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The membrane paradigm approach adopts a timelike surface, stretched out off the null event horizon, to
study several important black hole properties. We use this powerful tool to give a direct derivation of the
black hole mass formula in the static and stationary cases without and with electric field. Since here the
membrane is a self-gravitating material system, we go beyond the usual applicability on test particles and
test fields of the paradigm.
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I. INTRODUCTION

The event horizon of a black hole acts like a membrane
with well-defined matter fluid properties. This was under-
stood first by Hawking and Hartle from matter fields
entering the black hole and changing its area in a prescribed
way [1] and Hanni and Ruffini [2] in an analysis of the lines
of forces of an electrically charged particle around a black
hole. It was fully recognized as a membrane with electric
resistivity by Znajek [3] and Damour [4], who also showed
that the membrane obeys a Navier-Stokes type equation
with surface viscosity [5]. The membrane, being a sub-
stitute for the event horizon, is a lightlike hypersurface
in these works. For practical reasons, it can be useful to
stretch slightly the event horizon, into a stretched horizon,
and turn the lightlike membrane into a timelike membrane.
More specifically, the rationale is to replace the event
horizon by a surface in its outside vicinity as if the horizon
were stretched, with its interior being essentially a vacuum
spacetime. This stretched horizon acts then like a 2-
dimensional membrane evolving in time, and by imposing
correct boundary conditions on this membrane, one finds
the desired results. The stretched horizon is thus a timelike
boundary, which makes this setting prone to using a 3þ 1
formalism, with three spatial dimensions and one time
dimension. In physical terms, some processes can be better
understood and more intuitive in this timelike membrane
than the lightlike boundary of the event horizon.

This idea of studying the event horizon as a stretched
horizon, through a membrane in a 3þ 1 spacetime for-
malism, was devised by Thorne and collaborators [6–9] and
is called the membrane paradigm [10]. In this 3þ 1
formalism, a black hole resembles a star, since now it is
realized as a 3-dimensional space, with an interior, a
surface membrane with appropriate boundary conditions,
and an exterior, evolving in time. Following the approach,
one performs all the calculations in the timelike membrane,
located infinitesimally close to the true black hole horizon,
imposes correct boundary conditions on it, and then finally
takes the limit to the horizon, a lightlike surface, to find the
correct desired results. The 3þ 1 membrane paradigm is
able to recover all the properties previously found, see
Ref. [10], notably the interpretation of the membrane as a
matter fluid with dissipative properties. The membrane
paradigm approach has been developed and applied in
several directions. We mention a few. The black hole
complementarity idea was developed using the membrane
paradigm [11], and a relation to the fuzzball model has been
put forward [12], showing that the approach has found echo
not only in astrophysics but also in fundamental physics.
An action for the membrane was devised and applied to
distinct black hole settings [13], and the black hole entropy
formula was found through an Euclidean action membrane
approach [14]. The quasinormal spectrum of black holes
was explored using the membrane paradigm in Ref. [15],
the physics of jets through the membrane paradigm was
studied in Ref. [16], and the paradigm was applied to
a setting with cosmological horizons in Ref. [17]. The
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Einstein field equations and the Navier-Stokes equations
connection was developed in Ref. [18], and it was then
realized that the fluid/gravity duality is in fact a parent of
the membrane paradigm [19–22]. In this duality, fluids and
gravity are similar, like in the membrane paradigm where
the horizon, a pure gravitational entity, behaves as a
membrane composed of matter with fluid behavior, and
Einstein equations can be put in a Navier-Stokes form. The
membrane paradigm was applied to other theories that
contain black holes, namely, to fðRÞ gravities [23], to the
Gauss-Bonnet theory [24], to the Lovelock theory [25], and
to Chern-Simons gravity [26].
Now, one interesting and important feature of black

holes is that they possess a simple mass formula. For the
Kerr-Newman family of black holes, this formula is the
Smarr formula [27], and it expresses the mass of a black
hole as a bilinear form in terms of the products of the
surface gravity and the area, the electric potential and the
electric charge, and the angular velocity and the angular
momentum of the black hole. The formula was generalized
to include black holes with surrounding matter [28] (see
also Refs. [29,30]), and in an explicit form for extremal
black holes [31], and in addition it was shown by Bardeen
et al. that the Smarr mass formula is connected with the
differential formula for the same quantities as was dis-
played in the first law of black hole mechanics [28]. The
Smarr formula has also been deduced for a number of
different types of black holes; see, e.g., Ref. [32]. The black
hole mass formula as found in Ref. [28] is calculated from
first principles using the Komar mass [33], a mass
definition suited for vacuum spacetimes with a timelike
Killing vector.
Since the membrane paradigm has shown to be a

powerful tool for considering properties in the vicinity
of a black hole, it is of interest to use the membrane
paradigm to find from direct principles the black hole mass
formula. Moreover, in using the membrane paradigm in this
situation, we are paying attention to the properties of the
membrane itself that are connected to its self-gravitation
and thus going beyond the use of the paradigm for test
fields in the vicinity of the horizon of a given black hole
background. Now, to have a mass formula, one has to start
with a mass definition, and for pure vacuum, one uses the
Komar mass [33]. In the presence of nonvacuum space-
times with matter field content, a more suitable mass
definition is the Tolman mass [34] (see also Ref. [35]),
which further requires that the spacetime is static or
stationary. Using the Tolman mass definition, formulas
for black holes were deduced in the quasiblack hole
approach [36,37]. To calculate the black hole mass formula
through the membrane paradigm, as is our intention, the
Tolman mass is also the convenient definition. Given an
interior and an exterior spacetime, the membrane, a matter
field, reveals itself through the junction conditions [38–40].
The membrane is thus a cut between the inner and outer

spacetimes that provides the mass in a consistent manner.
A particularly important case is when the membrane is at an
infinitesimal distance from the horizon. In such a configu-
ration, one should get the black hole mass formula.
The aim of the present paper is to give a direct derivation

of the black hole mass formula through the membrane
paradigm. When the membrane is far from its own
gravitational radius, one gets a mass formula for the
membrane spacetime in general. When the membrane
comes close to its own gravitational radius, i.e., in the
horizon limit, and upon using appropriate boundary con-
ditions which signal the presence of a horizon, then the
membrane formalism yields the black hole mass formula.
For the inner region, one must note that in the horizon limit
all compatible interior spacetimes, i.e., interior spacetimes
with appropriate boundary and regularity conditions, give
the same mass formula, so one can choose the simplest
inner spacetime, i.e., Minkowski spacetime. The outer
spacetime we consider is quite general. We only impose
that it is static or stationary and the spatial sections are
topological spheres. In this approach, it is the Einstein field
equation at the membrane thin layer that conspires to give
the black hole mass formula. In deriving the black hole
mass formula, we consider cases in which there is matter
outside the membrane and the black holes are distorted by
outer force perturbations. We will use results given in
Refs. [41–43].
The paper is organized as follows. In Sec. II, we derive

