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We report on a new open-source, user-friendly numerical relativity code package called SENR=NRPyþ.
Our code extends previous implementations of the BSSN reference-metric formulation to a much broader
class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with
approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude
more efficient than other widely used open-source numerical relativity codes. NRPyþ provides a Python-
based interface in which equations are written in natural tensorial form and output at arbitrary finite
difference order as highly efficient C code, putting complex tensorial equations at the scientist’s fingertips
without the need for an expensive software license. SENR provides the algorithmic framework that
combines the C codes generated by NRPyþ into a functioning numerical relativity code. We validate
against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in
the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of
constraint violation and gravitational waveform errors to zero as the order of spatial finite difference
derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate
system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near
punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such
coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes
tensor components with respect to the coordinates. Future plans include extending this formulation to allow
dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting
compact binary dynamics.
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I. INTRODUCTION

TheLaser InterferometerGravitational-WaveObservatory
(LIGO) and Virgo Scientific Collaboration’s direct detec-
tions of six gravitationalwave events—five black hole binary
mergers [1–5] and one neutron star binary merger [6,7]—
have ushered in the age of gravitational wave astrophysics
and multimessenger astronomy. As the signal-to-noise ratios
of gravitational wave detections grow with increased inter-
ferometer sensitivity, the need to continually improve our
theoretical models of these phenomena is critical, as new
physics may otherwise be missed.
Just over a decade ago, breakthroughs in numerical

relativity [8–10] opened the door to simulating the inspiral,
merger, and ringdown phases of black hole binaries in
vacuum. Black hole simulations—and, indeed, all compact
binary simulations—span many orders of magnitude both
in length scale and timescale. Making them computation-
ally tractable for reliable gravitational wave predictions
requires that the underlying numerical grid structure be
tuned to optimally sample the space. Ordered meshes that

map to Cartesian grids are most practical, as this greatly
simplifies algorithms for high-order approximations of
spatial derivatives in Einstein’s equations.
There are currently two basic approaches in numerical

relativity to setting up numerical grids for compact binary
simulations. The most popular is to apply adaptive mesh
refinement (AMR), where the grids consist of nested
Cartesian coordinate boxes at different, discrete numerical
resolutions. This enables the application of highest numeri-
cal resolution where it is most needed: the strongly curved
spacetime fields inside and around compact objects. The
most widely used AMR infrastructure is provided by the
open-source Cactus/Carpet code [11–14] within the Einstein
Toolkit [15,16] (ETK). One downside to this approach is
that the compact objects of interest are typically round, not
rectangular, which results in a highly inefficient distribution
of grid points inside and near compact objects (see, e.g., [17]
for a more detailed analysis). In addition, the sudden change
in grid resolution at the refinement boundaries can produce
spurious reflections in sharp gauge modes or high-frequency
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gravitational wave features when using the moving puncture
formalism, resulting in poor convergence in gravitational
waveforms extracted from these numerical models [18,19].
The current alternative to adaptive mesh refinement in

numerical relativity codes, pioneered by the Simulating
eXtreme Spacetimes (SXS) Collaboration [20] in their
Spectral Einstein Code (SpEC [21], and its in-development
successor SpECTRE [22]), is to smoothly juxtapose a large
number of curvilinear three-dimensional grid patches, each
with a smooth one-to-one mapping to a Cartesian grid.
Evaluating derivatives with these grids requires computa-
tion of Jacobians, which, alongside managing the dynamics
of the grid structure itself, remains a significant contributor
to their codes’ computational costs for compact binary
inspirals that are aimed at generating gravitational wave
predictions.
Both approaches involve control systems that adjust the

grids to track compact objects as they orbit, although the
SXS control system is far more complex because their
formalism [23] additionally requires for stability that black
hole interiors be very carefully excised from the computa-
tional domain. Negative side effects of the algorithmic
complexity for both methods include a steep learning curve
for new users and difficulty in interpreting numerical errors.
We address these drawbacks by developing a new code

that builds on an innovative rescaling approach for solving
Einstein’s equations in spherical coordinates. The approach
is designed to take full advantage of symmetries in the
underlying configuration, requiring as few numerical grid
points as possible and unlocking the desktop as a powerful
tool for numerical relativity. Our work builds on strategies
that, in the context of spherical coordinates, rescale tensors
component by component so that the detrimental effects
of coordinate singularities on numerics are completely
removed [24–29]. Treating all coordinate singularities
analytically, the equations can then be integrated numeri-
cally without encountering instabilities. We generalize this
approach to a much broader class of static orthogonal
coordinate systems by absorbing the coordinate singular-
ities out of the tensor components and into a noncoordinate
basis. The rescaling strategy is implemented in the context
of the BSSN reference-metric formulation to enable highly
efficient puncture black hole evolutions using the moving
puncture approach [9,10,30] in a broad class of spherical-,
cylindrical-, and Cartesian-like coordinate systems without
special integration methods or introducing gaps in the
numerical grid.
We implement this approach within a new, open-source

code package called SENR=NRPyþ [17]. At its core,
SENR=NRPyþ aims to be as algorithmically simple and
user friendly as possible, all while being highly efficient. In
short, SENR=NRPyþ aims to minimize both human and
computational expensewhilemaximizing science outcomes.
SENR=NRPyþ is built upon the philosophy that the

distribution of points on the numerical grid should take
maximum advantage of approximate symmetries in the

physical system. Compact object systems of interest in
gravitational wave astronomy typically possess a high
degree of angular symmetry, making spherical- and, more
generally, cylindrical-like coordinate systems ideal candi-
dates for efficient sampling.
NRPyþ (“Python-based code generation for numerical

relativity and beyond”) is designed to convert the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) refer-
ence-metric formulation of the Einstein equations,
in a broad class of orthogonal coordinate systems, from
Einstein-like notation directly into C code. It operates
without the need for expensive, proprietary computer
algebra systems like Mathematica or Maple. As its name
suggests, NRPyþ is based entirely in Python and depends
only on the standard Python computer algebra package
SymPy [31] for symbolic algebra, which is widely available
on supercomputing clusters.
SENR (“the Simple, EfficientNumerical Relativity code”)

incorporates C codes generated by NRPyþ to form a
complete, OpenMP-parallelized [32] numerical relativity
code. Its skeletal structure makes the algorithmic under-
pinnings of numerical relativity codes transparent to the user.
We verify SENR=NRPyþ by direct comparisons with

two other numerical relativity codes that are both well
established in the literature. In the context of strongly
perturbed Minkowski spacetime (a version of the robust
stability test [33–36]), we achieve roundoff-level agreement
with the Baumgarte et al. [29] code,which evolves theBSSN
equations in spherical coordinates at fixed fourth-order finite
difference accuracy. We also demonstrate excellent agree-
ment between the results of SENR=NRPyþ and the ETK
in the context of simulating a single, dynamical black
hole. Then, we perform simulations of single- and double-
black-hole spacetimes, demonstrating that the finite differ-
ence truncation error converges to zero with increasing grid
resolution at the expected rate.
Perhapsmost importantly,we show for the first time that—

in the context of moving puncture evolutions—the trunca-
tion error in our finite differencing scheme converges to
zero nearly exponentially1 outside puncture black hole
horizons with linear increase in the finite difference order,
keeping the numerical grids fixed at moderate resolution.

1When finite difference truncation error dominates, we expect
numerical error to scale approximately as jCnuðnþ1ÞðξÞjðΔxÞn,
where n ¼ NFD is the finite difference order, ξ is in the neighbor-
hood of the point at which we evaluate the derivative of the
function u, and Cn ∼ 1=4n for a centered stencil on a numerical
grid with uniform spacing Δx. In the case that juðnþ1ÞðξÞj is
bounded [e.g., uðrÞ ¼ sin r], pure exponential convergence of the
finite difference derivative error is observed as n is increased and
Δx is held fixed (again, assuming that truncation error dominates).
When simulating gravitational fields, juðnþ1ÞðξÞj can grow as n!
[e.g., uðrÞ ¼ 1=ð1 − rÞ, r ≠ 1], reducing the rate of exponential
convergence at the finite difference orders we typically choose
(NFD ∈ f2; 4; 6; 8; 10g). We refer to this behavior as nearly
exponential convergence.
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The fact that we observe nearly exponential convergence
is remarkable for two reasons. First, the numerical grids
chosen for these simulations possess coordinate singular-
ities at all points where r sinðθÞ ¼ 0. Therefore, near-
exponential convergence in regions within causal contact
of these singularities demonstrates that our tensor rescaling
algorithm and cell-centered grids completely eliminate
convergence problems related to these coordinate singu-
larities. Second, a puncture black hole exhibits nonsmooth
fields at the site of the puncture, meaning we should have
no a priori expectation of near-exponential numerical
convergence outside the black hole, either. We attribute
the observed convergence to the fact that the characteristics
of the physical (nongauge) fields, in the vicinity of the
puncture, point towards the puncture. With sufficient
resolution inside of the horizon, the errors resulting from
finite differencing across the puncture singularity become
trapped near the puncture, and are not able to escape and
contaminate the simulation at large [37,38].
Future SENR projects will involve further extending the

formalism to handle dynamical, bispherical-like coordinate
systems, so that compact binary dynamics may be modeled
with minimum computational expense. In this work we
demonstrate near-exponential convergence of gravitational
waves with increased finite differencing order in the
context of head-on collisions of puncture black holes,
and will build on this success to tackle the orbital black
hole binary problem as our next step.
This paper is organized as follows. In Sec. II, we present

the reference-metric formulation of the BSSN and gauge
evolution equations. In Sec. III, we outline the tensor
component rescaling procedure that makes it possible to
evolve gravitational fields in singular coordinate systems.
In Sec. IV, we describe the structure of the SENR=NRPyþ
code, including the implementation of grid structures,
coordinate system options, diagnostics, and boundary con-
ditions. In Sec. V, we first demonstrate that SENR=NRPyþ
agrees with the results of other established numerical
relativity codes. Then, we show that numerical errors
converge to zero at the expected rates for a nonspinning
black hole with varying grid resolution or finite difference
order, and in different coordinate systems and gauges.
Finally, in the context of head-on collisions of two non-
spinning puncture black holes, we demonstrate near-
exponential convergence of the gravitational waveforms
with increasing finite difference order. We conclude and
present plans for future work in Sec. VI.
Throughout this paper geometrized units are adopted, in

which c ¼ 1 and G ¼ 1. Latin indices ði; j; k;…Þ denote
spatial degrees of freedom and obey the Einstein summation
convention.

