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In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime
along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the
linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact
vacuum solutions of the gravitational field equations are known that represent plane gravitational waves.
These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions
representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is
then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar
unidirectional gravitational waves and study some of the properties of these twisted waves.
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I. INTRODUCTION

It is a natural consequence of a field theory of universal
gravitation that gravitational radiation should exist in some
form. The recent detection of gravitational waves is con-
sistent with Einstein’s theory of gravitation; see, for instance,
Ref. [1] and the references cited therein. This circumstance
provides further motivation to study exact gravitational
waves within the context of general relativity (GR).
The present paper is devoted to exact unidirectional

nonplanar gravitational waves. Indeed, exact solutions of
GR corresponding to gravitational pp-waves and plane
waves have received much attention [2–6]. Many exact
solutions also exist for the case of two colliding gravita-
tional plane waves, as summarized in Ref. [4], where the
main result seems to be the formation of a spacetime
singularity as a consequence of the collision itself, i.e. of
the mutual interaction and focusing of the two waves.
Finally, special solutions corresponding to impulsive plane
waves with Dirac delta-function profiles have also been
studied [7].
Beyond unidirectional waves, we note that the emission

of gravitational radiation by an isolated astrophysical
system generally results in a nearly spherical expanding
wave front far away from the source. In this connection,
exact solutions of GR include the Robinson-Trautman
expanding spherical gravitational waves, the nonexpanding

gravitational waves of the Kundt class with spherical or
hyperbolic wave fronts depending upon the sign of the
cosmological constant Λ, and their impulsive analogs
[8–10]. Other exact solutions include the Einstein-Rosen
cylindrical gravitational waves [11,12]. Detailed treatments
of exact solutions of GR are contained in Refs. [5,6].
Plane gravitational waves possess five Killing vector

fields and thus form a subclass of the plane-fronted waves
with parallel rays known as the pp-waves. A characteristic
feature of the pp-waves in general relativity is that they
admit a covariantly constant null vector field k,

kμ;ν ¼ 0; kμkμ ¼ 0; ð1Þ

where k is the Killing vector field representing the
propagation vector of the pp-wave [5,6]. Let us recall that
any gravitational wave propagating along a fixed direction
in space—say, the z direction—always admits a null
Killing propagation vector k ¼ ∂t þ ∂z,

kμkμ ¼ 0; kμ;ν þ kν;μ ¼ 0; kμ;νkν ¼ 0; ð2Þ

which therefore represents a nonexpanding and shearfree
null geodesic congruence. Furthermore, if the congruence
is twistfree as well, then we recover Eq. (1) and we have a
pp-wave. It is however possible that the congruence is such
that

Tμν ¼ k½μ;ν� ¼ k½μ;ν� ≠ 0; ð3Þ
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in which case we have a twisted gravitational wave,
namely, an exact unidirectional nonplanar gravitational
wave in GR. Here, Tμν is the antisymmetric twist tensor.
The wave propagation vector k is orthogonal to the wave
front, which are surfaces of constant u. Thus,

ω2 ≔
1

2
k½μ;ν�k½μ;ν� ¼

1

2
TμνTμν ¼ 0; ð4Þ

which is consistent with the notion that the twist scalar
ω vanishes if and only if the null geodesic congruence
is hypersurface-orthogonal. Therefore, kμ ¼ ∂u=∂xμ for
plane gravitational waves, while kμ ¼ ΩðxÞ∂u=∂xμ with
∂Ω=∂xμ ≠ 0 for nonplanar gravitational waves under
consideration in this paper.
An interesting solution which can be associated with a

nonplanar gravitational wave propagating along a fixed
direction in space is due to B. K. Harrison [13]. We
encountered this solution within the context of cosmic jets
and studied the peculiar asymptotic behavior of its timelike
geodesics in our previous work [14]. The purpose of the
present paper is to present a class of exact solutions of GR
corresponding to twisted gravitational waves, i.e. waves
propagating along a given direction (the z axis, say) with
wave fronts that are nonplanar and hence nonuniform.
In Sec. II, we find a class of twisted gravitational waves

with wave fronts that have negative Gaussian curvature.
This class contains Harrison’s solution [13] as a special
case, as discussed in Sec. III. In Sec. IV, we study the
geodesics of a new member of this class and show that
timelike and null geodesics behave as in the Harrison
solution [14]. How can one observationally distinguish
twisted gravitational waves from plane waves? Linearized
gravitational waves in GR are transverse, a property that is
present in exact plane waves as well. On the other hand, a
twisted gravitational wave exhibits a longitudinal feature in
addition to its transverse property. Can this longitudinal
character be an observational signature of twisted gravita-
tional waves? We address this problem in Sec. V by
comparing the solutions of the Jacobi equation in two
related situations involving plane and twisted gravitational
waves. Section VI contains a discussion of our results.

II. A CLASS OF EXACTGRAVITATIONALWAVES

In our recent work on cosmic jets [14], we considered,
among other exact solutions of GR, a Ricci-flat solution
due to Harrison [13] that we wrote as

ds2 ¼ −x̌4=3dt2 þ λ2ǔ6=5dx2 þ x̌−2=3ǔ−2=5dy2 þ x̌4=3dz2;

ð5Þ
where

x̌ ≔
x
T0

; ǔ ≔
t − z
T0

: ð6Þ

We use units such that G ¼ c ¼ 1 throughout this paper;
moreover, the signature of the spacetime metric is þ2
and greek indices run from 0 to 3, while latin indices run
from 1 to 3. Here, T0 is a constant length and λ > 0 is a
dimensionless parameter. The dimensionless quantity ǔ is
simply proportional to the retarded null coordinate u ¼
t − z. Equation (5) is related by means of straightforward
coordinate transformations to the second degenerate sol-
ution that Harrison classified as the “III-2; D2” metric [13].
This spacetime is of typeD in the Petrov classification [15].
The parameter λ can be set equal to unity by rescaling the
spacetime coordinates. Harrison’s spacetime has curvature
singularities at w ¼ 0, where w ≔ x̌1=3ǔ1=5.
Harrison’s solution describes an exact gravitational wave

(GW) propagating in the z direction. The wave front is the
ðx; yÞ surface with metric

dσ2 ¼ dx2 þ x̌−2=3dy2; ð7Þ

which has negative Gaussian curvature. It thus represents
an exact unidirectional nonplanar gravitational radiation
field; that is, a twisted gravitational wave (TGW).
To investigate such TGW solutions, we consider a metric

of the form

ds2 ¼ −eAðx;uÞðdt2 − dz2Þ þ eBðx;uÞdx2 þ eCðx;uÞdy2; ð8Þ

where we assume for the sake of simplicity that all lengths
are measured in units of T0 ¼ 1. The field equations for
exact gravitational waves, namely, Rμν ¼ Λgμν, have been
worked out for the case of metric (8) in Appendix A. The
Ricci-flat field equations in this case can be obtained from
Eqs. (A3)–(A7) given in Appendix A by setting the
cosmological constant Λ equal to zero, namely,

A2
x þ 2AxCx ¼ 0; ð9Þ

where Ax ≔ ∂A=∂x, etc.,
2Axx þ A2

x − AxðBx þ CxÞ ¼ 0; ð10Þ

2Cxx þ C2
x − A2

x − BxCx ¼ 0; ð11Þ

Axu þ Cxu ¼
1

2
AxðBu þ CuÞ þ

1

2
CxðBu − CuÞ ð12Þ

and

AuðBu þ CuÞ ¼
1

2
ðB2

u þ C2
uÞ þ Buu þ Cuu: ð13Þ

In the analysis of these equations, it proves useful to
introduce

A ¼ eA; B ¼ eB; C ¼ eC: ð14Þ
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For instance, in terms of these new functions, Eq. (13) takes
the form

Au

A

�
Bu

B
þ Cu

C

�
¼ −

1

2

�
B2
u

B2
þ C2u

C2

�
þ Buu

B
þ Cuu

C
: ð15Þ

It follows from Eq. (9) that either Ax ¼ 0 in case A or
Ax þ 2Cx ¼ 0 in case B. These cases will be investigated in
turn in the rest of this section.

