
ray the program that calculated its path determined the

minimum r¼defrcl along it, and Ray 9 is the one where
rcl−rb¼0.0000000000735095811 was reasonably small.
The rays abruptly change their direction every time they

come near the surface r ¼ rb. The change is sharper on the
second intersection with r ¼ rb where the ray is closer to

TABLE I. Parameters of nonaxial rays reaching Observer I. For
Ray 9, kϑo ¼ 0.042007485.

Ray kϑo Angular radius (°) 1þ z at LSH

0 0.000001 2.3 × 10−5 294.74391009044683
1 0.0005 0.0115 296.54474209835132
2 0.002 0.046 304.52122850647874
3 0.005 0.115 372.37434100449173
4 0.009 0.207 541.61077498481632
5 0.012 0.276 693.38900192388246
6 0.02 0.461 906.63699789072280
7 0.03 0.691 971.70020743827149
8 0.035 0.806 981.87561752691374
9 0.042 0.96767 951.83290067586029
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FIG. 3. Upper panel: Projections of the rays listed in Table I on
a surface of constant t along the flow lines of the cosmic dust.
Observer I is at X ≈ −0.8898, Y ¼ 0 beyond the left margin of the
figure. The large dots mark the intersections of the rays with the
last-scattering hypersurface. The dotted circle has the radius
r ¼ A1 þ B1, where the BB hump has its edge. More explanation
is given in the text. Lower panel: Ray 9 shown all the way
between Observer I and the BB.

6Note that ξ < 0 is impossible on a null geodesic with kφ ¼ 0
by (5.10). But it can happen because of numerical inaccuracy. If
ξ < 0 at step n, then for this step it was replaced by ð−ξÞ; then it
should begin to grow. Along some rays the sign reversals of ξ in a
vicinity of the smallest r had to be done many times.
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the BB. When the rays travel over the BB hump further
from its edge, the deflections are smaller.
The angle of deflection depends on the interval of t that

the ray spends near the edge of the BB hump. Ray 1 meets
r ¼ rb nearly head-on and does not strongly change
direction on first encounter. On second encounter, it is
closer to the BB and is forced to bend around more.
The other rays meet the r ¼ rb surface at smaller angles

than Ray 1, so they stay near it for longer times. For Rays 3,
4 and 5, this causes a much stronger deflection than for
Ray 1. For Rays 6–8, another effect prevails: They fly
farther from the axis, so they approach the BB at larger
t − tB and stay over it for a shorter time; therefore, the
deflection angle decreases again. Ray 9 does not enter the
Szekeres region but only touches it, so it propagates almost
undisturbed as in the Friedmann region.
Figures 3 and 4 show only those rays for which kϑo > 0.

The images of the rays with kϑo < 0 are mirror reflections of
those shown. In fact, since ϑ ¼ 0 is the axis of symmetry,
the image will be the same for every φ, so one should
imagine the complete collection of constant-φ null geo-
desics by rotating Figs. 3 and 4 around the ϑ ¼ 0 axis.

B. Rays reaching Observer II

Table II and Fig. 5 are analogues of Table I and Fig. 4 for
Observer II. The analogue of Ray n from Table I is Ray
10þ n in Table II. The kϑo are the same as in Table I, with
the exception of Ray 19—see below for an explanation.
The angular radii are slightly smaller here because Φo for
Observer II is slightly smaller than (9.11):

ðΦoÞobs 2 ¼ 0.40181424093371831: ð9:19Þ

But at the level of precision used in the tables, the angular
radii for Rays 11–18 are the same as those for Rays 1–8.
The analogue of Ray 0 is not included.
Ray 19 grazes the edge of the Szekeres region—so its kϑ0

determines the angular radius of the whole source by
(9.16). Since robs is smaller here, the angular radius for
Ray 19 is larger than for Ray 9; it is

αII ¼ 0.9681°: ð9:20Þ

The values of 1þ zLSH in Table II are different from
those in Table I, but the general pattern is the same: zLSH
initially increases with the viewing angle, achieves a
maximum inside the image of the source, then decreases
to the background value at its edge. The maximum is
achieved at the same kϑo as before, on Ray 18.

