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In this paper we show that the on-shell Lagrangian of a perfect fluid depends on microscopic properties
of the fluid, giving specific examples of perfect fluids with different on-shell Lagrangians but with the same
energy-momentum tensor. We demonstrate that if the fluid is constituted by localized concentrations of
energy with fixed rest mass and structure (solitons) then the average on-shell Lagrangian of a perfect fluid
is given by Lm ¼ T, where T is the trace of the energy-momentum tensor. We show that our results have
profound implications for theories of gravity where the matter Lagrangian appears explicitly in the
equations of motion of the gravitational and matter fields, potentially leading to observable deviations from
a nearly perfect cosmic microwave background black body spectrum: n-type spectral distortions, affecting
the normalization of the spectral energy density. Finally, we put stringent constraints on fðR;LmÞ theories
of gravity using the COBE-FIRAS measurement of the spectral radiance of the cosmic microwave
background.
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I. INTRODUCTION

In some theories of gravity the matter Lagrangian enters
explicitly in the equations of motion of the gravitational and
matter fields, thus making the quest for the appropriate
form of the Lagrangian a relevant one, in particular in the
case where the energy-momentum tensor of the matter
fields is described by a perfect fluid. In [1], by choosing a
specific form of the action for a perfect fluid, it has been
shown that, in the context of general relativity (GR), the on-
shell Lagrangian of a perfect fluid is equal to Lm ¼ p,
where p is the proper pressure. There it has also been noted
that the addition of appropriate surface integrals to the action
would lead to Lm ¼ −ρ, where ρ is the proper energy
density, without affecting the equations ofmotion.Although
this degeneracy has no observable consequences in the
context of GR, in theories of gravity where the matter
Lagrangian appears explicitly in the equations of motion of
the gravitational and matter fields, such as fðR;LmÞ [2–6]
and fðR; TÞ [7] theories of gravity, the dynamics of the
gravitational and matter fields may be significantly different

dependingonwhether one considersLm ¼ porLm ¼ −ρ as
the Lagrangian of a perfect fluid [8]. Nevertheless, in [9] it
has been argued that Lm ¼ −ρ is the correct choice for non-
minimally coupled (NMC) theories, a suggestion that has
been followed in some of the subsequent works investigat-
ing astrophysical and cosmological consequences of such
theories (see, e.g. [10–14]).
In [15] (see also [16]) the Lagrangian of a barotropic

perfect fluid whose proper pressure is a function solely of
the rest mass density was derived from the equations of
motion, with minimal assumptions about the gravitational
theory—it was assumed that the matter Lagrangian is
independent of the derivatives of the metric and that the
particle number is conserved. Still, even in the simplest
cases relevant to cosmology, the proper pressure depends
not only on the rest mass density (i.e. the proper number
density times the rest mass of the particles), but also on the
root mean square velocity of the particles. Moreover, the
assumed dependence of the Lagrangian on the rest mass
density, rather than the energy density, limits the applica-
tion of the result presented in [16] to the observed content
of our Universe, even during the radiation era.
In the present paper we revisit the problem of finding the

on-shell Lagrangian of a perfect fluid, focusing on its
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dependence on the microscopic properties of the fluid. We
start, in Sec. II, by briefly reviewing the equations of
motion of the gravitational and matter fields in the context
of fðR;LmÞ gravity. In Sec. III we explicitly demonstrate
that the on-shell Lagrangian of a perfect fluid depends on
the microscopic properties of the fluid not specified by its
energy-momentum tensor. By modeling particles as topo-
logical solitons in 1þ 1 dimensions, we also determine
the (averaged) on-shell Lagrangian of a perfect fluid
composed of such particles, and we investigate the
corresponding dynamics in flat 1þ 1 dimensional
Friedmann-Robertson-Walker (FRW) universes in the
context of fðR;LmÞ theories of gravity. In Sec. IV we
extend the results of the previous section to 3þ 1 dimen-
sions by considering a perfect fluid constituted by particles
which can be described as localized concentrations of
energy with fixed rest mass and structure (solitons),
studying the evolution of their linear momentum in a
homogeneous and isotropic Friedmann-Robertson-Walker
universe. In Sec. V we apply the results of Sec. IV to
photons, and constrain the spectral distortions of the
cosmic microwave background induced in fðR;LmÞ grav-
ity, using the COBE-FIRAS measurement of the spectral
radiance of the cosmic microwave background.
Throughout this paper we use units such that c ¼ 1,

where c is the value of the speed of light in vacuum, and we
adopt the metric signature ð−;þ;þ;þÞ. The Einstein
summation convention will be used when a greek index
variable appears twice in a single term, once in an upper
(superscript) and once in a lower (subscript) position.