the black hole mass formula from the Tolman mass for the
simplest case, a static membrane with no electric field. We
do not impose other symmetries, only staticity. In Sec. III,
we derive the black hole mass formula from the Tolman
mass for an electric shell. Again, we do not impose other
symmetries, only staticity. In the horizon limit, we show
that the electric potential is constant at the horizon. In
Sec. IV, we derive the black hole mass formula from the
Tolman mass for a rotating membrane. We only impose
stationarity. In Sec. V, we conclude.

II. BLACK HOLE MASS FORMULA IN THE
MEMBRANE PARADIGM: STATIC MEMBRANE

WITH NO ELECTRIC FIELD

A. Preliminaries

1. Gravitational field

Let us consider a 4-dimensional spacetime with coor-
dinates xμ and interval ds given by

ds2 ¼ gμνdxμdxν; ð1Þ

where gμν is the metric representing the gravitational field
and with μ, ν being spacetime indices, i.e., μ, ν ¼ 0, 1, 2, 3,
0 being a time index and 1, 2, and 3 being spatial indices.
Consider further that the spacetime is static, and write the
metric in a 3þ 1 split as
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ds2 ¼ −N2dt2 þ gikdxidxk; ð2Þ

where N is a function of the spatial coordinates and i,
k ¼ 1, 2, 3 are the spatial indices.
Let us further consider that the 4-dimensional spacetime

contains an infinitesimally thin membrane. The membrane
is not necessarily a 2-sphere; it can be some surface
with the topology of a 2-sphere. Inside the membrane,
there is vacuum, and we assume spacetime there is flat.
The assumption that spacetime inside the membrane is
flat simplifies the calculations; other assumptions can be
provided, giving quantitatively different results. However,
when the membrane is at its own horizon radius, it does not
matter what we have assumed for the spacetime inside; any
compatible inner spacetime in this limit yields the same
results. This is the basis of the membrane paradigm,
namely, one excises the spacetime interior to the horizon,
so it can be any, and works out the properties of the
horizon seen as a membrane. So, assuming an inner flat
spacetime is an assumption without loss of generality.
Outside the membrane, spacetime is static and consistent
with the existence of a membrane. Let us now state
precisely the complete gravitational field, i.e., the complete
spacetime.
Inside the membrane, the vacuum flat spacetime metric

can be written in Gaussian coordinates ðt; l; x2; x3Þ, from
Eq. (2), as

ds2 ¼ −N2
0dt

2 þ dl2 þ γabdxadxb; ð3Þ

where N0 is some constant, the metric coefficients γab do
not depend on t, and a, b ¼ 2, 3.
Outside, the membrane generates a generic static metric.

In Gaussian coordinates ðt; l; x2; x3Þ, the metric of Eq. (2)
takes the form

ds2 ¼ −N2dt2 þ dl2 þ γabdxadxb; ð4Þ

where the metric coefficients N and γab do not depend on t
and a, b ¼ 2, 3. Note that the determinants of the metrics
have the relations

ffiffiffiffiffiffi−gp ¼ N
ffiffiffiffiffi
g3

p ¼ N
ffiffiffi
γ

p
, where g is the

determinant of the spacetime metric [see Eq. (1)], g3 is the
determinant of the spatial 3-metric [see Eq. (2)], and γ is the
determinant of the spatial 2-metric [see Eqs. (3) and (4)].
The membrane is located at some l ¼ l0 by assumption,

and let the value of N be constant on the membrane,
N ¼ N0. This assumption is not essential but simplifies
some formulas. The matching conditions from the inside to
the outside require, first, that N− ¼ Nþ ¼ N0 on both sides
of the membrane, where − corresponds to the inner side
and þ corresponds to the outer side at l0, and, second, that
γ−ab ¼ γþab ≡ γ0ab also on both sides of the membrane. The
matching conditions also require that the membrane has
some stress-energy tensor.

We assume that a priori there is no horizon. When we
take the limit to the membrane gravitational radius, i.e., to
its own horizon, we obtain a stretched horizon where the
properties of a black hole can be worked out.

2. Energy-momentum tensor

The spacetime has some energy-momentum tensor Tμν.
We can divide the energy-momentum tensor as the sum of
the inner energy-momentum tensor T in μν, the membrane
energy-momentum tensor Tmembrane μν, and the outer
energy-momentum tensor Tout μν,

Tμν ¼ T in μν þ Tmembrane μν þ Tout μν: ð5Þ

Since inside it is Minkowski, the energy-momentum tensor
inside is zero,

T in μν ¼ 0: ð6Þ

Since the membrane is infinitesimal, situated at l0, we can
write the membrane energy-momentum tensor as

Tmembrane μν ¼ Sμνδðl − l0Þ; ð7Þ

where δðl − l0Þ is the Dirac delta function and Sμν is a
surface energy-momemtum tensor defined at the mem-
brane. The outside energy-momentum tensor, with support
on the outer region, can be divided if we wish into matter
and other fields, so we can write

Tout μν ¼ Tout matter μν þ Tother fields μν: ð8Þ

The term Tout other fields μν can contain an electromagnetic
field, for instance. In writing Eq. (8), we have assumed that
there are no interaction cross terms between gravity and
matter or between gravity and other fields. This means we
assume minimal coupling throughout.

