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We consider a model where particles are described as localized concentrations of energy, with fixed rest
mass and structure, which are not significantly affected by their self-induced gravitational field. We show
that the volume average of the on-shell matter Lagrangian Lm describing such particles, in the proper frame,
is equal to the volume average of the trace T of the energy-momentum tensor in the same frame,
independently of the particle’s structure and constitution. Since both Lm and T are scalars, and thus
independent of the reference frame, this result is also applicable to collections of moving particles and, in
particular, to those which can be described by a perfect fluid. Our results are expected to be particularly
relevant in the case of modified theories of gravity with nonminimal coupling to matter where the matter
Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, such as
fðR;LmÞ and fðR; TÞ gravity. In particular, they indicate that, in this context, fðR;LmÞ theories may be
regarded as a subclass of fðR; TÞ gravity.
DOI: 10.1103/PhysRevD.97.064019

I. INTRODUCTION

Precise cosmological observations gathered in recent
years have provided us with an increasingly detailed picture
of the Universe and its constituents (see, e.g., Refs. [1–3]).
At the present time, the Universe appears to be dominated
by two main energy components whose fundamental nature
remains mysterious: dark energy (or modified gravity)—
responsible for the current acceleration of the expansion of
the Universe—and dark matter—required to explain the
observed large-scale structure of the Universe.
However, several other particles, such as baryons and

photons, have a much more familiar nature and play a
fundamental role in the Universe’s structure and evolution.
Some of these particles may be regarded as localized energy
concentrations, with fixed rest mass and structure, which are
not significantly affected by their self-induced gravitational
field. Hence, they are often modeled as topological solitons.
Still, the modeling of particles as solitons in the simplest
scalar fieldmodels is not without problems. In particular, the
existence of stable finite energy solutions of the nonlinear

Klein-Gordon equation in more than one spatial was
discarded by Hobard [4] and Derrick [5] using a simple
scaling argument. In Ref. [6], Derrick’s argument was
applied to the case of more general scalar field models,
and the existence of static global defect solutions of arbitrary
dimensionality whose energy does not diverge at spatial
infinity was explicitly demonstrated in that context.
Skyrmions [7,8]—topological solitons of a Lagrangian
embodying chiral symmetry—and Q-balls [9,10]—station-
ary nontopological solitons whose stability is guaranteed by
a conserved charge—are other examples of localized defects
in 3þ 1 dimensions.
In the present paper, we start by investigating the

necessary conditions for the existence of localized static
concentrations of energy (static solitons) in the absence of
a significant self-induced gravitational field, providing a
considerable extension of the results presented in Ref. [6].
The focus will be on the restrictions imposed on the on-
shell matter Lagrangian of a solitonic particle or of a
collection of moving solitonic particles which can be
described as a fluid. This is particularly relevant for
modified theories of gravity with nonminimal coupling
to matter where the matter Lagrangian appears explicitly in
the equations of motion of the gravitational field, such as
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fðR;LmÞ [11] and fðR; TÞ [12] theories of gravity, since, in
this context, the knowledge of the energy-momentum
tensor is, in general, insufficient to compute the relevant
physics [13,14].
Throughout the paper, we will assume the metric sig-

nature ½−;þ; � � � ;þ� and units in which the speed of light in
vacuum c equals unity. The Einstein summation convention
will be used when a latin or greek index variable appears
twice in a single term, once in an upper (superscript) and
once in a lower (subscript) position—the exception will be
the latin index l (or l̂), for which the Einstein summation
convention shall not be used.Greek and latin indices take the
values μ; ν ¼ 0;…; D; a; b; c ¼ 1;…;D; i; j; l ¼ 1;…; D,
î; ĵ; l̂ ¼ N −Dþ 1;…; N (with D ≤ N)—the exception
will be the greek index λ, which shall denote a positive real
parameter.