II. BSSN AND GAUGE EVOLUTION EQUATIONS

In this section, we describe our strategy for solving
Einstein’s equations, based on the tensor-weight-zero

BSSN [39–41] formulation of Brown [26]. Our numerical
implementation extends the rescaling approach, developed
by Baumgarte et al. [42] for spherical coordinates, to a
broader class of singular curvilinear coordinate systems.
In this paper, we focus on spherical-, cylindrical-, and
Cartesian-like coordinate systems, though the method
can be easily extended to many others. For any of our
coordinate grids, the reference metric γ̂ij represents the flat
space metric components expressed in a coordinate basis.
In Sec. III, we use γ̂ij in the rescaling procedure to define a
noncoordinate basis, in terms of which all tensor compo-
nents are explicitly free of coordinate singularities. We
assume that the background is independent of the coor-
dinate time t, so that ∂tγ̂ij ¼ 0. All hatted quantities are
associated with the reference metric.
The reference metric is used to decompose the conformal

metric γ̄ij into a correction about the flat background

γ̄ij ¼ γ̂ij þ εij; ð1Þ

where the components in εij are not necessarily small and
contain the metric fields that are evolved on our numerical
grids. The conformal metric is related to the physical spatial
metric γij though a conformal rescaling

γij ¼ e4ϕγ̄ij: ð2Þ

Taking the determinant of (2) we observe that the con-
formal factor eϕ can be expressed as

eϕ ¼
�
γ

γ̄

�
1=12

; ð3Þ

where γ ≡ detðγijÞ and γ̄ ≡ detðγ̄ijÞ are the metric deter-
minants. Quantities associated with the conformal metric
γ̄ij are barred. For example, the conformal covariant
derivative operator D̄i is defined with respect to the
conformal metric. The inverse conformal metric γ̄ij is
defined to satisfy

γ̄ikγ̄kj ¼ δij; ð4Þ

where δij is the Kronecker delta tensor.
The conformal rescaling (2) is not yet unique. In contrast

to the original BSSN formulation, in which γ̄ was set to
unity, we adopt Brown’s “Lagrangian” choice [26]

∂tγ̄ ¼ 0; ð5Þ

so that γ̄ remains equal to its initial value. In particular,
this implies that both γ and γ̄ are allowed to transform as
determinants, i.e., as scalar densities of weight two.
According to (3) the conformal factor eϕ then transforms
as a scalar, rather than a scalar density, and all other
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tensorial objects in our formalism similarly transform as
tensors of weight zero (see also [24,26]). We choose γ̄ ¼
γ̂ ≡ detðγ̂ijÞ in the initial data for all applications in this
paper. Since both determinants remain independent of time,
they remain equal to each other throughout the evolution.
It is well known that Christoffel symbols do not trans-

form covariantly between coordinate systems. However,
the difference of two sets of Christoffel symbols is
tensorial. We define the tensor

Δi
jk ≡ Γ̄i

jk − Γ̂i
jk; ð6Þ

whose indices are raised and lowered with the conformal
metric. It is useful to construct a vector by taking the trace

Δi ≡ γ̄jkΔi
jk: ð7Þ

In addition, the tensor-weight-zero conformal connection
coefficient three-vector Λ̄i is evolved independently, and
satisfies the initial constraint

Ci ≡ Λ̄i − Δi ¼ 0: ð8Þ

The conformal, trace-free part of the extrinsic curvature
is denoted

Āij ¼ e−4ϕ
�
Kij −

1

3
γijK

�
; ð9Þ

where Kij is the physical extrinsic curvature and K ¼
γijKij is the mean curvature.
Defining the hypersurface-normal derivative operator

∂⊥ ≡ ∂t − Lβ; ð10Þ

where Lβ is the Lie derivative along the shift vector βi, the
BSSN evolution system in vacuum is written as [26]

∂⊥εij ¼
2

3
γ̄ijðαĀk

k − D̄kβ
kÞ þ 2D̂ðiβjÞ − 2αĀij; ð11aÞ

∂⊥Āij ¼ −
2

3
ĀijD̄kβ

k − 2αĀikĀk
j þ αĀijK

þ e−4ϕf−2αD̄iD̄jϕþ 4αD̄iϕD̄jϕ

þ4D̄ðiαD̄jÞϕ − D̄iD̄jαþ αR̄ijgTF; ð11bÞ

∂⊥W ¼ −
1

3
WðD̄kβ

k − αKÞ; ð11cÞ

∂⊥K ¼ 1

3
αK2 þ αĀijĀij

− e−4ϕðD̄iD̄iαþ 2D̄iαD̄iϕÞ; ð11dÞ

∂⊥Λ̄i ¼ γ̄jkD̂jD̂kβ
i þ 2

3
ΔiD̄jβ

j þ 1

3
D̄iD̄jβ

j

− 2Āijð∂jα − 6∂jϕÞ þ 2ĀjkΔi
jk

−
4

3
αγ̄ij∂jK: ð11eÞ

In the above, “TF” denotes the trace-free part of the
expression in brackets, the conformal factor is evolved
as W ¼ e−2ϕ (following, e.g., [28,43] to ensure smoother
spacetime fields near puncture black holes), and the
components of the conformal Ricci tensor are calculated by

R̄ij ¼ −
1

2
γ̄klD̂kD̂lγ̄ij þ γ̄kðiD̂jÞΛ̄k þ ΔkΔðijÞk

þ γ̄klð2Δm
kðiΔjÞml þ Δm

ikΔmjlÞ: ð12Þ

The trace-free condition γ̄ijĀij ¼ 0, which can be violated
by numerical error, is enforced dynamically by the term
proportional to Āi

i in Eq. (11a) [26]. In this paper, we
restrict ourselves to vacuum spacetimes so that all of the
matter source terms vanish.
The evolution system is completed with specification of

the gauge: the lapse function α and the shift vector βi.
Unless otherwise stated, we employ the advective 1þ log
lapse condition [44]

∂0α ¼ −2αK ð13Þ

and the advective Gamma-driver shift condition [30]

∂0β
i ¼ Bi; ð14aÞ

∂0Bi ¼ 3

4
∂0Λ̄i − ηBi: ð14bÞ

Here, Bi is an auxiliary vector, η is a (dimensionful)
damping parameter [45], and the (noncovariant) advective
derivative operator is defined as (see Case No. 8 in Table I
of [46])

∂0 ≡ ∂t − βj∂j: ð15Þ

The BSSN equations coupled to these gauge conditions are
known together as the moving puncture approach
[9,10,30]. A total of 24 fields are evolved.

III. TENSOR RESCALING

In the previous section, we described the reference-
metric formulation of the BSSN evolution equations in
the moving puncture approach (11), (13), and (14). These
equations form the foundation for solving Einstein’s
equations in any coordinate system we like, and we
leverage this coordinate freedom to take maximum ad-
vantage of near symmetries in physical systems. While,
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from an analytic perspective, there is no problem solving
Einstein’s equations in arbitrary coordinate systems,
numerical solutions diverge if the chosen coordinate
system possesses a coordinate singularity.
Well-known examples of coordinate singularities include

the points at ρ ¼ 0 in cylindrical coordinates or at
r sinðθÞ ¼ 0 in spherical coordinates. Tensor components
that are regular everywhere in a Cartesian basis will inherit
these singularities during the change of basis to those
coordinates. The fact that these singularities are a conse-
quence of the coordinates themselves, and not of the
underlying tensor fields, means that they can in principle
be scaled out of the tensor components in a way that is
consistent with the adopted reference-metric formulation
of BSSN.
The goal of the tensor rescaling is to analytically absorb

singular terms into the noncoordinate basis. Tensor com-
ponents are naturally regular with respect to the coordinates
when expressed in terms of the noncoordinate basis.
In Sec. III A, we show a simple example of rescaling a

rank-1 tensor with one vector component and a rank-2
tensor with one two-dual-vector component in the case of
ordinary spherical coordinates. We generalize the rescaling
procedure to arbitrary coordinate distributions in Sec. III B.

A. Spherical rescaling examples

In this section, we refer to objects in Cartesian coor-
dinates with indices i and j, and to objects in spherical
coordinates with indices a and b.
Consider a finite vector field V with components Vi in

Cartesian coordinates yðiÞ ¼ ðx; y; zÞ and a Cartesian coor-
dinate basis ∂

∂yðiÞ

V ¼ Vi ∂

∂yðiÞ
≡ Vx ∂

∂x
þ Vy ∂

∂y
þ Vz ∂

∂z
: ð16Þ

An index in parentheses labels the individual coordinate
functions or basis vectors, not vector components. For
simplicity, and without loss of generality, we consider a
vector that possesses only one nontrivial component
(Vy ¼ Vz ¼ 0)

V ¼ Vx ∂
∂x

: ð17Þ

The component Vx is a smooth, finite function of the
Cartesian coordinate values.
In Cartesian coordinates, the natural set of noncoordinate

basis vectors eðiÞ coincides with the coordinate basis, and
therefore

V ¼ VxeðxÞ: ð18Þ

Now, we transform the vector to ordinary, uniform spheri-
cal coordinates rðaÞ ¼ ðr; θ;φÞ, related to the Cartesian
coordinates by

x ¼ r sinðθÞ cosðφÞ; ð19aÞ

y ¼ r sinðθÞ sinðφÞ; ð19bÞ

z ¼ r cosðθÞ: ð19cÞ

This coordinate relationship characterizes the familiar
Jacobian matrix with components

∂yi
∂ra ¼

0
B@
sinðθÞcosðφÞ rcosðθÞcosðφÞ −rsinðθÞsinðφÞ
sinðθÞsinðφÞ rcosðθÞsinðφÞ rsinðθÞcosðφÞ

cosðθÞ −rsinðθÞ 0

1
CA

ð20Þ

and the inverse Jacobian matrix ∂ra
∂yi satisfies

∂yi
∂ra

∂ra
∂yj ¼ δij;

∂yi
∂rb

∂ra
∂yi ¼ δab: ð21Þ

An application of the ordinary derivative chain rule yields
the transformation formula for the coordinate basis vectors

∂

∂yðiÞ
¼ ∂ra

∂yi
∂

∂rðaÞ
: ð22Þ

The Cartesian components Vi are transformed from the
spherical coordinate components Va using the inverse
Jacobian

Vi ¼ Va ∂yi
∂ra : ð23Þ

It is this fact, that a tensor’s components transform in a way
that is inverse to the basis, which preserves the geometric
meaning of a tensor field represented in any coordinate
system. The resulting vector components in the spherical
coordinate basis are

V ¼ Va ∂

∂rðaÞ
¼ Vx ∂ra

∂x
∂

∂rðaÞ

¼ Vx sinðθÞ cosðφÞ ∂
∂r

þ Vx cosðθÞ cosðφÞ
r

∂
∂θ

−
Vx sinðφÞ
r sinðθÞ

∂
∂φ

: ð24Þ

The coordinate singularities that have been introduced by
the Jacobian become obvious when the components are
evaluated at the origin r ¼ 0 and along the polar axis
sinðθÞ ¼ 0.
We absorb this undesirable behavior into the basis

vectors as follows. For the noncoordinate spherical basis
eðaÞ, choose orthogonal vectors
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eðrÞ ¼
∂
∂r

; ð25aÞ

eðθÞ ¼
1

r
∂
∂θ

; ð25bÞ

eðφÞ ¼
1

r sinðθÞ
∂
∂φ

: ð25cÞ

In terms of these, the vector components become

V ¼ Vx sinðθÞ cosðφÞeðrÞ þ Vx cosðθÞ cosðφÞeðθÞ
− Vx sinðφÞeðφÞ; ð26Þ

which are manifestly regular over the entire domain.
To demonstrate that this strategy is more generally

applicable, consider a rank-2 tensor W with only one
nontrivial component in a Cartesian coordinate two-
dual-vector basis

W ¼ Wxxdx ⊗ dx; ð27Þ

where ⊗ is the tensor product and d is the exterior
derivative operator acting on the scalar coordinate functions
to produce one-forms dyðiÞ (i.e. dual vectors). The trans-
formation rule dual to (22) is

dyðiÞ ¼ ∂yi
∂ra dr

ðaÞ: ð28Þ

Two contractions with the inverse Jacobian matrix
transforms the tensor components to the spherical coor-
dinate basis

W ¼ Wxxsin2ðθÞcos2ðφÞdr ⊗ dr

þ 2Wxxr sinðθÞ cosðθÞcos2ðφÞdr ⊗ dθ

− 2Wxxrsin2ðθÞ sinðφÞ cosðφÞdr ⊗ dφ

þWxxr2cos2ðθÞcos2ðφÞdθ ⊗ dθ

− 2Wxxr2 sinðθÞ cosðθÞ sinðφÞ cosðφÞdθ ⊗ dφ

þWxxr2sin2ðθÞsin2ðφÞdφ ⊗ dφ: ð29Þ

Notice that the components ofW vanish when evaluated at,
say, r ¼ 0 and θ ¼ π, which amounts to a coordinate
singularity that destroys information about the tensor’s
value in other bases (e.g., Cartesian) at these points. This
singular behavior is dual to that seen above, where the
component values of V in the spherical coordinate basis
became unbounded at certain locations.
Again, this is ameliorated by an alternative choice of

basis. The noncoordinate spherical basis one-forms are
defined as the dual to the basis vectors (25)

eðrÞ ¼ dr; ð30aÞ

eðθÞ ¼ rdθ; ð30bÞ

eðφÞ ¼ r sinðθÞdφ: ð30cÞ

In this noncoordinate basis, the tensor components
become

W ¼ Wxxsin2ðθÞcos2ðφÞeðrÞ ⊗ eðrÞ

þ 2Wxx sinðθÞ cosðθÞcos2ðφÞeðrÞ ⊗ eðθÞ

− 2Wxx sinðθÞ sinðφÞ cosðφÞeðrÞ ⊗ eðφÞ

þWxxcos2ðθÞcos2ðφÞeðθÞ ⊗ eðθÞ

− 2Wxx cosðθÞ sinðφÞ cosðφÞeðθÞ ⊗ eðφÞ

þWxxsin2ðφÞeðφÞ ⊗ eðφÞ: ð31Þ

Now, for any point in the spherical domain, it can be shown
that all of the above components vanish simultaneously if
and only if Wxx ¼ 0.
For both V and W—as well as higher rank tensors in

general—these arguments extend to arbitrary Cartesian
tensors, allowing all components to be nontrivial.