II. f ðR;LmÞ GRAVITY

Consider the action

S ¼
Z

fðR;LmÞ
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

allowing for NMC matter fields. Here, Lm is the matter
Lagrangian, R is the Ricci scalar, g ¼ detðgμνÞ and gμν are
the components of the metric tensor. The equations of
motion of the gravitational field,

f;RGμν ¼
1

2
gμνðf−Rf;RÞþΔμνf;Rþ

1

2
f;Lm

ðTμν−LmgμνÞ;
ð2Þ

may be obtained by minimizing the action with respect to
variations of the metric. Here, a comma denotes a partial
derivative, ∇μ represents a covariant derivative with respect
to xμ, Δμν ≡∇μ∇ν − gμν□, □≡∇μ∇μ,

Gμν ≡ Rμν −
1

2
gμνR; ð3Þ

and

Tμν ¼ −
2ffiffiffiffiffiffi−gp δðLm

ffiffiffiffiffiffi−gp Þ
δgμν

¼ −2
δLm

δgμν
þ gμνLm ð4Þ

are the components of the energy momentum-tensor of the
matter fields. Taking into account that ∇μGμν ¼ 0, it is
simple to show that the energy-momentum tensor is not in
general covariantly conserved:

∇μTμν ¼ Sν; ð5Þ

where

Sν ¼ ðLmgμν − TμνÞ
× ð½ln jf;Lm

j�;R∇μRþ ½ln jf;Lm
j�;Lm

∇μLmÞ: ð6Þ

On the other hand, in 3þ 1 dimensions the trace of Eq. (2)
is given by

□f;R ¼ 1

6
½4f − 2Rf;R þ f;Lm

ðT − 4LmÞ�: ð7Þ

Equations (2), (5) and (7) show that in fðR;LmÞ gravity Lm
appears explicitly in the equations of motion of both the
gravitational and the matter fields, thus implying that the
knowledge of the Lagrangian of the matter fields is
essential in order to obtain the corresponding dynamics.

III. SCALAR MATTER FIELDS

Assume, for the moment, that the matter fields are
described by a real scalar field ϕ governed by the a generic
Lagrangian of the form Lmðϕ; XÞ, where

X ¼ −
1

2
∇μϕ∇μϕ ð8Þ

is the kinetic term. The Euler-Lagrange equation for the
scalar field ϕ may be obtained by minimizing the action
with respect to variations of ϕ, and is given by

0 ¼ −
∂f
∂ϕþ∇μ

� ∂f
∂ð∇μϕÞ

�
; ð9Þ

On the other hand, Eq. (4) implies that

Tμν ¼ Lm;X∇μϕ∇νϕþ Lmgμν: ð10Þ

A. Perfect fluid with Lm = p

For timelike ∇μϕ, it is possible to write the energy-
momentum tensor in a perfect fluid form

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð11Þ

by means of the following identifications
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uμ ¼
∇μϕffiffiffiffiffiffi
2X

p ; ρ¼ 2Xp;X −p; p¼Lmðϕ;XÞ: ð12Þ

In Eq. (11), uμ are the components of the 4-velocity field
describing the motion of the fluid, while ρ and p are its
proper energy density and pressure, respectively. Observe
that, in this case, Lm ¼ p which in the context of GR is one
of the possible choices considered in the literature for the
on-shell Lagrangian of a perfect fluid. Note that, since the
4-velocity is a timelike vector, the correspondence between
scalar field models of the form Lm ¼ Lmðϕ; XÞ and perfect
fluids breaks down whenever ∇μϕ is spacelike, as is the
case of non-trivial static solutions. In the case of a
homogeneous and isotropic universe filled with a perfect
fluid with arbitrary density ρ and p ¼ 0, Eqs. (11) and (12)
imply that the dynamics of this fluid may be described by a
matter Lagrangian whose on-shell value is equal to zero
everywhere (a simple realization of this situation would be
to take Lm ¼ X − V ¼ _ϕ2=2 − VðϕÞ with the appropriate
potential V and initial conditions, so that VðϕÞ is always
equal to _ϕ2=2—here a dot represents a derivative with
respect to the physical time).

