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We numerically study the shadows of a Bonnor black dihole through the technique of backward ray
tracing. The presence of a magnetic dipole yields nonintegrable photon motion, which sharply affects the
shadow of the compact object. Our results show that there exists a critical value for the shadow. When the
magnetic dipole parameter is less than the critical value the shadow is a black disk, but when the magnetic
dipole parameter is larger than the critical value the shadow becomes a concave disk with eyebrows
possessing a self-similar fractal structure. These behaviors are very similar to those of the equal-mass and
nonspinning Majumdar-Papapetrou binary black holes. However, we find that the two larger shadows and
the smaller eyebrow-like shadows are joined together by the middle black zone for the Bonnor black dihole,
which is different from that in the Majumdar-Papapetrou binary black hole spacetime where they are
disconnected. With the increase of the magnetic dipole parameter, the middle black zone connecting the
main shadows and the eyebrow-like shadows becomes narrow. Our results show that the spacetime
properties arising from the magnetic dipole yield interesting patterns for the shadow cast by a Bonnor black
dihole.
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I. INTRODUCTION

A shadow is a two-dimensional dark region in the
observer’s sky corresponding to light rays that fall into
an event horizon when propagated backwards in time. It has
been shown that the shape and size of the shadow carry the
characteristic information of the geometry around the
celestial body [1–3], which means that the shadow can
be regarded as a useful tool to probe the nature of the
celestial body and to further check various theories of
gravity. Past investigations [2,3] have indicated that the
shadow is a perfect disk for a Schwarzschild black hole and
it changes into an elongated silhouette for a rotating black
hole due to its dragging effect. The cusp silhouette of a
shadow is found in the spacetime of a Kerr black hole with
Proca hair [4] and of a Konoplya-Zhidenko rotating non-
Kerr black hole [5] when the black hole parameters lie in a
certain range. Moreover, the shadow of a black hole with
other characteristic parameters has been studied recently
[6–22] (for details, see the review [23]), which indicates
that these parameters give rise to richer silhouettes for the
shadows cast by black holes.

However, most of the above investigations focused only
on the cases where the null geodesics are variable separable
and the corresponding dynamical systems are integrable.
When the dynamical systems are nonintegrable, the motion
of photons could be chaotic, which could lead to some
novel features for the black hole shadow. Recently, it was
shown that due to such chaotic lensing multi-disconnected
shadows with fractal structures emerge for a Kerr black
hole with scalar hair [24–27] or a binary black hole system
[28,29]. Further analysis has shown that these novel
patterns with fractal structures in shadows are determined
by the nonplanar bound orbits [4] and the invariant phase-
space structures [30] of photon motion in the black hole
spacetimes. A similar analysis has also been done for cases
with ultracompact objects [31,32].
It is well known that there exist enormous magnetic

fields around large astrophysical black holes, especially in
the nuclei of galaxies [33–36]. These strong magnetic fields
could be induced by currents in accretion disks near the
supermassive galactic black holes. On the basis of these
strong magnetic fields, there are many theoretical models
that account for black hole jets, which are one of the most
spectacular astronomical events in the sky [37–39]. In
general relativity, one of the most important solutions with
magnetic fields is the Ernst solution [40], which describes
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the gravity of a black hole immersed in an external
magnetic field. Interestingly, for an Ernst black hole, the
polar circumference of the event horizon increases with the
magnetic field, while the equatorial circumference
decreases. Bonnor’s metric [41] is another important
solution of the Einstein field equations in vacuum, which
describes a static massive object with a dipole magnetic
field in which two static extremal magnetic black holes
with charges of opposite signs are situated symmetrically
on the symmetry axis. For the Bonnor black dihole
spacetime, the area of the horizon is finite, but the proper
circumference of the horizon surface is zero. In particular, it
is not a member of the Weyl electromagnetic class and it
cannot be reduced to the Schwarzschild spacetime in the
limit without a magnetic dipole. The new properties of
spacetime structure originating from magnetic dipoles will
lead to chaos in the motion of particles [42–44]. Since the
shadow of black hole is determined by the propagation of
light rays in the spacetime, it is expected that the chaotic
lensing caused by the new spacetime structure will give rise
to new effects in the black hole shadow. Therefore, in this
paper we focus on studying the shadow of a Bonnor black
dihole [41] and probe the effect of the magnetic dipole
parameter on the black hole shadow.
The paper is organized as follows. In Sec. II, we briefly

review the metric of a Bonnor black dihole and then
analyze the propagation of light rays in this background.
In Sec. III, we investigate the shadows cast by a Bonnor
black dihole. In Sec. IV, we discuss the invariant phase-
space structures of photon motion and the formation of the
shadow cast by a Bonnor black dihole. Finally, we present a
summary.