A. Ax = 0

This condition implies that A is only a function of u.
Since dt2 − dz2 ¼ dudv, where v ¼ tþ z is the advanced
null coordinate, we can absorb A in the redefinition of the
retarded null coordinate. Thus one may, in effect, set A ¼ 0.
Then, Eqs. (11) and (12) can be written as

Bx − Cx ¼ 2
Cxx

Cx
; Bu − Cu ¼ 2

Cxu

Cx
; ð16Þ

which can be simply integrated and the result is

B ¼ Cþ 2 lnCx þ 2 ln λ; ð17Þ

where λ > 0 is an integration constant. The problem thus
reduces to finding solutions of the system

B ¼ λ2
C2x
C
;

1

2

�
B2
u

B2
þ C2u

C2

�
¼ Buu

B
þ Cuu

C
: ð18Þ

It is simple to find a solution using separation of
variables. That is, let

C ¼ XðxÞUðuÞ: ð19Þ

Then, it follows from Eq. (18) that 2UUuu −U2
u ¼ 0, so

that

UðuÞ ¼ ðauþ bÞ2; ð20Þ

where a and b are integration constants and the metric in
this case takes the form

ds2 ¼ −dt2 þ ðauþ bÞ2
�
λ2

1

X
dX2 þ Xdy2

�
þ dz2;

ð21Þ

which represents flat spacetime. We note that

λ2
1

X
dX2 þ Xdy2 ¼ dr2 þ r2dθ2; ð22Þ

where X ¼ r2=ð4λ2Þ and y ¼ 2λθ. This case is further
discussed in Appendix B.

Let us now return to system (18) and introduce the
change of variables

P ¼
ffiffiffiffi
B

p
; Q ¼

ffiffiffi
C

p
; ð23Þ

since B and C are positive by definition. Then, system (18)
reduces to

P2 ¼ 4λ2Q2
x;

Puu

P
þQuu

Q
¼ 0: ð24Þ

The resulting gravitational waves in this case all have
metrics of the form

ds2 ¼ −dt2 þ dz2 þ 4λ2Q2
xdx2 þQ2dy2; ð25Þ

which turn out to represent plane waves, since on the wave
front u must be replaced by a constant u0, say, such that
Qxðx; u0Þ andQðx; u0Þ are then only functions of x; hence,
the resulting metric on the wave front,

dσ2 ¼ 4λ2dQ2 þQ2dy2; ð26Þ

is flat. Moreover, with k ¼ ∂v ¼ ∂t þ ∂z, it is simple to see
that Tμν ¼ k½μ;ν� ¼ 0, so that the rays are twistfree, as
expected.
System (24) can be further reduced to

P ¼ �2λQx; ðQQuuÞx ¼ 0: ð27Þ
Exact solutions of QQuu ¼ ϖðuÞ, i.e. solutions that can be
explicitly expressed in terms of familiar functions, are
unknown; however, it is possible to solve this equation
when ϖðuÞ ¼ κ, where κ is a constant. In this case, Quu ¼
κ=Q can be integrated once to yield

Q2
u ¼ 2κ lnQþ EðxÞ; ð28Þ

where EðxÞ is a certain energy function. Assuming Q is a
monotonically increasing function of u, we can write

Z
Qðx;uÞ

Qðx;0Þ

dZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ lnZ þ EðxÞp ¼ u; ð29Þ

where the integral can be expressed in terms of the error
function. These results contain an infinite class of solutions
that represent plane gravitational waves propagating along
the z direction.

B. Ax + 2Cx = 0

It follows from this condition that Aþ 2C is only a
function of u. Moreover, with Ax ¼ −2Cx, Eqs. (10) and
(11) both reduce to Bx þ 3Cx ¼ 2Cxx=Cx, while Eq. (12)
implies that Bu þ 3Cu ¼ 2Cxu=Cx. Thus, Bþ 3C − 2 lnCx
is simply a constant. Therefore, the field equations reduce
in this case to
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A ¼ αðuÞ
C2

; B ¼ λ02
C2x
C5

ð30Þ

and Eq. (15). Here, αðuÞ is an integration function and, as
before, λ0 > 0 is a constant. The resulting gravitational
waves in this case all have metrics of the form

ds2 ¼ αðuÞ
C2

ð−dt2 þ dz2Þ þ λ02
C2x
C5

dx2 þ Cdy2; ð31Þ

which turn out to represent nonplanar waves with wave
fronts that have negative Gaussian curvature. Indeed,
following the same line of argument as in Eqs. (25) and
(26), the wave front has a metric of the form

dσ2 ¼ λ02
dC2

C5
þ Cdy2; ð32Þ

which has negative Gaussian curvature KG ¼ −C3ðx; u0Þ=
λ02, as discussed in Appendix B. Moreover, the twist tensor
in this case has nonzero components T01 ¼ −T10 ¼
T13 ¼ −T31 ¼ αðuÞCx=C3.
Let us now return to system (30) and note that in the

corresponding general TGW metric (31), it is possible to
absorb αðuÞ in the redefinition of the retarded null
coordinate. Thus we can, in effect, set αðuÞ ¼ 1 in our
system. Our general TGW metric turns out to be of type II
in the Petrov classification.
Defining P and Q as in Eq. (23), we find

A ¼ Q−4; P ¼ �2λ0
Qx

Q4
; ð33Þ

so that Eq. (15) takes the form

Puu

P
þQuu

Q
¼ −4

Qu

Q

�
Pu

P
þQu

Q

�
: ð34Þ

Using the fact that

Pu

P
¼ Qxu

Qx
− 4

Qu

Q
; ð35Þ

we can reduce the problem to the following differential
equation for Q,

Q2Qxuu − 4QQuQxu − ð3QQuu − 8Q2
uÞQx ¼ 0: ð36Þ

Equation (36) turns out to be equivalent to

�
Quu

Q3
− 2

Q2
u

Q4

�
x
¼ 0: ð37Þ

Hence, we have

Quu

Q3
− 2

Q2
u

Q4
¼ −υðuÞ; ð38Þ

where υðuÞ is an integration function. Let us note that
Eq. (38) can be written as

�
Qu

Q2

�
u
¼ −υðuÞQ: ð39Þ

Let us define S such that

S ≔
1

Q
; ð40Þ

then, Eq. (39) takes the form

Suu ¼ υðuÞS−1: ð41Þ
It is remarkable that we encounter here in case (B) the same
type of equation that we encountered in case (A). As
before, exact solutions of Eq. (41), namely, solutions
expressible in terms of familiar functions, are not known,
except when υðuÞ is a constant k. With υðuÞ ¼ k, Eq. (41)
can be integrated once to yield

S2
u ¼ 2k lnS þ EðxÞ; ð42Þ

where EðxÞ is a new energy function. Assuming S is a
monotonically increasing function of u, we can write

Z
Sðx;uÞ

Sðx;0Þ

dZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k lnZ þ EðxÞp ¼ u; ð43Þ

where the integral can be expressed in terms of the error
function. We have thus demonstrated the existence of an
infinite class of TGWs, namely, exact unidirectional non-
planar gravitational wave solutions of general relativity
theory.
Finally, as is evident from the tenor of our work, we

simply attempt to develop a physical idea in this paper. On
the other hand, we should mention that our solutions
belong to the Kundt class [5,6] and are probably all known
in some other coordinate systems and within certain
classification schemes; in this connection, see Ref. [16]
and Secs. 24.4.1 and 31.5.2 of Ref. [5].