B. Scalar particles in 1 + 1 dimensions: Lm =T

Throughout most of its history the energy content of the
Universe is expected to have been dominated by moving
particles that may be modeled as localized concentrations
of energy with fixed rest mass and structure. In this section,
our particle shall be modeled as a topological soliton of the
field ϕ in 1þ 1 dimensions. For concreteness, assume that
the matter fields may be described by a real scalar field with
Lagrangian

Lm ¼ −
1

2
∂μϕ∂μϕ − VðϕÞ; ð13Þ

where VðϕÞ ≥ 0 is a real scalar field potential

VðϕÞ ¼ λ

4
ðϕ2 − η2Þ2; ð14Þ

which has two degenerate minima at ϕ ¼ �η. Further on,
we shall demonstrate that the main results derived in this
paper do not rely on this specific choice for the Lagrangian
of the matter fields.
In this case, Lm;X ¼ 1 and the energy-momentum tensor

of the matter fields is given by

Tμν ¼ ∇μϕ∇νϕþ Lmgμν: ð15Þ

On the other hand, the equation of motion for the scalar
field ϕ is

□ϕ ¼ −ð½ln jf;Lm
j�;R∇μRþ ½ln jf;Lm

j�;Lm
∇μLmÞ∇μϕþ V;ϕ:

ð16Þ

Multiplying Eq. (16) by ∇νϕ, and taking into account that
Tμν − Lmgμν ¼ ∇μϕ∇νϕ, one recovers Eq. (5).

1. Minkowski spacetime

In a 1þ 1 dimensional Minkowski space-time the line
element can bewritten asds2 ¼ −dt2 þ dz2. Hence, neglect-
ing the self-induced gravitational field, the Lagrangian and
the equation of motion of the scalar field ϕ are given
respectively by

Lm ¼
_ϕ2

2
−
ϕ02

2
− VðϕÞ; ð17Þ

ϕ̈ − ϕ00 ¼ −
dV
dϕ

; ð18Þ

where a dot denotes a derivative with respect to the physical
time t and a prime represents a derivative with respect to the
spatial coordinate z.
The components of the energy-momentum tensor of the

particle can now be written as

ρϕ ¼ −T0
0 ¼

_ϕ2

2
þ ϕ02

2
þ VðϕÞ; ð19Þ

T0z ¼ − _ϕϕ0; ð20Þ

pϕ ¼ Tz
z ¼

_ϕ2

2
þ ϕ02

2
− VðϕÞ; ð21Þ

so that the trace T of the energy-momentum tensor is
given by

T ¼ Tμ
μ ¼ T0

0 þ Tz
z ¼ −ρϕ þ pϕ ¼ −2VðϕÞ: ð22Þ

Consider a static soliton with ϕ ¼ ϕðzÞ. In this case
Eq. (18) becomes

ϕ00 ¼ dV
dϕ

; ð23Þ

and it can be integrated to give

ϕ02

2
¼ V; ð24Þ

assuming that jϕj → η for z → �∞. If the particle is
located at z ¼ 0, Eq. (23) has the following solution

ϕ ¼ �η tanh

�
zffiffiffi
2

p
R

�
; ð25Þ
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with

R ¼ λ−1=2η−1: ð26Þ

The rest mass of the particle is given by

m ¼
Z

∞

−∞
ρdz ¼ 2

Z
∞

−∞
Vdz ¼ 8

ffiffiffi
2

p

3
VmaxR

¼ 2
ffiffiffi
2

p

3
λ1=2η3; ð27Þ

where Vmax ≡ Vðϕ ¼ 0Þ ¼ λη4=4. Here we have taken into
account that Eq. (24) implies that in the static case the total
energy density is equal to 2V. On the other hand, from
Eqs. (17) and (22), one also has that

Lm ¼ T; ð28Þ

where this equality is independent of the reference frame,
and, consequently, it does not depend on whether the
particle is moving or at rest. Also note that this result also
applies to collections of particles and, in particular, to one
which can be described as perfect fluid. However, unlike
the result obtained for a homogeneous scalar field
described by a matter Lagrangian of the form Lmðϕ; XÞ,
according to which the on-shell Lagrangian of a perfect
fluid with proper pressure p ¼ 0 is Lm ¼ 0 (independently
of its proper density ρ), one finds that a perfect fluid with
p ¼ 0 made of static solitonic particles would have an on-
shell Lagrangian given by Lm ¼ T ¼ −ρ. This is an
explicit demonstration that the Lagrangian of a perfect
fluid depends on microscopic properties of the fluid not
specified by its energy-momentum tensor.