II. SPACETIME OF A BONNOR BLACK
DIHOLE AND NULL GEODESICS

Let us now briefly review the spacetime of a Bonnor
black dihole. In the 1960s, Bonnor obtained an exact
solution [41] of the Einstein-Maxwell equations that
describes a static massive source carrying a magnetic
dipole. In the standard coordinates, the metric of this
spacetime has the form [41]

ds2 ¼ −
�
P
Y

�
2

dt2 þ P2Y2

Q3Z
ðdr2 þ Zdθ2Þ þ Y2Zsin2θ

P2
dϕ2;

ð1Þ

where

P ¼ r2 − 2mr − b2cos2θ;

Q ¼ ðr −mÞ2 − ðm2 þ b2Þcos2θ; Y ¼ r2 − b2cos2θ;

Z ¼ r2 − 2mr − b2: ð2Þ

The corresponding vector potential Aμ is given by

Aμ ¼
�
0; 0; 0;

2mbrsin2θ
P

�
; ð3Þ

where μ ¼ 0, 1, 2, 3 correspond to the elements of Aμ

associated with the coordinates t; r; θ;ϕ, respectively. It is a
static axially symmetric solution characterized by two
independent parameters m and b, which are related to
the total mass of the Bonnor black dihole M by M ¼ 2m
and to the magnetic dipole moment μ by μ ¼ 2mb.
Obviously, this spacetime is asymptotically flat since when
the polar coordinate r approaches infinity, the metric tends
to the Minkowski one. The event horizon of the spacetime
(1) is the null hypersurface f that satisfies

gμν
∂f
∂xμ

∂f
∂xν ¼ 0; ð4Þ

which yields

r2 − 2mr − b2 ¼ 0: ð5Þ

It is obvious that there exists only a horizon, and the
corresponding horizon radius is rh ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ b2

p
.

The area of the horizon is A ¼ 16πm2r2h=ðm2 þ b2Þ, but
the proper circumference of the horizon surface is zero
since gϕϕ ¼ 0 on the horizon. This implies that the Z ¼ 0

surface is not a regular horizon since there exist conical
singularities at r ¼ rh. The singularity along the segment
r ¼ rh can be eliminated by selecting a proper period
Δϕ ¼ 2π½b2=ðm2 þ b2Þ�2, but such a choice yields a
conical deficit running along the axes θ ¼ 0; π, from the
end points of the dipole to infinity [45,46]. The defects
outside of the dipole can be treated as open cosmic strings,
and then the Bonnor black dihole is held apart by the
cosmic strings that pull from its end points. Since the
angular coordinate ϕ is periodic, an azimuthal curve γ ¼
ft ¼ const; r ¼ const; θ ¼ constg is a closed curve with
invariant length s2γ ¼ gϕϕð2πÞ2. Then, the integral curve
with ðt; r; θÞ fixed is a closed timelike curve when gϕϕ < 0.
Thus, there exist closed timelike curves inside the horizon.
However, the region outside the horizon is regular and there
are no closed timelike curves. Moreover, the spacetime (1)
possesses a complicated singular behavior at P ¼ 0,
Q ¼ 0, and Y ¼ 0, but there is no singularity outside the
horizon. When b ¼ 0, one can find that it does not reduce
to the Schwarzschild spacetime, but rather to the Zipoy-
Voorhees one with δ ¼ 2 [47,48], which describes a
monopole of mass 2m together with higher-mass multi-
poles that depend on the parameter m. These special
spacetime properties affect the propagation of photons
and further change the shadow of the Bonnor black
dihole (1).
The Hamiltonian of photon motion along null geodesics

in the spacetime (1) can be expressed as
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Hðx; pÞ ¼ 1

2
gμνðxÞpμpν ¼ 0: ð6Þ

Since the metric functions in the spacetime (1) are
independent of the coordinates t and ϕ, it is easy to obtain
two conserved quantities E and Lz with the following
forms:

E ¼ −pt ¼ −g00_t; Lz ¼ pϕ ¼ g33 _ϕ; ð7Þ

which correspond to the energy and the z component of the
angular momentum of a photon moving in the background
spacetime. With these two conserved quantities, we can
obtain the equations of photon motion along null geodesics:

̈r ¼ −
1

2

∂
∂r

�
ln

�
P2Y2

Q3Z

��
_r2 −

∂
∂θ

�
ln

�
P2Y2

Q3Z

��
_r _θþZ

2

∂
∂r

�
ln

�
P2Y2

Q3

��
_θ2

−
Q3Z
2

�
E2

P4

∂
∂r ln

�
P2

Y2

�
−

L2
z

Y4Z sin θ
∂
∂r ln

�
Y2Z sin θ

P2

��
;

θ̈ ¼ 1

2Z
∂
∂θ

�
ln

�
P2Y2

Q3

��
_r2 −

∂
∂r

�
ln

�
P2Y2

Q3Z

��
_r _θþ 1

2

∂
∂θ

�
ln

�
P2Y2

Q3

��
_θ2

−
Q3

2

�
E2

P4

∂
∂θ ln

�
P2

Y2

�
−

L2
z

Y4Z sin θ
∂
∂θ ln

�
Y2Z sin θ

P2

��
; ð8Þ

with the constraint condition

H ¼ 1

2

�
Q3Z
P2Y2

p2
r þ

Q3

P2Y2
p2
θ þ V

�
¼ 0; ð9Þ

where pr and pθ are the components of the momentum of
the photon pr ¼ g11 _r and pθ ¼ g22 _θ. V is the effective
potential with the form

V ¼ −
�
Y
P

�
2

E2 þ P2

Y2Zsin2θ
L2
z : ð10Þ

Obviously, in the case with a magnetic dipole (i.e., b ≠ 0),
we find that the equations of motion (8)–(9) cannot be
variable separable, and the corresponding dynamical sys-
tem is nonintegrable because it admits only two integrals of
motion E and Lz. This implies that the motion of the photon
could be chaotic in the spacetime (1), which will give rise to
some new features for the shadow cast by a Bonnor black
dihole.

III. SHADOW CAST BY A BONNOR
BLACK DIHOLE

In this section, we will study the shadow cast by a
Bonnor black dihole with the method called “backward ray
tracing” [24–27] in which the light rays are assumed to
evolve from the observer backward in time. In this method,
we must numerically solve the null geodesic equations (7)
and (8) for each pixel in the final image with the
corresponding initial condition. The image of a shadow
in the observer’s sky is composed of the pixels correspond-
ing to the light rays falling down into the horizon of the
black hole.

Since the spacetime of a Bonnor black dihole (1) is
asymptotically flat, we can define the same observer’s sky
at spatial infinity as in the usual static cases. The observer
basis fet̂; er̂; eθ̂; eϕ̂g can be expanded in the coordinate
basis f∂t; ∂r; ∂θ; ∂ϕg in the form [24–27]

eμ̂ ¼ eνμ̂∂ν; ð11Þ

where eνμ̂ satisfies gμνe
μ
α̂e

ν
β̂
¼ ηα̂ β̂, and ηα̂ β̂ is the usual

Minkowski metric. For a static spacetime, it is convenient
to choose the decomposition

eνμ̂ ¼

0
BBB@

ζ 0 0 0

0 Ar 0 0

0 0 Aθ 0

0 0 0 Aϕ

1
CCCA; ð12Þ

where ζ, Ar, Aθ, and Aϕ are real coefficients. From the
Minkowski normalization, one can find that the observer
basis obeys

eμ̂eν̂ ¼ δν̂μ̂: ð13Þ
Therefore, we have

ζ ¼ 1ffiffiffiffiffiffiffiffiffiffi−g00
p ; Ar ¼ 1ffiffiffiffiffiffi

g11
p ; Aθ ¼ 1ffiffiffiffiffiffi

g22
p ; Aϕ ¼ 1ffiffiffiffiffiffi

g33
p ;

