
 

Pre-Hawking radiation cannot prevent the formation of apparent horizon
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As an attempt to solve the black hole information loss paradox, recently there has been the suggestion
that, due to semiclassical effects, a pre-Hawking radiation must exist during the gravitational collapse of
matter, which in turn prevents the apparent horizon from forming. Assuming the pre-Hawking radiation
does exist, here we argue the opposite. First we note that the stress energy tensor near the horizon for the
pre-Hawking radiation is far too small to do anything to the motion of a collapsing shell. Thus the shell will
always cross the apparent horizon within a finite proper time. Moreover, the amount of energy that can be
radiated must be less than half of the total initial energy (if the particle starts at rest at infinity) before the
shell becomes a null shell and cannot radiate any more without becoming tachyonic. We conclude that for
any gravitational collapsing process within Einstein gravity and semiclassical quantum field theory, the
formation of the apparent horizon is inevitable. Pre-Hawking radiation is therefore not a valid solution to
the information paradox.
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I. INTRODUCTION

The origin of the particles and in particular the origin of the
energy, in black hole evaporation has been a longstanding
issue,which is still not entirely settled.However in the 1970s,
calculations of the regularized energy-momentum tensor
gave a clear picture of the energy flow due to the quantum
particle creation by the black hole [1]. In this picture, the
conformal anomaly played a crucial role [2]. The 1þ 1
dimensional black hole gives the clearest picture. For a
massless scalar field in 1þ 1 dimensions, the classical
energy momentum tensor has a zero trace. Going to null
coordinates ðu; vÞ, the components of the energymomentum
tensor Tuu and Tvv are independently conserved so that
Tvv;u ¼ 0 and Tuu;v ¼ 0, which implies that the former is
constant along the v ¼ const surfaces, while the latter is also
constant along the u ¼ const surfaces. The flux of radiation,
written, for example, as μlμlν, where lμ is a null vector, is
given by Tuu and Tvv, which are related to the conserved
components by Tuu ¼ Tvv=g2uv and similarly for Tvv. For the

Schwartzschild metric where guv ¼ ð1=2Þð1 − 2m=rÞ, the
flux diverges as one nears the horizon.
However, the conformal anomaly, which makes the trace

of the regularized energy momentum tensor nonzero,
upsets this picture, leading to the picture that for large r,
the Hawking radiation is a positive energy flux directed
along the u ¼ const rays, while near the horizon the energy
flux is negative and directed along the v ¼ const rays into
the horizon, with no flux along the u ¼ const rays near the
horizon. Calculations in 3þ 1 dimensions also support this
picture [3].
Despite this long standing picture, numerous authors

regularly believe that the flux of Hawking radiation is not
originated from the conformal anomaly, but from the matter
which collapses to form the black hole. Since the null rays
that reach infinity intersect the infalling matter exponen-
tially, the closer it is to the horizon, the later those rays
reach infinity. One therefore has an exponentially increas-
ing density of radiation near the horizon. If this were the
picture, then that density of energy could well drastically
alter the picture of the horizon and might well result in
nonformation of the horizon.
Recently, Barcelo et al. discussed what is called pre-

Hawking radiation [4]. It is not at all clear to us what this
means, but from the calculations it seems to mean that
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matter falling into the black hole decays, emitting a positive
energy flux toward infinity, a flux which near infinity looks
a lot like the Hawking flux.
While the standard picture given above is the best

approximation we have to the actual evaporation of a black
hole, based as it is on the semiclassical effect of quantum
matter of the gravitational field, it is an interesting question
to ask—what would happen if we allowed the infalling
matter which is eventually supposed to form a black hole,
were to emit outgoing photons to carry away at least a part
of the energy of the infalling matter. Could one arrange
things so that this outgoing flux would completely deplete
the energy of the infalling matter so that no horizon ever
formed? Two types of researchers answered this by yes
[5,6]. Papers in [5] used the null shell formalism while that
in [6] invoked a radiating timelike shell. Note that the
authors in [5] claimed that the thin-shell approximation is
somehow incomplete (which is incorrect) and that one must
use a thick shell. However, the only way to hold up such
shell is having a huge tangential pressure far larger than its
energy density to stop the shell. This paper, on the other
hand, will answer no. The outgoing null radiation cannot
carry away all of the energy of the infalling matter. Some
will always remain to form a black hole.
We emphasize that our performing this calculation does

