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By considering the Einstein-Vlasov system for static spherically symmetric distributions of matter, we
show that configurations with constant anisotropy parameter β, leading to asymptotically flat spacetimes,
have necessarily a distribution function (DF) of the form F ¼ l−2βξðεÞ, where ε ¼ E=m and l ¼ L=m are
the relativistic energy and angular momentum per unit rest mass, respectively. We exploit this result to
obtain DFs for the general relativistic extension of the hypervirial family introduced by Nguyen and
Lingam [Mon. Not. R. Astron. Soc. 436, 2014 (2013)], which Newtonian potential is given by ϕðrÞ ¼
−ϕo=½1þ ðr=aÞn�1=n (a and ϕo are positive free parameters, n ¼ 1; 2;…). Such DFs can be written in the
form F n ¼ ln−2ξnðεÞ. For odd n, we find that ξn is a polynomial of order 2nþ 1 in ε, as in the case of the
Hernquist model (n ¼ 1), for which F 1 ∝ l−1ð2ε − 1Þðε − 1Þ2. For even n, we can write ξn in terms of
incomplete beta functions (Plummer model, n ¼ 2, is an example). Since we demand that F ≥ 0

throughout the phase space, the particular form of each ξn leads to restrictions for the values of ϕo. For
example, for the Hernquist model we find that 0 ≤ ϕo ≤ 2=3, i.e., an upper bounding value less than the
one obtained for Nguyen and Lingam (0 ≤ ϕo ≤ 1), based on energy conditions.
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I. INTRODUCTION

Globular clusters, galactic bulges and dark matter haloes
have been usually modeled as many-particle systems
endowed by spherical symmetry. Although the
Newtonian theory of gravitation is usually chosen as one
of the paradigms of galactic dynamics, the idea of for-
mulating these models in the general relativistic realm has
been gaining interest in recent decades [1–13] becoming
one of the topical problems in stelar dynamics and
relativistic astrophysics.
If one adopts a statistical standpoint to analyze such self-

gravitating configurations, it is advisable to perform the
description by considering the Einstein-Vlasov system, in
order to provide, in a self-consistent fashion, the metric,
the energy-momentum tensor and the distribution function
(DF). In the context of galactic dynamics, usually based on
Newtonian gravity, these theoretical constructions are
called as dynamical models: the set composed by DF,
potential and density (see [14,15] for example). In this
paper, adopting the general relativistic paradigm, we also
shall call the solutions of the Einstein-Vlasov system as
dynamical models.
On one hand, the DF or probability density function,

can be considered as a concept involving all the relevant
physical information about the system. Once the DF is

known we can have access to astrophysical observables as,
for example, the projected density and the light-of-sight
velocity, provided by photometric and kinematic measure-
ments. On the other hand, the DF is a dynamical entity
governed by a kinetic equation which determines the
statistical evolution of the configuration. For systems in
a collisionless regime, it obeys the Vlasov equation,
sometimes called as collisionless Boltzmann equation. In
the case of many-particle self-gravitating systems, the term
“collisionless” is devoted to situations where the gravita-
tional encounters are not significant in the evolution.
Important examples are galaxies and clusters of galaxies,
whose life time is lesser than the corresponding relaxation
time. But for smaller systems as stellar clusters, galactic
bulges and haloes, encounters might play a significant role
in the evolution and the DF is said to obey the Fokker-
Planck equation, which contains a collision term charac-
terized by the so-called “diffusion coefficients.” Usually,
they are computed by taking into account an equilibrium
DF that is solution of the Vlasov equation.
In other words, the task of describing the evolution of

globular clusters in collision regime, starts with the knowl-
edge of the corresponding stationary DF in collisionless
regime. Such a DF must determine, in a self-consistent
manner, the associated energy-momentum andmetric tensors
under equilibrium conditions. In this line, we will focus the
principal subject of the present paper: providing adequate
DFs, solutions of Einstein-Vlasov equations, for certain
self-gravitating spherically symmetric configurations of
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astrophysical interest in general relativity. For such purpose,
the well-known ρ to f approach of Newtonian gravity
[16–22], which obtains the DF starting from the potential-
density pair, by inversion, can also be used in the general
relativity realm. Here, we will show that for certain spherical
distributions this procedure can be performed analytically.
A wide variety of astrophysical configurations can be

represented as spherical systems with pressure anisotropy
(the so-called anisotropic models), as confirmed by a
number of authors in the last three decades [23–44].
They are characterized by an anisotropy parameter β
measuring the quotient between the radial pressure Pr
and the tangential (or azimuthal) pressure Pθ. In particular,
for β constant (i.e., independent of the radial coordinate r),
it can be proven that the DF is proportional to L−2β (see
Sec. III B), as in the case of the hypervirial models [44], for
which β ¼ ð2 − nÞ=2, with n ¼ 1; 2;…, admitting some
cases of interest. For n ¼ 1 (the Hernquist model), since
limL→0F ¼ ∞, radial orbits are much more abundant than
closed orbits and we expect most of the matter distribution
to be located in the inner region of the system. For n > 2,
the situation is the opposite: the DF increases with L,
leading to configurations with an overabundance of closed
orbits and we do not expect a large mass concentration near
the center. The case n ¼ 2 (Plummer model) is the only
isotropic model of this family, where the mass distribution
tends to be homogeneous. These features, along with the
interesting property of satisfy the virial theorem locally,
makes the hypervirial family a set of models appropriate to
represent galaxies and dark matter halos, from both a
Newtonian [45] and relativistic [43,44] point of view.
Apart from the characteristics mentioned above, the