B. Tolman mass formula for a static membrane
with no electric field

There are several mass formulas for spacetimes, notably
the Komar mass formula [33] and the Tolman mass formula
[34], both for static and stationary spacetimes. The two
formulas are related [35], as our calculation will also show.
The Tolman mass formula applies neatly for spacetimes
that contain matter. Since our spacetime possesses a
membrane, and so matter, we use the Tolman mass formula.
We will first write a mass formula valid for a membrane at
any radius l0 larger than its own gravitational radius. Then,
afterward, we will apply this formula to the case when the
membrane is at its own gravitational radius, i.e., at the
horizon. We will then find the black hole mass formula.
The Tolman mass for a given static spacetime with a

stress-energy tensor Tμν is defined as
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M ¼
Z
Σ
ð−T0

0 þ Tk
kÞ

ffiffiffiffiffiffi
−g

p
d3x; ð9Þ

with g being the determinant of the metric gμν in Eq. (1),
d3x ¼ dx1dx2dx3, and the integral is performed over a 3-
space Σ with t ¼ constant. In the metric Eq. (2), the mass
formula is M ¼ R

Σð−T0
0 þ Tk

kÞN
ffiffiffiffiffi
g3

p
d3x, with g3 being the

determinant of the metric gik. In addition, since g3 ¼ γ
where γ is the determinant of the 2-metric γab, we have

M ¼
Z
Σ
ð−T0

0 þ Tk
kÞN

ffiffiffi
γ

p
d3x: ð10Þ

We will resort to these formulas, mainly to Eqs. (9) and
(10), for finding the Tolman mass.
Now, there are clearly tree distinct regions, as we have

made explicit in the splitting of the energy-momentum
tensor, Eq. (5). So, here, one should also split the mass
formula into three parts, namely, the inner mass Min, the
membrane mass Mmembrane, and the outside mass Mout.
Thus, we write

M ¼ Min þMmembrane þMout ð11Þ

and calculate the contribution of each part to the total
spacetime mass M.
Inside is vacuum, so from Eqs. (6) and (10), one has

Min ¼ 0: ð12Þ

The membrane term Mmembrane is quite interesting. From
Eq. (10), we write the contribution to the membrane
mass as

Mmembrane¼
Z
membrane

ð−Tmembrane0
0þTmembranek

kÞN ffiffiffi
γ

p
d3x:

ð13Þ

Since the membrane is infinitesimally thin, there is the
delta contribution given in Eq. (7). Moreover, due to the
2-dimensional character of the membrane, there are no
radial stresses, i.e., Sll ¼ 0. Performing then the integral
over l across the membrane in Eq. (13), we get

Mmembrane ¼
Z
membrane

ð−S00 þ SaaÞNdS; ð14Þ

where dS ¼ ffiffiffiffiffiffiffiffiffiffi
γðl0Þ

p
d2x, and d2x ¼ dx2dx3. Given an

outside spacetime and an inside one, one has from
the junction conditions [38–40] the relation 8πSνμ ¼
½½Kν

μ�� − δνμ½½K��, where Kν
μ is the extrinsic curvature tensor,

and the symbol ½½:::�� means ½½:::�� ¼ ½ð:::Þþ − ð:::Þ−� with þ
being the value of the relevant quantity at the membrane
from the outside and − being the value of the same relevant
quantity at the membrane from the inside. In our case, we

find 8πð−S00 þ SaaÞ ¼ −2½½K0
0��. Put nμ as the unit vector

normal to the membrane. Since Kμν ¼ −∇νnμ, where ∇μ

denotes covariant derivative, and nμ ¼ ∂l
∂xμ, we can calculate

K0
0. Indeed, K

0
0 ¼ −∇0n0 ¼ − 1

N
∂N
∂l . As a result, we obtain

8πð−S00 þ SaaÞ ¼ 2
N ½ð∂N∂l Þþ − ð∂N∂l Þ−�, but since inside is

Minkowski and N ¼ N0, the expression becomes
8πð−S00 þ SaaÞ ¼ 2

N ð∂N∂l Þþ. Thus, the membrane mass is

Mmembrane ¼
Z
membrane

σdS; ð15Þ

where

σ ¼ 1

4π

�∂N
∂l

�
þ

ð16Þ

is the surface mass density of the membrane.
The contribution from the outside can be written as

Mout ¼
Z
out

ð−Tout 0
0 þ Tout k

kÞN ffiffiffi
γ

p
d3x; ð17Þ

where one can further split into matter fields and other
fields, as we have done in Eq. (8).
Thus, putting together Eqs. (12), (15), (16), and (17), into

Eq. (13), we obtain the mass formula from the Tolman
definition for a spacetimewith a membrane. As an example,
if the outside spacetime is vacuum Schwarzschild, then
Min¼0, Mmembrane¼M, and Mout¼0, so the Tolman for-
mula gives M ¼ Mmembrane ¼ M. It is interesting to note
that Tolman formula puts all the mass, i.e., membrane rest
mass plus gravitational mass, in the membrane itself.

C. Black hole mass formula in the membrane
paradigm with no electric field

1. Introduction

The Tolman formula is thus valid for a spacetime with a
membrane and without horizons. We now want to test the
Tolman formula in the strongest gravitational field possible,
i.e., in the black hole limit. In this limit, we should take
N0 → 0, where N0 → 0 is the value of N at the membrane.
Before we proceed, a remark is in order. In the above

treatment, we assumed that the spacetime metric inside
the membrane is the Minkowski metric. However, in the
black hole limit, our results do not change if for the interior
region we choose some other metric compatible with the
exterior. Indeed, the continuity of the metric implies the
boundary condition N− ¼ Nþ, where for simplicity we
have chosen N− ¼ Nþ ¼ N0 ¼ constant, on the boundary.
The black hole limit under discussion means N0 → 0.
Making a nonrestrictive assumption that ∂N

∂l ≥ 0, which
holds for all reasonable spacetimes under consideration,
one has that everywhere inside N → 0 uniformly as well.
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Therefore, ð∂N∂l Þ− → 0, and we again obtain Eq. (15)
together with Eq. (16).

2. Black hole mass formula in the membrane
paradigm with no electric field

In the black hole limit, write lh ≡ l0 at the horizon limit, and
note that indeed N → 0. However, the possible problematic
part for the mass, the membrane part given by Eq. (15) with
(16), does not depend onN; rather, it depends on ∂N

∂l . So, we
have to calculate ∂N

∂l from the outside at the horizon limit.
For that, we observe that for a regular horizon the metric
potential N just outside the horizon must obey [41]

N ¼ κðl − lhÞ þ aðxaÞðl − lhÞ3 þ � � � ; ð18Þ

where κ is the surface gravity, a constant, and aðxaÞ is a
function of the angular coordinates xa. Thus,

κ ¼ lim
N→0

�∂N
∂l

�
þ
: ð19Þ

Comparing Eqs. (16) and (19), we find also that
limN→0σ ¼ 1

4π κ. So, using that κ is a constant, we can
perform the integral in Eq. (15) to obtain

Mmembrane at the horizon ¼
1

4π
κA; ð20Þ

where A≡ Ah is the horizon area.
Inserting Eqs. (12), (17), and (20) into Eq. (11) yields the

black hole mass formula

M ¼ 1

4π
κAþMout: ð21Þ

This black hole mass formula obtained through the
membrane paradigm approach is the same as that obtained
by other methods [28] (see also Refs. [29,30]). When
Mout ¼ 0, it is the Smarr formula for a static, i.e.,
Schwarzschild, black hole in general relativity [27].
Price and Thorne [8] in their detailed paper on the

membrane paradigm, do not arrive at our Eq. (21) for the
mass formula of a black hole. The key point in our
derivation is the use of the Tolman mass definition which
includes under its integral, not only the T0

0 component at the
membrane, but also the membrane Tk

k stress components.
These latter contribute decisively to the integral at the
horizon and thus to the black hole mass.

