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Gravitational perturbations due to a point particle moving on a static black hole background are naturally
described in Regge-Wheeler gauge. The first-order field equations reduce to a single master wave equation
for each radiative mode. The master function satisfying this wave equation is a linear combination of the
metric perturbation amplitudes with a source term arising from the stress-energy tensor of the point particle.
The original master functions were found by Regge and Wheeler (odd parity) and Zerilli (even parity).
Subsequent work by Moncrief and then Cunningham, Price and Moncrief introduced new master variables
which allow time domain reconstruction of the metric perturbation amplitudes. Here, I explore the
relationship between these different functions and develop a general procedure for deriving new higher-
order master functions from ones already known. The benefit of higher-order functions is that their source
terms always converge faster at large distance than their lower-order counterparts. This makes for a
dramatic improvement in both the speed and accuracy of frequency domain codes when analyzing unbound
motion.
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I. INTRODUCTION

The recent first detections [1–3] of gravitational waves
were made possible, in part, by accurate modeling of
strongly gravitating binary sources. Through a mixture
of numerical relativity, post-Newtonian theory, and black
hole perturbation theory methods, the inspiral-merger-ring-
down waveform is being modeled with increasing accuracy
e.g. [4–6]. This work on bound motion has been incredibly
important, but in the decades while these techniques have
been developed, the modeling of unbound binary sources
has been largely neglected.
In this work and its companion paper, Ref. [7] with

Cardoso, we return focus to unbound motion. In Ref. [7]
(and also earlier in Ref. [8]), we provide numerical results
from scattering systems, which we compare to various
analytical predictions. Here, I describe the numerical
method used to generate those results.
In particular, I consider point particle motion in

Schwarzschild spacetime, be it a plunge or a scattering
event. Finding the metric perturbation (MP) sourced by
such a particle requires solving the first-order field equa-
tions. As usual, this task requires specifying a first-order
gauge condition and subsequently making several choices
concerning numerical techniques. Perhaps the most natural
approach would be to decompose the system in spherical
harmonic modes and then work in Lorenz gauge with a
1þ 1 time domain (TD) solver. Such an approach has been
employed by Barack and Sago [9] for eccentric motion. TD

codes have the advantage of being “source agnostic,” in that
the method need not change depending on the type of
motion (bound, unbound, circular). On the other hand, TD
codes have the problem of junk radiation due to unphysical
initial data [10]. And, while for bound motion junk
radiation will die off as the system “relaxes” into the
desired solution, a particle on an unbound trajectory will
chase the wavefront of the junk radiation, forcing a TD
simulation to begin far from the black hole, especially for
high energy events. Additionally, for eccentric motion, TD
codes have not been able to compete with the speed and
accuracy of frequency domain (FD) approaches [11–13]
(even for eccentricities approaching 0.8).
This advantage of FD techniques stems largely from the

ease of solving a set of ordinary differential equations
(ODEs) rather than evolving a partial differential equation.
Further, while generic source motion would have to be
decomposed in the FD with a Fourier transform, bound
geodesics brings the benefit of exactly periodic radial
motion. Thus, the spectral decomposition of the source
and its field are represented by Fourier series with exactly
known frequencies. From this follows the exponential
convergence of source integration [14], further improving
the speed and accuracy of FD codes.
The success of FD methods for bound motion leads one

to ask whether the techniques can be usefully generalized to
unbound motion. The first challenge faced is the loss of the
discrete spectrum provided by a Fourier series. This in itself
is not an immediate reason to despair; certainly, spectral
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techniques are used across all areas of science to analyze
nonperiodic systems, usually in the form of discrete Fourier
transforms. One must simply choose the largest and smallest
frequencies to consider in the problem. Fundamentally, this
is no different than choosing the smallest time step in a TD
evolution and the total length of evolution.
The second challenge comes from considering a source

which has traveled all the way from spatial infinity.
Experience and physical intuition tell us that the “interest-
ing part” of the particle’s motion happens when it is
(in some sense) near the black hole. Even a particle with
a large Lorentz factor should simply behave as if it were in
Minkowski spacetime when it is far away. Mathematically,
this intuition is born out by examining the large-r behavior
of sources. In order to transform the TD sources to their FD
amplitudes, one must (formally) integrate over all time. For
such an integral to converge, the source must fall off at least
a 1/r and, indeed, examining the Lorenz gauge sources, one
finds that this is always true.
But of course, Lorenz is not the only gauge choice

available. It is often preferable to work in Regge-Wheeler
(RW) gauge on Schwarzschild spacetime. Then, by
employing the Regge-Wheeler-Zerilli (RWZ) formalism,
the full field equations can be reduced to a single “master”
wave equation for each l, m mode. While there appears to
be little downside (at least when computing fluxes) to this
approach when considering bound motion, the source terms
to the master equation are not as well behaved as the Lorenz
sources. The main result of this paper is to show how the
RWZ sources can be modified so as to improve their large-r
behavior, thus improving the speed and accuracy of codes
written to analyze unbound motion around a static
black hole.
The numerical study of unbound point particle motion on

Schwarzschild spacetime has a long history extending back
to pioneering work by Davis et al. [15]. They used the
Zerilli equation [16] to compute the radiated energy due to
a particle falling head-on into a Schwarzschild black hole
from rest at infinity. Of course, both before and since
Ref. [15], a variety of analytic techniques, e.g. [17–20],
have been applied to the problem. We compare to many of
those predictions in Ref. [7], but they will not be consid-
ered here.
A great breakthrough in black hole perturbation theory

was made by Teukolsky who derived his eponymous
equation [21] using the Newman-Penrose formalism.
The Teukolsky equation describes scalar, neutrino, electro-
magnetic, and gravitational perturbations on a Kerr black
hole background all in one master equation. Detweiler and
Szedenits [22] made use of Teukolsky’s equation (along
with a shrewd intuition for which divergent integrals to
ignore) to analyze plunges with nonzero angular momen-
tum on a Schwarzschild background.
While the Teukolsky formalism is indeed powerful, the

consolidation of so many different phenomena into one
equation has its costs. Two of these costs, a radial equation

with a long-ranged potential and poorly behaving source
terms were rectified by the transformations introduced by
Sasaki and Nakamura [23]. (Subsequently, the poor source
term behavior was explained by Poisson [24] and
Campanelli and Lousto [25].) The Sasaki-Nakamura equa-
tion has been used extensively to study unbound motion. In
particular, work by Oohara [26], Oohara and Nakamura
[27], and, more recently, Berti et al. [28] considered the
special case of static black holes.
While the Sasaki-Nakamura formalism is very powerful,