relativistic hypervirial models introduced by Nguyen and
Lingam [44] have the remarkable property of having the
same constant anisotropy parameter as their Newtonian
counterparts. Here we will exploit this fact to derive
analytical expressions for the associated general-relativistic
DFs determining the energy-momentum tensor and other
basic settings making such models physically realizable
configurations. In particular, it is worth mentioning that the
requirement that the DFs be positive leads to diminish the
upper bounds of the free parameters (see Sec. IVA),
compared with the ones obtained from energy conditions
[44]. In this sense, the requirement that the DFs be positive
can be interpreted as a statement more fundamental than
the imposition of energy conditions (an interesting analysis
can also be found in [46]).
The paper is organized as follows: In Sec. II, we

comment some general features of the relativistic extension
of Hernquist solution, focusing on the requirements that
must hold to obtain physically realizable configurations,
from the perspective of energy conditions. We will show
that they impose an upper bound of 4=3 for the positive free
parameter ϕo. However this upper limit decreases to 2=3
with the knowledge of the DF (Sec. IV). In Sec. III, we

present a derivation of the self-gravitation equations (i.e.,
the Einstein-Vlasov system) for static, spherically sym-
metric distributions, in order to set the basis for the
derivation of distribution functions, which is performed
in Secs. IV (for the Hernquist solution) and V (for the
hypervirial family).
Finally, some words on notation. Throughout the paper,

we use natural units, c ¼ 1, where c is the speed of light.
Greek indices μ, ν run from 0 to 3. When using isotropic
coordinates ðt; r; θ;ψÞ we introduce the following associ-
ations for indices: 0 → t, 1 → r, 2 → θ and 3 → ψ . Thus,
the symbol Trr will denote T11, as well as P0 equals to Pt,
for example.

II. A GENERAL-RELATIVISTIC VERSION FOR
THE HERNQUIST MODEL

The general static isotropic metric, in isotropic coordi-
nates ðt; r; θ;ψÞ, can be written as [47]

ds2 ¼ −AðrÞdt2 þ BðrÞðdr2 þ r2dθ2 þ r2sin2θdψ2Þ: ð1Þ
Also, it can be expressed as a generalized version of the
Schwarzschild metric, by defining

AðrÞ ¼
�
1 − fðrÞ
1þ fðrÞ

�
2

; BðrÞ ¼ ½1þ fðrÞ�4; ð2Þ

in which the special case f ¼ −GM=2r represents the
Schwarzschild solution, with a Newtonian limit ϕ ¼
−GM=r. In general, if one chooses fðrÞ ¼ −ϕðrÞ=2, where
ϕðrÞ is any spherical solution of Poisson equation, it gives
rise, in the limit c → ∞, to aNewtonian potentialϕ. This fact
sketches a simple procedure to construct general relativistic
extensions of previously known Newtonian solutions, as
shown by several authors [6,44,48–50]. Here we first focus
on the general relativistic extension of the Hernquist poten-
tial, one of the models obtained in [44]. Then we choose f as

fðrÞ ¼ −
ϕðrÞ
2

; ϕðrÞ ¼ −
ϕo

1þ ðr=aÞ ; ð3Þ

where ϕo and a are positive parameters representing the
maximum value of jϕj (at the center of the spherical
configuration) and a scaling radius, respectively. Note that
this metric describes an asymptotically flat spacetime with a
Ricci scalar given by

R ¼ 4ϕoaðrþ aÞ2½aðϕo − 1Þ − r�
r
h
rþ a

�
1 − ϕo

2

�ih
rþ a

�
1þ ϕo

2

�i
5
;

from which we note that there are two singularities,

ðiÞ r ¼ 0; ðiiÞ r ¼ a

�
ϕo

2
− 1

�
; ð4Þ

the second one depending on the free parameters a and ϕo.
It is easy to see that, for ϕo ≤ 2, singularity (ii) disappears.
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Also, it can be shown that, for 0 < ϕo ≤ 1, we haveR < 0 at
any radius (see Fig. 1). In the particular caseϕo ¼ 1, we find
R ¼ −4aðrþ aÞ2ðrþ a=2Þ−1ðrþ 3a=2Þ−5 which means
that both singularities, (i) and (ii), disappear. For all other
cases, ϕo ≠ 1, we find always a singularity at origin, r ¼ 0.
Energy conditions help us to state the range of values for

ϕo leading to physically realizable configurations (see [44]
for a more detailed analysis of the hypervirial family).
In order to use such conditions, we need the explicit form
of the stress-energy tensor, which can be determined via
Einstein field equations. An expression for this tensor is
shown in [44], but here we prefer write it in terms of f, for
convenience:

Ttt ¼ 4f3

πGϕo
2arð1þ fÞ3ð1 − fÞ2 ; ð5Þ

Trr ¼ 2f4

πGϕo
2arð1þ fÞ9ð1 − fÞ ; ð6Þ

Tθθ ¼ Tψψ sin θ ¼ f4

πGϕo
2ar3ð1þ fÞ9ð1 − fÞ : ð7Þ

So, it is easy to state that weak energy condition, −Tt
t ≥ 0,

is satisfied if ϕo ≥ 0. Strong energy condition, T ¼
−Tt

t þ Tr
r þ Tθ

θ þ Tψ
ψ ≥ 0, leads to

4f3

ð1þ fÞ5ð1 − fÞ ≥ 0;

which requires that 0 ≤ ϕo ≤ 2. Dominant energy condi-
tion, given by

����Tr
r

Tt
t

���� ≤ 1;

����Tθ
θ

Tt
t

���� ≤ 1;

����Tψ
ψ

Tt
t

���� ≤ 1;

is satisfied if ϕo < 4=3. In summary, we have to choose the
parameter ϕo so that

0 ≤ ϕo < 4=3; ð8Þ

in order to fulfill weak, dominant and strong energy
conditions. It is worth mentioning that in Ref. [44] is
presented 0 ≤ ϕo < 1 as a sufficient condition for the
entire Hhypervirial family to satisfy energy conditions.
This means that configurations described by (2)–(3) have
necessarily an unphysical timelike singularity at the center
r ¼ 0. However this flawed feature can be dealt with by
replacing a small region in the center of the configuration
with a continuously matched Schwarzschild interior sol-
ution. An interesting example of such procedure can be
found in Ref. [51], where the authors removed some
unwanted features from a general relativistic generalization
of the NFW profile.
We shall see, in Sec. IV, by analyzing the behavior of the

corresponding distribution function, that we have to choose
ϕo ≤ 2=3 in order to obtain a DF well defined for r > 0.
In Sec. V, we show that the same procedure can be

performed to obtain a general-relativistic extension of the
hypervirial potentials, as proven by Nguyen and Lingam in
2013 [44].