B. The general rescaling procedure

The rescaling examples reviewed in the previous section
can be generalized by treating the noncoordinate basis as a
collection of matrix operators (and the dual basis as the
associated inverse operators), and using them to project the
singularities out of tensor components represented in a
coordinate basis. Since the difference between bases is only
a coordinate transformation, and the BSSN formulation we
adopt is covariant, we are free to apply this strategy to
remove coordinate singularities from tensorial expressions in
the formulation. This section reviews the general procedure.
We denote the noncoordinate basis vectors by eiðjÞ, where

the index (j) lists the individual basis vectors and i labels
the components of a particular vector with respect to the
underlying coordinate basis. By definition, the set of basis
vectors feðiÞg is linearly independent and spans the tangent
space at every point in the spatial hypersurface. We restrict
our consideration to time-independent, orthonormal bases.

There exists a dual basis eðiÞj satisfying

eðiÞk ekðjÞ ¼ eðkÞj eiðkÞ ¼ δij: ð32Þ

The components of the flat background reference metric,
represented in a coordinate basis, are related algebraically
to the basis dual vectors via

γ̂ij ¼ δkle
ðkÞ
i eðlÞj : ð33Þ
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In this way, the reference metric is constructed as the
“product” of basis vectors, or, equivalently, that the basis
constitutes the “square root” of the reference metric [47].
We treat this relationship as the definition of the non-
coordinate basis components in terms of the known flat
space reference-metric components in the corresponding
coordinate basis. The noncoordinate basis, defined as such,

is an orthonormal basis. The components eðiÞj are some-
times referred to as the “scale factors” of the reference
metric, and they contain the singularities associated with
the coordinates. The components of other tensors are made
regular with respect to the coordinates by factoring out the
scale factors in the appropriate way. For example (1)

εij ¼ hkle
ðkÞ
i eðlÞj ð34Þ

and (8)

Λ̄i ¼ λ̄jeiðjÞ: ð35Þ

The rescaled components are recovered by the inverse
relationships

hij ¼ εklekðiÞe
l
ðjÞ ð36Þ

and

λ̄i ¼ Λ̄jeðiÞj : ð37Þ

The rescaled tensor components hij, λ̄i, and so on, are
regular with respect to the coordinate singularities. (Note
that hij and λ̄i in spherical coordinates correspond directly
to the functions of the same name in [29].) The BSSN
evolution equations (11) are tensorial, and are therefore
independent of the choice of basis.
The rescaled fields are those that are integrated and

differentiated numerically on the coordinate grid, described
next, in Sec. IV. This rescaling procedure enables us to
achieve stable and convergent solutions in a broad class of
singular coordinate systems, as we demonstrate in Sec. V.

IV. THE SENR=NRPy + CODE

Numerical relativity codes built to evolve 3þ 1 initial
value formulations of Einstein’s equations generally con-
tain thousands of lines of code just to express the needed
equations for initial data, time evolution, and diagnostics.
Early incarnations were largely coded by hand, exacerbat-
ing the already laborious and time-consuming debugging
process. Most numerical relativity groups have migrated to
automatic code generation, typically relying on closed-
source, proprietary computer algebra systems like Maple or
Mathematica to directly convert tensorial expressions typed
by hand directly in Einstein-like notation into, e.g., highly

optimized C code. Kranc [48] is one example of a very nice
open-source, Mathematica-based package for converting
Einstein’s equations—written in Einstein-like notation—
into optimized C code.
Proprietary packages like Mathematica or Maple

require expensive licenses that some users simply cannot
afford, creating a barrier to entry for potential developers.
Further, most numerical relativity simulations are per-
formed with supercomputing systems, on which licenses
for, e.g., Mathematica or Maple are not available—again
due to the high licensing cost. As a workaround, numeri-
cal relativists will often generate their code locally, using
Mathematica or Maple, and then transfer it to the super-
computing system—just another way that these licenses
can inconvenience users.
NRPyþ (“Python-based code generation for numerical

relativity and beyond”) aims to address these issues. It is the
first open-source [49,50], non-Mathematica- or Maple-
based code generation package for tensorial expressions
written in Einstein notation. NRPyþ is written entirely in
Python2 and depends only on the standard Python computer
algebra package SymPy [31] for symbolic algebra, which is
widely available on supercomputing clusters.
If we wish to solve Einstein’s equations in a new

coordinate system with NRPyþ, we need only define the
corresponding reference metric in terms of its scale factors.
Using these as input, NRPyþ generates Einstein’s equations
in these coordinates and outputs OpenMP-capable C code
that is highly optimizable (SIMD vectorized) by compilers,
resulting in a tremendous performance boost compared to
simple serial implementations. NRPyþ also leverages
SymPy’s ability to eliminate common subexpressions from
complicated algebraic expressions, minimizing the number
of floating point operations per expression evaluation.
SENR (“the Simple, Efficient Numerical Relativity

code”) is a complete, OpenMP-parallelized [32] numerical
relativity code, incorporating the C codes generated by
NRPyþ wherever complicated tensorial expressions are
needed. Its skeletal structure makes the algorithms on
which numerical relativity codes are based transparent to
the user.
The division of labor between SENR and NRPyþ is

outlined in Table I, providing a convenient launching point
for later subsections that expand on this structure.

A. Computational grid structures

Each of the 24 evolved fields defined in Sec. II are
sampled by a discrete computational grid, represented as a
numerical array storing the function value at each grid
point. We define a uniformly sampled unit cube grid with
coordinate labels xðiÞ ¼ ðx1; x2; x3Þ≡ ðx1;x2;x3Þ, where
x1 represents the first spatial degree of freedom in Einstein
notation and x1 represents the first coordinate as it

2Both Python 2.7+ and 3.0+ are supported.
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appears in SENR=NRPyþ, and so on for the other two
coordinates. These coordinates correspond to the rescaled
tensor basis, in which coordinate singularities have been
removed. Thus we perform numerical integrations and
finite difference operations on this grid using ordinary,
uniformly spaced stencils. The uniform coordinates are
mapped to the nonuniformly distributed Cartesian coor-
dinates yðiÞ ¼ yðiÞðxðjÞÞ≡ ðy1;y2;y3Þ, chosen to exploit
the near-symmetries of the physical system of interest.
Tensors in the yðiÞ coordinates exist in a Cartesian coor-
dinate basis with trivial symmetry and parity conditions
(i.e., no inner boundaries).

The user specifies the number of grid pointsNi dedicated
to each coordinate direction xi, fixing the uniform grid cell
spacing

Δxi ¼ 1

Ni
: ð38Þ

The current method requires Ni to be even and Ni ≥ 2. The
user also chooses the finite difference order NFD (see
Sec. IVA 2), which determines the number of “ghost zone”
points NG ¼ NFD=2þ 1 on either side of the domain
required to evaluate finite difference stencils that extend
beyond the boundary. Most derivatives are computed using

TABLE I. The division of labor between the SENR C code and the NRPyþ Python code, with a link to the relevant section detailing
each task. To perform a simulation, NRPyþ is first run to automatically generate C files containing necessary initial data, evolution, and
diagnostic equations, coupled to highly optimized finite difference codes as needed for spatial derivatives. SENR contains all of the
infrastructure needed to make use of these C codes in the context of a full numerical simulation, complete with highly efficient time
evolution algorithms, boundary conditions, diagnostics, and checkpointing capabilities.

Task Description Section

Coordinates The curvilinear coordinates are defined in terms of the uniform coordinates within NRPyþ.
Only the scale factors (the square root of each diagonal reference-metric component) must
be defined; all hatted quantities in Eq. (11) are evaluated directly from these scale factors. In
addition, mappings from the chosen curvilinear coordinate basis to spherical and Cartesian
coordinate bases are defined. The former is necessary for transforming initial data (currently
expressed exclusively in spherical coordinates) to the desired uniform coordinates. The latter
is necessary to transform from the chosen basis to evaluate the ADM integrals (expressed in
Cartesian coordinates for convenience in interpreting the linear and angular momentum
components).

IVA 1

Initial data Various initial configurations are included inside NRPyþ, including multiple black hole Brill-
Lindquist [51] initial data, conformally curved UIUC [52] initial data for single Kerr black
holes, as well as analytical static trumpet initial data [53]. In addition, there are several
choices for the initial gauge conditions. As described above, all initial data are currently
written in a spherical basis, and converted to the desired curvilinear coordinate basis by
NRPyþ. SENR reads the initial data code generated by NRPyþ to define each of the 24
BSSN fields evolved on our grids (“grid functions”) at the initial time.

IV C

Boundary conditions SENR fills the ghost zone points with data from the grid interior for each of the evolved grid
functions. Specialized boundary condition routines are written by hand for each type of
boundary condition, whether they be inner (e.g., θ < 0 in spherical-like coordinates) or outer
boundary conditions.

IV E

Finite differencing Where spatial derivatives appear, NRPyþ constructs finite difference stencils at the user-
specified accuracy order on the uniform grid. Upwinded derivatives are enabled by default
on all shift-advection terms (as is typical; see e.g., [30,54,55]).

IVA 2

Evolution equations NRPyþ constructs and outputs the evolution equation right-hand-side C codes, expressing all
spatial derivatives of the grid functions as finite differences. The C codes include reading all
needed data from memory.

II

Diagnostics NRPyþ outputs the needed C codes for the BSSN constraints, the ADM integrands, and the
spherically symmetric horizon finder. Additionally, SENR includes a code that interpolates
grid function data onto a Cartesian grid to be evaluated using the large suite of diagnostic
utilities within the ETK, such as generic horizon finding and gravitational wave extraction.
Diagnostics are periodically evaluated by SENR and stored to disk.

IV B

Numerical grids SENR allocates memory for coordinate grids and evolved grid functions given the number of
grid points and the coordinate definitions.

IVA

Time integration SENR computes the largest-allowed CFL time step from the proper distance, determined by
the reference metric (output from NRPyþ) and the chosen grid. It iterates the grid functions
to the next time step, evaluating the evolution equation C codes. Generally, RK4 is used for
time integrations.