I will largely ignore it here. It remains invaluable for
studying point-particle motion on Kerr spacetime (espe-
cially for unbound sources), but is needlessly complicated
in the Schwarzschild case. Obtaining source terms for the
Sasaki-Nakamura equation requires solving an additional
numerical integral, which we are able to sidestep entirely
through the methods described here.
Before concluding this introduction, it is worth mention-

ing the relation of this work to gravitational self-force
(GSF) research [29,30]. Recent black hole perturbation
theory methods and codes (see, among others, [11,12,
31–33]) have been developed in no small part because of
the desire to crack the GSF problem. The goal is to model
the motion of a small-mass particle on a Kerr background
while using effect of the particle’s own MP to drive it off
the background geodesic. GSF research is important for the
eventual detection of extreme mass-ratio binaries by LISA
[34], or a similar detector. The prospect of computing the
GSF for an unbound trajectory and finding, e.g., the
correction to the particle’s deflection angle is tantalizing.
However, it is beyond the scope of this paper, and I will not
attempt to compute the GSF here, settling for the more
modest goal of developing a reliable method for finding
waveforms and fluxes, which are interesting in their
own right.
This paper is organized as follows. Section II explains

the mathematical basis for the problem this paper sets out to
solve. In Sec. III, I explore the relationship between known
master functions and also show how to generalize this
relationship to define master functions with well-behaved
source terms. Section IV gives an overview of the numeri-
cal algorithm I have implemented and discusses the
practical benefits of the techniques developed here. In
Sec. V, I explore whether the methods presented in this
paper would work in other systems. Then, the Appendix
gives details of unbound geodesics, the RWZ formalism,
and specific source terms. Throughout this paper, I let G ¼
c ¼ 1 and use standard Schwarzschild coordinates
xμ ¼ ðt; r; θ;φÞ. A subscript p indicates a field evaluated
at the particle’s location, e.g. rp ¼ rpðtÞ.

II. STATEMENT OF THE PROBLEM

A. Quick background of the RWZ formalism

I now consider the process of solving the first-order (in
mass ratio) RW gauge field equations in the FD. As the
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general formalism has now been well established, I relegate
its full presentation to Appendix A. For the purposes of this
section it is enough to recall the following facts. The master
equation in the TD is of the form

�
−
∂2

∂t2 þ
∂2

∂r2� − VlðrÞ
�
Ψlmðt; rÞ ¼ Slmðt; rÞ; ð1Þ

where r� ¼ rþ 2M logðr/2M − 1Þ is the usual tortoise
coordinate. The form of both the potential Vl and the
source term Slm are (lþm) parity dependent. The master
function Ψlm and its source Slm are decomposed into
harmonics Xlmω and Zlmω using a Fourier transform. They
satisfy the FD version of Eq. (1),�

d2

dr2�
þ ω2 − VlðrÞ

�
XlmωðrÞ ¼ ZlmωðrÞ: ð2Þ

It is typical to solve this equation by the method of variation
of parameters, i.e. finding its homogeneous solutions
(denoted X̂�

lmω, with the þ solution being outgoing as
r� → ∞ and − being downgoing as r� → −∞) and
then integrating them against the source, which has the
specific distributional form SlmðtÞ≡GlmðtÞδðr − rpÞ þ
FlmðtÞδ0ðr − rpÞ. From a practical standpoint, the crux
of the numerical calculation amounts to solving the
integral [35],

C�
lmω ¼ 1

Wlmω

Z
∞

−∞

�
1

fp
X̂∓
lmωðrpÞGlmðtÞ

þ
�

2M
r2pf2p

X̂∓
lmωðrpÞ −

1

fp

dX̂∓
lmωðrpÞ
dr

�
FlmðtÞ

�

× eiωtdt; ð3Þ

where f ≡ 1–2M/r and Wlmω is the Wronskian. The
constants C�

lmω are the normalization coefficients, which
must be found for a range of spherical harmonic indices l,
m and frequencies ω.
For eccentric geodesic motion, the normalization coef-

ficients, along with homogeneous solutions to Eq. (2),
define the extended homogeneous solution (EHS) [36],
which is the correct TD solution to Eq. (1). The EHS
method provides exponential convergence of Fourier har-
monics everywhere, including the particle’s location, mak-
ing it critical to fast and accurate FD GSF codes. However,
in the present context one of the crucial assumptions of
EHS fails, namely the presence of a source-free region
where the Fourier synthesis is known to converge expo-
nentially. As such, the EHS method is not directly appli-
cable to unbound motion and it remains to be seen if the
method can be suitably altered to once again provide
exponential convergence and avoid the Gibbs behavior
that results from using a singular source. For this work, I do
not pursue the local reconstruction of the MP, but focus

rather on efficient methods for solving Eq. (3). These
normalization coefficients are all that are needed to
compute the waveform and the total radiated energy and
angular momentum.

B. RWZ source behavior for various
master functions

For concreteness, imagine a particle plunging from spatial
infinity. It is clear that for the integral (3) to converge both
Glm and Flm must fall off at least as 1/rp far from the black
hole (when t → −∞). At the horizon (when t → ∞), Glm

must fall off at least as f2p while Flm must fall off at least as
f3p. (Note that X̂

�
lmω ∼ e�iωr� in the asymptotic regimes, so

this does not help convergence).
Consider now the Zerilli (Z) [16] source, used by Davis

et al. [15]. (They used the axial symmetry of their problem,
and so their source looks simpler than the generic source
shown in Appendix B.) Expanding at the horizon we see,

GZ
lm ∼ f2p þOðf3pÞ; FZ

lm ∼ f3p þOðf4pÞ; ð4Þ

as rp → 2M. These converge fast enough; in fact, all master
function source terms fall off sufficiently fast at the horizon,
so I will not consider their expansions further. At large rp

GZ
lm ∼ r−2p þOðr−3p Þ; FZ

lm ∼ r−1p þOðr−2p Þ: ð5Þ

As expected, this source satisfies the necessary require-
ments for the convergence of the integral in Eq. (3). In the
odd-parity sector, the original variable is due to Regge and
Wheeler [37]. Expanding its source at large rp,