3. Interpretation of the surface gravity

The surface gravity of a body is defined as the accel-
eration of a test particle at the body’s surface. If the body is
a black hole, this acceleration at the black hole’s surface,
the horizon, is infinite, but the normalized surface gravity,

or simply the black hole’s surface gravity κ, defined as the
proper acceleration times the redshift factor at the horizon,
is finite. The black hole’s surface gravity κ also defines the
Hawking temperature.
But now note that, as a byproduct of the formalism we

have developed within the membrane paradigm, we have
obtained one more interpretation for the surface gravity.
Indeed, comparing Eqs. (16) and (19) and using also
Eq. (20), we can write

lim
N→0

σ ¼ 1

4π
κ ¼ Mmembrane at the horizon

A
; ð22Þ

i.e., the quantity κ is nothing other than 4π times the surface
energy density on the membrane in the horizon limit. This
surface density is a constant in the limit under discussion.
Such an interpretation of the surface gravity as a surface
energy density, given in Eq. (22), could not be given in
terms of a true black hole since a true black hole does not
have any membrane on the horizon at all and the mass
formula is obtained from a different approach. Indeed, in
the black hole approach, the mass is defined at infinity and
thus cannot be interpreted as localized at the horizon.
Our interpretation relies on self-gravitating effects since

the expression for the membrane’s surface stress-energy
tensor implies the validity of the Einstein equations
[38–40]. Indeed, Eq. (22) is a reflection of the Einstein
equation, with 1

4π κ being related to the gravitational,
geometrical, part of the equation and Mmembrane at the horizon

A being
related to the matter, energy-momentum tensor, part of the
equation. Equation (22) with the interpretation of the
surface gravity κ as a surface energy density σ is new.
Indeed, such an interpretation can be put forward only after
one finds the black hole mass formula, Eq. (21), through the
membrane paradigm, as we did.

III. BLACK HOLE MASS FORMULA IN THE
MEMBRANE PARADIGM: STATIC MEMBRANE

WITH ELECTRIC FIELD

A. Preliminaries

1. Gravitational and electric fields

We assume the same type of membrane configuration
and the same type of gravitational field as in the previous
section, so that Eqs. (1)–(4) still hold. But now, we consider
further that there is in addition an electric field, and so one
should consider the Einstein-Maxwell equations for finding
a mass formula for the spacetime with an electric mem-
brane and a mass formula in the black hole limit.
Since the gravitational part has been treated in the last

section, we now analyze the electromagnetic field which
has its own special features. The electromagnetic field is
characterized by a generic antisymmetric Maxwell tensor
Fμν. The Maxwell equations for Fμν are
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∇νFμν ¼ 4πjμ; ð23Þ
i.e.,

1ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp
FμνÞ

∂xν ¼ 4πjμ: ð24Þ

where ∇ν denotes covariant derivative and jμ is the generic
electric 4-current. There is another set of Maxwell equa-
tions, namely,

∂
∂xα ðε

αβμνFμνÞ ¼ 0; ð25Þ

where εαβμν is the Levi-Civita tensor. This last set of
equations, Eq. (25), in turn, permits the electromagnetic
Maxwell field Fμν to be written in terms of a 4-potential
Aμ as

Fμν ¼
∂Aν

∂xμ −
∂Aμ

∂xν : ð26Þ

The 4-potential Aμ can be split as Aμ ¼ ðφ; AiÞ, for some
electric potential φ and a 3-potential Ai. For an electric
ansatz, as we will assume, Ai ¼ 0, and so

Aμ ¼ φδ0μ; ð27Þ

where δνμ is the Kronecker delta. Putting Eq. (27) into
Eq. (26) one finds that the only nonzero components of Fμν

are F0i, i.e.,

F0i ¼ −
∂φ
∂xi : ð28Þ

This confirms that there is pure electric field, since the
components F0i are related to it. All this formulation is
generic for an electric ansatz, and since the problem is
static, the quantities are time independent.
We now specify that the interior spacetime is a flat

spacetime with no electric field, that there is an electric
membrane, and that there is some electric field outside
compatible with the existence of the membrane. For the
inside, we have a zero Maxwell tensor, and for the outside,
we have a Maxwell tensor that we write as Fout

μν , having in
mind that Fout

0i are the only nonzero components from
Eq. (28). We can then write an expression for the Maxwell
tensor field Fμν, valid throughout the whole spacetime,
such that it represents zero Maxwell tensor inside the
membrane, and Fout

μν at and outside it. Thus, in the spirit of
the membrane paradigm, we write for the Maxwell tensor
the following expression,

Fμν ¼ Fμν
outθðl − l0Þ; ð29Þ

where θðl − l0Þ is the step function. Equation (29) has
implicitly in it that there are three regions, the inner, the

membrane, and the outer regions. It has also implicitly in it,
due to the θ function, that inside we have Fin

μν ¼ 0. Then,
since Eq. (29) is a product, and the Maxwell equation,
Eq. (24), involves a derivative for Fμν, the current jμ is a
sum of two currents, namely,

jμmembrane þ jμout ¼ jμ: ð30Þ

Let us analyze each current at a time.
For the membrane current, jμmembrane, from the Maxwell

equations, Eq. (24), and the specific form of the Maxwell
field given in Eq. (29), we have that

jμmembrane ¼
1

4π
Fμν
outδðl − l0Þ

∂l
∂xν : ð31Þ

This term is very important and can yield a singular term
when one lowers the membrane to its own gravitational
radius or horizon. Instead of jmembrane, this current could be
called jsing since it can yield a singular term at the horizon.
Recalling the electric anzatz, Ai ¼ 0, and that the only
components of Fμν that do not vanish are F0i, see Eq. (28),
we find that the only nonzero component in Eq. (31) is

j0membrane ¼
1

4π
F0l
outδðl − l0Þ: ð32Þ

Since F0l corresponds to a radial electric field El, say, we
see that at the membrane there is an electric current related
to the radial electric field. From this equation, we can find
an expression for the total electric charge Q at the
membrane, l ¼ l0. This will take a little detour. For some
generic 4-current jμ, the electric charge is defined as