II. DERRICK’S ARGUMENT

Consider a Dþ 1-dimensional Minkowski space-time
with line element given by

ds2 ¼ gμνdxμdxν ¼ −dt2 þ δijdxidxj ð1Þ

and aD-dimensional real scalar field multiplet fϕ1;…;ϕDg
described by the action S ¼ R

LmdDþ1x, where

Lm ¼ X − VðϕaÞ ð2Þ

is the matter Lagrangian. Here, X ¼ −δabϕa
;μϕ

b;μ=2, the
comma in ϕa

;μ a denotes a partial derivative with respect to
the space-time coordinate xμ, ϕa

;μ ¼ gμνϕa;ν, gμν are the
components of the metric tensor, δab is the Kronecker
delta (δab ¼ 1 if a ¼ b and δab ¼ 0 if a ≠ b), and V ≥ 0.
The energy-momentum tensor for this model is given by

Tμν ¼ δabϕ
a
;μϕ

b
;ν þ gμνLm; ð3Þ

and the total energy can be computed as E ¼ R
dDxT00.

Consider a static solution ϕa ¼ ϕaðxiÞ with finite energy
equal to

E ¼
Z

dDxðδabXab þ VðϕaÞÞ ¼ K þ U; ð4Þ

where

K ¼
Z

dDxðδabXabÞ; U ¼
Z

dDxVðϕaÞ ð5Þ

are, respectively, the gradient and potential contributions to
the total energy, and Xab ¼ −ϕa

;iϕ
b;i=2. Under the rescaling

xi → x̃i ¼ λxi, where λ is a positive real parameter (that
equals unity in the initial configuration), the total energy
becomes

EðλÞ ¼
Z

dDxðδabXab
λ þ Vðϕa

λÞÞ; ð6Þ

where ϕa
λ ¼ ϕaðλxiÞ and Xab

λ ¼ −ϕa
λ;iϕ

b;i
λ =2. Changing the

integration variable to x̃i ¼ λxi, one obtains

EðλÞ ¼ λ−D
Z

dDx̃ðδabλ2Xab þ VðϕaÞÞ

¼ λ2−DK þ λ−DU: ð7Þ

A static solution ϕa ¼ ϕaðxiÞ must satisfy

�
dE
dλ

�
λ¼1

¼ ð2 −DÞK −DU ¼ 0: ð8Þ

Hence, no equilibrium static solutions with finiteK > 0 and
finite U > 0 exist for D ≥ 2 [4,5]. Despite this fact, static
global string and monopole solutions do exist in 3þ 1
dimensions, since these are cases for which the gradient
energy K formally diverges. Still, in practice, there will
always be a cutoff at some energy scale (for instance, in
the cosmological context, the linear divergence in the
energy of a global monopole has a cutoff due to the
finite—subhorizon—characteristic length of the global
monopole network [15,16]).
In Ref. [6], Derrick’s argument has been generalized to

the case of scalar field Lagrangians of the form

Lm ¼ Lmðϕa; XbcÞ; ð9Þ

with the energy-momentum tensor given by

Tμν ¼ Lm;Xabϕa
;μϕ

b
;ν þ gμνLm: ð10Þ

There, it has been shown that any static equilibrium
solution ϕa ¼ ϕaðxiÞ must satisfy

�
dE
dλ

�
λ¼1

¼
Z

dDxTi
i ¼ 0 ð11Þ

or, equivalently, that the average pressure (over volume and
directions) must vanish.

III. SOLITONIC PARTICLES AND
FLUIDS: hLmi= hTi

Let us describe a static particle as a localized static
concentration of energy (static soliton of finite size) and
assume that the space-time is locally Minkowskian on the
particle’s characteristic length scale. Again, we shall implic-
itly assume that the gravitational field has a negligible
impact on the particle structure, so that one may safely
neglect the perturbations to the Minkowski metric when
computing the total energy of the particle.We shall also start
by assuming that the matter fields can be described by a
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generic real scalar field multiplet fϕ1;…;ϕDg, an
assumption that shall be relaxed later on.