GRW
lm ∼ r−3p þOðr−4p Þ; FRW

lm ∼ r−3p þOðr−4p Þ: ð6Þ

These terms, too, trend so that the normalization integral
converges.
Recently, the original RW and Z master functions are

less used because they do not permit TD reconstruction of
the MP amplitudes. It is more common to use the Zerilli-
Moncrief (ZM) [38] and Cunningham-Price-Moncrief
(CPM) [39] functions which do allow for MP recon-
struction in the TD (see [35,40]). The more recent ZM
and CPM variables are (almost—see next section) the time
integrals of the Z and RW variables. For bound motion the
ZM and CPM variables are preferable in every way to the Z
and RW variables. However, in the unbound case the ZM
source term behaves poorly at large rp,

GZM
lm ∼ r−1p þOðr−2p Þ; FZM

lm ∼ r0p þOðr−1p Þ: ð7Þ

The FZM
lm term prevents the normalization integral (3) from

converging. Meanwhile the CPM variable still converges at
large rp implying that it can be used to analyze unbound
sources, but is less effective than the RW variable since it
falls off significantly more slowly,
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GCPM
lm ∼ r−2p þOðr−3p Þ; FCPM

lm ∼ r−1p þOðr−2p Þ: ð8Þ

In the next section, by examining the ways in which
the different variables are related, I develop a general
method for constructing master functions with progres-
sively higher-order large rp convergence.

III. TIME DERIVATIVES OF
MASTER FUNCTIONS

Beginning in this section, I drop lm indices for brevity,
although I do indicate FD quantities with a subscript ω.
I use the harmonic decomposition and MP notation
introduced by Martel and Poisson [40] with source term
notation from Hopper and Evans [35]. Also, I define the
symbols λ≡ ðlþ 2Þðl − 1Þ/2, Λ≡ λþ 3M/r.

A. Relationships between the known
master functions

1. Odd parity

The CPM master function is defined through the
following linear combination of odd-parity RW gauge
MP amplitudes and their first derivatives,

Ψð0Þ
CPMðt; rÞ≡ r

λ

�
∂rht − ∂thr −

2

r
ht

�
: ð9Þ

The superscript (0) indicates the number of time derivatives
of the CPM variable. This is a C−1 function (that is, it has a
jump in its value at the particle’s location, but is otherwise
smooth), and so taking its time derivative (indicated with a
dot) yields a distribution with a time-dependent Dirac delta
at the particle’s location,

Ψ̇ð0Þ
CPMðt; rÞ ¼

r
λ

�
∂t∂rht − ∂2

t hr −
2

r
∂tht

�

¼ 2f
r
hr −

rpfp
λ

prðtÞδðr − rpÞ; ð10Þ

where the second equality follows from the field equations
(see [35]). Since we know the magnitude of the delta
function exactly, we subtract it off, defining a new master
function which is also C−1,

Ψð1Þ
CPMðt; rÞ≡ Ψ̇ð0Þ

CPM þ rpfp
λ

prðtÞδðr − rpÞ ¼
2f
r
hr: ð11Þ

The superscript (1) means “the first time derivative of the
CPM variable with the singular part subtracted.” This is
exactly twice the original RW variable. Except for exactly
at the location of the particle, it is precisely the time
derivative of the CPM variable. Therefore, the normaliza-

tion coefficients for Ψð0Þ
CPM are related to those of Ψð1Þ

CPM by

Cð0Þ;�
CPM;ω ¼ Cð1Þ;�

CPM;ω

−iω
: ð12Þ

which is valid for all ω ≠ 0. The ω → 0 limit is subtle for
unbound motion and is discussed at length in Ref. [7].

2. Even parity

The ZM function is defined as

Ψð0Þ
ZMðt; rÞ≡ r

λþ 1

�
K þ 1

Λ
ðf2hrr − rf∂rKÞ

�
: ð13Þ

It, too, is C−1, so taking its time derivative introduces a
Dirac delta,

Ψ̇ð0Þ
ZMðt; rÞ ¼

r
λþ 1

�
∂tK þ 1

Λ
ðf2∂thrr − rf∂t∂rKÞ

�

¼ 1

Λ
ðr∂tK − fhtrÞ þ

r2pfp
Λpðλþ 1Þ qtrðtÞδðr − rpÞ;

ð14Þ
where again I have used the field equations. After sub-
tracting the singular term, define a new master function
which is also C−1,

Ψð1Þ
ZMðt; rÞ≡ Ψ̇ð0Þ

ZM −
r2pfp

Λpðλþ 1Þ qtrðtÞδðr − rpÞ

¼ 1

Λ
ðr∂tK − fhtrÞ: ð15Þ

This is exactly the original Zerilli variable (although he
wrote it in the FD). Except at the exact location of the
particle, it is precisely the time derivative of the ZM

variable. As before, note that the Ψð0Þ
ZM and Ψð1Þ

ZM normali-
zation coefficients are related via

Cð0Þ;�
ZM;ω ¼ Cð1Þ;�

ZM;ω

−iω
: ð16Þ

The conclusion to draw from these variables is, taking
the time derivative of a master functions and then removing
the offending Dirac delta will always produce a new master
function of the same weak form (i.e., C−1).

