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Plasma accreting processes on black holes represent a central problem for relativistic astrophysics. In
this context, here we specifically revisit the classical Ruffini-Wilson work developed for analytically
modeling via geodesic equations the accretion of perfect magnetized plasma on a rotating Kerr black hole.
Introducing the horizon penetrating coordinates found by Doran 25 years later, we revisit the entire
approach studying Maxwell invariants, electric and magnetic fields, volumetric charge density and
electromagnetic total energy. We finally discuss the physical implications of this analysis.
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I. INTRODUCTION

Observations confirm that many astrophysically collaps-
ing objects are associated to multiple stars orbiting together,
with the binary situation representing the most common
system [1]. Because of the presence of magnetic fields in
stellar atmospheres of about 1013G in neutron stars for
instance, it is expected that electromagnetism would play a
crucial role in accretion processes [2]. The study of accretion
onto stationary and moving stars initiated in the 1930s with
many seminal papers by Bondi, Lyttelton and Hoyle [3,4].
The subject was refreshed in the 1960s realizing that active
galactic nuclei (AGNs) are powered by accretion of mag-
netized plasma onto supermassive black holes [5,6].
Moreover, owing to the recent developments in observing
the gamma-ray bursts (GRBs), it has been shown in the
fireball model, depending on the duration of the burst, the
inner engine is possibly associated with the accretion to a
black hole or a neutron star merger [7,8]. In fireshell models
instead [9,10], long and short GRBs have been divided into
two subclasses, depending on whether or not a black hole
(BH) is formed in the merger or in the hypercritical accretion
process exceeding the Neutron Star critical mass [11].
Therefore, finding the mechanism for explaining the engine

for astronomical objects that releases the electromagnetic
radiation in highly energetic wavelengths, like AGNs and
GRBs in search of possible ways to extract their energy
represents one of the most important objectives in high
energy astrophysics. In 1975, Ruffini and Wilson (RW) [2]
and Damour [12] proposed to describe the accretion of a
magnetized plasma onto a Kerr black hole by using Carter
[13] geodesics solutions. The model is based on the
assumption that an infinite conductivity condition for a
magnetized plasma accreting onto a Kerr black hole holds
i.e. FμνUν ¼ 0 (Fμν is the electromagnetic tensor and Uν is
matter four-velocity). As a result, torque will be exerted on
the falling plasma which permits the extraction of rotational
energy from the black hole and moreover electric charge is
induced on the totally collapsed object. Many mechanisms
have been proposed to extract energy from totally collapsed
systems. In the 1970s, Damour and Ruffini [14] proposed a
mechanism to extract energy from an already formed Kerr-
Newman BH through the vacuum polarization process
around the BH, leading to the notions of Dyadosphere
[15–17] and later of Dyadotorus [18]. Blandford and Znajek
[19] in the same years proposed on the other hand a different
mechanism by considering the electron-positron pair pro-
duction in the vicinity of a rotating black hole floating in a
strong magnetic field. Using the force-free condition
FμνJν ¼ 0 [20] with Jμ being the electromagnetic four
current density they incorporated their model into a possible
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scenario forAGNsand thepossibility of extractionof theblack
hole’s energy. In this articlewe revisit theRWwork solutionby
exploitingauseful propertyof this approach, i.e. thepossibility
to find a frame adapted to the infalling plasma adopting the
new form of Kerr metric in the coordinates system regular on
the event horizon found by Doran [21] in 2000 and widely
used especially in numerical relativity. At the time the RW
article was published, these new very useful coordinates were
unknown so it is important to revisit an old solution by using
modern tools. The article is organized as follows. After this
introduction, in Sec. II we present the classical RW analysis
and we discuss the associated Maxwell invariants character-
izing physically and mathematically the solution. In Sec. III
we adopt the aforementioned coordinates in a selected RW
solution case, recasting it in a new form which allows the
detailed study of electric and magnetic fields, volumetric
charge density, currents and of the electromagnetic energy for
the associated normal observer. Finally in Sec. IV physical
implications of this study are discussed.