C. Rays reaching Observer III

Observer III, unlike Observers I and II, is not located on
the axis of symmetry, so the (past-directed) rays going off
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FIG. 4. The region near the BB hump in Fig. 3. The arrow on
the horizontal arm of the cross points in the direction of the dipole
maximum. More explanation is given in the text.
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FIG. 5. The analogue of Fig. 4 for Observer II, who is at
X ≈ 0.889, Y ¼ 0 beyond the right margin of the figure. See
Table II for the parameters of the rays.

TABLE II. Parameters of rays reaching Observer II.

Ray kϑo 1þ z at LSH

11 0.0005 358.22989174485627
12 0.002 388.80853980783820
13 0.005 408.06476517495747
14 0.009 504.79183448874682
15 0.012 620.08511872418046
16 0.02 885.02972357472424
17 0.03 970.70644144723383
18 0.035 982.13817446295479
19 0.04205 951.83804564661989
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from her position with kϑo < 0 will not be mirror images of
those with kϑo > 0. Therefore, these two groups of rays are
shown in separate tables and separate figures. Table III
and Fig. 6 contain the rays for which kϑo ≤ 0; the rays in
Table IVand Fig. 7 have kϑo > 0. The set of values of jkϑoj is
the same as in Table I and Fig. 4. The analogues of Ray n
from Table I are Ray 20þ n in Table III and Ray 30þ n
in Table IV.
The value of Φo here is between the previous ones,

ðΦoÞobs 3 ¼ 0.40192128311507536; ð9:21Þ

while to ¼ 0 does not differ significantly from (8.20) and
(8.21), so the angular radii would also be intermediate; they
are not listed in the tables.

The most conspicuous difference from the previous cases
is in Ray 20, which proceeds along ϑ ¼ π/2 in the
Friedmann region: It is deflected toward larger ϑ on entry
to the Szekeres region, and bends oppositely to all other
rays on leaving it. Rays 21 and 22 get deflected so strongly
that they cross the line ϑ ¼ π/2, 3π/2 well inside the
Szekeres region, unlike their analogues, Rays 1, 2, 11
and 12, which cross the ϑ ¼ 0, π lines just before leaving
the Szekeres region. Beginning with Ray 23, the paths of
the rays become similar (though different in numerical
detail) to the corresponding ones for Observers I and II.
The pattern of 1þ zLSH across the image of the source

here is different from those for Observers I and II: With
decreasing kϑo < 0 the redshift achieves a minimum on Ray
22, then a maximum larger than in the background on Ray
28; it then drops to the background value. One ray in this
family (not shown) will pass through r ¼ 0, but with
0 ≠ ϑ ≠ π, so it will not have z ¼ −1 at the BB for the
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FIG. 6. The analogue of Fig. 4 for Observer III, who is at
X ¼ 0, Y ≈ 0.889 above the upper edge of the figure. Only the
rays with kϑo ≤ 0 are shown; see Table III for their parameters.

TABLE III. Parameters of rays with kϑo ≤ 0 at Observer III.

Ray kϑo 1þ z at LSH

20 0.0 342.29964855437106
21 −0.0005 350.64558337051187
22 −0.002 337.49308380652388
23 −0.005 361.19113331483726
24 −0.009 470.62189702521152
25 −0.012 629.72937110236398
26 −0.02 900.56138279350250
27 −0.03 971.41838000807513
28 −0.035 982.30363263812137
29 −0.0425 951.83650139022654

TABLE IV. Parameters of rays with kϑo > 0 at Observer III.