B. Master functions with an arbitrary number
of time derivatives

In the previous subsection, I showed that one can derive
one master function from another by taking the time
derivative and subtracting the exact delta function that
follows from differentiating a C−1 function. Now I general-
ize that process to show how one can differentiate arbi-
trarily many times, each time creating a new master
function of the same weak form.
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Consider a master function Ψð0Þ which satisfies an
equation of the form

�
−

∂2

∂t2 þ
∂2

∂r2� − VðrÞ
�
Ψð0Þðt; rÞ

¼ Gð0ÞðtÞδðr − rpÞ þ Fð0ÞðtÞδ0ðr − rpÞ: ð17Þ

It is convenient to write the master function in the weak
form

Ψð0Þðt; rÞ ¼ Ψð0Þ;þðt; rÞθðr − rpÞ þ Ψð0Þ;−ðt; rÞθðrp − rÞ:
ð18Þ

The Heaviside coefficients satisfy the homogeneous
version of Eq. (17), while the source terms imply that
the jump in Ψð0Þ at the particle’s location is [35]

⟦Ψð0Þ⟧pðtÞ ¼
E2

f2pU2
p
Fð0Þ: ð19Þ

E is the particle’s specific energy and U2
p is the effective

potential, defined in Appendix A. Now, we can take the

time derivative of any master function that satisfies
Eq. (17), and it will satisfy an equation of the same form.
However, the time derivative will introduce a second
derivative of the delta function in the source on the rhs.
This follows because the time derivative of Ψð0Þ is

Ψ̇ð0Þðt; rÞ ¼ Ψ̇ð0Þ;þθðr − rpÞ þ Ψ̇ð0Þ;−θðrp − rÞ
− ṙp⟦Ψð0Þ⟧pδðr − rpÞ: ð20Þ

Thus, I define

Ψð1Þðt; rÞ≡ Ψ̇ð0Þ þ ṙpE2

f2pU2
p
Fð0Þδðr − rpÞ; ð21Þ

which is C−1 and will satisfy an equation of the form (17)
with no δ00ðr − rpÞ source term.

C. Higher-order source terms

It is fine to define newmaster functions by differentiating
the old functions, but what makes a master function unique
is its source term. In order to find the source term for Ψð1Þ,
start by acting with the wave operator on Eq. (21),

�
−

∂2

∂t2 þ
∂2

∂r2� − VðrÞ
��

Ψ̇ð0Þ þ ṙpE2

f2pU2
p
Fð0Þδðr − rpÞ

�
¼ Gð1Þδðr − rpÞ þ Fð1Þδ0ðr − rpÞ: ð22Þ

When the wave operator hits Ψ̇ð0Þ, it is equivalent to taking the time derivative of Eq. (17) and so�
−

∂2

∂t2 þ
∂2

∂r2� − VðrÞ
��

ṙpE2

f2pU2
p
Fð0Þδðr − rpÞ

�
þ Ġð0Þδðr − rpÞ þ ðḞð0Þ − Gð0ÞṙpÞδ0ðr − rpÞ

− Fð0Þṙpδ00ðr − rpÞ ¼ Gð1Þδðr − rpÞ þ Fð1Þδ0ðr − rpÞ: ð23Þ
Acting on the remaining delta term requires care. The r� derivatives must be expanded as ∂2

r� ¼ fðrÞ∂rfðrÞ∂r, and then any
functions of r must be evaluated at r ¼ rpðtÞ by using the identities (for a smooth test function g)

gðxÞδðxÞ ¼ gð0ÞδðxÞ;
gðxÞδ0ðxÞ ¼ gð0Þδ0ðxÞ − g0ð0ÞδðxÞ;
gðxÞδ00ðxÞ ¼ gð0Þδ00ðxÞ − 2g0ð0Þδ0ðxÞ þ g00ð0ÞδðxÞ: ð24Þ

By design the δ00ðr − rpÞ term cancels. Then, equating the remaining coefficients of δðr − rpÞ and δ0ðr − rpÞ respectively
yields

Gð1Þ ¼ Ġð0Þ −
E2ṙpF̈ð0Þ

f2pU2
p

þ 2Ḟð0Þ

r7pU4
p
½10L4M2 − 7L4Mrp þ ðL4 þ 16L2M2Þr2p þ 2L2Mð4E2 − 5Þr3p

þ ð6M2 þ L2 − 2L2E2Þr4p þMð4E2 − 3Þr5p� þ
ṙpFð0Þ

r11p U6
p

�
−
E2r11p U4

pVp

f2p
þ 20L6M3 − 30L6M2rp

þ 4L4Mð17M2 þ 3L2Þr2p − L4ðL2 þ 20E2M2 þ 102M2Þr3p þ ð60L2M3 þ 8L4E2M þ 42L4MÞr4p
− 2L2ð45M2 − 12E2M2 þ L2E2 þ 2L2Þr5p þ 12MðM2 − 3L2E2 þ 3L2Þr6p
þ 3ð4E2M2 − 6M2 þ 2L2E2 − L2Þr7p þ 6Mð1 − 2E2Þr8p

�
; ð25Þ
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Fð1Þ ¼ −ṙpGð0Þ þ Ḟð0Þ

U2
pr3p

½2L2M − L2rp þ 2Mr2p þ ð2E2 − 1Þr3p� þ
Fð0Þṙp
r7pU4

p
½−10L4M2 þ 7L4Mrp

− ðL4 þ 16L2M2Þr2p þ 10L2Mð1 − 2E2Þr3p − ð6M2 þ L2 − 4L2E2Þr4p þ 3Mð1 − 4E2Þr5p�: ð26Þ

In writing these, I have used the constraints in Eq. (A3) to
reduce the number (and order of) time derivatives of rp.
Note the Vp term in Eq. (25), which is the (lþm parity-
appropriate) potential evaluated at r ¼ rp.
The expressions (25) and (26) are generic relations

between the source terms of any two master functions of
different “order.” It is a straightforward (if tedious) task to
insert theG and F terms from the CPM (or ZM) variable on
the rhs and obtain the G and F terms from the RW (or Z)
variable. It remains to show that the higher-order source
terms converge more quickly at large rp than the lower-
order ones.
Expanding each of the terms on the rhs of Eq. (25) in

inverse powers of rp confirms that Gð1Þ is guaranteed to fall
off at least one power of rp faster than Gð0Þ. Meanwhile,
Fð1Þ is guaranteed to converge at least as fast as Fð0Þ. It is
evident that if Fð1Þ does not ‘out-converge’ Fð0Þ, then
proceeding to the next order will produce a new source
Fð2Þ, which will converge faster. This exact phenomenon

occurs in the right panel of Fig. 1 when Fð3Þ
ZM converges at

the same rate as Fð2Þ
ZM, but then F

ð4Þ
ZM converges more rapidly.

Since the master functions Ψð1Þ is essentially the time-
derivative of Ψð0Þ, the two functions have associated nor-

malization coefficients related by Cð0Þ;�
ω ¼ Cð1Þ;�

ω /ð−iωÞ.
Each higher order brings one extra factor of ð−iωÞ−1. By
adjusting the normalization coefficients this way, one can
always get back to the CPM and ZM variables which allow
TD MP reconstruction.