IV D
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centered stencils, extending NFD=2 grid points symmetri-
cally to either side of the point in question. Shift-advection
derivatives (terms acted on by βi∂i) are approximated by
upwinded finite differences, which employ asymmetrical
stencils with NFD=2þ 1 points on one side and NFD=2 − 1
on the other. Points in the ghost zone are not evolved directly,
but depend entirely on the grid interior and are updated by
the boundary condition routine (see Sec. IV E). Thus, the
total number of points allocated to each coordinate is

NTi ¼ Ni þ 2NG: ð39Þ

The total number of points on the uniform grid is simply

NT ¼
Y
i

NTi: ð40Þ

The grid points themselves are located at

xðiÞðjÞ ¼ Δxi
�
j − NG þ 1

2

�
; ð41Þ

where the grid index j ∈ f0; 1;…; NTi − 1g. This produces
a grid that guarantees functions are never evaluated on the
coordinate singularities at, e.g., r ¼ 0, θ ¼ 0, or θ ¼ π in
spherical coordinates. Points for which all three coordinates
satisfy 0 < xi < 1 are part of the grid interior, whereas
points with any of the three xi < 0 or xi > 1 are in the ghost
zone.

1. Coordinate options

In the present work, we demonstrate BSSN evolution in
three different classes of coordinate system: Cartesian-like,
cylindrical-like, and spherical-like. These are distinguished
by the number and character of their inner boundary
conditions. Boundary conditions must be applied on all
faces of our numerical grid cube, whether the face maps to
another face (e.g., in the case of the φ ¼ 0 and φ ¼ 2π
faces in spherical coordinates) or corresponds to the outer
boundary (e.g., at r ¼ rmax in spherical coordinates). The
details of how to specify the inner and outer boundary ghost
zone points are discussed in Sec. IV E.
Finite difference stencils are evaluated on the uniform

xðiÞ grid, which possesses a one-to-one mapping to the
nonuniformly sampled Cartesian coordinates yðiÞ. For
example, in spherical-like coordinates, the nonuniform
grid is related to the uniform grid via

y1 ¼ x ¼ fðx1Þ sin ðπx2Þ cos ð2πx3Þ; ð42aÞ

y2 ¼ y ¼ fðx1Þ sinðπx2Þ sinð2πx3Þ; ð42bÞ

y3 ¼ z ¼ fðx1Þ cosðπx2Þ: ð42cÞ

The coordinate distribution is generalized by the function
f which is required to be invertible, odd with respect to the
origin, and at least twice differentiable. These properties of f
determine the symmetry conditions for the inner boundaries
of the grid, which are described in detail for spherical-like
coordinates and the general case in Sec. IV E. The choice
fðx1Þ ¼ rmaxx1 reduces this to ordinary, uniform spherical
coordinates extending out to radius rmax=M > 0. It is often
useful to adopt a logarithmically distributed radial coordinate
of the form fðx1Þ ¼ A sinhðx1=wÞ, where A;w > 0 are free
parameters. This allows the radial outer boundary to be
pushed far away while maintaining high resolution near the
origin. Another possibility is to take fðx1Þ ¼ ax1þ
bx13 þ cx15, where appropriate choices for the coefficients
a, b, and c lead to increasing the relative coordinate density
on a spherical shell, which is ideal for sampling a black hole
horizon or neutron star crust.
The rescaling procedure developed in this paper also

allows for the angular coordinates to be redistributed in
a similar way, but we restrict our discussion to radial
rescalings for the sake of simplicity. To be clear, by
“radial,” we refer to fx1;x2;x3g in Cartesian-like, to
fx1;x3g (cylindrical radius and height) in cylindrical-
like, and to fx1g (radius) in spherical-like coordinates.
To construct the noncoordinate basis for use in the

tensor component rescaling, we start with the flat metric in
the yðiÞ Cartesian coordinate basis. Next, transform it to
the coordinate basis of the uniform grid xðiÞ using the
Jacobian matrix. We identify γ̂ij with the flat metric in the
xðiÞ basis. Then, the noncoordinate basis components are
defined by Eq. (33). When the coordinate system is
orthogonal, as is the case for all examples in Sec. V, then
only three of the nine basis components are nonzero.
The coordinate system distributions and the correspond-

ing basis components are summarized in Table II.

2. Numerical representation of spatial derivatives

The user-specified n ¼ NFD sets the order of the finite
difference stencil approximation, so that the truncation
error scales as

EFD ∼OðΔxnj∂nþ1
x ujÞ ð43Þ

for each of the 24 dynamical fields u ¼ fεij; Āij;W;K; Λ̄i;
α; βi; Big. We demonstrate that finite-difference truncation
errors converge to zero at the prescribed rates in Sec. V B 1.
To calculate the finite difference stencil coefficients,
NRPyþ inverts the corresponding linear system of Taylor
series coefficients at user-specified order, akin to inverting
the Vandermonde matrix for Lagrange polynomial inter-
polation [56]. Adopting a simple syntax, NRPyþ auto-
matically replaces all spatial derivatives that appear in
expressions with the appropriate finite difference approxi-
mation, at the desired order. Such spatial derivatives appear
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throughout the right-hand sides of the evolution system,
Eqs. (11), (13), and (14), and diagnostics—including
the BSSN constraint equations and Arnowitt-Deser-
Misner (ADM) integrals (see Sec. IV B).
We use Kreiss-Oliger dissipation [57,58] to diffuse

unresolved, high-frequency modes that can reduce the
convergence order. A standard high-order derivative oper-
ator LKO acting on the grid function as

LKOu ¼ −ϵKO
ð−1Þn=2
2nΔt

ðΔxiÞn∂n
i u ð44Þ

is added to the right-hand sides of the evolution equa-
tions (11), (13), and (14). Note that LKO is not a tensorial
derivative in general, and its inclusion in the evolution
equations violates spatial covariance. However, the coef-
ficient of artificial dissipation is chosen such that the
contribution of LKOu vanishes in the continuum limit.
The dimensionless Kreiss-Oliger parameter ϵKO ¼ ϵKOðxiÞ
is allowed to vary smoothly over space, and typically
approaches ϵKO ¼ 0.99 in the weak field region. In par-
ticular, we often use a spherically symmetric transition
function

ϵKOðrÞ ¼
ϵKO0
2

�
erf

�
r − rKO
wKO

�
þ 1

�
; ð45Þ

where ϵKO0; rKO; wKO > 0 are constant parameters and r is
a radial coordinate. We generally set this function to be less
than 10−16 near the origin, so that its nonsmoothness at the
origin is made irrelevant relative to nonsmoothness caused
by roundoff error. In particular, we usually set ϵKO0 ¼ 0.99,
rKO=M ¼ 2, and wKO=M ¼ 0.17.

B. Diagnostics

We employ a variety of diagnostics to monitor the
accuracy of our calculations, as well as to probe the physical
properties of the simulated spacetimes. Diagnostic routines
fall broadly into two categories: diagnostics generated in
NRPyþ, and diagnostic routines within the ETK.

1. Diagnostics generated by NRPy +

The following describes the constraints, the ADM
integrals, and a spherically symmetric horizon finder,
which are the diagnostics written in Python in NRPyþ.
They contain spatial derivatives of the evolved fields, which
are approximated by the automatically generated finite
difference stencils. The resulting C code is evaluated by
SENR during data output, after the time step iteration.
In terms of the BSSN variables (see Sec II), the

Hamiltonian constraint takes the form [29]

H≡ 2

3
K2 − ĀijĀij þ e−4ϕðR̄ − 8D̄iϕD̄iϕ − 8D̄2ϕÞ ¼ 0;

ð46Þ

where R̄ ¼ γ̄ijR̄ij, and the momentum constraint is3

Mi≡e−4ϕ
�
D̂jĀijþ2ĀkðiΔjÞ

jkþ6Āij∂jϕ−
2

3
γ̄ij∂jK

�
¼ 0:

ð47Þ

The Hamiltonian, momentum, and conformal connection
coefficient (8) constraints are monitored throughout the
simulation as a measure of numerical accuracy. In addition,
the ADM surface integrals for total mass MADM, linear
momentum Pi

ADM, and angular momentum JiADM also serve
as diagnostics. The integrands are evaluated on a spherical
surface on the boundary of the spatial hypersurface at spatial
infinity. Numerically, the integrals are approximated by two-
dimensional Riemann sums on a spherical surface which is
near the outer boundary, ideally in the weak field region.
Supposing that the spacetime is asymptotically flat, and that
the spacetime metric gμν approaches the Minkowski metric
ημν at least as fast as gμν − ημν ¼ Oð1=rÞ when r → ∞, then
the ADM integrals take the form [42]

TABLE II. Summary of coordinate system choices. Finite difference operations take place on the uniformly sampled unit cube grid
xðiÞ ¼ ðx1;x2;x3Þ, and are mapped to the nonuniformly sampled Cartesian grid yðiÞ ¼ ðy1;y2;y3Þ. The nontrivial scale factors
constitute the basis, which is used to rescale tensor quantities. The function f allows the coordinates to be redistributed on the
nonuniform grid, and the prime mark indicates differentiation with respect to the function argument. Although not shown here, our
method allows for the more general case of a different redistribution function for each independent coordinate.

Coordinates Definitions Scale Factors

y1 y2 y3 eðx1Þx1 eðx2Þx2 eðx3Þx3

Cartesian-like fðx1Þ fðx2Þ fðx3Þ f0ðx1Þ f0ðx2Þ f0ðx3Þ
Cylindrical-like fðx1Þ cos ð2πx2Þ fðx1Þ sin ð2πx2Þ fðx3Þ f0ðx1Þ fðx1Þ f0ðx3Þ
Spherical-like fðx1Þ sin ðπx2Þ cos ð2πx3Þ fðx1Þ sin ðπx2Þ sin ð2πx3Þ fðx1Þ cos ðπx2Þ f0ðx1Þ fðx1Þ fðx1Þ sin ðπx2Þ

3The term ĀikΔj
jk in Eq. (47) of this paper is missing from the

momentum constraint in Eq. (17) of [26] and Eq. (14) of [29].
In the notation of their respective articles, the expression in [26]
is corrected by the substitution g → g=g̃, and in [29] by γ̄ → γ̄=γ̂.
Be mindful of a parenthesis size mismatch in Eq. (14) of [29].
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MADM ¼ lim
r→∞

1

16π

I
γijð∂iγkj − ∂kγijÞ

ffiffiffi
γ

p
dSk; ð48aÞ

Pi
ADM ¼ lim

r→∞

1

8π

I
ðKij − γijKÞ ffiffiffi

γ
p

dSj; ð48bÞ

JiADM ¼ lim
r→∞

½ijk�
8π

I
yjðKkl − γklKÞ ffiffiffi

γ
p

dSl: ð48cÞ

The vector components dSi play the role of the outward-
oriented surface element induced at spatial infinity, yi are
the components of a Cartesian coordinate vector, and ½ijk�
is the totally antisymmetric Levi-Civita symbol. Note that
the ADM integrals are not covariant as written, and they
must be evaluated in asymptotically Cartesian coordinates.
This allows us to easily interpret the directionality of the
Pi
ADM and JiADM components.
In the special case of a spherically symmetric configu-

ration, the expansion of outgoing null geodesicsΘ takes the
simplified form [59]

ΘðrÞ ¼ 4γ̄θθ∂rϕþ ∂rγ̄θθ
e2ϕγ̄θθ

ffiffiffiffiffiffi
γ̄rr

p − 2
K̄θθ

γ̄θθ
: ð49Þ

The coordinate radius of the apparent horizon rH is defined
to satisfy ΘðrHÞ ¼ 0. Numerically, SENR evaluates Θ at
every grid point using finite difference stencil C code
generated by NRPyþ. Then, it searches for the pair of
neighbors that straddle Θ ¼ 0, and linearly interpolates
between those two points to approximate rH.