Ray kϑo 1þ z at LSH

31 0.0005 360.79504513233314
32 0.002 381.93470986017479
33 0.005 453.34271919911635
34 0.009 576.90432434248658
35 0.012 682.52857109479601
36 0.02 895.45677016306377
37 0.03 970.72628947084468
38 0.035 982.16761884746518
39 0.0425 951.83650139022654
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FIG. 7. The rays that have kϑo > 0 at Observer III; see Table IV
for their parameters.
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reason indicated under Eq. (6.4). See also Ref. [11], where
rays passing through r ¼ 0 were numerically integrated for
the same kind of Szekeres dipole (but with a different BB
profile and with a2 ¼ 0.1)—only those proceeding along
ϑ ¼ 0, π had z ≈ −1 near the BB.
For rays with kϑo > 0 the pattern of 1þ zLSH is similar

to that for Observer II: There is only the maximum, on
Ray 38. However, the values of 1þ zLSH differ, some of
them substantially, from their counterparts in Table II.
The paths of the rays are similar to those for Observers I

and II, but the angle of deflection is smaller for each ray
here. Also, the rays bend away from the X ¼ 0 axis near the
Y ¼ 0 line—this effect was not visible for Observer I and
barely noticeable for Observer II.

X. REDSHIFT PROFILES ALONG
NONAXIAL NULL GEODESICS

The z-profiles along Rays 1–6 and 9 are shown in Figs. 8
and 9; they are similar to those in the L–T/Friedmann
model [9]. They show that analogues of the ERS (call them
ERS’) exist also along nonaxial rays. Figure 8 shows the
zðrÞ relation for Ray 3 in a neighborhood of r ¼ rb; it is a
key to reading Fig. 9. In segment (a) of the ray, z increases
from 0 at the observer to a local maximum at r ≈ rb, where
the (past-directed) ray intersects the outer branch of the
ERS’ for the first time. Then, in segment (b), z decreases to
a local minimum at a slightly smaller r, where the ray
intersects the inner branch of the ERS’ for the first time.
Further along the ray, in segment (c), z increases until it
reaches the second local maximum at the second inter-
section of the ray with the inner branch of the ERS’.
Then, in segment (d), z decreases up to the second
intersection of the ray with the outer branch of the
ERS’, where it achieves its second and last local minimum.
From then on, in segment (e), z keeps increasing up to ∞
achieved at the BB.

Along Rays 1 and 2 in Fig. 9, the second minimum of z is
smaller than the first maximum, so those zðrÞ curves self-
intersect.

XI. FITTING THE RADIATION SOURCES
IN THE CELESTIAL SPHERE

Imagine a radiation source to be a disk on the celestial
sphere of angular radius ϑ0. Howmany such disks would fit
into the celestial sphere at the same time?
An equivalent question is, how many nonoverlapping

circles of a given radius can be drawn on a sphere of a given
radius? A rough answer would be obtained by dividing the
surface area of the sphere by the surface area inside the
circle. But this would be an overestimate—the circles
cannot cover the sphere completely. A better approximation
is to inscribe each circle into a quadrangle of arcs of great
circles on the sphere. Such figures cannot cover the sphere
either, but this method takes into account some of the area
outside the circles. Details of the calculation are presented
in the Appendix. The area of the sphere divided by the area
of the quadrangle is

N ¼ π

arcsin ðsin2 ϑ0Þ
: ð11:1Þ

Taking ϑ0 ¼ 0.5°, the current resolution of the GRB
detectors (see footnote 2), we obtain

N 0.5 ≈ 41; 254: ð11:2Þ

With ϑ0 ¼ 0.96767° of Table I, we obtain

N 0.96767 ≈ 11; 014: ð11:3Þ
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characteristic branches. Observer I is at r ≈ 0.8898 beyond the
right edge of this figure. See text for explanation.

0

50

100

150

200

250

0 0.005 0.01 0.015 0.02 0.025

all1 and 2

3

45

6

9

1
2 3 4 5 6

r = r
b

r

z

FIG. 9. The zðrÞ relations for Rays 1–6 and 9 from Fig. 3.
Along Rays 1–6, z has two maxima and two minima, which
points to the existence of an analogue of the extremum redshift
surface along them. Ray 9 does not enter the blueshift-generating
region, so z is increasing all along it.