IV. IMPLEMENTATION AND RESULTS

A. Numerical implementation

I now briefly describe the algorithmic details of my
numerical implementation. The code is written in C, uses a
GSL integrator [41], and works in the following series
of steps.
(1) Solve geodesic equations. A discussion of unbound

geodesics is given in Appendix A.
(2) Find boundary conditions to homogeneous FD

master equation (2) for a given l, m, ω mode.
The infinity-side (out-going wave) solution is found
with an asymptotic expansion in ðωrÞ−1 while the
horizon-side (down-going wave) solution is found
from a Taylor expansion in f. This is equivalent to
the way homogeneous solutions are found in the
bound case, e.g. [35].

(3) Integrate homogeneous solutions to source boun-
dary. Numerically integrate both homogeneous sol-
utions to the point where the source is closest to the
black hole. For scattering events this is the periapsis
rmin. For plunging trajectories, usually around r� ¼
−40M is plenty close (note the magnitude of the
source terms there in Fig. 1).

(4) Concurrently integrate homogeneous solutions with
normalization integral. (3). Starting close to the
black hole, numerically integrate out to a large rp.
Then, double rp, integrate again and check for
convergence of Eq. (3). Appendix A has a brief
discussion of the best independent variables to use

FIG. 1. The ðl; mÞ ¼ ð2; 2Þ mode source terms for a plunging particle with E ¼ 3 and Lfrac ¼ 0.99 (see Appendix A 1 for orbit
parametrization). In each of these graphs, the left side shows a log-linear plot, emphasizing the exponential decay of the source terms at
the horizon. On the right of each graph, the horizontal axis changes to logarithmic, displaying the algebraic convergence at large

distance. Note that Fð0Þ
ZM, the ZM source, does not converge [see Eq. (7)]. The next-order source term (Fð1Þ

ZM) converges only as r
−1
p , while

the second-order term (Fð2Þ
ZM) jumps to an efficient r−3p convergence.

SETH HOPPER PHYS. REV. D 97, 064007 (2018)

064007-6



for this integral. Note that for plunges, the horizon
flux, and hence the C−

lmω integral is known to
diverge, [42]. For the scattering case, there are
two (asymmetric, due to ṙp terms) legs of the
trajectory, which both must be covered in the source
integration.

(5) Repeat steps 2–4 for a range of l, m, ω. While m
always ranges from −l to l, both l and ω have
infinite range (with each ω spectrum being dense).
The choice of how to truncate (and discretize) these
ranges rests on overall accuracy requirements.

For fluxes, the l-sum consistently converges exponen-
tially, so choosing where to stop that infinite sum is
straightforward. For a given l, m though, the relevant
range of ω to choose is far from obvious. Weaker-field
events radiate less and require a finer discretization of the ω
range. Further, the energy spectrum of any given l,mmode
exhibits numerous “zeros” where the spectrum vanishes for
a given ω, only to rise again beyond that point, making
detecting spectral convergence quite challenging. Thus, a
fair amount of logic must be programmed into any
algorithm in order for it to dynamically determine how
to truncate these infinite sums. The features of the energy
spectrum discussed here can be seen in the figures of the
accompanying work Ref. [7].
A last challenge with the ω-spectrum is the static mode

ω ¼ 0. Smarr [43] pointed out that the energy spectrum
goes to a constant in this limit whenever the particle’s speed
is nonzero at infinity. It is simplest to consider very small
modes, but skip the static mode itself. We explore the zero-
frequency limit thoroughly in [7].

B. Practical effects of higher-order master functions

At first glance, there appears no downside to using
higher-order master functions. Certainly, ever higher-order
functions do provide ever-faster converging source terms.
However, in attempting to implement such a scheme,

practical issues quickly arise. First, after the first two
orders, the new source terms quickly become large, so
large in fact that the straightforward evaluation of them
starts to outweigh the benefits of faster rp-convergence. To
some extent, this trouble can be sidestepped by an
efficiently written code. It is best to precompute position
independent terms that show up in G and F before
performing the normalization integral. Even then, the
choice of which master function to use is not obvious,
as can be seen in Fig. 2.
The figure shows two separate runs, performed for a

range of precision requirements with various master func-
tions. Looking at the left panel, we see that when ω is
relatively small (in magnitude), there is little effect on run
times from choosing a different master function. For high
precision requirements, the higher-order function does lead
to faster runs, but the benefit is minor. For low precision,
increasing the order of the master function actually worsens
the runs times. The benefit of a higher-order master
function becomes evident at larger frequencies. In the right
panel of Fig. 2, the high-order master functions out-perform
the lower-order functions significantly, especially when
precision requirements are high. The most significant
feature of this figure is what is not shown, namely

Zerilli’s original variable Ψð1Þ
ZM. As discussed, the source

term for Ψð1Þ
ZM decays like r−1p , which is slow enough to

make numerical convergence to high precision impossible.
If one is not interested in results with precision beyond

(say) 10−4 and only considering moderately large-ω (which
excludes ultrarelativistic events), the high-order master
functions are usually unnecessary. The new even-parity

master function Ψð2Þ
ZM and the original odd-parity RW

function Ψð1Þ
CPM provide a convenient ‘sweet-spot’ of fast

rp-convergence with relatively compact source terms. They
are each given in Appendix B. For high-energy runs
though, the relevant range of harmonics gets high, and
the benefit of higher-order master functions is substantial.

FIG. 2. Run times for a variety of precision requirements and master function choices. All runs are for the ðl; mÞ ¼ ð2; 2Þmode and 20
evenly spaced harmonics in the shown ω range (excluding ω ¼ 0). The plots show that the benefit of high-order master functions are
realized when ω gets large. See also discussion in the text.
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As an example of the results produced by this code,
see Fig. 3. For the energies considered there, any master
function of higher order than the Zerilli function (i.e.

Ψð2Þ
ZM;Ψ

ð3Þ
ZM;Ψ

ð4Þ
ZM;…) will provide equivalent results. To

emphasize this, the waveforms shown there are computed

using the master functions Ψð5Þ
ZM (left panel) and Ψð3Þ

ZM
(right panel).

V. PROSPECTS FOR APPLICATION TO OTHER
FORMALISMS AND PROBLEMS

The methods developed here to improve source behavior
at large distances are ideally suited to the RWZ formalism.
It is worth exploring to what extent the same techniques
could be applied to other systems.