II. RUFFINI-WILSON-DAMOUR MODEL
FOR ACCRETING PLASMA INTO THE

KERR BLACK HOLE

The Kerr space-time is stationary and axisymmetric and
in Boyer-Linquist (BL) coordinates reads [22]

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2

−
4aMrsin2θ

Σ
dtdϕþ Σ

Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Mra2sin2θ

Σ

�
sin2θdϕ2; ð1Þ

where Σ ¼ r2 þ a2cos2θ and Δ ¼ r2 − 2Mrþ a2. Here M
and a are the total mass and specific angular momentum
respectively characterizing the space-time. In this black
hole solution, the (outer) event horizon is located at rþ ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and Boyer-Lindquist coordinates are sin-

gular there. As anticipated, here we consider the model for
a Kerr black hole accreting plasma with infinite conduc-
tivity. We start from Maxwell equations set on Kerr
background where both the effects of electromagnetic
and matter energy-momentum tensors of the accreting
plasma are assumed to be negligible upon the Kerr back-
ground. The electromagnetic Maxwell tensor in terms of
the vector potential Aμ is [23]

Fμν ¼ Aν;μ − Aμ;ν ð2Þ
so that Maxwell equations read

Fμν
;ν ¼ −4πJμ ð3Þ

and

F½μν;α� ¼ 0: ð4Þ
The motion of charged particles around the black hole
satisfies [12]

mUμ;νUν ¼ qFμνUν ð5Þ
in which q and m are charge and mass of falling particle,
respectively, while Fμν is electromagnetic tensor. In general
charged particles will be accelerated by the electromagnetic
force and will not be geodesic. What RW and Damour
proposed [2,12] was to adopt a self-consistent method for
analyzing the magnetohydrodynamics (MHD) problem
starting from the zeroth order assumption to have geodesic
motion for the charged fluid. If one assumes in fact the
approximation that FμνUν ¼ 0 (perfect plasma condition
[24]) for the matter fluid MHD equations in union with the
request that pressure terms and quantity FμαJα (magnetic
force term) being negligible [12], the fluid motion in this
zeroth order approximation will be given by the geodesic
equations in Kerr space-time,

Uμ;νUν ¼ 0; ð6Þ

analytically solved by Carter [13]. In the case of the RW
solution, one considers Uϕ ¼ 0 (i.e. zero axial component
of the angular momentum [22]) and Ut ¼ −1 at infinity so
that Uθ is a constant of motion on the particle’s trajectory.
The geodesics four-velocity vector field of interest for the
RW solution is [2,12]

Ut ¼ Σðr2 þ a2Þ þ 2Mra2sin2θ
ΣΔ

ð7Þ

Ur ¼ −
½−ΔUθ

2 þ 2Mrðr2 þ a2Þ�12
Σ

ð8Þ

Uθ ¼ Uθ

Σ
ð9Þ

Uϕ ¼ 2MRa
ΣΔ

; ð10Þ

with Uθ constant. Let us consider now the electromagnetic
field associated to the accreting plasma. Since we consider
overall neutral stationary and axisymmetric configurations,
the electromagnetic field expressed in terms of the vector
potential requires Aϕ only [12]. Consequently the only
nonvanishing components of the electromagnetic tensor
result in Fϕr ¼ Aϕ;r, Fϕθ ¼ Aϕ;θ (derived from the vector
potential) in union with another term Frθ, reexpressible as
we will see briefly, in terms of the vector potential again.
By using now the infinite conductivity condition

FμνUν ¼ 0 ð11Þ
(which does not necessarily imply the force-free one i.e.
FμνJν ≠ 0 unless Jν ¼ ρUν with ρ being the charge density,
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i.e. a charged dust [25]), inserting into Maxwell equations
and performing relatively simple manipulations [2,12]
one gets

Aϕ ¼ Aðθ∞Þ ¼ Aϕðθ; rÞ ð12Þ

in which

θ∞ ¼ θ −UθζðrÞ ð13Þ

with

ζðrÞ ¼
Z

∞

r

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðr02 − 2Mr0 þ a2ÞU2

θ þ 2Mr0ðr02 þ a2Þ
q :

ð14Þ

This allows one to finally compute by differentiation
Fϕ;θ ¼ Aϕ;θ and subsequently

Aϕ;r ¼ −
Uθ

Ur Aϕ;θ ð15Þ

as well as

Frθ ¼ −
Uϕ

Ur Aϕ;θ: ð16Þ

Inserting into Maxwell equations, one finally obtains the
corresponding four current density Jμ. Taking the non-
geodesic and nonrotation-free timelike vector nμ ¼
−1/

ffiffiffiffiffiffiffiffi
−gtt

p
δ0μ representing the normal to the t ¼ constant

slices one can write the magnetosphere’s charge outside the
black hole:

Qmag ¼
Z

Jμnμ
ffiffiffi
h

p
d3x≡

Z
Jt

ffiffiffiffiffiffi
−g

p
d3x; ð17Þ

where

h ¼ Σ
Δ
½ðr2 þ a2ÞΣþ 2Mra2sin2θ�sin2θ ð18Þ

is the determinant of the metric hμν induced on the t ¼
const slice. By using the Gauss theorem [2,26], this
volumetric integral can be reexpressed as the two surface
integrals involving the Maxwell tensor Fμν, i.e. Q∞ (an
integral evaluated at infinite radial distance and vanishing
for the overall charge neutrality hypothesis) and Qhole (an
integral on the outer event horizon’s surface). Ruffini and
Wilson then have arrived to the result that the total charge
induced on the black hole surface is opposite to the total
volumetric charge of the outer space, i.e. Qhole ¼ −Qmag.
Algebraic manipulations moreover show that the electro-
magnetic invariants of the solution are

F ≡ 1

2
FμνFμν ¼ ðB2 −E2Þ

¼ 2MrA2
ϕ;θ

Σsin2θ½2Mrðr2 þ a2Þ − ΔU2
θ�

≡ 2MrA2
ϕ;r

Σsin2θU2
θ

≥ 0

G≡ 1

4
Fμν

�Fμν ¼ E ·B ¼ 0; ð19Þ

where E and B are the electric and magnetic fields as
measured by a generic observer. As expected, there must
exist a frame in which he/she measures a magnetic field
only, while the electric one vanishes as well as the
volumetric charge density as shown in the following. As
a by-product of this calculation, the conditions F ≥ 0 and
G ¼ 0 show that no vacuum polarization process á la
Schwinger is possible [14,18,27,28]. The fact that one of
the Maxwell invariants in this solution is zero, while in the
Kerr-Newman (KN) case both are nonvanishing (see [18]
for instance), means that the RW process does not form
such a type of charged black hole. This result is not
unexpected because KN black holes are solutions of
electrovacuum Einstein-Maxwell equations while the
RW solution, although in a perturbative scheme, describes
a nonelectrovacuum situation not included in the unique-
ness theorem for black holes [22]. In order to avoid the
complexity of writing Eq. (13) in terms of elliptic integrals,
we shall use for our analysis now the condition Uθ ¼ 0.
This simplifies remarkably any calculation because from
Eq. (13) θ∞ ¼ θ, so that Aϕ will be a function of θ only, i.e.
Aϕ ¼ FðθÞ. Following RW, we assume FðθÞ ¼ A0j cos θj
(A0 is a constant). Moreover, the first and second distri-
butional derivatives in terms of θ of this solution are
given by

d
dθ

FðθÞ ¼ −A0 sin θ
cos θ
j cos θj≡ −A0 sin θ

j cos θj
cos θ

;

d2

dθ2
FðθÞ ¼ 2A0sin2θδðcos θÞ − A0

cos2θ
j cos θj

≡ 2A0sin2θδðcos θÞ − A0j cos θj: ð20Þ

What we expect to find on physical grounds in general is
that due to the perfect plasma condition, in the plasma
comoving frame no electric field would be present and
consequently no volumetric nor surface charge densities
(sources of the electric field) would be observed. On the
other hand, a purely magnetic field would be there, whose
source would be a spatial current density only. If the
magnetic field would be discontinuous (so undefined on a
sheet for instance), then Dirac delta functions are expected
to occur in the spatial current density accounting for this (a
situation known in the literature as current sheets and
introduced to avoid magnetic monopoles [20]). The

PERFECT RELATIVISTIC MAGNETOHYDRODYNAMICS … PHYS. REV. D 97, 064038 (2018)

064038-3



presence of Dirac deltas and other distributions must not
alarm the reader. These appear in current densities, which
require always a spatial integration in order to obtain finite
quantities as charges or currents, making the presence of
distributions almost fine for many practical purposes then.
However, it is important to stress at this stage that the use of
mathematical distributions in classical electrodynamics,
mechanics, fluid dynamics or other physical context is a
very useful tool for describing with a reasonable level of
accuracy a system bypassing the necessity to account for
the more involved physics occurring in the regions where
these mathematical entities manifest their presence. We are
ready now to reexpress this specific RW solution in horizon
penetrating coordinates and show quantitatively that our
expectations are correct.