PROPERTIES OF BLUESHIFTED LIGHT RAYS IN … PHYS. REV. D 97, 064047 (2018)

064047-13



Finally, with ϑ0 ¼ 0.9681°, as in (9.20), we obtain

N 0.9681 ≈ 11; 005: ð11:4Þ

It is instructive to compare these numbers with the
number of GRBs detected in observations. This author was
not able to get access to a definitive answer, but here is an
estimate based on partial information. The BATSE (Burst
and Transient Source Explorer) detector, which worked in
the years 1991–2000, discovered 2704 GRBs [29] (it was
de-orbited in 2000 [30]). Assuming the same rate of new
discoveries, 8112 GRBs should have been detected
between 1991 and now—still fewer than (11.4).
When the angular radius is divided by f, the number of

possible sources in the sky should be multiplied by f2.
Equation (11.1) approximately confirms this, since for
small ϑ0 we have sinϑ0 ≈ ϑ0 ≈ arcsinϑ0.

XII. POSSIBLE AND NECESSARY
IMPROVEMENTS OF THE MODEL

The model presented here accounts for the lowest
frequency of the radiation in the observed GRBs (the
model of highest-frequency GRBs was discussed in
Ref. [9]). The angular radius of the radiation sources seen
by the present observer is twice as large as the current
observations allow (nearly 1° in the model vs. 0.5°—the
resolution of the GRB detectors; see footnote 2). In order to
decrease this angle, the BB hump that emits the radiation
should be made narrower or lower; in the second case it
would be further away from the observer seeing the high-
frequency flash. The BB profile chosen in this paper cannot
be the limit of improvement. The first attempt to explain the
GRBs using a cosmological blueshift resulted in a model
[31] whose hump had the height A0 þ B0 ¼ 0.026 NTU
and width A1 þ B1 ¼ 0.108. By experimenting with the
parameters of the hump, the numbers in (3.8) were
achieved; i.e. the height was decreased ≈206 times and
the width 7.2 times. The result of such a blind search cannot
be the best possible. In particular, other classes of shapes of
the BB hump should be tried.
To get small 1þ z, the BB profile should be such that the

blueshifted ray spends as much time as possible traveling
above the LSH but below the ERS. As follows from (7.7)
and (7.8), the room under the ERS becomes larger when
dtB/dr is larger and when a is smaller. The problem with
small a was described in Sec. VIII, but it might be
overcome using a greater numerical precision. A larger
dtB/dr tends to make the BB hump higher. In order to keep
the hump acceptably low, the large dtB/dr has to be limited
to a short interval of r—this is where the steep slope of the
hump in Fig. 2 came from.
A serious limitation is the fact mentioned in Sec. VII that

the ERS is tangent to the BB at r ¼ 0. If this could be
overcome, the rays would stay in the blueshift-generating
region (below the ERS) for a longer time interval, and so

the required 1þ z range could be achieved with a lower or
narrower hump.
Further optimizations are possible. For example, the

function EðrÞ here has the Friedmann shape (3.2) through-
out the Szekeres region—obviously one should check what
happens when it has other shapes. Friedmann backgrounds
other than the one of Sec. IV should be tested. Szekeres
dipoles other than (3.9) should also be tested, in particular,
non-axially-symmetric ones. Carrying out such tests is
laborious—it involves finding, by numerical shooting, the
minimum of a function of several variables [in this paper
these were 7 variables: the five in (3.8), the a of (3.9) and
the Δtc of (8.4)].
Similar to the L–T model of Ref. [9], the model

presented here implies too-long durations for the high-
frequency flashes and for their afterglows. This is because,
in axially symmetric models, once the observer and the
source are placed on the symmetry axis, they stay there
forever—the source does not drift [32–34]. The only
changes of the observed frequency and intensity may then
occur because the observer receives rays emitted from
different points of the BB hump along the same line of
sight, so the changes occur on the cosmological time scale
and are much slower than in the observed GRBs (see
Ref. [9] for the numbers).
A nonsymmetric Szekeres model offers a new possibil-

ity. In such a model there also exist two opposite directions
along which radiation is strongly blueshifted [11].
However, the cosmic drift [32–34] will cause that an
observer who was initially in the path of one of those
preferred rays will be off it after a while. The time scale of
this process should be short in consequence of the very
large distance between the source and the observer and of
the discontinuous change from blueshift to redshift as soon
as the strongly blueshifted ray misses the observer.
One solution of the duration problem has already been

tested and will be submitted for publication soon. If there is
another QSS region between the radiation source and the
observer, then the cosmic drift in the intervening QSS
region will cause the highest-frequency ray to miss the
observer after 10 minutes or less. This satisfactorily solves
the problem of the duration of the high-frequency flash, but
not the problem of the duration of the afterglow. The latter
still awaits solution.