A. Lorenz gauge on Schwarzschild

The most natural extension of this technique would be to
the Lorenz gauge field equations on Schwarzschild space-
time. As mentioned, there should be no trouble using the
equations in their natural form since each of the source
terms falls off as 1/r2p at large rp. However, especially for
large Lorentz factors it is useful to have source terms which
fall off even faster. Without working out the details, I will
show why we can probably increase the rate of large-r
source convergence.
In the TD, each of the (unconstrained) Lorenz gauge

field equations is of the form

�
−

∂2

∂t2 þ
∂2

∂r2�
�
hð0Þi ðt; rÞ þMijh

ð0Þ
j ðt; rÞ

¼ Sð0Þi ðtÞδðr − rpÞ; ð27Þ

where hð0Þi represents any of the 10 MP amplitudes (htt, htr,
hrr, jt, jrK, G, ht, hr, h2), Mij is a matrix coupling the

fields and their first derivatives, and Sð0Þi ðtÞ are the source

amplitudes coming from the particle’s stress energy pro-
jection. The structure of the Lorenz gauge equations, with a
wave operator on the lhs and only a delta function (no delta

prime) on the rhs implies that each of the amplitudes hð0Þi is
C0. Taking one time derivative yields�

−
∂2

∂t2 þ
∂2

∂r2�
�
ḣð0Þi ðt; rÞ þMijḣ

ð0Þ
j ðt; rÞ

¼ Ṡð0Þi ðtÞδðr − rpÞ − ṙpS
ð0Þ
i ðtÞδ0ðr − rpÞ; ð28Þ

The delta prime on the rhs implies that the fields ḣð0Þi are
C−1 with jumps equal to

⟦ḣð0Þi ⟧pðtÞ ¼ −
ṙpE2

f2pU2
p
Sð0Þi : ð29Þ

Taking the second time derivative of the field equations
gives �

−
∂2

∂t2 þ
∂2

∂r2�
�
ḧð0Þi ðt; rÞ þMijḧ

ð0Þ
j ðt; rÞ

¼ S̈ð0Þi δðr − rpÞ − 2ṙpṠ
ð0Þ
i δ0ðr − rpÞ

− ̈rpS
ð0Þ
i δ0ðr − rpÞ þ ṙ2pS

ð0Þ
i δ00ðr − rpÞ: ð30Þ

The δ00ðr − rpÞ source implies a δðr − rpÞ term in each ḧð0Þi

with a coefficient of −ṙp⟦ḣ
ð0Þ
i ⟧p. Subtracting this term, we

can define a new set of amplitudes

hð2Þi ðt; rÞ≡ ḧð0Þi ðt; rÞ − ṙ2pE2

f2pU2
p
Sð0Þi δðr − rpÞ; ð31Þ

which are all C−1. They are exactly the second time
derivative of the Lorenz gauge fields, except at the exact
location of the particle. These fields satisfy equations of the
form

FIG. 3. Example results from the code presented here. Both panels show the ðl; mÞ ¼ ð2; 2Þ modes of the TD waveforms. The left
panel gives a sample waveform for a scattering run, and the right considers a sample plunge. See discussion in text. Many more results
from scattering runs computed with this code can be found in Ref. [7].
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�
−

∂2

∂t2 þ
∂2

∂r2�
�
hð2Þi ðt; rÞ þMijh

ð2Þ
j ðt; rÞ

¼ Sð2Þi ðtÞδðr − rpÞ þ Rð2Þ
i ðtÞδ0ðr − rpÞ: ð32Þ

The differential operator on the lhs is precisely the Lorenz
gauge operator. It remains to act with Eq. (32) on the new
fields (31) to derive expressions for the new source terms

Sð2Þi and Rð2Þ
i . The output is too lengthy and tedious to

include here, but I have done so and seen that each term
decays at least as r−3p , indicating that source integrations

would converge more quickly by using Sð2Þi and Rð2Þ
i source

terms rather than Sð0Þi . Note that if this method were
employed, the normalization procedure laid out in
Refs. [11,12] would have to be modified slightly in order
to take into account the delta prime in the source. Lastly, it
is worth remembering that the primary reason to use the
Lorenz gauge equations is for local GSF calculations, but
this paper has not addressed local calculations.

B. Unbound motion on Kerr

The situation on Kerr is less promising. Perturbations on
a Kerr background are typically found by solving the
Teukolsky equation. It is a wave operator in all four
spacetime variables acting on either of the Weyl scalars
ψ4 or ψ0. Schematically, it is of the form

W½ψðt; r; θ;φÞ� ¼ GðtÞδ3ðxi − xipÞ þ FjðtÞ∂jδ
3ðxi − xipÞ

þ EjkðtÞ∂j∂kδ
3ðxi − xipÞ; ð33Þ

where the indices i, j, k range over r, θ, φ. One can exploit
the axial symmetry of the Kerr background and reduce the
3þ 1 Teukolsky equation to a set (over azimuthal number
m) of 2þ 1 equations, at which point the schematic form is

Wm½ψmðt; r;θÞ� ¼GmðtÞδ2ðxa − xapÞþFm
b ðtÞ∂bδ

2ðxa − xapÞ
þEm

bcðtÞ∂b∂cδ
2ðxa − xapÞ; ð34Þ

where the indices a, b, c range over r, θ.
Unfortunately, the Teukolsky equation has never been

decomposed into a decoupled set of 1þ 1 equations in t
and r. In order to decompose it further, one must go all the
way to the FD and obtain an ODE in r (as well as a separate
homogeneous ODE in θ). The method I have presented in
this paper relies on a 1þ 1 wave equation and detailed
knowledge of the weak structure of the field at the particle’s
location. One can imagine taking a similar approach to the
2þ 1 equation (34), but problems quickly arise. The issue
is that the distributions on the rhs of Eq. (34) do not stem
from taking derivatives of Heavisides and Dirac deltas.
Rather, they are due to the local 1/r divergence of the
particle’s own field. An attempt to write down a 2þ 1weak
form of ψmðt; r; θÞ akin to that in Eq. (18) succeeds only in

the sense that the coefficients of the Heavisides are not
finite at ðr; θÞ ¼ ðrp; θpÞ. Indeed, this very divergence is at
the heart of all GSF research over the last two decades.
It seems then that the best bet for applying the methods

developed in this paper would be to decompose Eq. (34)
into a coupled set of 1þ 1 equations. Clearly, this is not
ideal, and it is worth admitting that the Sasaki-Nakamura
formalism is probably a far simpler and more effective way
to study unbound motion on Kerr.
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APPENDIX A: THE RWZ FORMALISM