III. SIMPLE TGW SOLUTIONS

To look for manageable TGW solutions, we solve
Eq. (39) for υ ¼ 0. In view of Eq. (41), the general solution
is given by

Q ¼ 1

ufðxÞ þ hðxÞ ; ð44Þ

where fðxÞ and hðxÞ are integration functions and cannot
both be zero functions simultaneously. The spacetime
metric can be worked out using Eq. (33) and the result is
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ds2¼ðufþhÞ4ð−dt2þdz2Þþ4λ02ðufþhÞ4

×

�
u
df
dx

þdh
dx

�
2

dx2þðufþhÞ−2dy2: ð45Þ

Taking advantage of the freedom in the choice of the x
coordinate in Eq. (45), we have a simple TGW solution that
depends upon only one arbitrary function of x. It turns out
that solution (45) is of type D in the Petrov classification.
Of this class of solutions, we are interested in this section in
three special cases where fðxÞ ¼ 0, hðxÞ ¼ 0 and, finally,
fðxÞ ¼ 1=q and hðxÞ ¼ x=q, where q is a constant. Let us
now examine these cases in turn.

A. f ðxÞ= 0, Q= 1=hðxÞ
The spacetime metric in this case takes the form

ds2 ¼ −χ4ðdt2 − dz2Þ þ 4λ02χ4dχ2 þ χ−2dy2; ð46Þ

where we have replaced hðxÞ by χ. The result is a
spacelike Kasner metric [5]; indeed, with a new spacelike
coordinate x,

x ≔
2λ0

3
χ3; ð47Þ

and constant rescalings of the spacetime coordinates, the
metric takes the standard static form [17]

ds2 ¼ −x2p1dt2 þ dx2 þ x2p2dy2 þ x2p3dz2; ð48Þ

with p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1. In our case,

p1 ¼ p3 ¼
2

3
; p2 ¼ −

1

3
; ð49Þ

so that we can write our solution in the convenient form

ds2 ¼ x4=3ð−dt2 þ dz2Þ þ dx2 þ x−2=3dy2: ð50Þ

This particular static Kasner spacetime is of type D in the
Petrov classification and its three independent Killing
vectors are ∂v ¼ ∂t þ ∂z, ∂y and ∂z; moreover, its homo-
thetic vector field is given by t∂t þ 3x∂x þ 4y∂y þ z∂z.

B. hðxÞ= 0, Q= 1=½uf ðxÞ�
The spacetime metric in this case can be expressed as

ds2 ¼ −u4χ4dudvþ 4λ02u6χ4dχ2 þ u−2χ−2dy2; ð51Þ

where we have replaced fðxÞ by χ. Furthermore, designat-
ing u5=5 as u in metric (51), using Eq. (47) and constant
rescalings of the coordinates finally lead to

ds2 ¼ x4=3ð−dt2 þ dz2Þ þ u6=5dx2 þ x−2=3u−2=5dy2;

ð52Þ

which is Harrison’s TGW solution [13,15]. Harrison’s
spacetime has independent Killing vectors ∂v, ∂y and a
homothetic vector field 5t∂t þ 6x∂x þ 12y∂y þ 5z∂z. The
wave front in this case has a metric of the form dσ2 ¼
dx2 þ x−2=3dy2 and a Gaussian curvature KG ¼ −4=ð9x2Þ.

C. f ðxÞ= 1=q, hðxÞ= x=q and Q= q=ðx+ uÞ
The spacetime metric in this case is given by

ds2 ¼ 1

q2
ðxþ uÞ4ð−dt2 þ dz2Þ

þ 4λ02

q6
ðxþ uÞ4dx2 þ q2ðxþ uÞ−2dy2: ð53Þ

Let us first rescale the y coordinate by replacing qy by y.
Next, we define positive constants λ0 and λ via

λ0 ≔
1

q2
; λ ≔

2λ0

jqj3 : ð54Þ

In this way, the metric of the new TGW solution takes the
final form

ds2 ¼ λ0ðxþ uÞ4ð−dt2 þ dz2Þ þ λ2ðxþ uÞ4dx2
þ ðxþ uÞ−2dy2: ð55Þ

This is of type D in the Petrov classification and represents
a nonplanar gravitational wave propagating in the z
direction. Its wave front has metric

dσ2 ¼ λ2ðxþ u0Þ4dx2 þ ðxþ u0Þ−2dy2; ð56Þ
where u0 is a constant. The Gaussian curvature of this
surface is negative as well and is given by (cf. Appendix B)

KG ¼ −
4

λ2ðxþ u0Þ6
: ð57Þ

This TGW solution is further discussed in the next section.
Of the three cases we have discussed in this section,

only the Harrison solution and the new solution represent
propagating gravitational waves. The special Kasner sol-
ution is static and represents a limiting form of these
solutions; that is, if we replace u by a constant u0 ≠ 0 in the
metric functions of the Harrison and new solutions, then
the resulting metrics are equivalent to the special Kasner
metric via constant rescalings of the spacetime coordinates.
Similarly, if we replace x by a constant x0 ≠ 0 in the metric
functions of the Harrison and new solutions, we recover in
the same manner the metric of the plane gravitational wave

ds2 ¼ −dt2 þ u6=5dx2 þ u−2=5dy2 þ dz2; ð58Þ
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which is a special case of the type N metrics discussed in
Sec. Vof Ref. [14] with s2 ¼ 3=5 and s3 ¼ −1=5. Thus our
simple TGW solutions may be considered to be nonlinear
superpositions of this special linearly polarized plane gravi-
tational wave and the special static Kasner solution (50).
A Ricci-flat solution in GR has four algebraically

independent scalar polynomial curvature invariants given
by [5]

I1 ¼ RμνρσRμνρσ − iRμνρσR�μνρσ ð59Þ

and

I2 ¼ RμνρσRρσαβRαβ
μν þ iRμνρσRρσαβR�

αβ
μν: ð60Þ

The class of spacetimes under consideration here are all
algebraically special of type D; hence, I31 ¼ 12I22. In the
case of the general solution (45), we find

I1 ¼
12

λ04ðuf þ hÞ12 ; I2 ¼ −
12

λ06ðuf þ hÞ18 ; ð61Þ

so that the timelike hypersurface ufðxÞ þ hðxÞ ¼ 0 is the
curvature singularity of this spacetime. More specifically,
for the new solution (55), we find

I1 ¼
192

λ4ðxþ uÞ12 ; I2 ¼ −
768

λ6ðxþ uÞ18 ; ð62Þ

so that the timelike hypersurface xþ u ¼ 0 is a curvature
singularity in this case. For the Harrison solution (52), we
have

I1 ¼
64

27x4u12=5
; I2 ¼ −

256

243x6u18=5
; ð63Þ

so that the timelike hypersurface w ≔ x1=3u1=5 ¼ 0 is the
curvature singularity of the Harrison solution. Finally, in
the limiting case of the special Kasner spacetime (50), the
curvature invariants are given by I1 ¼ 64=ð27x4Þ and I2 ¼
−256=ð243x6Þ; hence, the timelike hypersurface x ¼ 0 is the
curvature singularity of the spacelike Kasner metric.
The twisted gravitational wave solutions have nonzero

twist tensor. To see this explicitly, we note that for the new
solution (55), the twist tensor can be expressed as

ðTμνÞ ¼ Φ

0
BBB@

0 −1 0 0

1 0 0 −1
0 0 0 0

0 1 0 0

1
CCCA;

Φ ¼ 2λ0ðxþ uÞ3; ð64Þ

while for the Harrison solution the only difference is
that Φ ¼ 2

3
x1=3.