ð14Þ
and then the locally measured four-momentum pμ̂ of a
photon can be obtained by the projection of its four-
momentum pμ onto eμ̂,

pt̂ ¼ −pt̂ ¼ −eνt̂ pν; pî ¼ pî ¼ eν
î
pν: ð15Þ
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In the spacetime of a Bonnor black dihole (1), the locally
measured four-momentum pμ̂ can be further written as

pt̂ ¼ 1ffiffiffiffiffiffiffiffiffiffi−g00
p E; pr̂ ¼ 1ffiffiffiffiffiffi

g11
p pr;

pθ̂ ¼ 1ffiffiffiffiffiffi
g22

p pθ; pϕ̂ ¼ 1ffiffiffiffiffiffi
g33

p Lz: ð16Þ

After some similar operations as in Refs. [24–27], we can
obtain the position of a photon’s image in the observer’s
sky [5],

x ¼ −robs
pϕ̂

pr̂ ¼ −robs
Lzffiffiffiffiffiffiffiffiffiffiffiffi

g11g33
p

_r
;

y ¼ robs
pθ̂

pr̂ ¼ robs

ffiffiffiffiffiffi
g22

p _θffiffiffiffiffiffi
g11

p
_r
: ð17Þ

FIG. 1. The sphere light source marked by four different-
colored quadrants and the brown grids of longitude and latitude.
The white reference spot lies at the intersection of the four
colored quadrants.

FIG. 2. The shadow cast by a Bonnor black dihole (1) with different b. Here we set m ¼ 1 and the observer is set at robs ¼ 30m with
the inclination angle θ0 ¼ 90°.
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Following Refs. [24–29], one can divide the celestial
sphere into four quadrants marked by different colors
(green, blue, red, and yellow, as shown in Fig. 1). The
grid of longitude and latitude lines is marked with adjacent
brown lines separated by 10°. The observer is placed off-
center within the celestial sphere at some real radius robs.
For the sake of simplicity, it is placed at the intersection of
the four colored quadrants on the celestial sphere, i.e.,
robs ¼ rsphere, which is not shown in Fig. 1. The white
reference spot in Fig. 1 lies at the other intersection of the
four colored quadrants, which could provide a direct
demonstration of an Einstein ring [24–29]. We can integrate
these null geodesics with different initial conditions until
they either reach a point on the celestial sphere or they fall
into the horizon of the compact object, and the latter defines
the shadow. In Fig. 2, we present the shadow cast by a
Bonnor black dihole (1) with different b. Here we set m ¼
1 and the observer is set at robs ¼ 30m with the inclination

angle θ0 ¼ 90°. Our numerical results show that there exists
a critical value bc ∼ 0.404 for the shadow. When b < bc,
we find that the shadow is a black disk, which is similar to
those in the usual static compact object spacetimes with a
horizon. Moreover, we find that the size of the shadow
decreases with the parameter b in this case. However, for
the case b > bc, there exist two anchor-like bright zones
embedded symmetrically in the black disk shadow so that
the shadow looks like a concave disk with four larger
eyebrows, which are shown in Figs. 2(c) and 2(d). The
eyebrow-like features of the shadow were also found in
Refs. [24–29]. Actually, many other smaller eyebrow-like
shadows can be detected in two anchor-like bright zones,
as shown in Fig. 3. This hints that the shadow possesses a
self-similar fractal structure, which is caused by chaotic
lensing. It is an interesting property of shadows, which is
qualitatively different from those in spacetimes where
the equations of motion are variable separable and the

FIG. 3. The fractal structure in the shadow of a Bonnor black dihole (1) for fixed b ¼ 1.0. Here we setm ¼ 1 and the observer is set at
robs ¼ 30m with the inclination angle θ0 ¼ 90°.
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corresponding dynamical system is integrable. With the
increase of the magnetic dipole parameter b, the eyebrows
become long and the fractal structure becomes more rich.
Moreover, we find that the two anchor-like bright zones
increase with the parameter b, but for arbitrary b, the two
anchor-like bright zones are disconnected since they are
always separated by a black region. In other words, for a
Bonnor black dihole, the two larger shadows and the
smaller eyebrow-like shadows are joined together by the
middle black zone. Moreover, the white circle in Figs. 2 and
3 denote an Einstein ring, which is consistent with the
prediction of multiple images of a source due to gravita-
tional lensing.