III. SELF GRAVITATION EQUATIONS FOR
STATIC ISOTROPIC DISTRIBUTIONS

OF MATTER

In this section, we show a detailed derivation of relations
which help us to obtain the DF describing the configuration
associated with the metric of (1), (2), and (3). At first, we
shall deal with functions AðrÞ and BðrÞ representing
asymptotically flat spacetimes, in general, and then we
consider the particular case in which such functions are
given by (2) and (3).
The relation between the stress-energy tensor, Tμν, and

the DF, F ðxμ;PνÞ (here Pμ ¼ dxμ=dτ is the 4-momentum
vector and τ is the proper time), associated with a self-
gravitating system, is given by

Tμν ¼
Z

PμPνF
ffiffiffiffiffiffi
−g

p
d4P ð9Þ

where g ¼ detðgμνÞ and we choose Pt > 0. The phase-
space domain associated with a particle of rest mass m is
determined by the shell condition,
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FIG. 1. We show Ricci scalar for different values of parameter ϕo. In particular, we plot R̃ ¼ ða3=4ϕoÞR as a function of r̃ ¼ r=a.
For 0 < ϕo ≤ 1, we have R̃ < 0 (left panel). In the half-panel, we show R for 1 < ϕo ≤ 2, which is positive only near the singularity
r ¼ 0. For ϕo > 2 we have two singularities and also R is negative in a prominent region of its domain.
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gμνPμPν ¼ −m2; ð10Þ
from which we can express Pt as a function of the
remaining phase-space coordinates: Pt ¼ PtðPi; xμÞ.
Additionally, neglecting the effect of gravitational encoun-
ters in the system, we demand that F must satisfy the
collisionless Boltzmann equation [52],

Pμ ∂F
∂xμ − Γλ

μνPμPν ∂F
∂Pλ ¼ 0: ð11Þ

Such DF, through relation (9) and the Einstein field
equations, Rμν − gμνR=2 ¼ −8πGTμν, determines the
spacetime geometry by the set of relations

Rgμν − 2Rμν ¼ 16πG
Z

PμPνF
ffiffiffiffiffiffi
−g

p
d4P; ð12Þ

which we denote here as the self-gravitation equations,
in the sense that they define, in a self-consistent fashion
(obeying simultaneously Einstein’s equations and colli-
sionless Boltzmann equation, or, equivalently, the Einstein-
Vlasov system), the evolution of the system.
Relation (11) is equivalent to demand that dF=dτ ¼ 0

[53], i.e., F can be regarded as an integral of motion. If the
system is endowed by spherical symmetry (or cylindrical or
any other) the Jeans theorems guarantee that F can be
expressed as a function the other integrals, which, for the
spherical case, are the general relativistic extensions of
energy E and angular momentum L. In this paper, we are
focusing on this case.
Motion of free falling test particles in the static isotropic

spacetime described by (1) have one constant of motion, the
rest mass m, and three integrals of motion. The first of
them, an energy-like integral of motion, is the t-component
of the covariant 4-momentum vector, Pt. The second one
is the azimuthal angular momentum like integral, Pψ , and
the third one is the general relativistic version of the total

angular momentum,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

θ þ P2
ψ=sin2θ

q
. For the sake of

simplicity, we adopt the notation

Pt ¼ −E; Pψ ¼ Lz; P2
θ þ

P2
ψ

sin2θ
¼ L2; ð13Þ

and equations of motion for a free falling test particle can be
cast as

m
dt
dτ

¼ Pt ¼ E
AðrÞ ; ð14aÞ

m
dψ
dτ

¼ Pψ ¼ Lz

r2BðrÞsin2θ ; ð14bÞ

m
dθ
dτ

¼ Pθ ¼ � 1

r2BðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

L2
z

sin2θ

s
; ð14cÞ

m
dr
dτ

¼ Pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2

AðrÞBðrÞ −
L2

r2B2ðrÞ −
m2

BðrÞ

s
; ð14dÞ

remembering that phase space coordinates are constrained
by the shell condition. Thus, Eqs. (10) and (14) will be the
base for constructing the distribution function.

A. The self-gravitation equations

Since gμν does not depend on 4-momentum, Eq. (9) can
be written as

Tμν ¼ ffiffiffiffiffiffi
−g

p Z
PμPνFd4P;

where the integral is defined in all the phase space domain
where F > 0. Since we are dealing with a DF that is
function of the integrals of motion, E, Lz, L and m (which,
through the shell condition (10), can be interpreted as an
integral of motion), it is convenient to make a trans-
formation from coordinates ðPt;Pr;Pθ;PψÞ to coordinates
ðm;E; Lz; LÞ. At this point we must be careful with the
transformations of Pr and Pθ since, according to (14c) and
(14d), they have two forms, one for each choosing of sign.
Thus, we write

Prþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
mðrÞ − L2

r2B2ðrÞ

s
; Pr

− ¼ −Prþ; ð15Þ

where

LmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞr2

�
E2

A2ðrÞ −m2

�s
; ð16Þ

and

Pθþ ¼ 1

r2BðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

L2
z

sin2θ

s
; Pθ

− ¼ −Pθþ: ð17Þ

Therefore we have to write

Tμν ¼ ffiffiffiffiffiffi
−g

p �Z
PμPνFdPtdPrþdPθþdPψ

þ
Z

PμPνFdPtdPr
−dPθþdPψ

þ
Z

PμPνFdPtdPrþdPθ
−dPψ

þ
Z

PμPνFdPtdPr
−dPθ

−dPψ

�
:

In particular, the expression for components Trr and Tθθ

requires a replacement of Pr and Pθ by Prþ, Pr
−, Pθþ and/or

Pθ
−, according to the variables of integration. For example,
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in the above expression, the term involving dPrþdPθ
−

requires that we set Pr → Prþ, when calculating Trr, and
it will require Pθ → Pθ

−, when computing Tθθ. Note that in
all cases, the Jacobian of the transformation is���� ∂ðPt;Pr;Pθ;PψÞ

∂ðm;E; L; LzÞ
���� ¼ mL

PrþPθþAB4r6sin2θ
;

and the domain of integration is given by the relations

8>>><
>>>:

−L sin θ ≤ Lz ≤ L sin θ;

0 ≤ L ≤ Lm;

m
ffiffiffiffi
A

p
≤ E ≤ m;

0 ≤ m ≤ ∞:

ð18Þ

The bounds for E arise from the shell condition and from
the escape energy, which can be elucidated from relation
(14d). At r → ∞ we have A ¼ B ¼ 1, since we are
assuming that (1) represents an asymptotically flat metric,
and we have

jPrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
; r → ∞

Then the escape energy, at r → ∞, is E ¼ m (remember
that we chose energy to be positive), corresponding to the
value jPrj ¼ 0. Thus, we can state that particles with
energy larger than m can not belong to the configuration.
It can be shown, from (1), that components of the stress-

energy tensor that could be nonvanishing are Ttt, Trr, Tθθ

and Tψψ , whereas the other components vanish in any case
(i.e., for an arbitrary DF). This fact can be checked directly
from (9), except for the case of Ttψ , which does not vanish
trivially. However, since the stress-energy tensor is a
function only of radius r, it is required that the DF has
the form

F ðm;E; L; LzÞ ¼ F ðm;E; LÞ;

leading to Ttψ ¼ 0 and simplified expressions for the
nonvanishing components:

Ttt ¼ 4π

r2A5=2B3=2

Z
∞

0

Z
m

m
ffiffiffi
A

p

Z
Lm

0

E2mLF
Prþ

dLdEdm;

Trr ¼ 4π

r2A1=2B3=2

Z
∞

0

Z
m

m
ffiffiffi
A

p

Z
Lm

0

PrþmLFdLdEdm;

Tθθ ¼ 2π

r6A1=2B7=2

Z
∞

0

Z
m

m
ffiffiffi
A

p

Z
Lm

0

mL3F
Prþ

dLdEdm;

and Tψψ ¼ Tθθ= sin2 θ. In many applications, it is common
to assume that the mass for every constituent of the system
is the same (from here on, we adopt this assumption).
This lead us to replace F ðm;E; LÞ by F ðE; LÞ, which now
satisfies the following simplified form:

Ttt ¼ 4πm

r2A5=2B3=2

Z
m

m
ffiffiffi
A

p

Z
Lm

0

E2LF ðE;LÞ
Prþ

dLdE; ð19Þ

Trr ¼ 4πm

r2A1=2B3=2

Z
m

m
ffiffiffi
A

p

Z
Lm

0

PrþLF ðE;LÞdLdE; ð20Þ

Tθθ ¼ 2πm

r6A1=2B7=2

Z
m

m
ffiffiffi
A

p

Z
Lm

0

L3F ðE; LÞ
Prþ

dLdE: ð21Þ

The above relations, remembering that Tμν ¼
½gμνðR=2Þ − Rμν�=ð8πGÞ, can be regarded as the self-
gravitation equations in the case of a general static isotropic
metric. Then, by defining the functions A and B in Eq. (1),
in principle, we can determine F ðE; LÞ through Eqs. (19),
(20), and (21). A similar expression is shown in [54] for a
metric in the standard form.

B. Models with Pθ = kPr

In this section, we assume that the configuration can be
regarded as a fluid with a dynamics described in terms
of the energy density ρ, the radial pressure Pr and the
tangential pressure Pθ (or Pψ ). In this context, it is useful to
distinguish between isotropic (Pr ¼ Pθ) and anisotropic
systems (Pr ≠ Pθ), by introducing the anisotropy parameter

β ¼ 1 −
Pθ

Pr
: ð22Þ

Thus, isotropic fluids are represented by β ¼ 0 and aniso-
tropic fluids are characterized by a function βðrÞ which, in
general, does not vanish. Here we focus in the case in which
the anisotropy parameter is a real constant, β ¼ 1 − k, i.e.,
fluids such that Pθ ¼ kPr. We will show that this particular
class of systems with constant anisotropy are characterized
by a distribution function of the form F ¼ ξðEÞL2ðk−1Þ.
At first, remember that ρ, Pr and Pθ are related with the

stress-energy tensor by the relations

ρ ¼ −Tt
t; Pr ¼ Tr

r; Pθ ¼ Tθ
θ ¼ Tψ

ψ ;

which, by using (19), (20), and (21), can be written as

ρ ¼ 4πm

r2ðBAÞ32
Z

m

m
ffiffiffi
A

p

Z
Lm

0

E2LF ðE;LÞ
Prþ

dLdE; ð23Þ

Pr ¼
4πm

r2
ffiffiffiffiffiffiffi
BA

p
Z

m

m
ffiffiffi
A

p

Z
Lm

0

PrþLF ðE;LÞdLdE; ð24Þ

Pθ ¼
2πm

r4B
5
2

ffiffiffiffi
A

p
Z

m

m
ffiffiffi
A

p

Z
Lm

0

L3F ðE; LÞ
Prþ

dLdE: ð25Þ

Note that, by choosing F ðE;LÞ ¼ ξðEÞL2ðk−1Þ (with k a
constant) in the above equations, we can write Pθ ¼ kPr.
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Also we can prove that by setting Pθ ¼ kPr, then the DF,
necessarily, must have the form ξðEÞL2ðk−1Þ.
Let us write the statement Pθ ¼ kPr by using (24)–(25):