IV. TIMELIKE AND NULL GEODESICS
OF THE NEW TGW SOLUTION (55)

To gain insight into the nature of a twisted gravitational
wave spacetime, it is useful to study the motion of free test
particles in such a gravitational field. For this purpose, we
choose the new TGW solution (55) and define W via

W ¼ xþ u; ð65Þ

so that the metric of the new TGW can be written as

ds2 ¼ −λ0W4ðdt2 − dz2Þ þ λ2W4dx2 þW−2dy2: ð66Þ

This spacetime has one null and two spacelike Killing
vector fields given by

∂v ¼ ∂t þ ∂z; ∂x þ ∂z; ∂y; ð67Þ

respectively, and a homothetic vector field

t∂t þ x∂x þ 4y∂y þ z∂z: ð68Þ
We note that

ffiffiffiffiffiffi−gp ¼ λ0λW5, which vanishes at the curva-
ture singularity W ¼ 0.
The motion of free test particles and rays of radiation in

this TGW spacetime involves three constants that can be
obtained from the projection of the 4-velocity vector,
_xμ ¼ dxμ=dη, of the test particle on the null and spacelike
Killing vector fields. Here, η is either the proper time along
a timelike geodesic or an affine parameter along the path of
the null geodesic ray. Thus we have

du
dη

¼ _t − _z ¼ Cv

W4
; λ2 _xþ λ0 _z ¼

C0

W4
; _y ¼ CyW2;

ð69Þ
where Cv, C0 and Cy are constants of the motion. Let us
note here that a special solution of the null geodesic
equation corresponds to the Killing vector field ∂v with
Cv ¼ 0, Cy ¼ 0 and constantW along the rays that indicate
the propagation of the background TGW. For other null
geodesics, we require that Cv ≠ 0. Likewise, we are
interested in future-directed timelike geodesics; hence,
we assume that Cv > 0, so that for constant z we have
dt=dη > 0. Moreover, gμν _xμ _xν ¼ −ϵ, where ϵ ¼ 1 or
ϵ ¼ 0, depending upon whether the geodesic is timelike
or null, respectively; that is,

λ0W4ð−_t2 þ _z2Þ þ λ2W4 _x2 þW−2 _y2 ¼ −ϵ; ϵ ¼ 1; 0:

ð70Þ
The geodesic equations of motion can be simply

obtained from a Lagrangian of the form ðds=dηÞ2. In this
way, we find that the geodesic equation for the x coordinate
takes the form
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d
dη

½λ2W4 _x� ¼ 2ϵ

W
− 3C2

yW; ð71Þ

where Eq. (70) has been employed. Using W4du=dη ¼
Cv > 0, we can express Eq. (71) as

d2x
du2

þ 2ζW3 þ 3ζ0W5 ¼ 0; ð72Þ

where ζ and ζ0 are constants given by

ζ ¼ ϵ

λ2C2
v
; ζ0 ¼ C2

y

λ2C2
v
: ð73Þ

We recall that W ¼ xþ u by definition; therefore, Eq. (72)
can be integrated once and the result is

�
dW
du

�
2

þ ζW4 þ ζ0W6 ¼ E; ð74Þ

where E must therefore be positive and is given by

E ¼ 1þ λ0Cv þ 2C0

λ2Cv
; ð75Þ

which follows from Eqs. (69)–(74). Equation (74) bears a
remarkable resemblance to Eq. (95) of Sec. VI of Ref. [14],
which involved the geodesic equation for the Harrison
TGW solution. As in [14], one can interpret Eq. (74) via a
one-dimensional motion of a classical particle with positive
energy E in a simple positive symmetric effective potential
well of the same structure as in the case of Harrison’s TGW
solution. The motion is periodic with turning points at
�W0, where W0 > 0 and �W0 are the only real solutions
of Eq. (74) with dW=du ¼ 0. We recall that W ¼ 0 is the
location of the spacetime singularity; therefore, the geo-
desic motion can start from −W0 or W0 and end up at the
curvature singularity.

A. Oblique cosmic jet

Plane gravitational wave spacetimes have parallel rays
and are of type N in the Petrov classification. This means
that the four principal null directions of the Weyl tensor
coincide and are all parallel to the direction of propagation
of the plane wave and hence perpendicular to the uniform
wave front. The timelike geodesics of these spacetimes
have the peculiar property that they all asymptotically line
up parallel to the direction of motion of the wave and their
Lorentz factors approach infinity. This cosmic jet property
was first demonstrated in Ref. [18] and further elaborated in
Ref. [14]. In the case of Harrison’s nonplanar GW, the
nonuniformity of the wave front led to an oblique cosmic
jet, namely, the direction of the cosmic jet deviated from the
direction of propagation of the wave. On the other hand,
Harrison’s TGW solution, just like the new TGW solution

under consideration in this section, is of type D in the
Petrov classification, which means that the four principal
null directions in this case indicate only two directions
(each with multiplicity 2): one along the direction of wave
propagation and another along some oblique direction.
It is possible that oblique cosmic jets occur for all TGW

spacetimes. Therefore, it would be interesting to see if the
same result holds for the new TGW solution as well. To this
end, let us refer the motion of timelike (and null) geodesics
to fiducial observers that are at rest in this spacetime. The
natural tetrad frame of these static observers is given by

e0̂ ¼ λ−1=20 W−2∂t; e1̂ ¼ λ−1W−2∂x;

e2̂ ¼ W∂y; e3̂ ¼ λ−1=20 W−2∂z: ð76Þ

Projecting _xμ ¼ ð_t; _x; _y; _zÞ on eμα̂ results in _xα̂ ¼
Γð1; Vx; Vy; VzÞ, where

Γ ¼
ffiffiffiffiffi
λ0

p
W2_t; Vx ¼

λffiffiffiffiffi
λ0

p _x
_t
;

Vy ¼
Cyffiffiffiffiffi
λ0

p
W_t

; Vz ¼
_z
_t
: ð77Þ

It follows from Eqs. (69)–(74) that

_t ¼ ϵþ C2
yW2

2λ0Cv
þ Cv

2W4

�
λ2

λ0

�
dx
du

�
2

þ 1

�
; ð78Þ

_x ¼ Cv

W4

dx
du

; ð79Þ

_y ¼ CyW2 ð80Þ

and

_z ¼ ϵþ C2
yW2

2λ0Cv
þ Cv

2W4

�
λ2

λ0

�
dx
du

�
2

− 1

�
: ð81Þ

Moreover, asW → 0, ðdW=duÞ2 → E. As free test particles
approach the spacetime singularity at W ¼ 0, we find that
for W → 0, a cosmic jet develops with Γ → ∞ and

ðVx; Vy; VzÞ → ðsinΘ�; 0; cosΘ�Þ; ð82Þ

where

cot

�
Θ�
2

�
¼ λffiffiffiffiffi

λ0
p ð�

ffiffiffi
E

p
− 1Þ: ð83Þ

In this equation, the upper (lower) sign indicates that the
singularity at W ¼ 0 is approached from the turning point
at −W0 (W0). The oblique character of the cosmic jet in this
case is in complete correspondence with Harrison’s TGW.
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Are there observable differences between plane and
twisted gravitational waves? To investigate this issue, we
can compare and contrast the influence of these waves on
the propagation of fields and on congruences of massive
test particles. The case of a massless scalar field is treated in
Appendix C. Tidal effects of TGWs are studied in the next
section.