IV. INVARIANT PHASE-SPACE STRUCTURES
AND THE FORMATION OF A SHADOW CAST BY

A BONNOR BLACK DIHOLE

In this section, we will discuss the formation of the
shadow cast by a Bonnor black dihole by analyzing
the invariant phase-space structures as in Ref. [30]. The
invariant phase-space structures—including fixed points,
periodic orbits, and invariant manifolds—are important
features for dynamical systems, which are applied exten-
sively in the design of space trajectories for various types of
spacecraft, such as low-energy transfer from the Earth to
the Moon and a “Petit Grand Tour” of the moons of Jupiter
[49–53]. Recent investigations [30] have shown that these
invariant structures play an important role in the emergence
of black hole shadows.
For the spacetime of a Bonnor black dihole (1), the fixed

point x0 ¼ ðr0; θ0; 0; 0Þ in phase space ðr; θ; pr; pθÞ sat-
isfies the condition

_xμ ¼ ∂H
∂pμ

¼ 0; _pμ ¼ −
∂H
∂xμ ¼ 0; ð18Þ

which means

Vjr0;θ0 ¼ 0;
∂V
∂r

����
r0;θ0

¼ 0;
∂V
∂θ

����
r0;θ0

¼ 0: ð19Þ

The local stability of the fixed point x0 ¼ ðr0; θ0; 0; 0Þ can
be obtained by linearizing the Eq. (18),

_X ¼ JX; ð20Þ

where X ¼ ðx̃μ; p̃μÞ and J is the Jacobian. The circular
photon orbits in the equatorial plane (called light rings) are
fixed points of the dynamics of photon motion [4,30]. After
linearizing the Eq. (18) near the fixed point ðr0; π=2; 0; 0Þ
and setting m ¼ 1, we obtain the Jacobian

J ¼

2
6664

0 0 2A 0

0 0 0 2B

−2C 0 0 0

0 −2D 0 0

3
7775; ð21Þ

with

10 5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 4. Light rings (dots) and the corresponding family of
periodic Lyapunov orbits (solid line) in the spacetime of a Bonnor
black dihole with b ¼ 1.4. Here we set m ¼ 1.

FIG. 5. Projection of the unstable invariant manifolds (green
lines) associated with the periodic orbit for η ¼ −6 (red line). The
dark regions are the forbidden regions for photons and the black
dot represents the position of the observer.
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A ¼ ðr0 − 1Þ6ðr20 − 2r0 − b2Þ
r60ðr0 − 2Þ2 ;

B ¼ ðr0 − 1Þ6
r60ðr0 − 2Þ2 ;

C ¼ η2½3r20ðr0 − 4Þðr0 − 2Þ3 þ b2r0ðr0 − 2Þ2ð16þ r0Þ − 4b4ðr0 − 3Þ�
r40ðr20 − 2r0 − b2Þ3 − 4

r0 þ 1

ðr0 − 2Þ4 ;

D ¼ η2ðr0 − 2Þðr30 − 2r20 − 4b2Þ
r40ðr20 − 2r0 − b2Þ −

4b2

ðr0 − 2Þ3 ;

r0 ¼
1

3

�
ð3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108b4 − 112b2 − 225

p
− 54b2 þ 28Þ1=3 þ 7þ 19

ð3 ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108b4 − 112b2 − 225

p
− 54b2 þ 28Þ1=3

�
; ð22Þ

where η≡ Lz=E.

FIG. 6. The Poincaré section at r ¼ robs for the unstable manifolds (green) of Lyapunov orbits in the spacetime of a Bonnor black
dihole (1) with b ¼ 1.4. Panels (a)–(c) show the fractal-like structure for η ¼ −6, and panel (d) is for η ¼ 0. Here we set m ¼ 1.
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Let us now adopt the case m ¼ 1 and b ¼ 1.4 as an
example to analyze the formation of the shadow of a
Bonnor black dihole (1), which is shown in Fig. 2(d). In this
special case, we find that there exist two fixed points. Their
positions in phase space overlap at (4.07; π=2; 0; 0), but
their impact parameters are η1 ¼ −9.83 and η2 ¼ 9.83,
respectively. The special distribution of the two fixed points
is attributed to the fact that the considered magnetic dipole
spacetime (1) is a nonrotating spacetime. The eigenvalues
of the Jacobian (21) are �λ, �νi, where λ ¼ 0.46 and
ν ¼ 0.60. According to Lyapunov’s central limit theorem,
we know that each purely imaginary eigenvalue gives rise
to a one-parameter family γϵ of periodic orbits (which is the
so-called Lyapunov family [30]), and the orbit γϵ collapses
into the fixed point as ϵ → 0. We show the Lyapunov
family for the above fixed points (light rings) in Fig. 4. The
two thick dots represent the two light rings, and the solid
lines denote a family of periodic Lyapunov orbits arising
from these two light rings. These periodic orbits can be
parametrized by the impact parameter η on the interval
½−9.83; 9.83�. All of these periodic Lyapunov orbits are
nearly spherical orbits with radius r ¼ 4.07, which are
responsible for determining the boundary of the shadow of
a Bonnor black dihole, as in Refs. [4,30]. The positive
(negative) real eigenvalue �λ suggests that there is an
unstable (stable) invariant manifold, in which points
exponentially approach the fixed point backward (forward)
time. For each Lyapunov orbit, its corresponding invariant
manifolds are two-dimensional surfaces forming tubes in
the three-dimensional reduced phase space ðr; θ;pθÞ. In
Fig. 5, we show a projection of the unstable invariant
manifolds associated with the periodic orbits for η ¼ −6 in
the plane (X, θ), where X is a compactified radial
coordinate defined as X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2h