2. Diagnostics provided by the Einstein Toolkit

A translation layer for the ETK is implemented in SENR,
where the fields γ̄ij, eϕ, Āij, and K are interpolated onto a
Cartesian grid and then converted to the ADM quantities γij
and Kij in the Cartesian basis. These data are fed into the
ETK to unlock a wide variety of diagnostic tools [60–62],
including the horizon finder thorn AHFinderDirect [63]
and the Ψ4 gravitational waveform extraction thorn
WeylScal4 [64,65]. The measured Ψ4 contains information
relating to the gravitational wave strain in the transverse-
traceless gauge and the weak field region via [42]

Ψ4 ¼ ḧþ − iḧ×; ð50Þ

where hþ and h× are the gravitational wave strain ampli-
tudes of the “plus” and “cross” polarization states, respec-
tively, and the dots denote time derivatives.

C. Initial data

NRPyþ implements initial data for zero- (γij ¼ γ̂ij), one-,
and two-black-hole spacetimes. SingleKerr black hole initial
data are available in UIUC conformally curved coordinates
[52], Schwarzschild trumpet coordinates [53], and boosted
Schwarzschild black holes in isotropic coordinates [66].

Two-black-hole initial data take the form of initial black
holes at rest (Brill-Lindquist [51]). All implemented initial
data solve the Hamiltonian (46) and momentum (47) con-
straints exactly. Expressions for all initial data evolved in this
work are presented alongside their results in Sec. V.
Typically, these initial data types are most naturally

represented in the spherical coordinate basis. The Jacobian
matrix is used to transform the initial data from uniform
spherical coordinates to the desired uniformly sampled xðiÞ
grid. Finally, rank-1 and -2 tensors are transformed to the
noncoordinate basis, according to the procedure in Sec. III.

D. Time integration

The evolution equations (11), (13), and (14) are all first-
order-in-time partial differential equations that may be
written in the form

∂tuðtÞ ¼ LðuðtÞ; tÞ; ð51Þ

where u ¼ fεij; Āij;W;K; Λ̄i; α; βi; Big is a vector com-
posed of the 24 evolved fields. As can be seen from
Eqs. (11), (13), and (14), the differential operator L
depends on multiple components of u, as well as their
first and second spatial derivatives. All spatial derivatives
of the evolved fields in L are calculated using finite
differences on the uniformly sampled xðiÞ grid.
To advance the grid function in time uðtÞ → uðtþ ΔtÞ,

we adopt the fourth-order4 Runge-Kutta (RK4) method [69]

k1 ¼ LðuðtÞ; tÞ; ð52aÞ

u1 ¼ uðtÞ þ Δt
2
k1; ð52bÞ

k2 ¼ L
�
u1; tþ

Δt
2

�
; ð52cÞ

u2 ¼ uðtÞ þ Δt
2
k2; ð52dÞ

k3 ¼ L
�
u2; tþ

Δt
2

�
; ð52eÞ

u3 ¼ uðtÞ þ Δtk3; ð52fÞ

k4 ¼ Lðu3; tþ ΔtÞ; ð52gÞ

uðtþ ΔtÞ ¼ uðtÞ þ Δt
6
ðk1 þ 2k2 þ 2k3 þ k4Þ: ð52hÞ

4See Ref. [67]. Also see [68] for details on the stability
properties of the fully explicit Runge-Kutta methods at various
order. The widely used RK4 method is conditionally stable for
this application, although PIRK4 might allow for similar accu-
racy with larger timesteps.
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Being fourth order means that the error associated with
the time stepping, at a fixed time, scales as ERK4 ∼OðΔt4Þ.
Immediately after evaluating the RK4 steps given by
Eqs. (52a), (52d), and (52f), boundary conditions are
applied to u1, u2, and u3, respectively. If the boundary
conditions are time dependent, then they are applied at
tþ Δt=2 on the first two substeps and at a full step tþ Δt
on the third substep. At the end of the full RK4 iteration,
boundary conditions are applied to u at time tþ Δt.
Finally, the algebraic correction

γ̄ij →

�
γ̂

γ̄

�
1=3

γ̄ij ð53Þ

is applied to the metric components to enforce the
Lagrangian specification constraint (5), where γ̄ ¼ γ̂ is
the conformal metric determinant on the initial slice.
When applying this standard, explicit RK4 algorithm,

the Courant-Friedrichs-Lewy (CFL) condition [69] must be
satisfied. For a numerical grid with coordinates xðiÞ, SENR
finds the smallest proper distance Δsmin along each of the
independent coordinate directions

Δsmin ¼ min ð ffiffiffiffiffiffi
γ̄11

p
Δx1;

ffiffiffiffiffiffi
γ̄22

p
Δx2;

ffiffiffiffiffiffi
γ̄33

p
Δx3Þ; ð54Þ

where Δxi is the uniform grid spacing between adjacent
points in the xi direction, and γ̄ii is evaluated at xi. Then the
time step is

Δt ¼ CΔsmin; ð55Þ
where the Courant factor is set to C ¼ 0.5 for all simu-
lations presented here.
More explicitly, the CFL-limited time step varies with

grid resolution in a nontrivial way depending on the
coordinate choice. Suppose that we vary the number of
grid points simultaneously in all three coordinates. Then for
Cartesian coordinates Δt ∝ Δxi, for cylindrical coordinates
Δt ∝ ðΔxiÞ2, and for spherical coordinates Δt ∝ ðΔxiÞ3.
The higher-order dependence in the case of cylindrical and
spherical coordinates is due to the focusing of grid points
along the symmetry axis or near the origin. This CFL
restriction can be softened significantly by clever choice of
coordinate redistribution function f (see Sec. IVA 1).

E. Boundary conditions

As described in Sec. IVA, SENR=NRPyþ maps a
uniformly sampled unit cube grid to a nonuniformly
distributed Cartesian coordinate grid, chosen to efficiently
sample the space. Our grids are cell centered, so no points
exist precisely on any of the faces of the unit cube.
However, for the points that are nearest to the faces, but
inside the cube, the finite difference stencils for spatial
derivatives will reach outside of the cube. To ensure that
these stencils correspond to valid data, we add a collection
of points to a shell region exterior to the cube called the

“ghost zone.” If NG ghost zone points are needed outside
each boundary, then this would increase the total number of
points in the grid fromNx1 × Nx2 × Nx3 to ðNx1 þ 2NGÞ×
ðNx2 þ 2NGÞ × ðNx3 þ 2NGÞ.
Prior to evaluation of the right-hand sides of the BSSN

equations, these ghost zone points must be filled. Some
ghost zone points, including those at φ < 0 or φ > 2π on
spherical- or cylindrical-like coordinate grids, map to
points inside the cube; we call these inner boundaries.
The remaining ghost zone points map back to points
outside the interior of the cube (e.g., r > rmax in spheri-
cal-like coordinate grids); we call these outer boundaries.
Outer boundary ghost zone points may be filled in

accordance with the desired outer boundary condition.
Although the widely used Sommerfeld outer boundary
condition is also implemented, we find the simple quadratic
extrapolation condition to be quite effective on spherical-
like coordinate grids

uðxÞ ≈ 3uðx − ΔxÞ − 3uðx − 2ΔxÞ þ uðx − 3ΔxÞ; ð56Þ
whereu is anyof the evolved fields andx is the coordinatexðiÞ
perpendicular to the boundary. As with any approximate
boundary condition, this condition produces unwanted
ingoing modes that contaminate the interior of the simu-
lation. In practice, logarithmically spaced radial coordinates
enable us to push the outer boundary out of causal contact
with the origin for as long as we care to simulate.
Inner boundary conditions depend on the coordinate

system, and must account for intrinsic periodic, axial, and
radial symmetries. The coordinate redistribution function f
(see Sec. IVA 1) is required to be odd, which ensures that
ghost zone points across inner boundaries coincide exactly
with other points on the grid interior, respecting the desired
symmetries.
In the case of scalar functions, these symmetry con-

ditions simply copy the appropriate values of the function
from the grid interior to its ghost zone partner. Vectors and
higher rank tensors, however, are sensitive to changes of
sign in the basis when evaluated across inner boundaries.
In that case, an appropriate change of sign must be copied
into the ghost zone along with the function value itself.
We refer to these changes of sign as parity conditions.
In the following, we will show by example the symmetry

and parity conditions specific to the spherical coordinate
topology. Then a generic algorithm for assigning ghost
zone values in arbitrary coordinates is described.

1. Spherical boundary conditions example

To derive the boundary conditions appropriate for a
coordinate system, first express those coordinates in terms
of a system whose boundaries are well understood. To this
end, we choose ordinary Cartesian coordinates on the
domain −∞ < x; y; z < ∞. Since each coordinate is
unbounded from both above and below, there are no inner
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boundaries. In addition, every point on the computational
grid has a unique ðx; y; zÞ label.
Now consider ordinary spherical coordinates, which are

related to the Cartesian coordinates in the usual way
[Eq. (19)]. The spherical coordinate domain is bounded
by 0 < r < ∞, 0 < θ < π, and 0 < φ < 2π. In this case,
there is only one outer boundary, corresponding to r → ∞;
what remains are the five inner boundaries.
To find the symmetry conditions for these inner boun-

daries, first recall that a scalar function g has a particular
value at some location, regardless of the underlying
coordinate choice. Next, evaluate the function in the
spherical coordinate ghost zone, identify the corresponding
Cartesian coordinate values, and then find the point in the
spherical grid interior that corresponds to those same
Cartesian coordinates. This links each point in the ghost
zone to a unique point in the grid interior.
By this procedure, the five symmetry conditions for the

spherical coordinate inner boundaries are found to be

gð−r; θ;φÞ ¼ gðr; π − θ; π þ φÞ; ð57aÞ

gðr;−θ;φÞ ¼ gðr; θ; π þ φÞ; ð57bÞ

gðr; π þ θ;φÞ ¼ gðr; π − θ; π þ φÞ; ð57cÞ

gðr; θ;−φÞ ¼ gðr; θ; 2π − φÞ; ð57dÞ

gðr; θ; 2π þ φÞ ¼ gðr; θ;φÞ: ð57eÞ

These correspond to radial symmetry about the origin
[Eq. (57a)], axial symmetry about the north [Eq. (57b)] and
south [Eq. (57c)] poles, and periodic symmetry around the
axis in the negative [Eq. (57d)] and positive [Eq. (57e)]
orientations. For any point in the ghost zone, there exists a
combination of the inner boundary symmetry rules (57)
that maps that point to either the grid interior or the outer
boundary. Note that these symmetries refer only to the
coordinate distribution, and not the evolved fields, which
are allowed to be completely asymmetrical.
As mentioned above, these symmetry conditions are

sufficient for filling the inner boundary ghost zone points of
a scalar function. For the case of vectors and higher rank
tensors, however, parity conditions must also be taken into
account.
The needed parity conditions are found by comparing the

basis vectors in the ghost zone to their counterparts in the grid
interior. Again, we express the basis vectors in terms of a
basis in which the parity conditions are well understood.
Since the Cartesian basis has no inner boundaries, the
Cartesian basis has only the trivial parity conditions, which
is to say that there are no changes of sign. Start with the
noncoordinate spherical basis eðaÞ (25) which is expressed in
terms of the spherical coordinate basis ∂