Q ¼ R
Σ j

μdΣμ, where dΣμ ≡ 1
3!
εμαβγ½∂ðx

α;xβ ;xγÞ
∂ða;b;cÞ �dadbdc is

the 3-dimensional volume element of a hypersurface Σ
parametrized by ða; b; cÞ through xα¼xαða;b;cÞ, ½∂ðxα;xβ ;xγÞ∂ða;b;cÞ �
is the 3 × 3 Jacobian determinant, and εμαβγ is the Levi-
Civita tensor totally antisymmetric tensor which can be
written as εμαβγ ¼ ffiffiffiffiffiffi−gp

ϵμαβγ with ϵμαβγ being the alternat-
ing symbol or Levi-Civita tensor density (being equal to 1 if
μ, ν, α, and β is an even permutation of 0, 1, 2, 3, equal to
−1 if it is an odd permutation of 0, 1, 2, 3, and equal to zero
otherwise). Here, since the only nonzero component of jμ is
j0, see Eq. (32), we haveQ ¼ R

Σ j
0dΣ0. Parametrizing Σ by

a¼l, b¼x2, and c ¼ x3, we haveQ ¼ R
Σ j

0 ffiffiffiffiffiffi−gp
dldx2dx3,

or using Eq. (32), we get Q¼ 1
4π

R
ΣF

0l
outδðl−l0ÞN ffiffiffi

γ
p

dld2x,
where d2x¼dx2dx3. Integrating through the delta func-
tion, it becomes Q ¼ 1

4π

R
membrane F

0l
outðl0ÞNðl0Þ

ffiffiffiffiffiffiffiffiffiffi
γðl0Þ

p
d2x.

Defining dS≡ ffiffiffiffiffiffiffiffiffiffi
γðl0Þ

p
d2x as the invariant area

element on the 2-dimensional membrane, we have Q ¼
1
4π

R
membrane F

0l
outðl0ÞNðl0ÞdS. It is interesting to note that

this result can also be found without the use of the δ
function. Indeed, from Q ¼ R

Σ j
μdΣμ ¼ 1

4π

R
Σ ∇νFμνdΣμ,
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whereEq. (23) has beenused, onecan invokeStokes’ theorem
which for this case reads 2

R
Σ∇νFμνdΣμ¼

R
SF

μνdSμν, yield-

ingQ ¼ 1
8π

R
S F

μνdSμν, where dSμν ≡ 1
2
εμναβ½∂ðx

α;xβÞ
∂ðe;fÞ �dedf is

the 2-dimensional area element of the boundary ofΣ, namely,

a 2-surface S parametrized by xα ¼ xαðe; fÞ, with ½∂ðxα;xβÞ∂ðe;fÞ �
being the 2 × 2 Jacobian determinant. Then, one finds again
Q ¼ 1

4π

R
membrane F

0l
outðl0ÞNðl0ÞdS. Thus, we can write for the

total charge

Q ¼
Z
membrane

σedS; ð33Þ

where σe is the membrane’s electric charge surface density,
given by

σe ¼
1

4π
F0l
outN; ð34Þ

and where F0l
outN is evaluated at the membrane l0 from the

outside.
For the outside current, jμout, we have from the Maxwell

equations, Eq. (24), and the form of the Maxwell field,

Eq. (29), the following equation 1ffiffiffiffi−gp ∂ð ffiffiffiffi−gp
Fμν
outÞ∂xν ¼ 4πjμout. If

there are only electric fields this equation yields

1ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp
F0k
outÞ

∂xk ¼ 4πj0out: ð35Þ

2. Electromagnetic energy-momentum tensor

The formulas for the energy-momentum tensor given in
Eqs. (5)–(8) are still valid when one has a static spacetime
with an electric field. However, it is important to isolate
now the electric part of the energy-momentum tensor, Temν

μ .
By definition,

Tem ν
μ ¼

1

4π

�
Fμ
αFα

ν −
1

4
δνμFαβFαβ

�
; ð36Þ

where Fμν is the Maxwell tensor. In our case, since F0i are
the only components that do not vanish, the electroma-
gentic energy-momentum tensor has the following non-
trivial components:

Tem 0
0 ¼ −

1

8πN2
F0iF0jgij; ð37Þ

Tem i
j ¼

1

8πN2
ðFk

0F0kδ
i
j − 2Fi

0F0jÞ: ð38Þ

Since we are after a mass formula, and we use the
Tolman mass definition given in Eq. (10), we still need to
develop in the mass formula the electromagnetic part of the
energy-momentum tensor.

B. Tolman mass formula for an electric membrane

To calculate the contribution to the mass from the
electric charge of the membrane, we use the results above.
From Eqs. (37) and (38), we have that the combination
−Tem 0

0 þ Temk
k that enters into the Tolman formula,

Eq. (10), is −Tem 0
0 þ Tem k

k ¼ − 1
4πF0kF0k. It follows from

Eq. (10) that the contribution of the electromagnetic field to
the electromagnetic mass Mem is

Mem ¼ 1

4π

Z
Σ
F0kF0kN

ffiffiffi
γ

p
d3x: ð39Þ

From Eq. (28), i.e., F0k ¼ − ∂φ
∂xk, we have Mem ¼

− 1
4π

R
Σ φ;kF0kN

ffiffiffi
γ

p
d3x, where the integration is over

the whole 3-space Σ, and to simplify the notation,
we use here ;k ≡ ∂

∂xk. Performing the integral by
parts gives −

R
Σφ;kF0kN

ffiffiffi
γ

p
d3x¼−

R
Σ ðφF0kN

ffiffiffi
γ

p Þ;kd3xþR
ΣφðF0kN

ffiffiffi
γ

p Þ;kd3x. From Gauss’ theorem, the first term
can be swapped to a surface integral at infinity,
−
R
Σ ðφF0kN

ffiffiffi
γ

p Þ;kd3x ¼ −
R
S∞
ðφF0kNÞnkdS, where nk is

the normal to the 2-surface at infinity, S∞. Now, this
surface term vanishes because at infinity one has N → 1,
F0k ∼ 1

l2, dS ∼ l2, φ ∼ 1
l. Thus, Mem reduces to Mem ¼

1
4π

R
Σ φðF0kN

ffiffiffi
γ

p Þ;kd3x. From Eq. (29), we can then

write Mem ¼ 1
4π

R
Σ φðF0k

outθðl − l0ÞN ffiffiffi
γ

p Þ;kd3x. So, splitting
θðl − l0Þ, we have Mem¼ 1

4π

R
ΣφoutF0l

outδðl−l0ÞN ffiffiffi
γ

p
d3xþR

Σout
φoutðF0k

outN
ffiffiffi
γ

p Þ;kd3x, where φout is the electric potential
in the outer region and Σout is the outer 3-space. The first
term is related to j0membrane and after taking care of the δ
function can be written as 1