p
=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2h

p
Þ

[30]. The orbits inside the unstable invariant manifold tube
can reach the horizon of a Bonnor black dihole. Moreover,
we note that the periodic orbit that touches the boundary of
the black region approaches the boundary Vðr; θÞ ¼ 0
perpendicularly, as in Ref. [28].
In order to probe the shape of the invariant manifolds as

in Ref. [30], we present in Fig. 6 the Poincaré section in the
plane (θ; pθ) for the unstable manifolds of Lyapunov orbits
at the observer’s radial position with η ¼ −6 and η ¼ 0. All
photons that start within the green regions always move
only in the unstable manifold tube. Moreover, we also note
that there exist some white regions which correspond to
where photons move outside the unstable manifolds. In
Fig. 6, the intersection of the dashed line θ ¼ π

2
with these

manifolds denotes the trajectories which can be detected by
the observer on the equatorial plane. This can be gener-
alized to cases with other values of θ. Actually, these
intersection points also determine the positions of the
photons with a certain angular momentum on the image
plane. In Fig. 7, we present the lensing image marking the
intersection points for fixed η ¼ −9.83, η ¼ −6, and η ¼ 0.

The boundary of the shadow of a Bonnor black dihole is
entirely determined by the intersection points deriving
from these fixed points. The anchor-like bright zones in
Fig. 2(d) come from the top, middle, and bottom parts
of the S-shaped white region in the Poincaré section [see
Fig. 6(a)], and the fractal-like structure shown in Figs. 6(a)–
6(c) is responsible for the fractal shadow structure in Fig. 3.
For the case η ¼ 0, there is no white region in the Poincaré
section [see Fig. 6(d)], which is responsible for the fact that
the two anchor-like bright zones are separated by the black
shadow in the middle regions in Fig. 2(d). In order to make
a comparison, in Fig. 8, we also plot the Poincaré section
and the intersections of the unstable manifolds with the
image plane for η ¼ −6 in the spacetime of a Bonnor black
dihole (1) with b ¼ 0.4. Obviously, there is no white region
in the Poincaré section, which is consistent with the fact
that the shadow of a Bonnor black dihole is a black disk and
there are no bright zones in the shadow in this case.
Finally, we make a comparison between the shadows

cast by the equal-mass and nonspinning Majumdar-
Papapetrou binary black holes [28,29] and by a Bonnor
black dihole (1). In Fig. 9, we present the shadow for
Majumdar-Papapetrou binary black holes [28,29] with two
equal-mass black holes separated by the parameter a ¼ 0.5,
a ¼ 1, and a ¼ 2 [Figs. 9(a)–9(c)] and for the cases of a
Bonnor black dihole (1) separated by the parameter
b ¼ 0.5, b ¼ 1, and b ¼ 2 [Figs. 9(d)–9(f)]. From
Fig. 9, one can find that the shadows of a Bonnor black
dihole possess some properties that closely resemble those
of Majumdar-Papapetrou binary black holes, which is
understandable since similar black hole configurations

FIG. 7. Intersections of the unstable manifolds with the image
plane for the lines with constant η ¼ −9.83, η ¼ −6, and η ¼ 0 in
the spacetime of a Bonnor black dihole (1) with b ¼ 1.4.
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exist in both cases. However, there is an essential difference
between the shadows for a given parameter in these two
cases. From Fig. 9, we find that the two larger shadows and
the smaller eyebrow-like shadows are joined together by

the middle black zone for a Bonnor black dihole, but they
are disconnected in the case of the equal-mass and non-
spinning Majumdar-Papapetrou binary black holes [28,29].
Moreover, with the increase of the magnetic dipole

FIG. 8. The Poincaré section (left) and the intersections of the unstable manifolds with the image plane (right) for η ¼ −6 in the
spacetime of a Bonnor black dihole (1) with b ¼ 0.4.