∂rðaÞ. Then, transform
the spherical coordinate basis to the Cartesian basis (22)

eðrÞ ¼
∂xi
∂r

∂

∂xðiÞ
; ð58aÞ

eðθÞ ¼
1

r
∂xi
∂θ

∂

∂xðiÞ
; ð58bÞ

eðφÞ ¼
1

r sinðθÞ
∂xi
∂φ

∂

∂xðiÞ
: ð58cÞ

Remembering eðiÞ ¼ ∂
∂xðiÞ in Cartesian coordinates and

contracting with the inverse of the Jacobian matrix (20)
results in

eðrÞðr; θ;φÞ ¼ sinðθÞ cosðφÞeðxÞ þ sinðθÞ sinðφÞeðyÞ
þ cosðθÞeðzÞ; ð59aÞ

eðθÞðr; θ;φÞ ¼ cosðθÞ cosðφÞeðxÞ þ cosðθÞ sinðφÞeðyÞ
− sinðθÞeðzÞ; ð59bÞ

eðφÞðr; θ;φÞ ¼ − sinðφÞeðxÞ þ cosðφÞeðyÞ; ð59cÞ
where we indicate on the left-hand side the explicit func-
tional dependence of the spherical noncoordinate basis
vectors on ðr; θ;φÞ. To find the parity conditions, compute
the dot product between a basis vector in the ghost zone and
its partner in the grid interior, according to Eq. (57). If the
coordinate system is properly constructed, then this dot
product should always evaluate to �1, where the negative
case indicates that the basis changes sign in the ghost zone.
For the current example, we find

eðrÞð−r; θ;φÞ · eðrÞðr; π − θ; π þ φÞ ¼ −1; ð60aÞ
eðθÞð−r; θ;φÞ · eðθÞðr; π − θ; π þ φÞ ¼ þ1; ð60bÞ
eðφÞð−r; θ;φÞ · eðφÞðr; π − θ; π þ φÞ ¼ −1; ð60cÞ

eðrÞðr;−θ;φÞ · eðrÞðr; θ; π þ φÞ ¼ þ1; ð60dÞ
eðθÞðr;−θ;φÞ · eðθÞðr; θ; π þ φÞ ¼ −1; ð60eÞ
eðφÞðr;−θ;φÞ · eðφÞðr; θ; π þ φÞ ¼ −1; ð60fÞ

eðrÞðr; π þ θ;φÞ · eðrÞðr; π − θ; π þ φÞ ¼ þ1; ð60gÞ
eðθÞðr; π þ θ;φÞ · eðθÞðr; π − θ; π þ φÞ ¼ −1; ð60hÞ
eðφÞðr; π þ θ;φÞ · eðφÞðr; π − θ; π þ φÞ ¼ −1; ð60iÞ

eðrÞðr; θ;−φÞ · eðrÞðr; θ; 2π − φÞ ¼ þ1; ð60jÞ
eðθÞðr; θ;−φÞ · eðθÞðr; θ; 2π − φÞ ¼ þ1; ð60kÞ
eðφÞðr; θ;−φÞ · eðφÞðr; θ; 2π − φÞ ¼ þ1; ð60lÞ
eðrÞðr; θ; 2π þ φÞ · eðrÞðr; θ;φÞ ¼ þ1; ð60mÞ
eðθÞðr; θ; 2π þ φÞ · eðθÞðr; θ;φÞ ¼ þ1; ð60nÞ
eðφÞðr; θ; 2π þ φÞ · eðφÞðr; θ;φÞ ¼ þ1: ð60oÞ
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The same procedure can be used to determine the
symmetry and parity conditions for cylindrical-like coordi-
nates. The parity conditions for cylindrical- and spherical-
like coordinates across each inner boundary are summarized
in Table III.
Operationally, vector and tensor component values are

copied to the ghost zone using the symmetry condition. For
every basis vector attached to each tensor component,
compensate for any changes in sign in the basis by applying
the parity condition.

2. The general boundary condition procedure

The procedure described in the previous section is
generalized to construct an explicit routine for filling inner
and outer boundary ghost zone points in other coordinate
systems. Here we review the routine, which was developed
for SENR=NRPyþ to validate the special, coordinate-
specific inner and outer boundary condition routines
developed for cylindrical- and spherical-like grids.
Starting with the mapping between Cartesian coordinates

and the coordinates of interest [e.g., Eq. (19)], the routine
automatically classifies the ghost zones as inner or outer
boundaries, maps each inner ghost zone point to its partner
on the grid interior, constructs the noncoordinate basis
vectors, and determines the parity conditions. The sym-
metry and parity conditions are compiled into a list at the
start of a simulation, and the routine later runs through the
list to apply the boundary conditions as needed.
The ghost zone points are filled, in order, outward from

the interior grid. This is of particular importance at the outer

boundary, where the one-sided quadratic extrapolation
stencil equation (56) requires that outer boundary ghost
zone points be filled in an outward-going direction. In
addition, for cases of high symmetry and large NFD, it is
possible for the finite difference stencil to be wider than the
grid interior, which means that a ghost zone point could be
mapped to another ghost zone point. Assigning the boun-
dary values in an outward fashion avoids attempts to copy
to the ghost zone from uninitialized memory.

V. RESULTS

In this section we present a number of validation and
verification tests performed on the SENR=NRPyþ code. In
Sec. VA, we compare its results with two other numerical
relativity codes, and demonstrate that, e.g., differences in
results between SENR=NRPyþ and the code of Baumgarte
et al. [29] are at the level of roundoff error in the case of
ordinary spherical coordinate evolutions of a strongly
perturbed Minkowski spacetime. In Sec. V B, we demon-
strate in the contexts of a single, nonspinning black hole
and a double black hole head-on collision that the finite
difference truncation error converges to zero with increas-
ing grid resolution at the expected rate, and that increasing
finite difference order with fixed grid resolution results in
near-exponential convergence of the error.
These tests also act to showcase the efficiency of

SENR=NRPyþ against other open-source numerical rela-
tivity codes in the context these physical scenarios, as all
tests were performed on desktop-scale computers, using at
most only about 1.5 GB of RAM.

A. Code comparisons

Here we directly compare SENR=NRPyþ results with
two other established BSSN evolution codes. These tests
verify that all of the evolution equations and diagnostics are
implemented correctly, and that the simulations do indeed
contain black hole horizons with the expected properties.

1. Robust stability test: Roundoff-level agreement
between SENR=NRPy + and BMCCM

This section compares SENR=NRPyþ to the spherical-
polar, spatially fourth-order finite differenced BSSN code of
Baumgarte et al. [29] (hereafter BMCCM). BMCCM
includes many features beyond the scope of this paper
[70–74]; herewe focus on initial data that represent a version
of the robust stability test bed [33–36], which involves a
strong random perturbation about flat spacetime. At each
grid point, the random number generator drand48 [75] is
seeded with a unique (but constant) integer tied to the grid
index. Then, each of the grid functions are populated, in turn,
with Minkowski initial data (eϕ ¼ 1, εij ¼ 0, Āij ¼ 0,
K ¼ 0, α ¼ 1, βi ¼ 0, and Bi ¼ 0) plus a random value
picked from the uniform distribution ½−0.02; 0.02�. This
produces repeatable initial data with no spatial correlation,
and tests every aspect of the evolution and diagnostic
algorithms.

TABLE III. Cylindrical- and spherical-like parity conditions for
rank-1 and rank-2 tensors. “Radial” refers to the parity across
r ¼ 0, “Axial” refers to the parity across ρ ¼ 0 or sinðθÞ ¼ 0, and
“Periodic” refers to the parity across φ ¼ 0 or φ ¼ 2π. Compare
with Table I in [29].

Coordinates Component Radial Axial Periodic

Cylindrical-like ρ − þ
φ − þ
z þ þ
ρρ þ þ
ρφ þ þ
ρz − þ
φφ þ þ
φz − þ
zz þ þ

Spherical-like r − þ þ
θ þ − þ
φ − − þ
rr þ þ þ
rθ − − þ
rφ þ − þ
θθ þ þ þ
θφ − þ þ
φφ þ þ þ
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Standard second-order Runge-Kutta (RK2) integration is
unconditionally unstable in the presence of coordinate
singularities. To circumvent this problem, BMCCM evolves
the BSSN fields using the second-order partially implicit
Runge-Kutta (PIRK2) integrator [76] (see [68] for details of
the method and its higher-order generalizations). The PIRK2
method treats all of the regular terms in the evolution
equations explicitly, as in RK2, but evolves the singular
terms by an implicit step that depends on the updated values
of the regular parts. This technique does not require any
analytical or numerical inversion, and so its cost is compa-
rable to that of fully explicit schemes. Although by default
SENR implements RK4, which is stable in the presence
of coordinate singularities [68], we also implement PIRK2
in SENR to directly compare results with the established
BMCCM code.
We compare between SENR=NRPyþ and BMCCM the

L2 norm of the Hamiltonian violation over the entire grid,
distilling an entire grid’s worth of data down to a single
number at each time. Double precision floating point
arithmetic maintains approximately 16 digits of signifi-
cance in any mathematical operation, limiting the extent to
which it can be said that two algorithms are in numerical
agreement. Over the course of a simulation, errors at the
16th significant digit will gradually rise—an unavoidable
phenomenon when using finite-precision arithmetic known
as roundoff error. If two codes are shown to produce results
that agree to within roundoff error, they are functionally
identical, so that if one code has been proven robust, then
the other code possesses identical robustness.
The comparison is calibrated by first running BMCCM

with the random initial data. Then, it is run again with
identical initial data, except that the least significant digit at
every point is reset to a random number. This tiny initial
difference grows over time due to roundoff error. Given the
strong, discontinuous nature of the random perturbations
away from flat space, infinities and NaNs eventually
develop, causing the simulations to terminate. For good
measure, we perform the calibration a second time, starting
with an identical perturbation of Minkowski, but re-
randomizing the least significant digit for each function
at every grid point. The results diverge from the base case in
a similar fashion, shown as dashed lines in Fig 1.
Finally, we run the initial data of the BMCCM base case

through SENR=NRPyþ on an identical grid. The resulting
differences are illustrated as a solid line in Fig 1. SENR=
NRPyþ maintains significance at least as well as the
BMCCM calibrations, indicating the two codes agree to
within roundoff error. Thus the results of the SENR=NRPyþ
and BMCCM codes are numerically indistinguishable.

2. SENR=NRPy+ and the Einstein Toolkit: Comparison
of nonspinning puncture black hole evolutions

In this section, results from SENR=NRPyþ are com-
pared with the ETK in the context of nonspinning black

hole evolutions, tracking the apparent horizon radii.
The initial data represent a single wormhole slice of the
Schwarzschild black hole spacetime in isotropic coordi-
nates. These data are conformally flat (εij ¼ 0), maximally
sliced (K ¼ 0), and exist at a moment of time symmetry
(Āij ¼ 0). The conformal factor is the solution to the flat
space Laplace equation when the asymptotic flatness
condition limr→∞eϕ ¼ 1 is imposed at infinity

eϕ ¼ 1þM
2r

; ð61Þ

where r is the isotropic radial coordinate distance to the
puncture located at the origin. The constant of integration
is chosen such that the total ADM energy (48a) of the slice
is MADM ¼ M. As initial gauge conditions, we use the
popular “pre-collapsed” lapse [30]

α ¼ e−2ϕ ð62Þ

and vanishing shift βi ¼ 0 and Bi ¼ 0. The shift evolution
damping parameter η (14a) influences the coordinate radius
of the black hole apparent horizon. We found that our
choice of η ¼ 0.25=M results in a horizon that quickly
settles down to a static state.
In the ETK simulation, we make use of the open-source

Cactus/Carpet [13,14] AMR infrastructure to place a single
wormhole black hole at the origin, surrounded by 8 levels
of mesh refinement. The AMR grids are Cartesian and
adopt a Cartesian basis. Each refinement level contains the
same number of points (excluding ghost and AMR buffer
zones), and the grid spacing doubles each time a refinement
boundary is crossed (starting from the origin and moving
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FIG. 1. Digits of agreement between SENR=NRPyþ and
BMCCM evolving random initial data, measuring the L2 norm
of the Hamiltonian constraint over the entire grid. The initial data
are a random perturbation about flat spacetime of maximum
magnitude 0.02. The calibration runs compare BMCCM with
itself randomly perturbed, initially, in the least significant digit.
Both codes terminate due to NaNs at exactly the same iteration.
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outward). The grid outer boundary is set to rmax=M ¼ 128.
There are 32 uniformly spaced grid points across each
refinement level in each coordinate direction, giving 16
points across the horizon when at its smallest (on the initial
slice). On the finest refinement level, the grid spacing along
each of the coordinate directions is Δrmin=M ¼ 0.03125.
RK4 time evolution (the method of lines) and sixth-order
finite difference stencils are adopted, with upwinding on
the shift-advection terms. The BSSN equation C code in the
McLachlan BSSN thorn [15] is automatically generated
using the Mathematica-based Kranc code [48]. The black
hole apparent horizon radius is measured from the evolved
fields using the AHFinderDirect thorn [63].
In SENR=NRPyþ, we adopt the same initial data, but

place it on a single spherical grid with coordinate redis-
tribution function

fðx1Þ ¼ rmax
sinh ðx1=wÞ
sinh ð1=wÞ ; ð63Þ

with all tensorial variables expressed in the spherical basis.
The grid parameters are tuned to match both the outer
boundary of the ETK simulation, as well as the minimum
grid spacing at the black hole. The ETK AMR grid has
32 × 8 ¼ 256 (192 nonoverlapping) points along each
Cartesian coordinate direction. Along the diagonal, the
resolution is effectively reduced to 256=

ffiffiffi
3

p
≈ 148 points.