XIII. SUMMARY AND CONCLUSIONS

In Ref. [11], existence and properties of blueshifts in
exemplary simple quasispherical Szekeres models were
investigated. Using that knowledge, in the present paper it
was investigated whether a QSS mass dipole superposed on
a L–T background would allow better mimicking of
gamma-ray bursts by cosmological blueshifting than in
Ref. [9], where pure L–T models were used.
The axially symmetric QSS model was introduced

in Secs. II and III. The QSS region is matched to a
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negative-spatial-curvature Friedmann background (Sec. IV),
chosen for correspondence with earlier papers by this
author [10,21]. After presenting definitions and prelimi-
nary information in Secs. V, VI and VII, in Sec. VIII the
parameters of the QSS model are chosen such that at
present the highest frequency of the blueshifted radiation
agrees with the lowest frequency of the observed GRBs
(this agreement requires that the blueshift between the
last scattering and the present time obeys 1þ z ≤ 1.689 ×
10−5 [9]). The introduction of the Szekeres dipole has the
consequence that the required 1þ z is achieved with a
lower hump in the BB profile, which is thus at a greater
distance from the observer than in the L–T model. In
Sec. IX, the paths of nonaxial light rays reaching three
different present observers are presented. The observers
are placed in prolongation of the mass-dipole maximum
axis, of the dipole minimum axis, and of the dipole
equator. The distributions of the observed redshift across
the image of the source are different for each observer, and
the angular radii of the source are between 0.96767° and
0.9681°. This is nearly twice as much as the current GRB
observations allow, but the model has the potential to be
improved (see Sec. XII). In Sec. X, the redshift profiles
along nonaxial rays were calculated in order to show that
extrema of redshift also exist along them. In Sec. XI, it
was estimated that with the angular radii of the radiation
sources being between 0.96767° and 0.9681°, approxi-
mately 11,000 such sources could be simultaneously fitted
into the sky of the present observer. Finally, possible
further improvements in the model were discussed in
Sec. XII.
The models of generating the high-frequency radiation

flashes discussed here and in Ref. [9] are subject to two
kinds of tests:
(1) In the future, the observers should be able to resolve

the fuzzy disks they now see as GRB sources (see
footnote 2), and measure the distribution of radiation
frequencies and intensities across them. Then it will
be possible to compare those distributions with
model predictions. A model that would predict such
a distribution correctly could then be used to get
information about the sources.

(2) If the gamma flashes are generated simultaneously
with the CMB radiation, as proposed here and in
Ref. [9], then they are observed now as short-lived
because its source comes into and out of the
observer’s view, but has existed there since the
last-scattering epoch. In this case, the central
high-frequency ray should be surrounded by rays
with positive redshifts smoothly blending with the
CMB background at the edge of the source image, as
shown in the tables in Sec. IX. But if a source of the
radiation flash lies later than the last scattering, then
it is independent of the CMB. It should black out all
CMB rays within some angle around the central ray,

and the redshift profile across the image of the
source would not need to continuously match the
CMB at the edge.

This author does not wish to question the validity of the
GRB models proposed so far. The motivation for this work
was this: History of science teaches us that if a well-tested
theory predicts a phenomenon, then the prediction has to be
taken seriously and checked against experiments and obser-
vations. Since general relativity clearly predicts that some of
the light generated during last scatteringmight reach us with
strong blueshift, consequences of this prediction have to be
worked out and submitted to tests. In trying to accommodate
blueshifts, the suspicion fell on the GRBs because it is
generally agreed that at least some of their sources lie
billions of years to the past from now [14]. The BB humps
discussed here would lie about twice as far, at ≈13.6 Gyr to
the past, by (3.6). For the relativity theory, it would be
interesting to know whether at least some of the observed
GRBs are powered by the mechanism discussed here.
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APPENDIX: HOW MANY CIRCLES OF A GIVEN
RADIUS CAN BE DRAWN ON A SPHERE OF A

GIVEN RADIUS?