2. FRW spacetime

Consider a 1þ 1 dimensional FRW space-time with line
element ds2 ¼ −dt2 þ a2ðtÞdq2z , where qz is the comoving
spatial coordinate and aðtÞ is the scale factor. Taking into
account that

ϕ;μ
;μ¼ð−Γμ

μνþ½lnðf;LÞ�;R∇νRþ½lnðf;LÞ�;L∇νLÞϕ;ν; ð29Þ

and assuming that

fðRÞ ¼ f1ðRÞ þ Lmf2ðRÞ; ð30Þ

one obtains

ϕ̈þ
�
H þ

_f2
f2

�
_ϕ −∇2ϕ ¼ −

dV
dϕ

; ð31Þ

where H ≡ _a=a is the Hubble parameter and ∇2 ≡
d2=dz2 ¼ a−2d2=dq2z is the physical Laplacian.

The dynamics of p-branes in N þ 1-dimensional FRW
universes has been studied in detail in [17,18] (see also
[19]). There, it has been shown that the equation for the
velocity v of a 0-brane in a 1þ 1-dimensional FRW
spacetime implied by Eq. (31) is given by

_vþ
�
H þ

_f2
f2

�
ð1 − v2Þv ¼ 0: ð32Þ

Hence, the momentum of a particle in a 1þ 1 dimensional
FRW universe evolves as

mγv ∝ ðaf2Þ−1; ð33Þ

where γ ≡ ð1 − v2Þ−1=2.
The same conclusion could also be attained determining

the macroscopic average of the microscopic energy-
momentum tensor (by computing the average over a
comoving volume centered at each point and containing
many particles), and considering the time component of
Eq. (5),

_ρþ _a
a
ðρþ pÞ ¼ −ðLm þ ρÞ

_f2
f2

¼ −p
_f2
f2

; ð34Þ

together with the assumption that the number of particles is
conserved (that is ρ ∝ γa−1) and that p ¼ ρv2. Here, ρ ¼
−T0

0 represents the proper density of the fluid, and
Lm ¼ T ¼ −ρþ p, where p is the proper pressure of
the fluid. In the following section we shall demonstrate
that Eq. (33) also holds in 3þ 1 dimensions.

IV. PARTICLES IN 3+ 1 DIMENSIONS

In [20] (see also [21]) it has been shown, using a Derrick-
like argument, that the volume average of the on-shell matter
Lagrangian of a fluid, composed of solitonic particles of
fixed mass and structure, is equal to the volume average of
the trace of its energy momentum-tensor, regardless of the
particle’s structure and constitution. Here, we shall provide
an alternative derivation of this result.
Consider a fluid composed of a statistically homo-

geneous and isotropic distribution of frozen solitonic
particles in the comoving cosmological frame. In this case,
if the particle number and mass is conserved, the energy
density of the fluid evolves as ρ ∝ a−3. In order to ensure
that this is always verified, one must have Sν ¼ 0 in Eq. (5)
(implying that g00Lm − T00 ¼ 0) and p ¼ 0. These two
conditions in turn imply that Lm ¼ T. Since this is a scalar
identity, and thus independent of the reference frame, it
should be independent of whether the particles are moving
or at rest in the comoving cosmological frame.
In order to investigate the evolution of the momentum of

a particle in a 3þ 1 dimensional FRW universe, one may
again consider the time component of Eq. (5), which reads
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_ρþ 3
_a
a
ðρþ pÞ ¼ −ðLm þ ρÞ

_f2
f2

¼ −3p
_f2
f2

; ð35Þ

where we have taken into account that in 3þ 1 dimensions
Lm ¼ T ¼ −ρþ 3p. Again, assuming that the number of
particles is conserved (that is ρ ∝ γa−3, in 3þ 1 dimen-
sions) and that p ¼ ρv2=3 is the proper pressure of the fluid
(the factor of 3 being associated to the number of spatial
dimensions) one finds that the evolution of the momentum
of a particle is still given by

mγv ∝ ðaf2Þ−1; ð36Þ

in a 3þ 1 dimensional FRW universe. This result is
identical to the one obtained in Eq. (33) by considering
the dynamics of a solitonic particle in 1þ 1 dimensions.
It is interesting to note that in the m → 0, γ → ∞ limit,

relevant for photons, one obtains that Lm ¼ T ¼ 0. This is
in agreement with the result that the electromagnetic
Lagrangian,