not imply that we believe that this scenario represents in
any way the effects of quantummechanics on the formation
of a black hole. The regularized quantum energy, even in
the very early stages of collapse, does not give any support
to the idea that the energy of the outgoing radiation comes
from the infalling matter [7]. The infalling matter has an
energy-momentum tensor that is conserved independently
of the quantum radiation which rides on top of the classical
spacetime. The conservation of the quantum energy comes
from things like the radiation of both positive and negative
fluxes by the conformal anomaly.
This paper is organized as follows. In Sec. II, we

analyze the radiation from a plane in a flat spacetime to
demonstrate some fundamental properties that a radiating
body must hold even without gravity. In Sec. III, we repeat
the analysis for the case of a gravitational collapsing shell
and confirm that the radiation must again be turned off at
some point during the process. In Sec. IV, we investigate
the maximum amount of radiation from the shell, if we
impose the condition that the shell should always be
timelike or null. Finally, in Sec. V, we briefly comment its
implication on the black hole information loss paradox.
Throughout this paper, we follow the convention of c ¼
G ¼ ℏ ¼ 1.

II. NULL RADIATION FROM A PLANE SHELL
IN FLAT SPACETIME

To investigate the backreaction to a radiating body,
let us first consider a radiating plane in flat spacetime.
We consider a sheet of pressureless matter with density

σðuÞ moving along the path x ¼ XðuÞ in a flat plane-
symmetric spacetime with the metric

ds2 ¼ du2 þ 2dudx: ð1Þ

We further assume that this sheet of matter emits radiation
of massless particles in the positive x direction with a
positive intensity λðuÞ. Then the energy-momentum tensor
is described by

Tuu ¼ σδðx − XÞ; ð2Þ

Tux ¼ Txu ¼ σ _Xδðx − XÞ; ð3Þ

Txx ¼ σ _X2 þ λðuÞΘðx − XÞ; ð4Þ

where δðzÞ is the Dirac delta-function and ΘðzÞ the
Heaviside step-function defined as ΘðzÞ ¼ 1 for z ≥ 0
and ΘðzÞ ¼ 0 for z < 0.
Applying the local energy-momentum conservation law

to the system, i.e., Tμν
;ν ¼ 0, we obtain

Tuu
;u þ Tux

;x ¼ 0 → _σ ¼ 0; ð5Þ

Txu
;u þ Txx

;x ¼ 0 → Ẍ ¼ −
λ

σ
: ð6Þ

If λðuÞ is positive even when _X ¼ −1=2, then _X
will become less than −1=2, and the length-squared of
the tangent vector to the shell will go negative. The shell
will become tachyonic. We believe tachyonic matter is
unphysical.
It is interesting to note that by using the coordinate u to

define the trajectory of the shell, one can describe shells
that are always timelike, null or tachyonic. Had one used
the proper length along the shell, the description would
have become singular as the shell became null, making the
analysis more difficult.

III. NULLRADIATION FROMAGRAVITATIONAL
COLLAPSING SHELL

Now we consider a collapsing timelike shell that radiates
energy in the out-going direction. After showing several
simple calculations, we argue that it cannot continue to
radiate indefinitely without becoming spacelike, i.e.,
tachyonic, which is unphysical.
The spacetime inside the shell is described by the flat

Minkowski space in the Eddington-Finkelstein-type coor-
dinates,

ds2− ¼ −du2 − 2dudrþ r2dΩ2; ð7Þ

while the spacetime outside the shell is described by the
outgoing Vaidya metric [8]
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ds2þ ¼ −
�
1 −

2mðUÞ
r

�
dU2 − 2dUdrþ r2dΩ2; ð8Þ

where u and U are outgoing null directions for inside and
outside the shell, respectively, mðUÞ is the mass function
for outside the shell as a function of U, and r is the areal
radius for inside and outside the shell.
These two metrics should be continuous at the shell.