4π

R
membrane φoutF0l

outNdS with
dS ¼ ffiffiffi

γ
p

d2x, and the second term is related to j0out. Thus,
we can divide Mem as

Mem ¼ Mmembrane em þMout em; ð40Þ

with

Mmembrane em ¼
Z
membrane

φoutσedS; ð41Þ

where σe ¼ 1
4πF

0l
outN as in Eq. (34), and

Mout em ¼
Z
Σout

φoutj0outN
ffiffiffi
γ

p
d3x: ð42Þ

This is the contribution of the electromagnetic mass to the
Tolman mass.
The full mass M is then given by the sum of the

membrane gravitational matter contribution, Eqs. (15)
and (16); plus the membrane electrical contribution,
Eq. (41); plus the outer contribution involving all matter
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and nonelectric fields, Eq. (17); plus the outer electric
contribution, Eq. (42).

C. Black hole mass formula in the membrane
paradigm with electric field

1. Constancy of the electric potential at the horizon

When we want to treat the black hole limit, i.e., take
N → 0, we have to be careful with the physical quantities
so that they do not blow up at the horizon. So, to avoid
problems and confusion caused by pure coordinate effects
when the original frame becomes degenerate in the horizon
or near-horizon limit, it is convenient to use normalized
components in an orthonormal basis. Thus, we must use
normalized variables, the hat variables, such that X0̂ ¼ X0

N .
For the electric components Fout 0i, the only components of
Fout μν that exist in this problem, we have from Eq. (28) that

Fout 0̂i ¼ Fout 0i
N ¼ − 1

N
∂φout∂xi , and these quantities must be finite

at the horizon. This is equivalent to the requirement of
finiteness of

Fout 0̂l ¼
Fout 0l

N
¼ −

1

N
∂φout

∂l ; ð43Þ

Fout 0̂a ¼
Fout 0a

N
¼ −

1

N
∂φout

∂xa : ð44Þ

But for a regular horizon, the metric potentialN just outside
the horizon must obey Eq. (18). Therefore, from Eqs. (18)
and (43), we obtain that in this limit

φout −Φ ¼ bðxaÞðl − lhÞ2 þOððl − lhÞ3Þ; ð45Þ
for some function bðxaÞ, where Φ≡ φh ¼
φmembrane at the horizon ¼ φout at the horizon is constant, having
the meaning of the potential at the membrane when this
is at the horizon. By continuity, the electric potential
remains constant inside, in the vacuum region, with value
Φ. Thus, we have the important result that at the horizon the
electric potential is a constant,

Φ ¼ φout at the horizon ¼ constant: ð46Þ
In addition, Eq. (45) means that the normal component

of F0̂l has a jump; indeed, ðFout0̂lÞþ is ðFout0̂lÞþ ¼
− 1

N ð∂φout∂l Þþ ¼ − 2b
κ , and ðFin0̂lÞ− ¼ − 1

N ð∂φin∂l Þ− ¼ 0, where
again the subscripts þ and − mean the evaluation at the
horizon from the outside and the inside, respectively. So,
ðFout0̂lÞþ − ðFin0̂lÞ− ¼ − 2b

κ ; i.e., there is a jump in the
normal electric component. Thus, comparing with the
formulas above, see Eqs. (34) and (43), i.e.,
Fou0̂l ¼ −4πσe, we have b ¼ 2πσeκ at the horizon. On
the other hand, the tangential components of the electric
field go as Fout 0a ∼ ðl − lhÞ2 → 0, and so Fout 0̂a ∼
ðl − lhÞ → 0. Thus, ðFout 0̂aÞþ ¼ 0, and ðFin 0̂aÞ− ¼ 0. We

conclude that there is no jump in the tangential electric
components.

2. Black hole mass formula in the membrane
paradigm with electric field

Now, to find the black hole mass formula, we start by
using Eq. (41). Note that Eq. (41) is independent ofN. Take
then the limit N → 0, and take into account the constancy
of the potential in the horizon limit, Eq. (46). Use Eq. (33)
in Eq. (41) to obtain

Mmembrane at the horizon em ¼ ΦQ; ð47Þ

where Mmembrane at the horizon em is the contribution from the
electromagnetic mass of the membrane to the black hole
mass when this is at the gravitational radius.
In the outer region, if charged, there is also a contribution

from the regular part of the current, namely, Mout em ¼
1
4π

R
Σout

φoutj0outN
ffiffiffi
γ

p
d3x, see Eq. (42), and where Σout is the

3-space outside the horizon. Further, the outer current can
be written as jμout ¼ ρout emuμ, and ρout emuμ is an invariant
charge density, with uμ being the 4-velocity of the source.
In our case, the only component of the current is
j0out ¼ ρout em

N . Then,

Mem out ¼
1

4π

Z
Σout

φoutρout em
ffiffiffi
γ

p
d3x; ð48Þ

valid outside the horizon.
Thus, the total mass M of a black hole is the sum of the

mass formula for a nonelectric black hole given in Eq. (21),
plus the electric mass coming from the membrane at the
horizon given in Eq. (47), plus the outer mass involving the
sum of Eq. (17) of all the matter and other nonelectric fields
outside the black hole with the outer electric mass given by
Eq. (48). Summing all mass contributions one finds the
black hole mass formula with an electric field, namely,

M ¼ 1

4π
κAþΦQþMout: ð49Þ

Equation (49) is the mass formula for electric black holes,
now derived in the membrane paradigm. This black hole
mass formula obtained through the membrane paradigm
approach is the same as that obtained by other methods [28]
(see also Refs. [29,30]). When Mout ¼ 0, Eq. (49) is the
Smarr formula for a static and electric, i.e., Reissner-
Nordström, black hole in general relativity [27].