1. Unbound Schwarzschild geodesics

Consider a point particle of mass μ moving on a
Schwarzschild background of mass M. Let the worldline
be parametrized by proper time τ, i.e. xμpðτÞ ¼ ½tpðτÞ;
rpðτÞ; π/2;φpðτÞ�, where I have confined the particle to
θp ¼ π/2 without loss of generality. Generic geodesics are
parametrized by the specific energy E and the specific
angular momentum L. The four-velocity uμ ¼ dxμp/dτ can
be written in terms of them as

ut ¼ E
fp

; uφ ¼ L
r2p

; ðurÞ2 ¼ E2 −U2
p; ðA1Þ

where the effective potential is

U2ðr;L2Þ≡ f

�
1þ L2

r2

�
: ðA2Þ

The radial coordinate velocity obeys the constraints

ṙ2pðtÞ ¼ f2p −
f2p
E2

U2
p;

̈rpðtÞ ¼
2Mfp
r2p

−
f2p
E2r2p

�
3M −

L2

rp
þ 5ML2

r2p

�
: ðA3Þ
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a. Plunges

Geodesics representing particles plunging from infinity
must have E ≥ 1 and also clear the peak of the effective
potential,

U2
max ¼

1

54

"
L2

M2
þ 36þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12M2

L2

s �
L2

M2
− 12

�#
: ðA4Þ

Define the maximum value of specific angular momentum
Lmax for a given E by solving E2 ¼ U2

max. Then, it is
convenient to parametrize such trajectories using E and
Lfrac where Lfrac ≡ L/Lmax ranges between −1 and 1,
exclusive, with Lfrac ¼ 0 corresponding to a head-on
plunge. Given E and Lfrac parametrizing a plunging
geodesic, it is convenient to integrate the geodesic equa-
tions and the normalization integral, (3) with respect to the
tortoise coordinate r� since it approaches the horizon
asymptotically.

b. Scatters

For scattering geodesics, it is better to replace L with
either the periapsis rmin or the impact parameter b. The
former is related to E and L by solving U2ðrmin;LÞ ¼ E2

for rmin, while the latter is defined as b≡ L/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
. In the

special case of E ¼ 1 (parabolic motion), b → ∞, making
rmin preferable.
In addition to these two parameters, it is worth noting the

natural extension of the semilatus rectum p and eccentricity
e to unbound geodesics. As in bound motion, they obey the
relations

E2 ¼ ðp − 2 − 2eÞðp − 2þ 2eÞ
pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
;

ðA5Þ

where now e ≥ 1. The p, e parametrization, can be used
with Darwin’s [44] relativistic anomaly χ, and the radial
position is

rpðχÞ ¼
pM

1þ e cos χ
: ðA6Þ

For eccentric motion χ runs from 0 → 2π during one radial
libration, but here χ ranges between −χ∞ → χ∞ where
χ∞ ≡ arccosð−1/eÞ, with periapsis occurring at χ ¼ 0. The
particle’s coordinate time tp is related to χ by the first-order
differential equation,

dtp
dχ

¼ p2M
ðp − 2 − 2e cos χÞð1þ e cos χÞ2

×

� ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

�
1/2

; ðA7Þ

while φp is known analytically,

φpðχÞ ¼
�

4p
p − 6 − 2e

�
1/2
F
�
χ

2

���� − 4e
p − 6 − 2e

�
: ðA8Þ

FðxjmÞ is the incomplete elliptic integral of the first
kind [45].
When performing the normalization integral (3), χ is a

good parameter to use near periapsis, as it removes
troublesome 1/ṙp terms. However, further from the encoun-
ter it is advantageous to switch to another curve parameter
like t or rp to avoid having to take ever-smaller steps in χ.

2. Frequency domain formalism

In Sec. II A I briefly covered the RWZ formalism in the
FD. The TD master equation (1) and its FD counterpart are
connected by the spectral decomposition of the field Ψlm
and the source Slm,

Ψlmðt; rÞ ¼
1

2π

Z
∞

−∞
XlmωðrÞe−iωtdω;

Slmðt; rÞ ¼
1

2π

Z
∞

−∞
ZlmωðrÞe−iωtdω: ðA9Þ

Formally, the Fourier coefficients are found by integrating
over all time,

XlmωðrÞ ¼
Z

∞

−∞
Ψlmðt; rÞeiωtdt;

ZlmωðrÞ ¼
Z

∞

−∞
Slmðt; rÞeiωtdt: ðA10Þ

Retarded boundary conditions require the two desired
independent homogeneous solutions to Eq. (2) to behave as

X̂þ
lmωðr� → þ∞Þ ∼ eiωr� ;

X̂−
lmωðr� → −∞Þ ∼ e−iωr� : ðA11Þ

A Green function is formed from these two solutions and
integrated over the source function ZlmωðrÞ to obtain the
particular solution of Eq. (2),

XlmωðrÞ ¼ cþlmωðrÞX̂þ
lmωðrÞ þ c−lmωðrÞX̂−

lmωðrÞ; ðA12Þ

where the normalization functions are given by the integrals

cþlmωðrÞ ¼
1

Wlmω

Z
r

2M

dr0

fðr0Þ X̂
−
lmωðr0ÞZlmωðr0Þ;

c−lmωðrÞ ¼
1

Wlmω

Z
∞

r

dr0

fðr0Þ X̂
þ
lmωðr0ÞZlmωðr0Þ: ðA13Þ

Here Wlmω is the (constant in r�) Wronskian
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Wlmω ¼ fðrÞ
�
X̂−
lmω

dX̂þ
lmω

dr
− X̂þ

lmω

dX̂−
lmω

dr

�
: ðA14Þ

The limits of integration in (A13) are extended to cover all
values of r, yielding the normalization coefficients

C�
lmω ¼ 1

Wlmω

Z
∞

2M
dr

X̂∓
lmωðrÞZlmωðrÞ

fðrÞ : ðA15Þ

In practice this integral is solved by substituting Zlmω from
Eq. (A10) into Eq. (A15) from which follows Eq. (3). As
shown in Ref. [7] these coefficients can be used to compute

radiated energy as well as harmonics of the gauge invariant
waveform.