III. HORIZON PENETRATING
COORDINATES ANALYSIS

Let us transform the Kerr metric from Boyer-Lindquist
(BL) coordinates ðt; r; θ;ϕÞ to Doran Painlevé-Gullstrand-
like (hereafter DPG) horizon penetrating coordinates
ðT; R;Θ;ΦÞ [21,29] via the transformation

T ¼ t −
Z

r
fðrÞdr; R ¼ r; Θ ¼ θ;

Φ ¼ ϕ −
Z

r a
r2 þ a2

fðrÞdr; ð21Þ

where

fðrÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MrÞðr2 þ a2Þ

p
Δ

ð22Þ

so that

dT ¼ dt − fðrÞdr; dR ¼ dr; dΘ ¼ dθ;

dΦ ¼ dϕ −
a

r2 þ a2
fðrÞdr: ð23Þ

Substituting Eq. (23) into the BL Kerr spacetime element
line gives

ds2 ¼ −
�
1 −

2Mr
Σ

�
dT2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr

r2 þ a2

r
dTdr

−
2að2MrÞ

Σ
sin2θdTdΦ

þ sin2θ

�
r2 þ a2 þ a2ð2MrÞ

Σ
sin2θ

�
dΦ2

− 2asin2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr

r2 þ a2

r
drdΦ

þ Σ
r2 þ a2

dr2 þ Σdθ2; ð24Þ

where we have decided to denote here and in the following
R with r and Θ with θ due to the coincidence of these
coordinates in BL and DPG coordinates. The transformed
RW vector potential results in

Aμ ¼
�
0;−a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr

r2 þ a2

r
FðθÞ
Δ

; 0; FðθÞ
�
; ð25Þ

where we have as anticipated FðΘÞ≡ FðθÞ ¼ A0j cos θj.
Regarding BL geodesics, the transformed four-velocity in
the DPG observer (covariant vector only is here shown due
to its compact form) results in

Uμ ¼
�
−1;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ΔU2

θ þ 2Mrðr2 þ a2Þ
q

Δ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrðr2 þ a2Þ

p
Δ

; Uθ; 0

�
: ð26Þ

The Uθ ¼ 0 case shows that

Uμ ¼ ½−1; 0; 0; 0� ð27Þ

with

Uμ ¼
�
1;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MrÞðr2 þ a2Þ

p
Σ

; 0; 0

�
: ð28Þ

These equations show that Uμ here is the T ¼ const normal
geodesic observer with T being the local proper time of
observers in free fall along trajectories of constant θ and Φ
[21]. Transforming the RW solution with Uθ ¼ 0 from BL
to DPG coordinates, the electromagnetic field tensor has
the only nonvanishing component:

FΦθ ¼ AΦ;θ ≡ dFðθÞ
dθ

¼ −A0 sin θ
j cos θj
cos θ

: ð29Þ

In consequence of the modulus in the vector potential, the
Maxwell tensor is undefined on the equator while the
Maxwell invariants, shown in Fig. 1, are

F ≡ 1

2
FμνFμν ¼ ðB2 −E2Þ

¼ A2
0

ðr2 þ a2ÞΣ ≥ 0

G≡ 1

4
Fμν

�Fμν ¼ E · B ¼ 0; ð30Þ

where regularity on the equator of the first invariant is an
artifact of the identity ðj cos θj/ cos θÞ2 ¼ 1.
In the orthonormal locally Lorentzian frame naturally

associated to the DPG normal observer [21],
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eð0Þμ ¼ ½−1; 0; 0; 0�

eð1Þμ ¼
� ffiffiffiffiffiffiffiffiffi

2Mr
Σ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ

r2 þ a2

r
; 0;−

ffiffiffiffiffiffiffiffiffi
2Mr
Σ

r
asin2θ

�

eð2Þμ ¼ ½0; 0;
ffiffiffi
Σ

p
; 0�

eð3Þμ ¼ ½0; 0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ�; ð31Þ

the tetradic Maxwell tensor FðaÞðbÞ ¼ eðaÞμeðbÞμFμν has the
only nonvanishing component,