Z
m

m
ffiffiffi
A

p

Z
Lm

0

L3FdLdEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
m−L2

p ¼ 2k
Z

m

m
ffiffiffi
A

p

Z
Lm

0

LF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
m−L2

q
dLdE:

Now, we can integrate by parts the right-hand side of the
above expression,

2

Z
Lm

0

LF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
m − L2

q
dL

¼
Z

Lm

0

L3Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
m − L2

p dL

−
Z

Lm

0

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
m − L2

q ∂F
∂L dL − Lm lim

L→0
ðL2F Þ:

It can be shown that limL→0ðL2F Þ ¼ 0, for any F ðE; LÞ
satisfying (19), (20), and (21) (see Appendix B for a
detailed proof). Then, we can write

Z
m

m
ffiffiffi
A

p

Z
Lm

0

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
m − L2

q �
2ðk − 1ÞF − L

∂F
∂L

�
dLdE ¼ 0;

ð26Þ

which must be satisfied for every r and for every Lm (or for
every E), so the integrand must be zero. Therefore,

2ðk − 1ÞF − L
∂F
∂L ¼ 0 ⇒ F ¼ ξðEÞL2ðk−1Þ: ð27Þ

Finally, we can state the following proposition:
Proposition 1. Let k be a positive constant and F a

distribution function that satisfies the self-gravitation equa-
tions for static spherically symmetric configurations (19),
(20), and (21). Then Pθ ¼ kPr if and only if F ðE;LÞ ¼
ξðEÞL2ðk−1Þ.
Bear in mind that Proposition 1 is valid if we consider

configurations with same mass constituents and asymp-
totically flat spacetimes, otherwise integral (26) does not
imply in (27) necessarily.
Thus, asymptotically flat models with same mass con-

stituents and constant anisotropy β are characterized by a
distribution function proportional to ξðEÞL−2β. In the next
sections, we use the results of [44] to show that the
Hernquist model, as well as the so-called hypervirial
models, belongs to this class of systems.

IV. DISTRIBUTION FUNCTION FOR
GENERAL-RELATIVISTIC HERNQUIST MODEL

Here we show how to derive a relativistic DF for a
relativistic Hernquist model, given by (2)–(3) by using the

self-gravitation equations (19)–(21). Since the factor
ffiffiffiffi
A

p
appears repeatedly in Eqs. (19)–(21), it is important to note
that (2)–(3) imply

fðrÞ ¼

8>><
>>:

1−
ffiffiffiffiffiffiffi
AðrÞ

p
1þ

ffiffiffiffiffiffiffi
AðrÞ

p ; r > aðϕo
2
− 1Þ

1þ
ffiffiffiffiffiffiffi
AðrÞ

p
1−

ffiffiffiffiffiffiffi
AðrÞ

p ; 0 < r ≤ aðϕo
2
− 1Þ:

Since energy conditions require that 0 ≤ ϕo < 4=3 [remem-
ber relation (8)], we find that a½ðϕo=2Þ − 1� < −a=3, which
implies two facts: (i) there are not values for r satisfying
0 < r ≤ a½ðϕo=2Þ − 1� and (ii) all the (positive) values for r
satisfy r > a½ðϕo=2Þ − 1�. Therefore, the only option for f,
consistent with all the energy conditions, is

fðrÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffi
AðrÞp

1þ ffiffiffiffiffiffiffiffiffi
AðrÞp ; r > 0: ð28Þ

This means that relations (5)–(7), by introducing (28), can
now be rewritten as

Ttt ¼ ð1 − ffiffiffiffi
A

p Þ3ð1þ ffiffiffiffi
A

p Þ2
23πGϕo

2arA
; ð29Þ

Tθθ ¼ Trr

2r2
¼ ð1 − ffiffiffiffi

A
p Þ4ð1þ ffiffiffiffi

A
p Þ6

210πGr3ϕo
2a

ffiffiffiffi
A

p : ð30Þ

This form is particularly useful when compared with the
corresponding equations obtained from (19), (20), and (21).
Indeed, as found by [44],Pθ ¼ Pr=2. Nowwe demand same
mass constituents, then by using the result of Proposition 1,
this fact implies that

F ðE;LÞ ¼ ξðEÞL−1;

where ξðEÞ is a function to be found by comparing the right-
hand side of Eqs. (29) and (30) with the right-hand side of
(19)–(21). After some calculations we obtain two relations
for ξ:

Z
m

m
ffiffiffi
A

p E2ξðEÞdE ¼ A3=2ð1 − ffiffiffiffi
A

p Þ3
22π3mGϕo

2a
; ð31Þ

Z
m

m
ffiffiffi
A

p ξðEÞ½E2 −m2A�dE ¼ Að1 − ffiffiffiffi
A

p Þ4
23π3mGϕo

2a
: ð32Þ

From (31) we find

ξðEÞ ¼ 3

4m4π3Gϕo
2a

�
2E
m

− 1

��
E
m
− 1

�
2

;

which is consistent with relation (32).
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For the sake of simplicity, we introduce the dimension-
less energy ε and the dimensionless angular momentum
l, as

ε≡ E=m; l≡ L=m; ð33Þ

and thus we can write the explicit analytic form of the
DF corresponding to the general relativistic extension of
Hernquist model, as a function of ε and l:

F ðε; lÞ ¼ ξol−1ð2ε − 1Þðε − 1Þ2; ð34Þ

with

ξo ¼ 3ð4m5π3Gϕo
2aÞ−1: ð35Þ

Note that such DF is negative for E < m=2, so, in principle,
we would have to restrict its domain to values of energy
larger than m=2. In the next section, we show that a natural
way to do this is by constraining the values of the free
parameter ϕo. In Fig. 2, we plot the behavior of the DF
given by (34), once ϕo has been chosen adequately.