3. Extremal electric case and the interpretation
for the surface gravity

The extremal case corresponds to κ ¼ 0. Thus,

M ¼ ΦQþMout: ð50Þ
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ForMout ¼ 0 and for Reissner-Nordström, one findsΦ ¼ 1
andM ¼ Q, which is the well-known relation for electrical
extremal black holes. In principle, this derivation for the
extremal case through the limits suffices. However, if one
prefers, a more consistent way of derivation in the extremal
case requires taking into account another asymptotic form of
the lapse function for small N. By definition, the extremal
case implies that for a black hole N ∼ expð−αlÞ, where α is
some positive constant and l → ∞. Then, the above
equations show that the membrane stresses remain finite
but their contribution to the surface mass vanishes because
of the form of the lapse function N. As a result, indeed,
Mmembrane at the horizon ¼ 0.
Since in the extremal case κ ¼ 0, our interpretation for κ

implies that the horizon now has no surface energy density;
all the energy density it has comes from the electric field.

IV. BLACK HOLE MASS FORMULA IN THE
MEMBRANE PARADIGM: ROTATING

MEMBRANE

A. Preliminaries

1. Gravitational and rotational fields

A mass formula for a spacetime with a rotational axially
symmetric background can also be derived using the
membrane paradigm. The considerations follow the same
lines as before. We restrict ourselves to the electrically
uncharged case.
A general rotating axially symmetric metric can be

written in ðt; r; θ;ϕÞ coordinates as

ds2 ¼−N2dt2þ glldl2þ gθθdθ2þ gϕϕðdϕ−ωdtÞ2; ð51Þ

where the metric functions N, gll, gθθ, gϕϕ, and ω are
functions of l and θ in general. We assume there is a
rotating shell that separates the vacuum, Minkowski, inside
spacetime from the outside spacetime, and thus from
Eq. (51), we can specify the inside and outside metrics.
The metric for the vacuum, Minkowski, inner spacetime

is written, putting gll ¼ 1, as

ds2 ¼ −N2
0dt

2 þ dl2 þ gθθdθ2 þ gϕϕðdϕ − ω0dtÞ2; ð52Þ

where N0 and ω0 are conveniently chosen constants. The
metric for the spacetime outside the membrane is, putting
also gll ¼ 1, written as

ds2 ¼ −N2dt2 þ dl2 þ gθθdθ2 þ gϕϕðdϕ − ωdtÞ2; ð53Þ

where N, gθθ, gϕϕ, and ω are functions of l and θ in general.

2. Energy-momentum tensor

As in the static case, we assume that the spacetime
has some energy-momentum tensor Tμν and divide the

energy-momentum tensor as the sum of inner energy-
momentum tensor T inμν, the membrane energy-momentum
tensor Tmembrane μν, and the outer energy-momentum tensor
Tout μν,

Tμν ¼ T in μν þ Tmembrane μν þ Tout μν: ð54Þ

Inside is Minkowski, and so inside,

T in μν ¼ 0: ð55Þ

The membrane is infinitesimal, situated at l0, so we put

Tmembrane μν ¼ Sμνδðl − l0Þ; ð56Þ

where δðl − l0Þ is the Dirac delta function and Sμν is a
surface energy-momentum tensor defined at the membrane.
The outside energy-momentum tensor is divided into
matter and other fields, so

Tout μν ¼ Tout matter μν þ Tout other fields μν: ð57Þ

The term Tout other fields μν can contain an electromagnetic
field, for instance.

B. Tolman mass and angular momentum
for a rotating membrane

We start with the angular momentum as it will be useful
for the expression for the mass. The Tolman spatial vector
momentum is defined as Ji ¼

R
T0
i

ffiffiffiffiffiffi−gp
d3x, which in our

case from the metric Eq. (53) can be put in the form
Ji ¼

R
T0
i N

ffiffiffiffiffi
g3

p
d3x, where we have used −g ¼ N2g3, g3

being the determinant of the spatial 3-metric. The only
momentum that matters here is the angular momentum Jϕ.
Moreover, g3 ¼ gθθgϕϕ from the metric Eq. (53). So,
defining γ ¼ gθθgϕϕ, we write the total angular momentum
Jϕ as given by

Jϕ ¼ −
Z

T0
ϕN

ffiffiffi
γ

p
d3x: ð58Þ

Now, the total value of the angular momentum (58) can be
split into three contributions, namely, the inner vacuum, the
membrane, and the outer region, such that,

Jϕ ¼ Jϕ in þ Jϕmembrane þ Jϕ out: ð59Þ

For the inside, since there is no matter inside, see Eq. (55),
we have from Eq. (58)

Jϕ in ¼ 0: ð60Þ

For the membrane, its angular momentum can be calculated
through the expression
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Jϕmembrane ¼ −
Z
membrane

T0
ϕN

ffiffiffi
γ

p
d3x: ð61Þ

Now, from Eq. (56), we have Tmembraneϕ
0 ¼ S0ϕδðl − l0Þ.

Since 8πSνμ ¼ ½½Kν
μ�� − δνμ½½K��, we have here 8πS0ϕ ¼

½½K0
ϕ�� − δ0ϕ½½K��, i.e., 8πS0ϕ ¼ ½½K0

ϕ��, and since the inside
is flat, we have ½½K0

ϕ�� ¼ Kþϕ
0. We suppress the þ index in

the following as it is obvious that all quantities are
calculated for the outside. For the outside, we have
K0

ϕ¼Kϕ0g00þKϕϕg0ϕ. Since Kμν ¼ −∇νnμ and nμ ¼ ∂l
∂xμ,

we can calculate Kϕ0 and Kϕϕ. We find Kϕ0 ¼ þΓl
ϕ0nl ¼

− 1
2
gll ∂gϕ0∂l ¼ 1

2
ðgϕϕ ∂ω

∂l þ ω
∂gϕϕ
∂l Þ, where we have used

gll ¼ 1, nl ¼ 1, and gϕ0 ¼ −ωgϕϕ. Also, Kϕϕ ¼ þΓl
ϕϕnl ¼

− 1
2
gll ∂gϕϕ∂l ¼ − 1

2

∂gϕϕ
∂l . In addition, g00 ¼ − 1

N2, and
g0ϕ¼− ω

N2. Then, K0
ϕ¼−1

2

gϕϕ
N2

∂ω
∂l , and so 8πS0ϕ ¼ − 1

2

gϕϕ
N2

∂ω
∂l .