For the SENR grid, we allocate Nx1 ¼ 148 and Nx2 ¼
Nx3 ¼ 2 (the minimum number of angular grid points
required by our boundary condition module), let w ¼
0.173435, and set the outer boundary rmax=M ¼ 128.
This results in Δrmin=M ≈ 0.03123, agreeing well with
the ETK grid. The black hole apparent horizon radius is
measured from the evolved fields by hunting for the root of
the null expansion (see Sec. IV B 1 for details). We adopt
NFD ¼ 6 and RK4 time integration in SENR=NRPyþ to
match ETK.
Despite tuning the grid resolutions and basic numerical

evolution strategies to be consistent across codes, the
chosen shift condition in both codes is not covariant [note
the partial derivatives appearing in Eqs. (14) and (15), and
see discussion in Brown [26] for how to make this shift
condition covariant]. Thus we should not in general expect
results that agree between the codes, as they do not adopt
the same coordinate system. For spherically symmetric
spacetimes, however, the partial derivatives ∂i in Eqs. (14)
and (15) can be replaced with the covariant derivative D̂i in
both spherical and Cartesian coordinates, showing that, in
this special case, the gauge conditions are geometrically
identical.
In Fig. 2, we monitor the coordinate radius of a puncture

black hole as an indicator of the spacetime field and shift
dynamics (obviously, the shift condition directly influences
the coordinate radius of a puncture black hole). Notice that
the apparent horizon radii measured by SENR=NRPyþ and
ETK match extremely well over time, starting from the

expected initial coordinate radius of the wormhole throat
rH=M ¼ 0.5 and equilibrating to a trumpet coordinate
radius of rH=M ≈ 0.883.
We find that the constraint violation in SENR=NRPyþ

versus radius is typically below the level observed in the
ETK simulation by about 2 orders of magnitude, and at
worst the two share the same level of violation.
Even though results between the two codes in the strong-

field region agree extremely well (Fig. 2), and the magni-
tude of constraint violations is significantly smaller in
SENR=NRPyþ, the ETK simulation requires approxi-
mately 10 GB of RAM, whereas the SENR=NRPyþ
simulation needs only 28 MB—about 0.28% of the
ETK simulation. Of course this is due to the ability of
SENR=NRPyþ to take advantage of the spherical sym-
metry in the spherical basis, while the ETK simulation
models the black hole on nested Cartesian AMR grids.
Note that in spite of the spherical symmetry, this is still a
full 3þ 1 simulation for SENR, just with very few points
sampling the angular directions.
Having demonstrated excellent agreement with the

BMCCM and ETK codes, we next turn our attention to
code validation tests, in which numerical errors in SENR=
NRPyþ are demonstrated to converge to zero as expected.

B. Convergence tests

Section V B 1 shows that finite difference truncation
errors converge to zero with increasing grid resolution at
the expected rates in SENR=NRPyþ. We show in
Sec. V B 2 that the truncation error converges to zero
nearly exponentially with linear increase in the finite
difference order, keeping the numerical grids held fixed.
We explore the convergence behaviors of physical quan-
tities extracted from the evolved fields. Then, in Sec. V B 3
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FIG. 2. Single black hole wormhole initial data evolved in the
standard gauge with sixth-order finite differencing: comparison
between SENR=NRPyþ and the ETK. Evolution of the apparent
horizon coordinate radius as measured in SENR=NRPyþ by
finding the root of the null expansion (49), and in the ETK using
the AHFinderDirect thorn [63].
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we evolve the dynamical head-on collision from rest of
two nonspinning black holes, and confirm that the ring-
down of the merged black hole gravitational waveform
matches the analytical prediction both in frequency and
amplitude.

1. Convergence of puncture black hole evolutions

The BSSN equations are solved on the uniformly
sampled xðiÞ grid, which directly maps to the solution on
the nonuniformly sampled, Cartesian yðiÞ grid. In particular,
we use the linear coordinate redistribution function

fðx1Þ ¼ rmaxx1; ð64Þ

and similarly for x2 or x3, depending on the choice of
coordinates. Numerical errors in solving these equations
stem largely from the finite difference representation of
spatial derivatives (i.e., truncation errors of these deriva-
tives are typically dominant). Finite difference operators
effectively fit a polynomial to a function sampled at a fixed
number of neighboring points, so that the derivative of the
polynomial acts as an approximation to the exact derivative.
Truncation error—i.e., the error caused by approximating
functions with finite polynomials of degree D—drops
as the sample rate to some power NFD that is related to
D. In our finite difference schemes, NFD ¼ D.
In this section, we confirm that in fact the error drops in

proportion to our underlying uniform grid spacing
EFD ∼OðΔxNFDÞ, in the context of a single, nonspinning
puncture black hole evolved using the BSSN formalism, in
which NFD ∈ f2; 4; 6g. We monitor the Hamiltonian con-
straint violation. With uniform resolution, it becomes very
expensive to simultaneously resolve the apparent horizon
and push the outer boundary far from the puncture. This
limits the total run time before error from the outer
boundary contaminates the horizon.
As an alternative approach, we perform convergence

tests in which the grid resolution is held fixed and the finite
difference order is allowed to vary. In this way, we increase
the degree of the finite difference polynomial that is fit
to each function at each point. Therefore, we expect the
convergence rate to be approximately exponential, pro-
vided roundoff error is sufficiently small and the underlying
functions are smooth (see, e.g., [77] for additional dis-
cussion of “exponential” convergence).
These tests adopt the same isotropic wormhole initial

data and initial gauge conditions as in Sec. VA 2. We set
the outer boundary to rmax=M ¼ 10. The fastest waves on
the grid (related to the 1þ log lapse condition; see, e.g.,
[19,46]) propagate, with speed

ffiffiffiffiffiffi
2α

p
, inward from the outer

boundary and outward from the puncture. These simula-
tions end at t=M ≈ 5.
In Fig. 3, we show that the finite difference truncation

errors converge at the expected rates in all three coordinate

system classes by rescaling the higher resolution data
by a constant factor ðNi=200ÞNFD, where Ni ∈ f200; 254;
322; 410g represents the number of grid points (in the
nonangular coordinate directions) in each run. We let
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FIG. 3. Single black hole wormhole initial data evolved in the
standard gauge: convergence of truncation errors to zero of
Hamiltonian constraint violation in linearly distributed Cartesian
(top panel), cylindrical (middle panel), and spherical coordinates
(bottom panel). The legends indicate the number of grid points Ni
in each (nonangular) direction. The data shown here are scaled by
the factor ðNi=200ÞNFD. Data are measured along a radial line at
t=M ≈ 5. Cartesian, cylindrical, and spherical coordinate evolu-
tions are performedwithNFD ¼ 2, 4, and 6, respectively.We adopt
the linear redistribution function parameter rmax=M¼10 [Eq. (64)].
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NFD ¼ 2 in the Cartesian case, NFD ¼ 4 in the cylindrical
case, and NFD ¼ 6 in the spherical case. The lack of
convergence at r=M ≳ 6 is due to the approximate outer
boundary conditions; in practice we push outer boundaries
out of contact from the physical system of interest via a
simple logarithmic radial rescaling of the underlying
coordinate system.
Remarkably, in Fig. 4, we find that while the Hamiltonian

constraint violation is anticonvergent inside the horizon
(r=M ≲ 0.5), we maintain approximately exponential con-
vergence in a sizable region outside the horizon, hitting
roundoff error at eighth order. We have observed non-
convergent behavior propagating outside the horizon only
in cases when the total number of points inside the horizon

are set to be so small that finite difference stencils outside the
horizon touch grid points immediately surrounding the
puncture.
More alarming than the puncture itself, the sharp lapse

wave (a “gauge shock” [78,79]) that propagates outward
from the horizon in moving puncture simulations is another
source of nonconvergence. Remarkably, exponential-like
convergence is restored in the wake of this gauge wave
pulse; in Fig 4, the pulse has reached r=M ≈ 425 at the time
of measurement. Restoration of convergence after the
gauge pulse is very difficult to achieve on Cartesian
AMR grids, as sharp outgoing waves are partially reflected
off of refinement boundaries. (See, e.g., [19] for discussion
of how this problem might be mitigated.)
Based on these results, we anticipate much cleaner

exponential-like convergence in black hole evolutions for
which this gauge pulse does not exist. Next we explore just
such a case: evolutions of trumpet black hole initial data.

2. Convergence of evolved static trumpet initial data

The trumpet solution represents a time-independent
slicing of the Schwarzschild spacetime [53]. In this section,
we adopt the trumpet solution to show that the numerical
evolution outside the horizon is completely dominated by
truncation error.
The trumpet data are conformally flat (εij ¼ 0), and

describe a single black hole with mass M. With the choice
f1 ¼ R0 ¼ M in [53], the trumpet conformal factor is

eϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM

r

r
ð65Þ

and the nonvanishing extrinsic curvature terms are

K ¼ M
ðM þ rÞ2 ; ð66aÞ

Ārr ¼ −
4M

3ðM þ rÞ2 ; ð66bÞ

Āθθ ¼
Āφφ

sin2ðθÞ ¼
2Mr2

3ðM þ rÞ2 : ð66cÞ

Using an alternative to the standard 1þ log condition
given by Eq. (13), the lapse is evolved according to a
condition consistent with staticity

∂0α ¼ −αð1 − αÞK: ð67Þ
For the shift vector evolution equation, we desire only

that the right-hand sides vanish analytically (although
numerical error is expected to result in specious evolution).
To this end, we adopt the nonadvecting Gamma-driver
condition

∂tβ
i ¼ Bi; ð68aÞ

∂tBi ¼ 3

4
∂tΛ̄i − ηBi: ð68bÞ
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FIG. 4. Single black hole wormhole initial data evolved in the
standard gauge: convergence of truncation errors to zero of
Hamiltonian constraint violation in sinh-cylindrical (top panel)
and sinh-spherical (bottom panel) coordinates. Numerical grids
are held fixed at moderate resolution, and only finite difference
order is increased. Hamiltonian constraint violation is measured
along a radial line at t=M ≈ 300. As the nonconvergent gauge
wave pulse propagates outward from the puncture, exponential
convergence of the Hamiltonian is restored in its wake. For these
simulations, we take η ¼ 2=M. We adopt redistribution param-
eters rmax=M ¼ 1000 and w ¼ 0.0916845 [Eq. (63)]. The spheri-
cal-like grid uses Nx1 ¼ 200 and Nx2 ¼ Nx3 ¼ 2 points, and the
cylindrical-like grid uses Nx1 ¼ 200, Nx2 ¼ 2, and Nx3 ¼ 400.
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The initial lapse and shift take on the forms

α ¼ r
M þ r

; ð69aÞ

βr ¼ Mr
ðM þ rÞ2 : ð69bÞ

We use damping parameter η ¼ 0.25=M, although the
results are not very sensitive to its particular value because
the evolution begins and remains in a quasistatic state.
Analytically, the trumpet solution with these gauge con-

ditions is static, but numerical errors result in unwanted
evolution of the fields away from the initial data.We perform
numerical evolutions of these data on fixed numerical grids,
subject to these gauge evolution equations, to confirm that
evolution away from the initial data disappears nearly
exponentially with increased finite difference order.
We choose a fixed, spherical-like coordinate grid with

Nx1 ¼ 128 andNx2 ¼ Nx3 ¼ 2, where the radial points are
distributed according to Eq. (63) with w ¼ 0.0747 and
rmax=M ¼ 1000 (the location of the outer boundary). We
perform numerical evolutions on these fixed grids at finite
difference orders NFD ∈ f2; 4; 6; 8g.
After t=M ≈ 100, the freely evolved conformal factorW,

and the gauge functions α and βr, are compared with their
initial values. The relative differences are shown in Fig. 5
for varying NFD. As in the puncture evolution of the
previous section, we observe nonconvergent numerical
errors inside the horizon (r=M ≲ 0.5), which leads to
additional spurious dynamics in the black hole with
increased finite difference order. Unlike in the 1þ log
evolutions, however, no sharp lapse wave exists in the
trumpet solution, so that exponential convergence is main-
tained over the entire numerical grid outside the horizon
and inside the region influenced by the approximate outer
boundary conditions. In fact, at high finite difference order,
all plotted quantities drop to roundoff-level agreement
somewhere in the region between r=M ¼ 10 and 100.