A. Constraining the values for ϕo

Self-gravitation equations (19)–(21) impose some
restrictions to the stress-energy tensor (not necessarily

equivalent to energy conditions), when one demands that
F ≥ 0. They can be summarized as

Tμν ≥ 0; ð36aÞ

T ≤ 0: ð36bÞ

Indeed, these restrictions are stronger than the weak, null,
dominant and strong energy conditions. When they are
applied to the stress-energy tensor given by (5)–(7), we find
the following inequality

0 ≤ f ≤ 1=2; ð37Þ

which in terms of the radial coordinate r is equivalent to
state that

r ≥ aðϕo − 1Þ:

This means that a real, positive DF, determining the stress-
energy tensor could be well defined only for r ≥ aðϕo − 1Þ.
So, the maximum value of ϕo that permits a DF well
defined at the entire configuration space, r ≥ 0, is ϕo ¼ 1.
The bounding value for ϕo can be diminished by taking

into account that the DF of Eq. (34) is negative for E <
m=2 and remembering that the minimum value for a
particle’s energy is Emin ¼ m

ffiffiffiffi
A

p
. Therefore, situations

where
ffiffiffiffi
A

p
< 1=2, which in this case equals to state that

r < að3ϕ0=2 − 1Þ, are not described for a positive DF
given by (34). Such a DF only could describe situations
where

r ≥ a

�
3ϕ0

2
− 1

�
;

which means that, ϕo ¼ 2=3 is now the maximum value
for ϕo such that F is positive and well defined for r ≥ 0.
By choosing this bound for ϕo we guarantee that E ≥ m=2
for all situations. Thus, finally we can state that the set of
values for the free parameter ϕo are given by

0.00
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0.10

0.15

E m

F

0.5 0.6 0.7 0.8 0.9 1.0 1.1

FIG. 2. Dimensionless DF, F̃ ¼ ξ−1o F , for the general relativ-
istic extension of Hernquist potential as a function of E=m, for
different values of L=m: 0.2 (blue), 0.5 (violet), 1 (yellow), 1.5
(green).
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FIG. 3. Dimensionless DF corresponding to the hypervirial model n ¼ 3, for different values of L=m: 0.2 (blue), 0.5 (violet),
1 (yellow), 1.5 (green). This DF is positive for 0 ≤ E=m ≤ 0.2289 (left) and for 0.5461 ≤ E=m ≤ 1 (central panel). Note that probability
density reaches higher values in the first range. For E=m > 1, this DF has negative values (right panel).
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0 ≤ ϕo ≤ 2=3 ; ð38Þ

in order to obtain a self-consistent relativistic Hernquist
model, charaterized by a DF well defined at the entire
configuration space.

V. DISTRIBUTION FUNCTIONS FOR A
GENERAL-RELATIVISTIC VERSION
OF THE HYPERVIRIAL FAMILY

The formalism used in the preceding sections can also be
applied in the case of the hypervirial family, to which
Hernquist model belongs. In Newtonian gravity, the hyper-
virial potentials are given by

ϕnðrÞ ¼ −
ϕno

½1þ ðr=aÞn�1n ; ð39Þ

where n is a positive integer and ϕno, a positive real
constants. Each member is characterized by a DF propor-
tional to Eð3nþ1Þ=2Ln−2 (see [44]).
As in the case of Hernquist model [the particular case

n ¼ 1 of (39)], a physically reasonable relativistic exten-
sion is performed by defining f ¼ −ϕn=2 in relation (2), as
done in Ref. [44], with an associated stress-energy tensor of
the form

Trr ¼ 22n−1f2nþ2

πanϕno
2nGr2−nð1 − fÞð1þ fÞ9

¼ 2r2

n
Tθθ ¼ fð1 − fÞ

ðnþ 1Þð1þ fÞ6 T
tt; ð40Þ

and Tμν ¼ 0 for μ ≠ ν. From (40) is easy to see that
Pθ ¼ ðn=2ÞPr, which together with the assumption of same
mass constituents, by using Proposition 1, implies that the
corresponding DF can be written as

F ¼ ξðEÞLn−2; n ¼ 1; 2;…

By introducing the above expression into (19)–(21), we
obtain

Z
m

m
ffiffiffi
A

p ξ�ðEÞE2

�
E2

A
−m2

�n−1
2

dE ¼ 2A3=2ð1 −
ffiffiffiffi
A

p
Þ2nþ1;

Z
m

m
ffiffiffi
A

p ξ�ðEÞ
�
E2

A
−m2

�nþ1
2

dE ¼ ð1 −
ffiffiffiffi
A

p
Þ2nþ2;

where

ξðEÞ ¼ ξ�ðEÞ ðnþ 1ÞΓðnþ1
2
Þ

24π
5
2anϕno

2nGΓðn
2
Þm :

These two relations are essentially the same: the first one
can be obtained by taking the derivative of the second one
with respect to

ffiffiffiffi
A

p
. So, in this case, we can choose the

second one relation (the simpler one) as the integral
equation to be solved, in order to find an explicit expression
for function ξ. Here, for simplicity, we define

ffiffiffiffi
A

p ¼ x,
which leads to

Z
m

mx
ξ�ðEÞ

��
E
m

�
2

− x2
�nþ1

2

dE ¼
�
x
m

�
nþ1

ð1 − xÞ2nþ2:

ð41Þ
In order to solve the above relation, it is convenient to
consider, separately, two cases: (i) n ¼ 1; 3; 5;… and
(ii) n ¼ 0; 2; 4;…. Each of these options will lead to
two kinds of distribution functions.