Fð3Þð4Þ ¼ −Fð4Þð3Þ ≡ Bð1Þ ≡ Br̂ ¼ −
A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ a2ÞΣ
p j cos θj

cos θ
:

ð32Þ

In such a frame the electric field is zero everywhere, as
expected from the initial infinite conductivity assumption,
while the magnetic field is nonzero. We point out that the
modulus function in the vector potential produces a
Maxwell tensor discontinuous on the equator so distribu-
tions are expected to occur in the four-current density Jμ in
order to account for this fact, i.e.,

JT ¼ 0; ð33Þ

Jr ¼ πMraA0½δðcos θÞΣsin2θ − ða2 þ r2Þj cos θj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrðr2 þ a2Þ

p
Σ3

; ð34Þ

Jθ ¼ πM2raA0½a2ða2 − r2Þcos2θ − 3a2r2 − 5r4�
4

ffiffiffi
2

p ðMrðr2 þ a2ÞÞ32Σ3

× sin θ
j cos θj
cos θ

; ð35Þ

JΦ ¼ πA0δðcos θÞ
2Σðr2 þ a2Þ : ð36Þ

It is interesting to plot the current density lines in space-
time. These are numerically obtained by solving the
differential equations set dxα

dλ ¼ Jα, where λ parametrizes
each curve although the presence of distributions makes the
procedure nontrivial. We point out that the current density
lines are A0 independent because such a common multi-
plicative factor can be reabsorbed in the affine parameter λ.
On the equatorial plane, i.e. θ ¼ π/2, the component Jθ is
undefined, however in comparison to the remaining com-
ponents of the four current density which contains diverg-
ing Dirac deltas activated on the same plane, it can be safely
neglected there. Consequently, current density lines which
start equatorially remain there confined. More in detail
these current density lines are given by the differential
equation

dr
dΦ

¼ lim
θ→π

2

Jr

JΦ
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mðr2 þ a2Þ

p
r
3
2

: ð37Þ

Integration of this relation for different initial values of
radius and angles on the equator leads to nonaxisymmetric
spiraling configurations. For configurations starting off the
equator instead, the current density lines have an axisym-
metric structure. The absence of continuity and differ-
entiability for the vector field Jμ on the equatorial plane
implies that uniqueness for the solution is not guaranteed,
so in principle two curves are allowed to meet on an
equatorial point, closing in this way the electrical circuit
[30]. This scenario is shown in Fig. 2 produced by using
MATLAB

®. In Boyer-Linquist coordinates this plot looks
different especially close to the horizon because of the
dragging of inertial frames which would make current
density lines whirl around the black hole reaching the
horizon asymptotically only as shown in Fig. 3.
Figure 2 would seem somewhat analogous to what

happens for a classical Faraday conducting and rotating
disk immersed into a uniform magnetic field. In the latter
charge density occurs [31] together with spiraling current

FIG. 1. Maxwell invariant F in DPG coordinates for a Kerr
black hole, with parameters A0 ¼ 0.1M, a ¼ M ¼ 1 andUθ ¼ 0.
Colored shells represent selected isosurfaces: F ¼ 3 × 10−3

(yellow), F¼2×10−3 (green), F ¼1×10−3 (red), F ¼5×10−4

(blue). The outer event horizon is represented by the gray solid
sphere. Up to a 1/ð8πÞ multiplicative constant factor, this plot
gives also the energy density measured by the DPG normal
observer discussed in the text.

FIG. 2. Current density lines in DPG coordinates for a Kerr
black hole with parameters A0 ¼ 0.1M, a ¼ M ¼ 1 and Uθ ¼ 0,
where standard spherical coordinates have been used for visu-
alization purposes only. Red lines represent off equatorial current
density lines while blue ones denote the equatorial ones. The
outer event horizon is represented by the grey transparent sphere.
The current density lines are continued inside the horizon due to
the use of horizon penetrating coordinates.
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density lines [32]. However, here we have a major differ-
ence in the fact that charge density JμUμ ≡ Jð0Þ ¼ ρ
measured by the normal DPG observer (28) vanishes in
the whole spacetime. This is consistent with a zero electric
field in this plasma comoving frame, as expected from
basic Newtonian plasma physics in which charge density
and electric field disappear in a locally comoving and
corotating frame (in general difficult to be found) charac-