Hence, one can express ds2þ in terms of the time variable u
after introducing a suitable redshift factor. The metric
outside the shell becomes

ds2þ ¼ −
�
1 −

2mðuÞ
r

��
dU
du

�
2

du2

− 2

�
dU
du

�
drduþ r2dΩ2: ð9Þ

Note that the u coordinate is finite and regular even across
the horizon, which is not true of the coordinate U. Using u
as our coordinate will thus allow us to describe the behavior
of the shell (and of the spacetime) even at the horizon.
The shell itself is defined by its path r ¼ RðuÞ. Because

of continuity of the angular part of the induced metric on
the shell, this same equation must apply to both outside and
inside the shell. Note that if the shell is a null ingoing shell,
we must have dR=du ¼ −1=2.
The condition that the induced metric on the shell be the

same from either side of the shell requires

1þ 2
dR
du

¼ U02
�
1 −

2m
R

�
þ 2U0 dR

du
ð10Þ

(where U0 ¼ dU=du) or equivalently

dR
du

¼ 1 −U02ð1 − 2m=RÞ
2ðU0 − 1Þ : ð11Þ

In order to make the full metric continuous across the
shell, we replace the radial coordinate r by a new
coordinate z, such that the shell is located at z ¼ 0,

r ¼
�
Rþ z

U0 ðz > 0Þ;
Rþ z ðz ≤ 0Þ: ð12Þ

The metric of the spacetime thus becomes

ds2 ¼ −
���

1 −
2m

Rþ z=U0

�
U02 þ 2U0R0 −

2zU00

U0

�
ΘðzÞ

þ ð1þ 2R0Þð1 − ΘðzÞÞ
�
du2 − 2dudz

þ
�
Rþ z

U0 ΘðzÞ þ zð1 − ΘðzÞÞ
�

2

dΩ2; ð13Þ

for which all components of the shell are continuous across
the shell.
By assuming that the shell is composed of dust, we can

solve the Einstein equations for the motion of the shell.
Since the Einstein tensor involves second derivatives of the
metric, and since the metric is continuous across the shell,
one expects

Gμν ¼ Gμν
bulk þGμν

shellδðzÞ: ð14Þ

Only the uu, θθ, and ϕϕ coordinates of Gμν
shell can be

nonzero due to spherical symmetry. The dust conditions
imply that the angular components of the Einstein tensor
must be zero. Calculating the Einstein tensor from the
metric, we have

Guu
shell ¼

2ðU0 − 1Þ
RU0 ; ð15Þ

Gθθ
shell ¼

U02mþ U00R2 − RU02 þ RU0

R4U0 : ð16Þ

Zero tangential stress implies that

U00 ¼ −
U0ðU0m − RU0 þ RÞ

R2
: ð17Þ

Thus Eqs. (17) and (10) give two first order equations for
the variablesU0 and R. We can also write them in terms of a
second order equation for R instead. R00 can be obtained by
differentiating both sides of Eq. (11). One can simplify R0
andU00 by using Eqs. (11) and (17). Eventually this relation
simplifies to

R00 ¼ U0

2RðU0 − 1Þ
�
2m0U0 −

�
1 −

�
1 −

2m
R

�
U0

�
2
�
; ð18Þ

where U0 can be obtained in terms of R and its derivative
from Eq. (10). This implies that ifm0 < 0, then R00 is always
negative.
Now we define

ρ≡ R0ðuÞ þ 1

2
¼ −

U0

2ð1 −U0Þ
�
1 − U0

�
1 −

2m
R

��
: ð19Þ

This new variable is useful especially if the shell
approaches the null direction; as R0 approaches −1=2, ρ
goes to zero. By using this new variable, one can rephrase
R00 as follows:

ρ0 ¼ R00 ¼ m0U02

RðU0 − 1Þ −
2ðU0 − 1Þ

RU0 ρ2: ð20Þ

As the shell approaches a null shell, Eq. (11) implies thatU0

approaches ð1 − 2m=RÞ−1. Hence, we obtain
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ρ0 ¼ m0

2m − 4m2=R
−
4m
R2

ρ2: ð21Þ

Therefore, if ρ goes to zero while the shell continues to
radiate (m0 < 0), then ρ will become negative, which
implies that R0 < −1=2 and the shell is tachyonic. It is
therefore reasonable to conclude that a physical shell
cannot emit unrestricted amount of energy; its radiation
must be turned off at certain stage of the emission process
(i.e., m0 should approach zero).
Numerical evaluations for the coupled system of R, U,

and m as functions of u are presented in Figs. 1 and 2. One
can solve Eqs. (18) and (17) for R and U, respectively. In
order to solve those equations we require a definite form for
the function mðuÞ. We follow the BMT model [6] and
assume that mðuÞ satisfies