3. Gravitational waves from a head-on collision

In Sec. V B 1, we demonstrated that nearly exponential
convergence outside a puncture black hole horizon (and
inside the region causally influenced by the outer boun-
dary) is restored in the wake of a sharp gauge wave. In
[18,19], it is posited that this sharp wave causes non-
convergent errors in moving puncture black hole binary
simulations on AMR grids, due to reflections off refine-
ment boundaries. These nonconvergent errors have a direct
impact on the convergence of the gravitational waves in
these simulations.
In this section, we explore the convergence of gravita-

tional wave signals from a head-on Brill-Lindquist black
hole collision on spherical-like coordinate grids, keeping
the numerical grids fixed at a moderate resolution and

varying only finite difference derivative order, choosing
NFD ∈ f2; 4; 6; 8; 10g.
Brill-Lindquist initial data [51] represent nonspinning

black holes starting from rest. The initial data are con-
structed from a superposition of isotropic wormhole slices
of the Schwarzschild spacetime. Though the formulation
holds for an arbitrary number of black holes, here we use
only two.
The wormhole slice of the Schwarzschild spacetime with

isotropic radial coordinate r is conformally flat (εij ¼ 0) on
the initial Cauchy surface. This hypersurface is maximal
(K ¼ 0) and exists at a moment of time symmetry
(Āij ¼ 0). The conformal factor is the solution to the
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FIG. 5. Trumpet black hole initial data evolved for t=M ≈ 100
in the static trumpet gauge: relative difference between evolved
and initial conformal factorW (top panel), lapse α (middle panel),
and radial component of the shift βr (bottom panel), versus
distance from the origin. The trumpet black hole is centered on
the origin.
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flat-space Laplace equation, which allows for a direct
superposition of single wormhole conformal factors given
in Eq. (61)

eϕ ¼ 1þMþ
2rþ

þM−

2r−
; ð70Þ

where

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2 ∓ 2br cosðθÞ

q
ð71Þ

is the isotropic radial coordinate distance from the coor-
dinate origin to the puncture with mass parameter M�
located along the spherical-polar axis �b=M above (þ) or
below (−) the origin. This configuration is axisymmetric
with respect to the polar axis, though, as with all of the
other cases, we perform our simulation in full 3þ 1
dimensions.
For the runs presented here, we focus on an equal-mass

case in which M� ¼ M=2, so that the ADM mass integral
(48a) gives MADM ¼ M. We confirm that the ADM
momentum (48b) and angular momentum (48c) integrals
vanish, as expected. We also chose b=M ¼ 0.5.
We use Eq. (62) for the initial lapse, and βi ¼ 0 and

Bi ¼ 0 for the initial shift. The shift evolution damping
parameter is set to η ¼ 2=M, which results in an equilib-
rium remnant horizon radius of rH=M ≈ 1.4. We use a
spherical-like grid with redistribution function equa-
tion (63), so that x1 corresponds to a radial coordinate.
We choose rmax=M ¼ 1000 and w ¼ 0.125 with Nx1 ¼
400, Nx2 ¼ 64, and Nx3 ¼ 2 (where Nx3 is the axis of
symmetry for the collision). Evolving wormhole initial data
with the ordinary 1þ log lapse condition Eq. (13) results in
a sharp, nonconvergent gauge pulse that propagates out-
ward from the puncture. We find, however, that excellent
convergence is restored in the wake of the pulse as it moves
towards the outer boundary.
The black holes are both nonspinning and are released

from rest, so they remain on the polar axis during infall and
collide head-on. They merge to form a single, strongly
perturbed black hole, which quickly rings down to a
stationary state as the time-changing quadrupole in the
horizon is radiated away in the form of gravitational waves.
The result is that the waveform after merger behaves as an
exponentially damped harmonic oscillator. In spin-weight-
two spheroidal harmonics, the fundamental gravitational
wave mode in the l ¼ 2 harmonic has complex frequency
ωM ≈ 0.3737 − 0.0890i [80]. With only a constant ampli-
tude Af and phase offset ϕf acting as fitting parameters, the
magnitude of the expected ringdown signal

ℜðΨrd
4 Þ ¼ Af expð−0.0890tÞ cosð0.3737tþ ϕfÞ ð72Þ

is plotted in the upper panel of Fig. 6, atop the amplitude of
the real part of the dominant l ¼ 2mode ofΨ4 measured in
our simulation. Excellent agreement is observed between the
expected ringdown signal and the results fromour simulation

over more than six decades in amplitude. Further, the
symmetry of the head-on collision is expected to result in
gravitational waves that are in a pure þ polarization state,
which we confirm by measuring the imaginary part ofΨ4 to
be zero to roundoff error [see Eq. (50)].
The bottom panel of Fig. 6 demonstrates that differences

in waveforms at adjacent finite difference orders (keeping
the spherical-like coordinate grids fixed at moderate reso-
lution) converge nearly exponentially with increased finite
difference order. Notice that after the peak gravitational wave
signal has passed, jFD 6 − FD 8j and jFD 8 − FD 10j are at
times influenced by roundoff error, as evidenced by their
suddenly stochastic behavior. We confirmed this feature by
repeating the simulations with long double (80-bit) floating-
point precision.
The peak amplitude occurs at retarded time of approx-

imately tret=M ≈ 18, when the differences between wave-
forms at adjacent finite difference orders are near their
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the gravitational wave extraction radius is rext=M ≈ 44.8. (Top
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in jℜðΨ4Þjl¼2;m¼0 at adjacent finite differencing orders, keeping
the spherical grid fixed at moderate resolution.
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peaks. At this time, this mode of Ψ4 gains about an order
of magnitude more precision with each increment of finite
difference order. The particular rate of exponential con-
vergence depends on the grid spacing.
The wave carries away energy from the black hole, so to

what degree is convergence in the waveform reflected in
the Hamiltonian (energy) constraint? Figure 7 plots the
Hamiltonian constraint at the time in which the peak
gravitational wave signal crosses the gravitational wave
extraction radius (t=M ≈ 62.9 and rext=M ≈ 44.8). As with
the single puncture black hole, the Hamiltonian constraint
restores its exponential convergence in the wake of the
outgoing gauge pulse. Notice the Hamiltonian constraint
violation in the eighth- and tenth-order finite difference
cases is nearly indistinguishable in the range r=M ≳ 7 due
to roundoff error. If this Hamiltonian constraint violation
were to influence the gravitational waveform convergence,
violations at this radius should impact the gravitational
waves at retarded times tret=M ≈ 0 through 52. However, in
that range the jFD 8 − FD 10j and jFD 6 − FD 8j curves are
easily distinguishable in Fig. 6. We conclude that even if
the Hamiltonian constraint is dominated by roundoff error,
the gravitational waveforms may still be convergent.
Based on these results, we conclude that SENR=NRPyþ

would be an excellent tool for studying perturbed black
holes.

VI. CONCLUSION

In this work, we extend the reference-metric formulation
of the BSSN equations pioneered by [24,26,28,29] to
handle Cartesian-, cylindrical-, and spherical-like numeri-
cal grids. At the heart of this strategy, a noncoordinate basis

is adopted to remove from tensorial variables all coordinate
singularities that arise from the choice of certain bases.
Treating these singularities analytically, we successfully
evolve black holes using the moving punctures approach
[9,10,30] without resorting to special integration tech-
niques, and without encountering numerical instabilities.
We announce a new numerical relativity code package

called SENR=NRPyþ, which implements this approach.
It is fully open source, open development, and nonpropri-
etary. NRPyþ, written entirely in Python, converts tensorial
expressions and their derivatives in Einstein notation to
optimized C code, representing derivatives with suitable
finite difference approximations. Our current implementa-
tion supports Cartesian-like, spherical-like and cylindrical-
like coordinates, but our methods can be generalized easily
for other orthogonal coordinate systems. SENR contains all
of the basic numerical algorithms needed for a numerical
relativity code, making use of the C codes generated by
NRPyþ where complex tensorial expressions are required.
To the best of our knowledge, this is the first open-source
numerical relativity code that lets the user select from a
broad range of curvilinear coordinate systems.
The SENR=NRPyþ implementation of the BSSN equa-

tions is validated against two other well established numeri-
cal relativity codes. In the context of a Minkowski spacetime
with strong random perturbations, we achieve roundoff-level
agreement with the BMCCM code, which evolves the BSSN
equations in spherical coordinates at fixed fourth-order finite
difference accuracy. We similarly observe excellent agree-
ment between the results of SENR=NRPyþ and the ETK’s
McLachlan BSSN thorn [15] in the context of a single
puncture black hole evolution. We also show that, for both
single and double black hole spacetimes, the finite difference
truncation error converges with increasing grid resolution at
the expected rate. In addition, we demonstrate exponential
convergence of the error with increasing finite difference
order, keeping the grid resolution constant.
A number of physical diagnostic quantities are imple-

mented in SENR=NRPyþ, including constraint violations
and ADM integrals. For additional tools, we developed an
ETK compatibility layer within SENR that interpolates
quantities in the chosen curvilinear coordinate basis to
the Cartesian basis, and onto a Cartesian grid. In this way,
SENR can take direct advantage of the large suite of
ETK-based diagnostic utilities, including, e.g., apparent
horizon finders and gravitational wave diagnostics. These
diagnostics are applied to head-on collisions of two non-
spinning black holes to show that the absolute difference
between gravitational waveforms converges exponentially
at successive finite difference order.
We conclude that our extended formalism for BSSN on

arbitrary coordinate grids as implemented SENR=NRPyþ
provides an outstanding tool for analyzing perturbed black
holes without approximation. Further, the spherical-like
coordinate systems adopted are ideal for gravitational wave
extraction and analysis. We next plan to add coordinate
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the peak gravitational wave amplitude passes through rext=M≈
44.8, the radius at which gravitational waves are extracted in
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system dynamics and explore bispherical-like coordinate
geometries, so that black hole binaries may be modeled
with extreme efficiency. All simulations displayed in this
work can be performed on aging desktop computers
(except for a few of the high resolution Cartesian runs,
which were executed on a desktop with additional RAM),
and given the ability of these coordinate systems to exploit
near-symmetries near compact objects, we anticipate that
SENR=NRPyþmay be the first code to unlock the desktop
as a powerful tool for fully general relativistic gravitational
wave astrophysics.
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