Imagine a circle K drawn on a sphere S of radius a and a
cone that intersects S along K and has its vertex at the
center of S; see Figs. 10 and 11. Let the opening angle of
the cone be ϑ0. Now imagine a square pyramid circum-
scribed on this cone. The pyramid intersects S along the
curvilinear quadrangle shown in thicker lines in Fig. 10.
The part of S inside the quadrangle has the surface area 8

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

a

K

A

B

C
x

y

FIG. 10. View from the z > 0 axis on the cone and the pyramid.
They intersect the sphere along the circle K and the curvilinear
quadrangle shown by thicker lines, respectively.
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times the surface area inside the curvilinear triangle ABC;
see also Fig. 12.
Suppose the center of the sphere is at x ¼ y ¼ z ¼ 0, so

the equation of the sphere is x2 þ y2 þ z2 ¼ a2, and the
axis of the cone goes along the z axis. The metric of the
sphere in the ðx; yÞ coordinates is

dx2 þ dy2 þ dz2

¼ ða2 − y2Þdx2 þ 2xydxdyþ ða2 − x2Þdy2
a2 − x2 − y2

; ðA1Þ

and so the surface element of the sphere is

ffiffiffi
g

p
dxdy ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − x2 − y2
p dxdy: ðA2Þ

The side AC of the triangle lies in the plane x ¼ 0, and y on
it changes from 0 to a sin ϑ0. The side AB lies in the plane
y ¼ x. The y-coordinate of the point B is

yB ¼ a sin ϑ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 ϑ0

p ; ðA3Þ

as is easy to calculate knowing that this point lies
simultaneously on the sphere x2 þ y2 þ z2 ¼ a2, in the
plane y ¼ x and in the plane z ¼ y cotϑ0 that contains the
right face of the pyramid. The auxiliary point D has
the same y-coordinate as B. The arc BC (which is part
of the intersection of the right face of the pyramid with the
sphere) obeys the equation

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −

y2

sin2ϑ0

s
¼defxBCðyÞ: ðA4Þ

The surface area of the triangle ABC is thus

SABC ¼
Z

yB

0

dy
Z

y

0

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2 − y2

p dx

þ
Z

a sinϑ0

yB

dy
Z

xBCðyÞ

0

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2 − y2

p dx ðA5Þ

¼
Z

yB

0

a arcsin

�
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − y2
p �

dy

þ
Z

a sinϑ0

yB

a arcsin

�
xBCðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − y2

p �
dy: ðA6Þ

The two integrals in (A6) are

SI ¼
a2ϑ0 sin ϑ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 ϑ0

p −
1

2
a2 arcsin ðsin2 ϑ0Þ; ðA7Þ

SII ¼ −
a2ϑ0 sinϑ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 ϑ0

p þ a2 arcsin ðsin2 ϑ0Þ: ðA8Þ

So, the area of the triangle ABC is 1
2
a2 arcsin ðsin2 ϑ0Þ, and

the area of the quadrangle in Fig. 10 is

Squad ¼ 4a2 arcsin ðsin2 ϑ0Þ: ðA9Þ

(When ϑ0 ¼ π/2, this gives the obvious result 2πa2.)
Hints for the less-trivial parts of calculating the integrals:
In SI , change the variables by arcsinð yffiffiffiffiffiffiffiffiffi

a2−y2
p Þ ¼ w and

integrate by parts to get rid of the factor w under the
integral.
In SII , change the variables by y ¼ a sinϑ0 sin u, then

integrate by parts to get rid of arcsin under the integral, and
finally use the identity arctan λ ¼ arcsinð λffiffiffiffiffiffiffiffi

1þλ2
p Þ.

Now an approximate answer to the question in the title
can be given. The quadrangles will not cover the whole
surface of the sphere, but by dividing the surface area of
the sphere, 4πa2, by Squad, we obtain an upper bound on the
number of nonoverlapping circles that can be drawn on the
sphere; it is (11.1).
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meaning as in Fig. 10.
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FIG. 12. A sketch to calculate the surface area of the triangle
ABC on a sphere. See text.
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