FIG. 9. Comparison between the shadows of Majumdar-Papapetrou binary black holes and a Bonnor black dihole (1). Panels (a)–
(c) correspond to the Majumdar-Papapetrou binary case [28,29] with two equal-mass black holes separated by the parameter a ¼ 0.5,
a ¼ 1, and a ¼ 2, respectively. Panels (d)–(f) denote the shadow for the cases of a Bonnor black dihole (1) separated by the parameter
b ¼ 0.5, b ¼ 1, and b ¼ 2, respectively. Here we set the inclination angle of the observer θ0 ¼ 90° and m ¼ 1.
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parameter, we find that the middle black zone connecting
the main shadows and the eyebrow-like shadows becomes
narrow for a Bonnor black dihole. From the previous
discussion, we know that due to the existence of the
singularity on the symmetric axis, a Bonnor black dihole
is held apart by the cosmic string with tension μ ¼ 1

4
½1 −

b4=ðm2 þ b2Þ2� [45,46], which decreases with the param-
eter b. Therefore, we can obtain that the middle black zone
increases with the tension of the cosmic string. This
behavior is consistent with that in the case of a Kerr black
hole pierced by a cosmic string, in which the size of the
black hole shadow increases with the string tension [16].
Therefore, the appearance of the middle black zone in the
shadow of a Bonnor black dihole can be attributed to the
existence of the conical singularity on the symmetric axis in
the background spacetime. In the case of Majumdar-
Papapetrou binary black holes [28,29], there is no such
conical singularity since the configuration is supported by
the balance between the gravitational force and the
Coulomb force. Thus, the difference in the shape of the
shadow in these two spacetimes is caused by the existence
of the singularity on the symmetric axis in Bonnor’s
spacetime.

V. SUMMARY

In this paper we have studied the shadows of a black
dihole described by Bonnor’s exact solution of the
Einstein-Maxwell equations. The presence of a magnetic
dipole yields that the equation of photon motion can not be
variable separable and the corresponding dynamical system
is nonintegrable. With the technique of backward ray
tracing, we numerically presented the shadow of a
Bonnor black dihole. For the smaller magnetic dipole
parameter b, the shadow is a black disk as in the usual
static compact object spacetimes with a horizon. The size of
the shadow decreases with the parameter b. For the larger
magnetic dipole parameter b, we found that there exist two
anchor-like bright zones embedded symmetrically in the
black disk shadow so that the shadow looks like a concave

disk with four large eyebrows. The anchor-like bright zones
increase and the eyebrows become longer with the increase
of b. Moreover, many other smaller eyebrow-like shadows
can be detected in two anchor-like bright zones and the
shadow possesses a self-similar fractal structure, which is
caused by chaotic lensing. This interesting property of
shadows is qualitatively different from those in the space-
times in which the equations of motion are variable
separable and the corresponding dynamical system is
integrable. Finally, we analyzed the invariant manifolds
of certain Lyapunov orbits near the fixed point and further
discussed the formation of the shadow of a Bonnor black
dihole, which indicates that all of the structures in the
shadow originate naturally from the dynamics near fixed
points. Our results show that the spacetime properties
arising from the magnetic dipole give rise to some
interesting patterns for the shadow cast by a Bonnor black
dihole.
Comparing with the case of Majumdar-Papapetrou

binary black holes, we found that the two larger shadows
and the smaller eyebrow-like shadows are joined together
by the middle black zone for a Bonnor black dihole, but
they are disconnected in the Majumdar-Papapetrou one.
The appearance of the middle black zone in the shadow of a
Bonnor black dihole can be attributed to the existence of the
conical singularity on the symmetric axis in the background
spacetime. It is of interest to study the effects of such a
conical singularity on the Lyapunov orbits and the shad-
ow’s edge, etc. Work in this direction will be reported in the
future [54].
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