(i) By choosing n ¼ 2pþ 1, for p ¼ 0; 1; 2;…, in
Eq. (41), we find that

ξ2pþ1ðEÞ ¼
X4pþ4

k¼1

a2pþ1

�
E
m

�
k−1

;

where the a2pþ1 are constants that will be specified
later [see Eq. (43)]. Note that the DF corresponding
to the relativistic extension of the Hernquist model is
obtained for p ¼ 0 (or n ¼ 1). The next case, p ¼ 1
(or n ¼ 3), is described by a function,

ξ3ðEÞ ∝
�
1 −

E
m

�
5
�
40

�
E
m

�
2

− 31
E
m
þ 5

�
;
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FIG. 4. Dimensionless DF corresponding to the hypervirial model n ¼ 2, which is a relativistic extension of Plummer model. The
DF is positive for 0 ≤ E=m ≤ 0.1388 (left panel) and 0.5270 ≤ E=m < 1 (right panel) and is negative for 0.1388 < E=m < 0.5270
(central panel).
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which must be restricted to a domain given (ap-
proximately) by 0 ≤ E=m ≤ 0.2289 and 0.5461 ≤
E=m ≤ 1, in order to have a positive DF. For the
other cases, p ¼ 2; 3; :: the function ξ also can be
written in the form ξ2pþ1 ∝ ð1 − εÞ3pþ2gðεÞ, where g
is a polynomial of degree pþ 1 in ε.

(ii) The case in which n is even, i.e., n ¼ 2p for p ¼
0; 1; 2;… in Eq. (41), demands a little more atten-
tion. By computing the derivative in x of (41), pþ 1
times, we have

Z
m

mx

ξðEÞdEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=mÞ2 − x2

p
∝
�
−
1

x
d
dx

�
pþ1

�
x2pþ1ð1 − xÞ4pþ2

m2pþ1ð2pþ 1Þ!!
�
:

Note that the right side has the form of an Abel
integral, so the function ξ can be determined
explicitly by performing the Abel transformation.
Thus, after some calculations, we find

ξ2pðEÞ ¼
2E
m

X4pþ2

k¼0

b2pk

Z
1

E
m

xk−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ðEmÞ2

q dx:

where b2pk are constants given by relations (45).
For example, the case p ¼ 1 (or n ¼ 2), for which
the L-dependence is dropped, lead us to the DF
corresponding to the relativistic extension of the
Plummer model:

ξ2 ∝E−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

E2

m2

r
þ 8

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

E2

m2

r �
1733E3

m7
þ1274E

m5

�

−
15

4π

�
21E5

m9
þ140E3

m7
þ40E

m5

�

×ln

�
m
E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

E2

m2

r
þm
E

�

We can summarize our results through the following
relations

F ðoddÞ
n ¼ ln−2

X2nþ2

k¼1

ankϵk−1; n ¼ 1; 3; 5;… ð42Þ

where

ank ¼
�2nþ 2

k

� ð−1Þkþn−1
2 ðkþ nþ 1Þ!!k

24π3anϕno
2nGm5Γðn

2
Þk!!ðnþ 1Þ!! ðnþ 1Þ

×
ffiffiffi
π

p
Γ
�
nþ 1

2

�
; n ¼ 1; 3; 5; ::; ð43Þ

for DFs with odd index, and

F ðevenÞ
n ¼ ln−2ϵ

X2nþ2

k¼0

bnk

Z
1

ϵ

xk−2dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ϵ2

p ; n ¼ 2; 4;…;

ð44Þ

where

bn0 ¼
ð−1Þ1−n

2ðnþ 1ÞΓðnþ1
2
Þ

23π3anϕno
2nGm5

ffiffiffi
π

p
Γðn

2
Þ ;

bn1 ¼ 0;

bnk ¼
�2nþ 2

k

� ðkþ nþ 1Þ!!ð−1Þk−n
2ðk− 1Þ

23π3anϕno
2nGm5ðk− 1Þ!!ðnþ 1Þ!!

×
ðnþ 1ÞΓðnþ1

2
Þffiffiffi

π
p

Γðn
2
Þ ; k ≥ 2; n ¼ 2; 4;… ð45Þ

We present in Figs. 3 and 4 the behavior of the DF for
n ¼ 3 and n ¼ 2, respectively. As done in Sec. IV, we can
choose the values of ϕno so that F n be positive everywhere
in configuration space, r > 0. Figure 5 suggests that the
upper bound for ϕno decreases with n, as confirmed by the
values of Table I.
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n

FIG. 5. Dimensionless DF, F̃n ¼ 25m5π3Gϕ2n
noanF n, for the

general relativistic extension of the hypervirial family as a
function of E=m with L=m ¼ 2, for different values of n: n ¼ 1
(dark blue), n ¼ 2 (red), n ¼ 3 (yellow), n ¼ 5 (green), n ¼ 7
(blue), n ¼ 9 (violet).

TABLE I. Upper bound value of ϕno for different n.

n ϕno

1 2=3
2 0.619 472
3 0.587 143
5 0.544 734
7 0.517 533
9 0.498 276
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VI. CONCLUSION

We derived an analytic expression for the DF corre-
sponding to the general relativistic extension of the
Hernquist model presented in [44]. In the derivation, we
considered the self-gravitating equations for asymptotically
flat static isotropic spacetimes, from which we established
that anisotropic models with same mass constituents
such that Pθ ¼ kPr, with k constant, are characterized
by a DF of the form F ¼ ξðEÞL2ðk−1Þ (Proposition 1).
For the Hernquist case, corresponding to k ¼ 1=2, we
find F ðE;LÞ ∝ L−1ð2E=m − 1Þð1 − E=mÞ2, from which
we established that the upper bound of free parameter ϕo is
2=3 (lesser than the one obtained in [44]), in order to have a
DF defined at the entire configuration space, r > 0.
Exploiting our experience with the Hernquist potential

we also derived analytic expressions for the DF of the
hypervirial family, which satisfies Pθ ¼ ðn=2ÞPr for the
nth member (Hernquist model is the first member, n ¼ 1).
Proposition 1 implies that the DF corresponding to the nth
member is of the form F n ¼ ξnðEÞL2−n, where we have to
distinguish between odd and even values of n, in order to
encompass in a simple fashion all cases [Eqs. (42) and
(44)]. Thus we find two subfamilies in the set of hypervirial
models, which now can be regarded as a self-consistent
family of models in the context of general relativity.
We note that the free parameter ϕno, corresponding to the