V. JACOBI EQUATION

Imagine the world line of an arbitrary reference observer
that is static in the spacetime under consideration. Let τ be
the proper time and λμα̂ðτÞ be a Fermi-Walker transported
tetrad along this world line, where at each event x̄μðτÞ we
imagine all spacelike geodesic curves that issue perpen-
dicularly from this event and generate a local hypersurface.
We assume that xμ is an event on this hypersurface that can
be connected to x̄μðτÞ via a unique spacelike geodesic of
proper length ς. We assign Fermi coordinates Xμ̂ ¼ ðT; XîÞ
to event xμ, where

T ≔ τ; Xî ≔ ςξμðτÞλμ îðτÞ: ð84Þ
Here, ξμðτÞ is the unit spacelike vector at x̄μðτÞ that is
tangent to the unique geodesic connecting x̄μðτÞ to xμ, so
that ξμðτÞλμ0̂ðτÞ ¼ 0. Thus along the reference world line,

ξμðτÞλμ îðτÞ, for i ¼ 1, 2, 3, are the corresponding direction
cosines at proper time τ. In the Fermi coordinate system,
the reference observer is permanently fixed at the spatial
origin (X ¼ 0). We are interested in the equation of motion
of a neighboring free test particle relative to the reference
observer in the Fermi coordinate system. Neglecting the
relative velocity, the reduced geodesic equation can be
expressed as

d2Xî

dT2
þ Aî þ ðR0̂ î 0̂ ĵ þ AîAĵÞXĵ ¼ 0; ð85Þ

where Aî is the measured 4-acceleration of the fiducial
static observer and R0̂ î 0̂ ĵ are the corresponding compo-
nents of the tidal matrix, namely,

AîðTÞ ¼ Dλμ0̂
dτ

λμ
î; Rα̂ β̂ γ̂ δ̂ðTÞ ≔ Rμνρσλ

μ
α̂λ

ν
β̂λ

ρ
γ̂λ

σ
δ̂:

ð86Þ
For background material on equations of motion of free test
particles in Fermi coordinates, we refer to our recent paper
[19]; further material is contained in [20,21] and the
references cited therein. The Fermi coordinate system is
generally admissible in a cylindrical region of radius
jXj ∼R in the spacetime domain around the referenceworld
line, where R is a certain minimal radius of curvature.
Let us first consider the simple case of motion in the

special linearly polarized plane gravitational wave given

by metric (58). In this case, the curvature singularity of
spacetime occurs at u ¼ 0. The static observers in this
spacetime follow geodesics and have a natural tetrad frame
that is parallel transported along their geodesic world lines,
namely,

λ0̂ ¼ ∂t; λ1̂ ¼ u−3=5∂x; λ2̂ ¼ u1=5∂y; λ3̂ ¼ ∂z:

ð87Þ

Let us choose a static observer with world line ðt; x; y; zÞ ¼
ðτ; 0; 0; 0Þ, along which we construct a Fermi normal
coordinate system. Using the results of Appendix B of
Ref. [14] for the curvature of the plane wave, the equations
of motion of nearby free test particles in Fermi coordinates
take the form

d2X1̂

dT2
þ 6

25T2
X1̂ ¼ 0; ð88Þ

d2X2̂

dT2
−

6

25T2
X2̂ ¼ 0 ð89Þ

and d2X3̂=dT2 ¼ 0. With the initial conditions that at
T ¼ 1, ðX1̂; X2̂; X3̂Þ ¼ ðX0; Y0; Z0Þ and dXî=dT ¼ 0 for
i ¼ 1, 2, 3, we find

X1̂ ¼ X0ð−2T3=5 þ 3T2=5Þ;

X2̂ ¼ 1

7
Y0ðT6=5 þ 6T−1=5Þ; X3̂ ¼ Z0: ð90Þ

The plane wave in this case has the character of the plus (⊕)
polarization and for T∶ 1 → 0, the particles move in the
ðX1̂; X2̂Þ plane such that at the curvature singularity T ¼ 0,
ðX1̂; X2̂; X3̂Þ ¼ ð0;∞; Z0Þ. Let us note an important limi-
tation of our result here and in the rest of this section:
Though we seek solutions of the Jacobi equation, the
results are only valid so long as jXj is sufficiently small in
accordance with the admissibility of Fermi normal coor-
dinates. Thus in Eq. (90), for instance, assuming that
initially jX0j is sufficiently small, the motion in X2̂ is
valid for only a very short time interval.

A. Jacobi equation for Harrison’s TGW

Next, we consider Harrison’s twisted gravitational wave
with metric

ds2 ¼ −x4=3dt2 þ u6=5dx2 þ x−2=3u−2=5dy2 þ x4=3dz2;

ð91Þ

where we have set λ ¼ 1 with no loss in generality. This
spacetime has curvature singularities at x ¼ 0 and u ¼ 0.
The static observers in this spacetime have a natural tetrad
frame given by
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λ0̂ ¼ x−2=3∂t; λ1̂ ¼ u−3=5∂x;

λ2̂ ¼ x1=3u1=5∂y; λ3̂ ¼ x−2=3∂z: ð92Þ

The world line of a static observer in Harrison spacetime is
accelerated, namely,

A ¼ ∇λ0̂
λ0̂ ¼

2

3xu6=5
∂x: ð93Þ

Imagine that Sμ is a vector that is Fermi–Walker transported
along λμ0̂; then,

dSμ

dτ
þ Γμ

αβλ
α
0̂S

β ¼ ðA · SÞλμ0̂ − ðλ0̂ · SÞAμ: ð94Þ

It is straightforward to check that tetrad frame (92) is
Fermi–Walker propagated along λ0̂. Let us now consider
the frame components of the 4-acceleration and of the
relevant components of the electric part of the Riemann
tensor. We find

A ¼ 2

3xu3=5
λ1̂ ð95Þ

and the symmetric and traceless tidal matrix K,

Kî ĵ ¼ R0̂ î 0̂ ĵ; ð96Þ

has nonzero components,

K1̂ 1̂ ¼ −
2

9

1

x2u6=5
þ 6

25

1

x4=3u2
;

K2̂ 2̂ ¼ −
2

9

1

x2u6=5
−

6

25

1

x4=3u2
;

K3̂ 3̂ ¼
4

9x2u6=5
;

K1̂ 3̂ ¼ K3̂ 1̂ ¼
2

5x5=3u8=5
: ð97Þ

Let us now consider a static observer located at
ðx0; y0; z0Þ, where x0 ≠ 0. Then, for this observer, t ¼
t0 þ τ=x2=30 and u ¼ u0 þ τ=x2=30 , where u0 ≔ t0 − z0. We
establish a Fermi normal coordinate system in the neigh-
borhood of this observer. The equation of motion of a
nearby free test particle in the Fermi system is given by
Eq. (85), where Aî and Kî ĵ can be obtained from Eqs. (96)
and (97) with

x ¼ x0; u ¼ u0 þ
T

x2=30

: ð98Þ

We assume for the sake of simplicity that x0 ¼ 1 and
u0 ¼ 0. Equation (85) can then be written as

d2X1̂

dT2
þ 2

3

1

T3=5 þ
�
2

9

1

T6=5 þ
6

25

1

T2

�
X1̂ þ 2

5

1

T8=5 X
3̂ ¼ 0;

ð99Þ

d2X2̂

dT2
−
�
2

9

1

T6=5 þ
6

25

1

T2

�
X2̂ ¼ 0 ð100Þ

and

d2X3̂

dT2
þ 2

5

1

T8=5 X
1̂ þ 4

9

1

T6=5 X
3̂ ¼ 0; ð101Þ

which can be integrated from T ¼ 1 to the curvature
singularity at T ¼ 0 with the boundary conditions that at
T ¼ 1, ðX1̂; X2̂; X3̂Þ ¼ ðX0; Y0; Z0Þ and dXî=dT ¼ 0 for
i ¼ 1, 2, 3. See, for example, Fig. 1.
It is the variation of X3̂ with Fermi time T that is the

distinguishing feature of the TGW. To see this, let us first
note that in system (99)–(101), the equation for X2̂

decouples and can be treated separately. In fact, let

X2̂ ¼ T1=2FνðϑÞ; ϑ ¼ 5

3
ffiffiffi
2

p T2=5; ð102Þ

then, Eq. (100) takes the form of the modified Bessel
equation of order ν ¼ 7=4,

ϑ2
d2Fν

dϑ2
þ ϑ

dFν

dϑ
− ðϑ2 þ ν2ÞFν ¼ 0: ð103Þ

Here, FνðϑÞ for ν ¼ 7=4 is a constant linear combination of
I7=4ðϑÞ and K7=4ðϑÞ. Moreover, as T → 0, one can show
from the properties of the modified Bessel functions of the
first and second kind that X2̂ diverges as T−1=5, in agree-
ment with Eq. (90) for the corresponding plane gravita-
tional wave. Next, for the ðX1̂; X3̂Þ system, it proves
convenient to introduce a new variable S,