terized by ∇⃗ × v⃗ ¼ 0 [33]. This better explains the zero
volumetric charge calculated by Ruffini and Wilson in their
classical work [2]. As a consequence the DPG observer
measures a purely spatial current density “paying the price”
for sustaining the magnetic field. Of course projecting the
Jμ in DPG coordinates obtained for Uθ ¼ 0 on different
timelike congruences, for instance a geodesic four-velocity
characterized by Uθ ≠ 0, leads to complicated volumetric
charge densities localized in space-time instead. These
results can be better understood in a geometrical language
by starting from the infinite conductivity condition
FμνUν ¼ 0. Let us perform its divergence so that

ðFμνUνÞ;μ ≡ Fμν
;μUν þ FμνUν;μ ¼ 0 ð38Þ

which, by using Maxwell equations, becomes

−4πJνUν þ FμνUν;μ ¼ 0: ð39Þ

A simple check shows that the geodesics of RWanalysis in
Boyer-Linquist coordinates describing the matter flow are
rotation free, i.e. ωαβ ¼ u½α;β� ¼ 0. Regarding DPG coor-
dinates, the normal observerUμ forming—by definition—a
congruence which is hypersurface orthogonal to spacelike
hypersurfaces [34] (in our case T ¼ constant ones) has
again zero rotation because of the Frobenius theorem [26].
These two apparently different situations expressed in
different coordinates refer to the same observer.
Incidentally we remind that the fluid comoving observer
and the normal one are the ones naturally involved in
discussing relativistic Ohm’s law and the ideal MHD
condition (see exercise 11.16 in [35] and also [36]). The
consequence of vanishing rotation tensor in the cases
discussed above is that Uν;μ is a symmetric tensor, whose

contraction with the always antisymmetric Maxwell tensor
gives zero, i.e. FμνUν;μ ¼ 0. Consequently, for this geo-
desic observer we must have in Eq. (39) that JνUν ≡ ρ ¼ 0,
i.e. he/she always measures zero charge density (and zero
electric field because of FμνUν ≡ Eμ ¼ 0) everywhere
although a purely spatial current density accounting for
the existence of the magnetic field is measured. More
general geodesics (or accelerated observers) characterized
by a nonzero rotation (i.e. Uν;μ nonsymmetric) would
generate on the other hand a nonzero charge density.
This result is of course in the spirit of relativity where
local charge density is relative to the observer [33], still
leading to important physical consequences as it happens
for instance in the case of the well-known astrophysical
Goldreich-Julian charge density mechanism [37]. These
results show moreover also that already in the Uθ ¼ 0 case
we cannot write the current density as a charged dust one
Jμ ≠ ρUμ. We compute now the electromagnetic energy
stored outside the event horizon through a T ¼ const
hypersurface as measured by DPG normal observers,
always in the Uθ ¼ 0 case. We remark that this is a
quasilocal quantity and depends on different possible cuts
of spacetime [38,39]. In formulas,

EΣðUÞ ¼
Z
Σ
TðemÞ
μν UμdΣν; ð40Þ

where Σ is a bounded hypersurface containing a portion of
spacetime, and Uμ is the four-velocity of the normal
observer. Local energy density turns out to be then

E ¼ TðemÞ
μν UμUν ≡ A2

0

8πðr2 þ a2ÞΣ ; ð41Þ

where TðemÞ
μν is the electromagnetic energy-momentum

tensor expressed in DPG coordinates. Let us assume that
the boundary S of Σν be the 2-surface r ¼ R ¼ const, so
that energy (40) turns out to be

EðN Þðrþ;RÞ ¼ 2π

Z
R

rþ

Z
π

0

EðN Þ
ffiffiffiffiffiffiffi
hN

p
drdθ

¼ A2
0

2a

�
arctan

R
a
− arctan

rþ
a

�
; ð42Þ

where hN ¼ Σ2sin2θ is the determinant of the induced
metric. The apparently singular behavior of the total energy
in the a → 0 limit can be removed by setting a ¼ 0 in (42)
before integration so that