All quantities are evaluated at the membrane l ¼ l0 from
the outside. Integrating through the delta function, we
obtain

Jϕmembrane ¼
Z
membrane

jdS; ð62Þ

where

j≡ 1

16π

gϕϕ
N

∂ω
∂l ð63Þ

is an angular momentum surface density, the quantities are
evaluated at the membrane from the outside, and dS is the
2-dimensional surface spanned by t ¼ constant and
l ¼ constant. For the outside, when there is matter and
other fields outside the membrane, one has

Jout ¼ −
Z
out

T0
ϕN

ffiffiffi
γ

p
d3x: ð64Þ

Now, we evaluate the mass in the stationary case,
resorting to the Tolman mass formula. The Tolman mass
for a given stationary spacetime with a stress-energy tensor
Tμν is defined as in the static case, see Eq. (9), i.e.,

M ¼
Z
Σ
ð−T0

0 þ Tk
kÞ

ffiffiffiffiffiffi
−g

p
d3x; ð65Þ

with g being the determinant of the metric gμν in, e.g.,
Eq. (53), d3x ¼ dx1dx2dx3, and the integral is performed
over a 3-space Σ with t ¼ constant. Using, from the metric
Eq. (53), that g ¼ −Nγ with γ ¼ gθθgϕϕ, we have

M ¼
Z
Σ
ð−T0

0 þ Tk
kÞN

ffiffiffi
γ

p
d3x: ð66Þ

Again, we divide the mass into three pieces,

M ¼ Min þMmembrane þMout: ð67Þ

For the inside vacuum, we have

Min ¼ 0: ð68Þ
For the membrane, we apply the junction conditions. Since
8πSνμ ¼ ½½Kν

μ�� − δνμ½½K��, we have here 8πð−S00 þ SaaÞ ¼
−2½½K0

0��. Put nμ as the unit vector normal to the boundary
surface, the membrane. Also, Kμν ¼ −∇νnμ, where at the
boundary surface N ¼ constant and the normal unit vector
is nμ ¼ ∂l

∂xμ. Further calculations then give

Mmembrane ¼
Z
membrane

ðσ þ 2ωjÞdS; ð69Þ

where σ has the expression given in Eq. (16), ω is the
membrane angular velocity with ω ¼ ω0 defined in
Eq. (52), and j is given in Eq. (63).
For the outside, we have

Mout ¼
Z
out

ð−Tout 0
0 þ Tout k

kÞN ffiffiffi
γ

p
d3x; ð70Þ

where one can further split into matter fields and other
fields.
Thus, putting together Eqs. (68), (69), and (70) into

Eqs. (67), we obtain the mass formula from the Tolman
definition for a spacetime with a membrane.

C. Black hole mass formula in the membrane
paradigm with rotation

1. Constancy of the angular velocity at the horizon

Now, let lh ≡ l0 at the horizon limit. The membrane is
approaching the horizon. In the nonextremal case, we have
that N behaves as given in Eq. (18); see Ref. [42]. It still
involves κ, the surface gravity at the horizon obeying
κ ¼ constant different from zero. For the metric coefficient
ω, we assume the validity of the expansion near the
horizon [42,43] ω ¼ Ωþ a2N2 þ � � �, for some constant
a2, and so from Eq. (18), we get

ω ¼ ΩþOððl − lhÞ2Þ; ð71Þ

where Ω≡ ωh is the horizon value of ω obeying

Ω ¼ constant: ð72Þ
2. Black hole mass formula in the membrane

paradigm with rotation

To obtain the black hole mass formula in the membrane
paradigm with rotation, let us focus on the membrane term
above. Using Eq. (69) and with the help of Eqs. (16) and
(63), we can put the σ term, now in the guise of κ, and the ω
term, now as Ω, outside the integral, since κ and Ω are
constants at the horizon. For the κ term we get κA

4π after
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integration, with A being the horizon area. For the Ω term
we get 2ΩJ after integration, where J is the angular
momentum of the membrane at the horizon, i.e., the angular
momentum of the black hole. So, Eq. (69) at the horizon
together with Eq. (70) and Eq. (68) in Eq. (67), lead to

M ¼ κA
4π

þ 2ΩJ þMout: ð73Þ

This is precisely the black hole mass formula for rotating
black holes derived from the membrane paradigm. It was
derived in Ref. [28] (see also Refs. [29,30]) from black hole
theory using Komar’s mass and angular momentum def-
initions, which are appropriate in a vacuum spacetime with
one timelike and one spacelike Killing vector. In the
vacuum case, Mout ¼ 0, Eq. (73) is the Smarr formula
for a Kerr black hole [27].

3. Extremal rotating case

For the extremal rotating case, one has N ¼ Oððl − lhÞ3Þ
[42]. For the metric coefficient ω, we assume the validity of
the expansion near the horizon [42,43] ω¼Ωþa1Nþ…,
i.e., ω ¼ ΩþOððl − lhÞ3Þ þ ::.. This all leads to κ ¼ 0, so
that we can use Eq. (73) directly and write the mass formula
for the extremal case as

M ¼ 2ΩJ þMout: ð74Þ

For Mout ¼ 0 and for an extremal Kerr, one finds Ω ¼ 1
2M

and M2 ¼ J, which is the well-known relation for rotating
extremal black holes.

4. Black hole mass formula in the membrane
paradigm with electric field and rotation

If the membrane has electric field and rotation, devel-
oping the calculations done previously, one finds the
following mass formula:

M ¼ κA
4π

þΦQþ 2ΩJ þMout: ð75Þ

In the vacuum case, Mout ¼ 0, it is the Smarr formula for a
Kerr-Newman black hole [27].

V. CONCLUSIONS

In replacing the black hole event horizon by a self-
gravitating material membrane located slightly above the
horizon itself, i.e., using the membrane paradigm formal-
ism, we have been able to derive the mass formula for static
and rotating black holes without and with electric fields.
A fundamental element in the derivation is the setting of the
proper boundary conditions on the membrane when it
approaches its own gravitational or horizon radius. We
found that both the membrane paradigm and the standard
black hole theory yield exactly the same result.
We have thus filled an important gap in the membrane

paradigm investigations and showed that the membrane
paradigm formalism is able to reproduce correctly one of
the basics of black hole physics, namely, the mass formula.
This has been achieved in a completely different perspec-
tive than in the original derivations since now there is no
black hole and we have dealt with a timelike surface only in
the form of a membrane.
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