S ¼ − lnT; ð104Þ

so that as T∶ 1 → 0, we have that S∶ 0 → ∞. In terms of S,
the ðX1̂; X3̂Þ system can be expressed as

d2X1̂

dS2
þ dX1̂

dS
þ 2

3
e−7S=2 þ

�
2

9
e−4S=5 þ 6

25

�
X1̂

þ 2

5
e−2S=5X3̂ ¼ 0; ð105Þ

d2X3̂

dS2
þ dX3̂

dS
þ 2

5
e−2S=5X1̂ þ 4

9
e−4S=5X3̂ ¼ 0: ð106Þ

As proved in Appendix D, all solutions of this system and
their derivatives are bounded for 0 ≤ S < ∞ and X1̂
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converges to zero as S → ∞. Numerical experiments
reported in Appendix D suggest that X3̂ also has a limit
(which may not be zero) as S → ∞. Ignoring terms
involving e−2S=5, e−4S=5 and e−7S=2, system (105)–(106)
reduces to the corresponding system for the planeGW (58).
In fact, these terms vanish for S → ∞. Thus the main
difference between the TGWand the plane wave (58) is that
in time X3̂ deviates from its value Z0 at S ¼ 0 in the case of
TGW. The influence of the exact plane wave (58) on test
particles that are initially at rest in the Fermi system has the
same transverse character as for linearized gravitational
waves moving along the z direction; however, the corre-
sponding TGW has in addition a longitudinal influence as
well resulting in the X3̂ component of the motion. This
longitudinal feature of TGW and the associated temporal
variation in X3̂ may provide an observational signature
for TGWs.

B. Jacobi equation for TGW (55)

To confirm the longitudinal component of motion of
free test particles induced by a TGW, it is interesting to
study the Jacobi equation for the TGW solution (55).
In this case, the static observers’ adapted frame is given
by Eq. (76). It can be shown that this tetrad frame is
Fermi-Walker transported along e0̂. In fact, e0̂ has a
nonzero 4-acceleration,

A ¼ ∇e0̂
e0̂ ¼

2

W5

�
1

λ2
∂x −

1

λ0
∂z

�
; ð107Þ

where, as before, W ¼ xþ u. The projection of the
4-acceleration of static observers in this spacetime on
their tetrad frame field can be expressed as

A ¼ 2

W3

�
1

λ
e1̂ −

1

λ1=20

e3̂

�
: ð108Þ

Furthermore, tidal matrix (96) in this case has nonzero
components given by

K1̂ 1̂ ¼
2ð−λ0 þ 3λ2Þ

λ0λ
2

W−6;

K2̂ 2̂ ¼ −
2ðλ0 þ 3λ2Þ

λ0λ
2

W−6;

K3̂ 3̂ ¼
4

λ2
W−6;

K1̂ 3̂ ¼ K3̂ 1̂ ¼
6

λ1=20 λ
W−6: ð109Þ

Let us recall the fact that W ¼ 0 corresponds to the
curvature singularity in this TGW spacetime.
We wish to establish a Fermi normal coordinate system

in the neighborhood of a particular static observer; to
this end, let us choose the observer located at xμ ¼
ðt; x0; y0; z0Þ, where x0, y0 and z0 are constants and
dt=dτ ¼ λ−1=20 W−2 in conformity with the expression for
e0̂ in Eq. (76). Let us define W to be the magnitude of
W ¼ xþ u along the world line of our reference static
observer, namely,

W ¼ x0 þ t − z0; ð110Þ

such that

dW
dτ

¼ 1ffiffiffiffiffi
λ0

p
W2

: ð111Þ

FIG. 1. Numerical integration of Eqs. (99)–(101). Initial conditions at T ¼ 1 are chosen such that Xî ¼ 1 and dXî=dT ¼ 0. Closer
inspection reveals that X1̂ indeed vanishes at T ¼ 0, cf. Appendix D.
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Integrating this equation we find

ffiffiffiffiffi
λ0

p
W3 ¼ 3ðτ − τ0Þ; ð112Þ

where τ0 is an integration constant. To simplify matters, we
choose τ0 ¼ 0, so that

ffiffiffiffiffi
λ0

p
W3 ¼ 3τ and the curvature

singularity now occurs at τ ¼ 0 along the world line of our
fiducial static observer.
Next, we need to evaluate the 4-acceleration and the tidal

matrix along the world line of the fiducial static observer by
replacing W with W in Eqs. (108) and (109). The reduced
geodesic Eq. (85) then takes the form

d2X1̂

dT2
þ 2

3

l
T
þ 2

9
ð3þ l2ÞX

1̂

T2
þ 2

9
l
X3̂

T2
¼ 0; ð113Þ

d2X2̂

dT2
−
2

9
ð3þ l2ÞX

2̂

T2
¼ 0 ð114Þ

and

d2X3̂

dT2
−
2

3

1

T
þ 2

9
l
X1̂

T2
þ 4

9
ð1þ l2ÞX

3̂

T2
¼ 0; ð115Þ

where

l ≔
ffiffiffiffiffi
λ0

p
λ

: ð116Þ

As before, the equation for X2̂ decouples from the rest
and its solution is given by

X2̂ ¼ T1=2ðb̌þTǎ þ b̌−T−ǎÞ; ð117Þ

where b̌� are integration constants and

ǎ ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33þ 8l2

p
: ð118Þ

Let us introduce the independent variable S ¼ − lnT
into ðX1̂; X3̂Þ system as before. The resulting system can be
integrated using elementary methods and we find

X1̂ ¼ ½A1 cosðω1Sþ φ1Þ þ A2 cosðω2Sþ φ2Þ�e−S=2

−
3l

l2 þ 2
e−S ð119Þ

and

X3̂ ¼
�
−
1

l
A1 cosðω1Sþ φ1Þ þ lA2 cosðω2Sþ φ2Þ

�
e−S=2

þ 3

l2 þ 2
e−S; ð120Þ

where

ω1 ¼
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 8l2

p
; ω2 ¼

1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15þ 16l2

p
ð121Þ

and (A1, φ1, A2, φ2) are constants that can be determined
from the initial conditions that we need to impose on
ðX1̂; dX1̂=dS; X3̂; dX3̂=dSÞ at, say, S ¼ 0.
It is clear from Eqs. (119)–(120) that X1̂ and X3̂ are

bounded for 0 ≤ S < ∞ and vanish as S → ∞. For the
specific TGW under consideration here, the important
quantity is the temporal variation of X3̂ given by
Eq. (120). This is the longitudinal signature of the TGW

FIG. 2. Numerical integration of Eqs. (113)–(115) with l ¼ 1. Initial conditions are chosen so that Xî ¼ 0, dXî=dT ¼ 0 at T ¼ 1.
With these conditions X2̂ðTÞ ¼ 0 identically.
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that exists in addition to the transverse components
characterized by the ðX1̂; X2̂Þ components.
Figure 2 depicts X1̂ and X3̂ given in Eqs. (119) and (120)

for the special case of l ¼ 1 and initial data that at T ¼ 1,
Xî ¼ 0 and dXî=dT ¼ 0 for i ¼ 1, 3.
Finally, we should mention that the appearance of the

longitudinal feature of TGWs via the Jacobi equation is not
totally unexpected. In canonical tetrad frames, it is possible
to use the Petrov classification to show that the behavior of
the local free gravitational field—namely, the Weyl curva-
ture tensor—within the framework of the geodesic
deviation equation is in general determined by the linear
superposition of a transverse wave component, a longi-
tudinal component and a Coulomb component [10,22,23].