A. Spherical deformation

Consider again the transformation xi → x̃i ¼ λxi, and
assume that the matter scalar fields describing a solitonic
particle transform under it [this is equivalent to assuming
that the functions ϕaðx̃iÞ are independent of λ]. The line
element may be rewritten as a function of the spatial
coordinates x̃i as

ds2 ¼ −dt2 þ δijdxidxj ¼ −dt2 þ g̃ijdx̃idx̃j; ð12Þ

where g̃ij ¼ λ−2δij.
Here, we shall also assume that the on-shell matter

Lagrangian is invariant with respect to an arbitrary rescal-
ing of the time coordinate, so that

δLm

δg00
¼ 0; ð13Þ

in the proper frame in which the particle is static. The
components of the energy-momentum tensor of the matter
fields are defined by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δðLm

ffiffiffiffiffiffi−gp Þ
δgμν

¼ −2
δLm

δgμν
þ gμνLm; ð14Þ

where g is the determinant of the metric. Equations (13) and
(14) imply that the energy density is given by

ρ ¼ T00 ¼ −Lm; ð15Þ

so that the total energy of the transformed static concen-
tration of energy is

EðλÞ ¼ −
Z

Lmðg̃ij; x̃kÞ
ffiffiffiffiffiffi
−g̃

p
dDx̃; ð16Þ

where
ffiffiffiffiffiffi
−g̃

p ¼ λ−D. Note that the transformed matter
Lagrangian Lm will be a function of both g̃ij and the
matter fields, with the matter fields preserving the depend-
ence on x̃i of the initial static configuration.
A necessary condition for static equilibrium around the

initial configuration is that EðλÞ has a minimum at λ ¼ 1.
Therefore,

�
dE
dλ

�
λ¼1

¼ 0 ð17Þ

or, equivalently,

�
dE
dλ

�
λ¼1

¼ −
Z �∂ðLm

ffiffiffiffiffiffi
−g̃

p Þ
∂λ

�
λ¼1

dDx̃

¼ −
Z ��

δLm

δg̃ij
∂g̃ij
∂λ −

D
λ
Lm

�
λ−D

�
λ¼1

dDx̃

¼ −
Z �

2
δLm

δg̃ij
g̃ij −DLm

�
dDx̃ ¼ 0; ð18Þ

where the fact that g̃ij ¼ λ−2δij (implying that ∂g̃ij=∂λ ¼
2g̃ij=λ) has been used in the derivation of Eq. (18). Hence,

Z
Ti

idDx ¼ 0; ð19Þ

which, combined with Eq. (15), implies that

hLmi≡
R
LmdDxR
dDx

¼
R
TdDxR
dDx

≡ hTi; ð20Þ

where T ¼ Tμ
μ ¼ T0

0 þ Ti
i is the trace of the energy-

momentum tensor. Equation (20) is a scalar equation (Lm
and T are both scalars) and, despite being derived in the
particle’s rest frame, it is also valid in any moving frame. As
a matter of fact, since an inertial comoving frame wherein
the particle is static exists, the volume averages ofLm and T
are invariant under any Lorentz boost, and thus Eq. (20) is
independent of the velocity of the particle. Therefore, this
result is also applicable to fluids that may be well described
by a collection of moving solitonic particles, provided that
the space-time is locally Minkowskian on the smallest
proper macroscopic length scale in which the fluid approxi-
mation applies. Note that here we do not consider potential
model-dependent intersoliton interactions. These, however,
are not expected to affect our results unless they have a
significant long-range impact on the mass and structure of
the particles.
Furthermore, an additional requirement to ensure the

stability of the static configuration is that

�
d2E
dλ2

�
λ¼1

> 0; ð21Þ

which results in the following condition:

Z �
4
δ2Lm

δðgijÞ2 ðg
ijÞ2 þDðDþ 1ÞLm

− ð4D − 2Þ δLm

δgij
gij

�
dDx < 0: ð22Þ

The results obtained in this section also hold if the matter
fields providing a significant contribution to the energy of
the particle include higher order tensor fields T of arbitrary
order N , provided that Eq. (13) is satisfied. If, under the
transformation xi → x̃i ¼ λxi the components T μ1;…;μN ðx̃iÞ
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are assumed to be fixed functions of x̃i, independently of
the value of λ, then all the results, given by Eqs. (16)–(22),
remain valid.