dm
du

¼ −U0 α

m2
; ð22Þ

where α is a numerical constant that depends on the number
of fields that contribute to the Hawking radiation (we
choose α ¼ 1 for numerical calculations). For initial con-
ditions, we choose arbitrary constants for Rð0Þ, mð0Þ, and
Uð0Þ, though Rð0Þ > 2mð0Þ so as to satisfy the condition
that the shell is initially outside the apparent horizon. R0ð0Þ
that represents the initial velocity of the shell is also
arbitrary as long as R0ð0Þ > −1=2. Once a set of these
initial conditions is chosen, U0ð0Þ is determined by
Eq. (11), where the positive solution is taken.
In our solution we do not assume that the shell remains

timelike or null and allow it to become tachyonic.
Figures 1 and 2 show the typical behavior of R andm. As

the shell approaches the apparent horizon, U0 increases
rapidly, and hence the radiation of the shell increases
correspondingly. At first look, in Fig. 1 we see that a
horizon never forms. The radius of the shell RðuÞ always
remains larger than 2mðuÞ. However it is also clear from
Fig. 1 that R0ðuÞ becomes much smaller than −1=2, i.e., the
shell becomes tachyonic. If we set mðuÞ0 ¼ 0 for u larger
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FIG. 1. Numerical evaluations for the coupled system of R, U,
and m, where the initial condition is given by Rð0Þ ¼ 30,
R0ð0Þ ¼ −0.1, mð0Þ ¼ 10, Uð0Þ ¼ 10 is an arbitrary constant,
and U0ð0Þ is given by Eq. (11), where we choose the positive
definite solution for U0 since both u and U are future directed
coordinates. The dashed lines are plots where m0ðuÞ is set to zero
when the curve becomes lightlike so that the shell cannot go
tachyonic. Upper: RðuÞ (black) and 2mðuÞ (red, apparent
horizon). Lower: The solid lines shows that RðuÞ − 2mðuÞ is
always positive and the shell does not cross the apparent horizon.
The dashed curve does cross. From the upper curve the mass
when the apparent horizon forms differs little from the initial
mass.
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FIG. 2. As the shell collapses, U0ðuÞ rapidly increases (upper).
For the tachyonic case, ρðuÞ (lower) also goes large and negative,
indicating a strongly tachyonic shell. For the dotted case, ρðuÞ is
zero (lightlike shell) near the apparent horizon. Note that the
dotted curve for ρðuÞ coincides with the 0 axis.
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than the point where R0 ¼ −1=2 [i.e., mðuÞ thereafter
remains constant], then R0ðuÞ remains equal to −1=2 and
RðuÞ will rapidly equal 2mðuÞ and continues to RðuÞ ¼ 0,
as shown by the dashed lines in the graphs.

IV. MAXIMUM RADIATION BY A PARTICLE

One can get a feeling for the results of this section by
looking at a massive particle decaying to two oppositely
directed photons. If the initial massive particle is at rest, the
two photons will each carry away half of the rest-mass
energy. If the massive particle is traveling in one direction,
then the photon emitted in that direction will have more
than half of the energy, and if the massive particle’s velocity
approaches that of light, then the energy in the photon
moving in the opposite direction will approach zero. We
will show that the same happens for the gravitating shell.
Let us define the quantity

S≡ 4
U0 − 1

U0 R2

�
1 −U0

�
1 −

2m
R

��
: ð23Þ

This is the square of the energy density in the shell for
timelike matter and would be expected to be conserved if
m0 ¼ 0. It is however also defined and conserved in the
absence of radiation for null and spacelike radiation as well.
Using the equations for R0 and U0, we find

S0 ¼ 8m0ðU0 − 1ÞR; ð24Þ

which means S is conserved if the radiationm0 is zero. If the
shell is null, S ¼ 0, and it is negative for tachyonic matter.
We now evaluate S under various situations. Let us first

consider the situation where a shell located at R0 is at rest
when it begins to collapse. Since the shell satisfies R0 ¼ 0
at the starting point, from the equation for R0 we have

0 ¼ 1 −U02
0

�
1 −

2m0

R0

�
; ð25Þ

or

U0
0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R0

p ; ð26Þ

where the subscript 0 denotes the initial condition of the
shell. Then we obtain

S0 ¼ 4R2
0

�
U0

0 − 1

U0
0

�
2

¼ 16m2
0

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R0

p Þ2 : ð27Þ

If R0 ≫ 2m0, i.e., the shell falls in from a distance that is far
from the putative horizon associated with 2m0, then the
initial condition reduces to