LEM ¼ −
1

4
FμνFμν; ð37Þ

vanishes in the case of radiation for which the relation
jE⃗j ¼ jB⃗j always holds (here E⃗ and B⃗ are the electric and
magnetic fields, respectively), and at odds with the
assumption commonly used in the literature Lm ¼ −ρ.

V. COSMOLOGICAL CONSEQUENCES

Let us start this section by assuming that the cosmic
microwave background (CMB) has a perfect black body
spectrum with temperature Tdec at the time of decoupling
between baryons and photons (neglecting tiny temperature
fluctuations of 1 part in 105). The spectral energy density
and number density of a perfect black body are given
respectively by

uðνÞ ¼ 8πhν3

ehν=ðkBTÞ − 1
; nðνÞ ¼ uðνÞ

hν
; ð38Þ

where h and kB are, respectively, the Planck’s and
Boltzmann’s constants, T is the temperature and Eγ ¼
hν is the energy of a photon of frequency ν. In the standard
scenario, assuming that the universe becomes transparent
for T < Tdec, the CMB radiation retains a black body
spectrum after decoupling. This happens because the
photon number density evolves as nγ ∝ a−3 (assuming
that the number of photons is conserved) while their
frequency is inversely proportional to the scale factor a,
so that ν ∝ a−1. In the case studied in the present paper, the
number of CMB photons is still assumed to be conserved
(so that nγ ∝ a−3) but their energy is no longer proportional
to a−1 (in our case ν ∝ ðaf2Þ−1). Hence, taking into
account that nγ ∝ a−3 ∝ ðf2Þ3 × ðaf2Þ−3, the spectral

energy density at a given redshift z ¼ 1=a − 1 after
decoupling may be written as

uðνÞ½z� ¼
ðf2½z�Þ3
ðf2½zdec�Þ3

8πhν3

ehν=ðkBT ½z�Þ − 1
; ð39Þ

where

T ½z� ≡ T ½zdec�
ð1þ zÞf2½zdec�
ð1þ zdecÞf2½z�

: ð40Þ

This spectral density is similar to that of a perfect black
body, except for the different normalization (we shall
denote this type of spectral distortions, modifying the
normalization of the spectral density, as n-type distortions).
Also note that a small fractional variation Δf2=f2 on the
value of f2 produces a fractional change in the normali-
zation of the spectral density equal to 3Δf2=f2.
FIRAS (Far InfraRed Absolute Spectrophotometer) on

board the COBE (COsmic Background Explorer) measured
the spectral energy of the nearly perfect CMB black body
spectrum [22,23]. The weighted root mean square deviation
between the observed CMB spectral radiance and the
blackbody spectrum fit was found to be less that 5 parts
in 105 of the peak brightness. Hence, we estimate that f2
can vary by at most by a few parts in 105 from the time of
decoupling up to the present time. This provides a stringent
constraint on fðR;LmÞ theories of gravity, independently of
any further considerations about the impact of such theories
on the background evolution of the Universe.

VI. CONCLUSIONS

In this work we have provided further evidence that the
on-shell matter Lagrangian of a perfect fluid is strongly
dependent on the microscopic properties of the fluid
not specified by its energy-momentum tensor, giving
specific examples of perfect fluids with the same energy-
momentum tensor but different on-shell Lagrangians. We
have shown that the on-shell matter Lagrangian of a perfect
fluid, modelled as a collection of moving solitonic par-
ticles, is equal to Lm ¼ T, a result which is crucial for the
accurate computation of the astrophysical and cosmologi-
cal consequences of NMC theories of gravity where the
matter Lagrangian appears explicitly in the equations of
motion of the gravitational and matter fields. We have
determined the modifications to the dynamics of the
particles which result from the nonminimal coupling to
the matter fields, and we have shown that these may lead
to observable imprints on the spectral energy density
of the CMB. We have imposed stringent constraints on
fðR;LmÞ gravity by requiring that the predicted spectral
radiance of the CMB is consistent with the COBE-FIRAS
measurement.
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