B. Nonspherical deformation

Let us now consider the transformation xl → x̃l ¼ λlxl,
for l ¼ 1;…; D, where λl are positive real parameters, such
that λl ¼ 1 in the initial configuration. The line element,
whenwritten as a function x̃i, is still given by Eq. (12), but in
this case, g̃ij ¼ λiλjδ

ij. We shall demonstrate in the present
section that considering this more general deformation,
allowing for different directional scaling parameters, leads
to conditions on the form of the energy-momentum tensor
that are even more restrictive than those in Eq. (19).
Assuming that Eq. (13) remains valid, the total energy of

the transformed static configuration may be written as

Eðλ1;…; λDÞ ¼ −
Z

Lmðg̃ij; x̃Þ
ffiffiffiffiffiffi
−g̃

p
dDx̃; ð23Þ

with

ffiffiffiffiffiffi
−g̃

p
¼

Y
i

λ−1i : ð24Þ

In this case, static equilibrium can only be preserved if

�
dE
dλi

�
λ1¼1;…;λD¼1

¼ 0; for all i ¼ 1;…D: ð25Þ

Considering a specific value of l and applying a similar
procedure to that employed in Eq. (18), one obtains

−
Z �

2
δLm

δgll
gll − Lm

�
dDx ¼ 0 ð26Þ

or, equivalently,

Z
TlldDx ¼ 0; for all l ¼ 1;…; D: ð27Þ

This not only implies that the volume of the spatial trace of
the energy momentum must be equal to zero in the rest
frame of the solitonic particle [Eq. (19)] but also that the
volume average of the pressure along all l ¼ 1;…; D
directions must vanish.
Moreover, static equilibrium around the initial static

configuration can only be guaranteed if Eðλ1;…; λdÞ has a
minimum at λ1 ¼ � � � ¼ λD ¼ 1, implying that

�
d2E
dλ2i

�
λ1¼1;…;λD¼1

> 0; ð28Þ

which results in the following constraints,

Z �
4
δ2Lm

δðgllÞ2 ðg
llÞ2 þ 2Lm − 2

δLm

δgll

�
dDx < 0; ð29Þ

for all l ¼ 1;…; D.

IV. DEFECTS OF CODIMENSION D IN
N + 1-DIMENSIONAL SPACE-TIMES

Our resultsmaybegeneralized to also describe p-branes of
codimension D (p ¼ N −D), embedded in a Minkowski
space-timewithN > D spatial dimensions (seeRefs. [17,18]
for a unified framework describing the macroscopic evolu-
tion of featureless p-branes). Assuming that

δLm

δgî ĵ
¼ 0; for all î; ĵ ¼ Dþ 1;…; N; ð30Þ

xî with î ¼ Dþ 1;…; N being the additional space-time
coordinates, Eq. (14) implies that

Tl̂ l̂ ¼ Lm; for all l̂ ¼ Dþ 1;…; N; ð31Þ

independently of the velocity of the observer. In practice,
Eq. (30) means that the defect is featureless along the
l̂ ¼ Dþ 1;…; N directions or, equivalently, that it is not
possible to measure the velocity of the defect along these
directions. In the defect rest frame, one has that T00 ¼ −Tl̂ l̂
and Tll ¼ 0. Hence, a statistically homogeneous and iso-
tropic network of frozen defects will have an (averaged)
equation of state given by

p ¼ −
N −D
N

ρ: ð32Þ

Here, ρ and p represent the average energy density and
pressure associated with the defect network, independently
of the specific form of the matter Lagrangian or the defect
geometry along the first D spatial directions. If the defects
have a nonzero root mean square velocity v, the (average)
pressure becomes [19]

p ¼
�
−
N −D
N

þ N −Dþ 1

N
v2
�
ρ; ð33Þ

so that p → ρ=N in the v → 1 limit (note that if N ¼ 3 and
v ¼ 1 then p ¼ ρ=3).

V. CONCLUSIONS

In this paper, we have shown that the volume average of
the matter Lagrangian Lm of a solitonic particle, or of a
collection of solitonic particles with fixed rest mass and
structure, is equal to the volume average of the trace T of the
particle’s energy-momentum tensor. This result, obtained
with minimal assumptions about the particle structure and
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constitution, is crucial for the accurate computation of the
equations of motion of the gravitational and matter fields in
the context of modified theories of gravity with nonminimal
coupling to matter where the matter Lagrangian appears
explicitly in the equations of motion of the gravitational
field, such as fðR;LmÞ and fðR; TÞ gravity. It also implies
that, whenever the sole contribution to the gravitational field
comes frommatter sources whichmay bewell modeled by a
collection of solitonic particles with fixed rest mass and
structure, fðR;LmÞ gravity may be considered a subclass of
fðR; TÞ gravity.
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