nth member of the hypervirial family, has an upper bound
which diminishes by increasing n. Such upper bound, as in
the case of Hernquist model, was chosen in such a way that
the DF was positive for r > 0. However, one could choose
different upper bounds for these parameters when taking into
account a reduced configuration space, for example given by
r ≥ r�, where r� is a positive constant. This can be used to
model situations composed by two solutions of Einstein
equations, one of them defined in 0 < r < r� (the solution
inside the region bounded by the shell r ¼ r�) and the other
one, an hypervirial solution, defined in r ≥ r�. In such a case,
the DF has to be defined by parts and junction conditions has
to be satisfied in the shell r ¼ r� (see for example [55]).
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APPENDIX A: HERNQUIST POTENTIAL
IN NEWTONIAN GRAVITY

The distribution function (DF) for the Hernquist poten-
tial is given by [44]

F ðε; LÞ ¼ AεβL2α ðA1Þ

where L is the norm of the specific angular momentum and
ε ¼ ϕ� − E is the relative energy (in this case we have to set
ϕ� ¼ 0). This is the same distribution function used by

Nguyen et al. in order to develop a family of potential-
density pairs, including the Hernquist model as a particular
case. The mass density can be found by integrating the
distribution function over the velocity space,

ρ ¼
Z

F ðε; LÞd3ν;

which, by introducing (A1) and using spherical coordi-
nates, leads to

ρ ¼
Z

2π

0

Z
π

0

Z
νe

0

AεβL2αν2 sin ηdνdηdκ ðA2Þ

where νe ¼
ffiffiffiffiffiffiffiffiffi
−2ϕ

p
is the escape velocity and ϕ is the

gravitational potential. Since in spherical coordinates we
can write L2 ¼ r2ν2sin2η and ε ¼ −E ¼ −ϕ − ν2=2, we
have

ρ ¼ 2πA
Z

π

0

sin2αþ1ηdη
Z

νe

0

�
−
ν2

2
− ϕ

�
β

r2αν2αþ2dν:

The first integral above is basically a constant, so by taking
2πA

R
π
0 sin2αþ1ηdη ¼ B, we have

ρ ¼ Br2α
Z

νe

0

�
−
ν2

2
− ϕ

�
β

ν2αþ2dν: ðA3Þ

Now, in order to compute the second integral, it can be
cast as

ρ ¼ Br2α
Z ffiffiffiffiffiffiffi

−2ϕ
p

0

ϕβ

�
−
ν2

2ϕ
− 1

�
β

ν2αþ2dν;

where, by making the substitution x ¼ ν2=ϕ, the integral
becomes

ρ ¼ Br2αϕβþαþ12αþ1

ffiffiffiffi
ϕ

2

r Z
−1

0

ð−x − 1Þβxαþ1=2dx;

Again, the last integral is a constant. With this in mind and
organizing the terms, we have

ρ ¼ Cr2αϕβþαþ3=2 ðA4Þ

Now it is possible to calculate the potential through the
Poisson equation,

∇2ϕ ¼ 4πGρ ¼ 4πCGr2αϕβþαþ3=2

Since α and β are parameters, it is straightforward to prove
that

ϕ ¼ −
ϕo

1þ r=a
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is a solution of the equation for α ¼ −1=2, β ¼ 2 and
4πCG ¼ −2=ϕo

2a, where a is the characteristic radius of
the system.
Now returning to the expression (A4) of the density and

thus using the values α ¼ −1=2 and β ¼ 2, we can compute
the constant A:

C ¼ 2πA
Z

π

0

dη
Z

−1

0

ð−x − 1Þ2dx ¼ −
2π2A
3

;

then

C ¼ −
2π2A
3

¼ −
1

2πGϕo
2a

;

which lead us to

A ¼ 3

4π3ϕo
2aG

ðA5Þ

In summary, we can establish that the distribution
function, the gravitational potential and the mass density
for the Hernquist model are given by

F ðε; LÞ ¼ 3

4π3ϕo
2aG

ε2L−1 ðA6Þ

ϕ ¼ −
ϕo

1þ r=a
ðA7Þ

ρ ¼ −
1

2πGϕo
2a

r−1ϕ3 ¼ ϕo

2πGar

�
1

1þ r=a

�
3

ðA8Þ

APPENDIX B: DEMONSTRATION OF LEMMA 1

In this appendix, we provide a proof by reductio ad
absurdum of Lemma 1, used to obtain Proposition 1:

Lemma 1. If F is a DF satisfying the self-gravitation
equations (19), (20), and (21), then limL→0ðL2F Þ ¼ 0.
Proof.—If one supposes that

limL→0ðL2F Þ ≠ 0;

then, from the definition of limit, for every δ > 0 there
exists ϵ > 0 and L0 such that 0 < L0 < δ and F ðE;L0Þ >
ϵL0

−2.
On the other hand, since F must be a continuous

function, then L2F is a continuous function too, so there
exists a region centered in L0 such that F > ϵL−2,
i.e., F > ϵL−2 for every L belonging to L0 − δL < L <
L0 þ δL.
All of the above holds for every choice of 0 < δ < δL.

Then, if we choose δ in such a way that 0 < L < δ and,
therefore, L falls inside the interval ðL0 − δL;L0 þ δLÞ,
then for such δ there exists an ϵ > 0 such that whenever
0 < L < δ we have F > ϵL−2.
Now, by choosing Lm to be smaller than δ, we can

write

Z
Lm

0

F ðE; LÞLdLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm

2 − L2
p ≥ ϵ

Z
Lm

0

dL

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm

2 − L2
p :

Note that the right-hand side integral does not converge
and the left-hand side integral must converge since ρ, given
by (23), is finite. This means that the relation above is an
absurd, which leads us to state that

limL→0ðL2F Þ ¼ 0.
▪
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