EðN Þðrþ;RÞ ¼
A2
0

2

�
1

rþ
−

1

R

�
: ð43Þ

In order to induce a net charge on the surface of the black
hole, Ruffini and Wilson adopted a nonvanishing
UθðθÞ ¼ −Uθðπ − θÞ ¼ const. Due to the absence in the

FIG. 3. Current density lines in BL coordinates for a Kerr black
hole, with parameters A0 ¼ 0.1M, a ¼ M ¼ 1 and Uθ ¼ 0. Red
lines represent off equatorial current density lines while the blue
colored denote the equatorially confined ones. The outer event
horizon is represented by the gray solid sphere.
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literature of Doran-like coordinates for nonzero Uθ we will
not extend here the previous analysis leaving it to the future
studies. We can finally verify a posteriori that the initial
assumption which led us to obtain our analytical solution
result satisfied i.e. the role of the magnetic force term
fμ ¼ FμνJν being negligible. From Eqs. (29) and (33), we
obtain in fact

fT ¼ 0; fr ¼ 0; fθ ¼
A2
0 sin θ cos θπδðcos θÞ
2j cos θjΣðr2 þ a2Þ

fΦ ¼ A2
0πa

ffiffiffiffiffi
M

p
sin2θ½r2ð5r2 þ 3a2Þ þ a2cos2θðr2 − a2Þ�

4
ffiffiffiffiffi
2r

p ðr2 þ a2Þ32Σ3
;

ð44Þ

which is decreasing with the distance from the black hole as
well as its invariant norm. In order to have an “order of
magnitude” estimate of these magnetic effects, we evaluate
for the sake of simplicity the square of the norm of fμ at a
representative point P of the event horizon rþ (where
relativistic effects are expected to be more relevant), off the
equatorial plane (where the previously discussed math-
ematical distributions are present). We select moreover an
extreme black hole with a ¼ M so that the point P is
characterized by rþ ¼ M together with a generic angle Φ
and for simplicity θ ¼ π/4. We write also A0 ¼ αM with α
being a dimensionless number whose modulus is assumed
in our analysis to be much smaller than 1. This choice
satisfies the test field approximation in our perturbation
problem as it can be easily seen by comparing from
formula (43) the total electromagnetic energy outside the
spherical black hole, i.e. EðN Þðrþ;þ∞Þ ¼ A2

0/ð2MÞ≡
α2M/2 or the extreme rotating one in formula (42), i.e.
EðN Þðrþ;þ∞Þ ¼ πA2

0/ð8MÞ≡ α2πM/8 with the total space-
time massM measured at infinity as described by the well-
known laws of black hole mechanics [40]. It is evident in
fact that the value α ¼ 0.1 chosen for the plots is small
enough for having physically sound results. Coming

back to the magnetic force term estimate at a point of
the black hole surface, after some simple algebra, we obtainffiffiffiffiffiffiffiffiffiffi
fμfμ

p jP ¼ 2π
27

α2

M3. Using Newtonian physics in a very first
approximation which neglects rotation, the gravitational
force density pointwise roughly behaves as ρM/r2 with
ρ ∼ Ṁ/r2 (here Ṁ ¼ dM/dr) estimated for the sake of
simplicity by using Tolman-Oppenheimer-Volkoff equa-
tions [23]. The ratio of the magnitude of magnetic force
term fμ over the gravitational effects above, estimated on a
point sufficiently close the horizon (i.e. r ∼M), goes as
α2/Ṁ. This shows that in our situation a test electromag-
netic field or a nontrivial accretion process will make
magnetic forces negligible leading—in practice—to a
geodesic motion for plasma.

IV. CONCLUSIONS

In this work we revisited analytically the Ruffini-Wilson
work developed for studying the accretion of perfect
neutral plasma onto a Kerr black hole. After an analysis
of the Maxwell invariants, selecting the Uθ ¼ 0 condition
we introduced in the discussion the Doran-Painlevé-
Gullstrand coordinates. The normal observer in these
coordinates is equivalent to the comoving plasma one so
measuring both zero electric field and volumetric charge
density everywhere, in agreement with the infinite con-
ductivity condition for plasma. The formulation here
presented can possibly be used also to study the high-
energy astrophysical phenomena due to the accreting
process of highly magnetized neutral plasma into the
rotating black holes. This aspect, as well as the more
complex situations of nonvanishing Uθ or even Uϕ, will be
investigated in future studies.
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