VI. DISCUSSION

Linearized gravitational radiation can be represented as
a linear superposition of monochromatic plane waves that
are transverse and exhibit plus ð⊕Þ and cross ð⊗Þ linear
polarization states. In the nonlinear regime, exact solutions
of GR that represent plane gravitational waves generally
correspond to linearized plane waves propagating along a
fixed direction in space. On the other hand, exact gravi-
tational waves in GR propagating along a fixed spatial
direction can be nonplanar as well. This paper is about
such twisted gravitational waves (TGWs). We have shown
that a class of TGWs exists with wave fronts that have
negative Gaussian curvature. We have investigated in
some detail the properties of two such radiation fields.
In particular, our study of the Jacobi equation in these
spacetimes reveals a longitudinal signature that is a distinct
departure from transversality.
In this first discussion of TGWs, many questions remain

unanswered. For instance, how can TGWs be generated by
realistic sources? Are there TGWs with wave fronts that
have positive Gaussian curvature? Are there TGWs with a
cosmological constant Λ? Further investigation is neces-
sary to tackle these problems.
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APPENDIX A: FIELD EQUATIONS WITH Λ

The Einstein field equations in vacuum but with a
cosmological constant Λ can be expressed as

Rμν ¼ Λgμν: ðA1Þ
We assume a metric of the form

ds2 ¼ −eAðx;uÞðdt2 − dz2Þ þ eBðx;uÞdx2 þ eCðx;uÞdy2;

ðA2Þ

where u ¼ t − z is the retarded null coordinate. With metric
(A2), field equations (A1) can be reduced to the following
five equations:

A2
x þ 2AxCx þ 4ΛeB ¼ 0; ðA3Þ

where Ax ≔ ∂A=∂x, etc.,
2Axx þ A2

x − AxðBx þ CxÞ ¼ 0; ðA4Þ

2Cxx þ C2
x − A2

x − BxCx ¼ 0; ðA5Þ

Axu þ Cxu ¼
1

2
AxðBu þ CuÞ þ

1

2
CxðBu − CuÞ; ðA6Þ

AuðBu þ CuÞ ¼
1

2
ðB2

u þ C2
uÞ þ Buu þ Cuu: ðA7Þ

It has not been possible to find an exact solution—that is,
a solution that can be expressed using familiar functions—
of these equations for Λ ≠ 0.

APPENDIX B: GAUSSIAN CURVATURE
OF THE WAVE FRONT

Suppose that the metric of the wave front is given by

dσ2 ¼ ePðx;yÞdx2 þ eQðx;yÞdy2: ðB1Þ

Then, the Gaussian curvature of this surface is given by

KG ¼ −
1

4
e−P½2Qxx − ðPx −QxÞQx�

−
1

4
e−Q½2Pyy þ ðPy −QyÞPy�: ðB2Þ

As an application of this formula, consider the spacetime
metric

ds2 ¼ −dt2 þ dz2 þ u2ðePdx2 þ eQdy2Þ; ðB3Þ

which has the null Killing vector field ∂v ¼ ∂t þ ∂z and the
homothetic vector field t∂t þ z∂z. It represents flat space-
time if the following field equation is satisfied

eP½2Pyy þ ðPy −QyÞPy� þ eQ½2Qxx − ðPx −QxÞQx� ¼ 0:

ðB4Þ

That is, Eq. (B4) implies that the Gaussian curvature of the
wave front vanishes by Eq. (B2); moreover, the spacetime
given by

ds2 ¼ −dt2 þ dz2 þ u2ðdx2 þ dy2Þ ðB5Þ

is simply flat, cf. the end of Appendix B of Ref. [14].
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APPENDIX C: SCALAR FIELD ON HARRISON’S
TGW BACKGROUND

To distinguish TGWs from plane gravitational waves,
one can explore the behavior of various perturbing fields
on these backgrounds. As an example of this approach, let
us consider a massless scalar field on the background of
Harrison’s solution (5). We write the corresponding metric
in the form

ds2 ¼ −x4=3dudvþ λ2u6=5dx2 þ x−2=3u−2=5dy2; ðC1Þ

where we assume that x ≥ 0 and u ≠ 0. The massless scalar
field equation is

□Ψ ¼ gμν∇μð∂νΨÞ ¼ 0; ðC2Þ

which can be written as

∂
∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂Ψ
∂xν

�
¼ 0: ðC3Þ

With metric of the form (C1), we have
ffiffiffiffiffiffi−gp ¼ λxu2=5=2

and the nonzero components of gμν are given by
guv ¼ gvu ¼ −2x−4=3, gxx ¼ u−6=5=λ2 and gyy ¼ x2=3u2=5.
Writing

Ψ ¼ eiKvvþiKyyψðx; uÞ; ðC4Þ

the massless scalar wave equation reduces to

ðxψxÞx − 2iλ2Kvx−1=3u4=5½u2=5ψu þ ðu2=5ψÞu�
− λ2K2

yx5=3u8=5ψ ¼ 0: ðC5Þ

Here, we work with a complex amplitude Ψ. The wave
equation is linear; therefore, the real and imaginary parts of
Ψ constitute real solutions of the massless scalar wave
equation.
It may not be possible to express the solution of this

equation in terms of familiar functions. To illustrate this
point, let us assume that Ky ¼ 0 in Eq. (C5). We then look
for a solution of the form

ψðx; uÞ ¼ XðxÞUðuÞ: ðC6Þ

It is then a simple matter to find U,

UðuÞ ¼ U0u−1=5 exp

�
−

5iC
2λ2Kv

u−1=5
�
; ðC7Þ

where Kv ≠ 0 and U0 as well as C are in general complex
constants. However, the corresponding differential equa-
tion for X can be written as

x1=3
d
dx

�
x
dX
dx

�
þ 2CX ¼ 0; ðC8Þ

which does not appear to have a solution expressible in
terms of familiar functions except for C ¼ 0.
It is a peculiar feature of Eq. (C5) that solutions exist for

Kv ¼ 0 as well. In this case, Eq. (C5) reduces to

ðxψxÞx − λ2K2
yx5=3u8=5ψ ¼ 0: ðC9Þ

Let us now define ξ,

ξ ≔
3

4
λKyx4=3u4=5: ðC10Þ

Then, ψ ¼ φðξÞ satisfies the modified Bessel equation of
zero order, namely,

φξξ þ
1

ξ
φξ − φ ¼ 0: ðC11Þ

It is interesting to compare this situation with the
propagation of the massless scalar field on the background
of a plane gravitational wave with metric of the form

ds2 ¼ −dudvþ λ2u6=5dx2 þ u−2=5dy2; ðC12Þ

where the metric coefficients can be obtained from those of
Eq. (C1) with x ¼ 1. This is a special case of the metrics
discussed in Sec. V of Ref. [14] with s2 ¼ 3=5 and
s3 ¼ −1=5. In this case, the solution of the massless scalar
field equation can be written as

Ψ ¼ eiKvvþiKxxþiKyyϕðuÞ; ðC13Þ

where ϕðuÞ is given by

ϕðuÞ ¼ ϕ0u−1=5 exp

�
−
5iK2

x

4λKv
u−1=5 þ 5iK2

y

28Kv
u7=5

�
: ðC14Þ

Here, Kv ≠ 0 and ϕ0 is a constant of integration.