S0 ¼ 4m2
0: ð28Þ

If S becomes negative, the shell turns spacelike, then it
cannot represent physical matter. Thus if S approaches
zero, then m0 should reduce to zero correspondingly for the
system to remain physical, as we argued earlier.
By integrating Eq. (24) and assuming that the minimum

value of S is 0, we find

−ΔS ≤
16m2

0

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R0

p Þ2 ð29Þ

and

16m2
0

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R0

p Þ2 ≥ −8
Z

ðU0 − 1ÞRdm
du

du; ð30Þ

where ΔS ¼ R
S0du for a given integration domain and m0

is assumed to be negative. Since

dðU0 − 1ÞR
du

¼ ðU0 − 1Þ2
2

≥ 0; ð31Þ

the multiplier of m0 is increasing and reaches its minimum
at R0. Therefore, −

R ðU0 − 1ÞRdm ≥ −ðU0
0 − 1ÞR0

R
dm,

and we have

−Δm ≤
m0

2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m0=R0

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m0=R0

p ≤
m0

2
: ð32Þ

Note that the closer the shell approaches the horizon, the
smaller the Δm becomes. Also, from Eq. (30), the closer
to the horizon where the radiation is emitted, the smaller
the change in mass must be. Thus, the maximum amount
of mass that can be radiated must be less than 1=2 of the
total, and it must take place far from the horizon (where
quantum effects would predict a negligible amount of
radiation). Evidently, the shell cannot radiate away its
entire gravitational mass to prevent the formation of the
apparent horizon.
Would a nonzero initial inward velocity at infinity of the

shell help to ameliorate the situation? The answer is no.
Using the equation for R0 again, we have

R0
0 ¼

1 − U02
0 ð1 − 2m0=R0Þ
2ðU0

0 − 1Þ : ð33Þ

Assuming m0 ≪ R0, we expand U0
0 as U0

0 ¼ 1þ αm0=
R0 þOðm0=R0Þ2 and m0 ≪ R0, and find

α ¼ 1

1þ R0
0

ð34Þ

and
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S0 ¼ 4m2
0αð2 − αÞ ¼ 4m2

0

�
1þ 2R0

0

1þ R0
0

�
: ð35Þ

Hence, we obtain the following inequality:

−8
Z

ðU0 − 1ÞRm0du ≤ −
�

8m0

1þ R0
0

�
Δm: ð36Þ

Thus we have

−Δm ≤
�
1þ 2R0

0

2

�
m0 ≤

m0

2
; ð37Þ

since −1=2 ≤ R0
0 ≤ 0. Again, the maximum amount of

radiation that can be radiated is half of the initial
Schwarzschild mass, which corresponds to the situation
where R0

0 ¼ 0 at infinity.
If the shell becomes null, it has no rest mass. Thus the

radiation can cause the rest mass of the shell to go to zero.
However, it is the energy of the shell, not its rest mass, that
determines its Schwarzschild mass, and the gravitational
mass of the shell cannot go to zero without the shell going
tachyonic.

V. CONCLUSION

In this paper, we critically examined the assertion that a
radiating and collapsing shell can never cross the apparent
horizon. Some authors refer to such a radiation as pre-
Hawing radiation. Our analysis has resulted in two major
conclusions. First, the collapsing shell may emit radiation
before the horizon is formed, but it must be weak unless the
shell becomes spacelike. Second, the maximum amount of
the radiated energy is bounded, where our estimation shows
that it cannot be larger than half of its initial energy.
Therefore either the radiation would stop or the shell would
become tachyonic. Since the latter is unphysical, it is
inevitable that the radiation stops at some point during the
collapse. Note that we do not consider the possibility that
there are internal pressures in the shell because such

pressures would have to be huge to counteract the radiation
pressure.
Although our analysis does not rely on the quantum

mechanical nature of the pre-Hawking radiation, authors
of the recent work [7] indeed show that quantum stress-
energy tensor cannot play an important role during gravi-
tational collapse, which is consistent with our result. In a
different setup, authors of [9] calculate a 2D model of the
quantum radiation from a massless scalar field for a
collapsing shell that stops (due to transverse stresses) just
outside the horizon. They show that the quantum emission
is not sufficient to stop the system from almost having a
horizon very near the expected value associated with the
mass that began the collapse. Their conclusion is consistent
with ours.
We conclude that the assertion that pre-Hawking radi-

ation can prevent the formation of the apparent horizon is
based on unphysical assumptions. Black holes do form.
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