APPENDIX D: BEHAVIOR OF SOLUTIONS
OF EQS. (105)–(106)

The coefficients of the linear system (105)–(106) are not
all constants; therefore, the analysis of the system is expected
to rely on qualitative or numerical methods. These are
employed in this Appendix. To this end, we transform
Eqs. (105)–(106) in the usual manner into four first-order
linear differential equations involving X1̂, dX1̂=dS, X3̂ and
dX3̂=dS.
Let us first discuss the long-time asymptotics, that is the

fate of solutions starting at S ¼ 0 as S → ∞. Based on
numerical experiments, it appears that all solutions are
bounded and have limits as S → ∞. Moreover, the limiting
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behavior may be specified as an affine transformation from
initial to final data such that

lim
S→∞

�
X1̂ðSÞ; dX

1̂

dS
ðSÞ; dX

3̂

dS
ðSÞ

�
¼ ð0; 0; 0Þ; ðD1Þ

while

lim
S→∞

X3̂ðSÞ ¼ −k1X1̂ð0Þ − k2
dX1̂

dS
ð0Þ þ k3X3̂ð0Þ

þ k4
dX3̂

dS
ð0Þ þ k5; ðD2Þ

where the ki are positive constants with approximate values

k1 ¼ 0.572; k2 ¼ 0.441; k3 ¼ 0.724;

k4 ¼ 0.842; k5 ¼ 0.170: ðD3Þ

One way to verify this result is to recall the basic fact from
linear systems theory that the general solution is given by a
particular solution plus a linear combination of fundamen-
tal solutions. A convenient choice is the particular solution
starting from zero initial data and the four fundamental
solutions corresponding to initial data given by the usual
basis vectors of 4-dimensional Cartesian space. All that
remains is numerical integration to obtain the limiting
values of the particular and fundamental solutions. We find
that all solutions approach the X3̂ direction with their final
positions determined by the initial data. In contrast to the
treatment of the Jacobi equation for the plane GW (58), the
initial X3̂ component is never fixed during the evolution.
However, its limiting value can be the same as its initial
value by choosing the remaining components of the initial
data so that the third component of the limit vector has the
value X3̂ð0Þ. This happens on a hypersurface in the space of
initial data; thus, the probability of this event is zero.
The boundedness of solutions is of course implied by the

boundedness of a particular solution and all the funda-
mental solutions. So, the numerical computations suggest
that this is indeed the case. For an analytic proof, one may
use the variation of parameters formula with respect to the
constant part of the system matrix and then employ a
Gronwall estimate [24]. More specifically and abstractly,
consider a vector ordinary differential equation,

_x ¼ Ãxþ B̃ðtÞxþ b̃ðtÞ; ðD4Þ

where Ã is a constant square matrix, B̃ is a continuous
matrix function of time and b̃ðtÞ is a continuous vector
function all defined for t ≥ 0. Using the usual Euclidean
norm, suppose that there are positive constants M, K, λ̃, μ
and L such that for all t ≥ 0 and all vectors ṽ

jetÃṽj ≤Mjṽj; jB̃ðtÞṽj ≤ Ke−λ̃tjṽj; jb̃ðtÞj ≤ Le−μt:

ðD5Þ

By variation of parameters,

jxðtÞj ≤ jetÃxð0Þj þ
Z

t

0

jeðt−sÞÃB̃ðsÞxðsÞjds

þ
Z

t

0

jeðt−sÞÃb̃ðsÞjds: ðD6Þ

Using the inequalities (D5),

jxðtÞj ≤ Mjxð0Þj þ
Z

t

0

MKe−λ̃sjxðsÞjdsþML
μ

ð1 − e−λ̃tÞ:

ðD7Þ

The last term is bounded by ML=μ. Gronwall’s inequality
implies

jxðtÞj ≤
�
M þML

μ

�
eMK

R
t

0
e−λ̃sds ≤ M

μþ L
μ

eMKð1−e−λ̃tÞ=λ̃

≤ M
μþ L
μ

eMK=λ̃ < ∞; ðD8Þ

as required.
The hypotheses are true for system (105)–(106) recast in

the usual manner as a first-order linear system and with the
natural definitions of Ã, B̃ and b̃. In particular, the four-
dimensional constant-coefficient system matrix Ã has four
distinct eigenvalues: three negatives and one zero. The
fundamental matrix expðtÃÞ therefore propagates funda-
mental solutions starting in the corresponding eigenspaces
of Ã, three of which decay in norm and one remains
constant. Using linearity, the desired estimate jexpðtÃÞṽj ≤
Mjṽj follows for an appropriate choice of constant M.
Required estimates for B̃ and b̃ do not involve exponen-
tiation and are straightforward.
Similar arguments can be used to prove the conjecture—

based on numerical experiments—that X1̂ðTÞ is not only
bounded on the interval 0 < T ≤ 1, but in fact X1̂ðTÞ → 0

as T → 0þ; or equivalently, X1̂ðSÞ → 0 as S → ∞. Our
proof to follow also shows that the derivatives dX1̂=dS and
dX3̂=dS converge to zero exponentially fast as S → ∞.
Unfortunately, our argument proves only an upper bound
for their rate of convergence to zero. A lower bound would
be needed to conclude that both dX1̂=dT and dX3̂=dT
blow up in absolute value as T → 0þ, a conjecture that is
also supported by numerical experiments. To see the
problem, recall for example that by the change of variables
dX1̂=dT ¼ − expðSÞdX1̂=dS. This indeterminate form,
which is expected to blow up, would do so if jdX1̂=dSj
does not approach zero too rapidly.
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Our proof requires several steps that are merely outlined
here for the sake of brevity. The underlying idea is to split off
the part of the constant-coefficient system matrix Ã corre-
sponding to its zero eigenvalue and thus to take advantage of
the exponential decay afforded by the remaining three
eigenvalues: −1, −3=5 and −2=5. The boundedness of
solutions already proved is also a key ingredient.
To accomplish the desired splitting, note that Ã is

diagonalizable. In fact, taking Q̃ to be the matrix whose
columns are eigenvectors corresponding to the listed
eigenvalues and the remaining zero eigenvalue in that
order, D ≔ Q̃−1Ã Q̃ is diagonal with the eigenvalues in
the specified order along the main diagonal. With the
change of variables x ¼ Q̃y and using t instead of S, the
first-order linear system is recast in the form

_y ¼ Dyþ Q̃−1B̃ðtÞQ̃yþ Q̃−1b̃ðtÞ: ðD9Þ

The first three differential equations in this vector system
may be recast in the vector form

_z ¼ D1zþ B̃1ðtÞzþ y4B̃2ðtÞ þ b̃1ðtÞ; ðD10Þ

where the coupling to the fourth differential equation is
through the term y4B̃2ðtÞ for the 3 × 1 matrix B̃2ðtÞ. This
latter matrix is simply the first three components of the last
column of Q̃−1B̃ðtÞQ̃ and of course B̃1ðtÞ is its upper 3 × 3
diagonal block. As in the proof of boundedness, there
are positive constants L and K and exponential estimates
given by

jetD1 ṽj ≤ e−2t=5jṽj ðD11Þ

and

jB̃1ðtÞṽj ≤ Le−2t=5jṽj;
jB̃2ðtÞṽj ≤ Le−2t=5jṽj; jb̃1ðtÞj ≤ Ke−7t=5: ðD12Þ

Again the variation of parameters formula is employed,
the triangle law estimate is made, the boundedness of y4 is
noted as a corollary of our previous result, and all
exponential estimates are used. After some manipulation
and obvious estimates, we find that

e2t=5jzðtÞj ≤ jzð0Þj þ Ltþ 1þ
Z

t

0

e−2s=5ðe2s=5jzðsÞjÞds:

ðD13Þ

Gronwall’s inequality followed by a simple integral esti-
mate implies

jzðtÞj ≤ ðjzð0Þj þ Ltþ 1Þe5=2e−2t=5: ðD14Þ

In particular, zðtÞ converges to zero as t → ∞. This is
enough, after some interpretation, to obtain the claimed
limit X1̂ðSÞ → 0 as S → ∞, or, equivalently, X1̂ðTÞ → 0
as T → 0þ.
Further discussion of system (99)–(101) is contained

in Ref. [25].
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