APPENDIX B: EXPLICIT EXPRESSIONS FOR

Ψð1Þ
ZM, Ψð2Þ

ZM AND Ψð1Þ
CPM SOURCES

Explicit ZM and CPM source terms are given in
Ref. [35]. Here I provide expressions for the next two
even-parity source terms and the next one odd-parity source
term. The first time derivative of the ZM function is the
Zerilli function. Its source term is

Gð1Þ
ZM ¼ Ȳφφ

�
−
8πfpL2μṙp½30M2 þ 3ð4λ − 3ÞMrp − 4λr2p�

λðλþ 1ÞΛpr6pE
þ 8iπf3pL3μm

λðλþ 1Þr5pE2

	

þ 8πf2pLμȲφ

ðλþ 1ÞΛ2
pr8pE2

f54L2M3 þ L2ð28λ − 33ÞM2rp þMr2p½L2ð2λ2 − 18λþ 3Þ þ 42M2�

þ r3p½3M2ð8λþ 2E2 − 7Þ − L2ðλ − 2Þλ� þ 2λMr4pðλþ 3E2 − 7Þ − λr5pðλþ 2E2 − 1Þg

−
8πfpμṙpȲ

Λ2
pr6pE

½18L2M2 þ L2ð8λ − 3ÞMrp þ 2r2pð6M2 − L2λÞ þ 6λMr3p þ λr4pð2E2 − 1Þ�; ðB1Þ

Fð1Þ
ZM ¼ 8πf2pL2μṙpȲφφ

λðλþ 1Þr3pE
þ 8πf4pLμȲφðL2 þ r2pÞ

ðλþ 1ÞΛpr4pE2
þ 8πf2pμṙpȲðL2 þ r2pÞ

Λpr3pE
: ðB2Þ

The source for the second time derivative of the ZM function is

Gð2Þ
ZM ¼ −

8πf2pμȲ

Λ2
pr8pE

½18L2M3 þ 3r3pð2M2ð2λþ E2 − 1Þ − L2λ2Þ þ 6Mr2pðL2ðλ − 2ÞλþM2Þ

þ 2L2ð11λ − 6ÞM2rp þ λMr4pð4λþ 6E2 − 7Þ þ 2λ2r5pðE2 − 1Þ� − 16πfpLμMṙpȲφð12M þ ð3λ − 2ÞrpÞ
ðλþ 1ÞΛpr6p

þ Ȳφφ

�
16iπfpL3μmṙpð7L2M þ 11Mr2p − 4r3p − 2L2rpÞ

λðλþ 1Þr5pðL2 þ r2pÞ2
þ 8πf2pL2μ

λðλþ 1ÞΛ2
pr9pEðL2 þ r2pÞ3

½252L6M4

− 9L6M3rpð−20λþ 2m2 þ 19Þ þ 3L4M2r2pðL2ð10λ2 − 40λþ ð3 − 4λÞm2 þ 9Þ þ 360M2Þ
þ L4Mr3pð9M2ð84λ − 4m2 þ 8E2 − 81Þ − 2L2λðλ2 þ 11λþ ðλ − 3Þm2 − 9ÞÞ
þ r4pðL6λ2ðλþm2 þ 4Þ þ 6L4M2ð3ð7λ2 − 28λþ 6Þ þ ð3 − 4λÞm2 þ ð7λ − 3ÞE2Þ þ 1620L2M4Þ
þ L2Mr5pð9M2ð124λ − 2m2 þ 32E2 − 129Þ − 2L2λð3ðλ2 þ 15λ − 12Þ þ 2ðλ − 3Þm2 − 2ðλ − 3ÞE2ÞÞ
þ r6pð3L2M2ð62λ2 − 264λþ ð3 − 4λÞm2 þ 6ð10λ − 3ÞE2 þ 63Þ þ L4λ2ð3ðλþ 5Þ þ 2m2 − 2ðλþ 2ÞE2Þ þ 792M4Þ
þMr7pð9M2ð60λþ 40E2 − 67Þ − 2L2λð3ðλ2 þ 23λ − 21Þ þ ðλ − 3Þm2 − 6ð2λ − 3ÞE2ÞÞ
þ r8pðL2λ2ð3λþm2 − 2ð2λþ 5ÞE2 þ 24Þ þ 6M2ð15λ2 − 68λþ 3ð13λ − 6ÞE2 þ 18ÞÞ

− 2λMr9pðλ2 þ 35λ − 18ðλ − 2ÞE2 − 36Þ þ λ2r10p ðλ − 2ðλþ 7ÞE2 þ 13Þ�
	
; ðB3Þ
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Fð2Þ
ZM ¼ −

8πf3pμMȲðL2 þ r2pÞ
Λpr5pE

þ 16πf2pLμṙpȲφ

ðλþ 1Þr3p
þ Ȳφφ

�
−

8πf3pL2μ

λðλþ 1ÞΛpr6pEðL2 þ r2pÞ2
½21L4M2

þ 9L4ðλ − 1ÞMrp þ r2pð60L2M2 − 4L4λÞ þ 3L2Mr3pð8λþ 2E2 − 9Þ þ r4pð39M2 þ L2λð2E2 − 11ÞÞ

þ 3Mr5pð5λþ 6E2 − 6Þ þ λr6pð6E2 − 7Þ� − 16iπf2pL3μmṙp
λðλþ 1Þr3pðL2 þ r2pÞ

	
: ðB4Þ

The time derivative of the CPM variable is the RW variable (up to a factor of 2). The RW source is

Gð1Þ
CPM ¼ −

8πf2pL2μX̄φφ

λðλþ 1Þr4pE
−
16πfpLμṙpX̄φ

ðλþ 1Þr3p
; Fð1Þ

CPM ¼ 8πf3pL2μX̄φφ

λðλþ 1Þr3pE
: ðB5Þ

It is concise enough and converges fast enough to make it the ideal choice for most calculations. The next-order source is
much longer and converges only as fast as the RW source, so I do not include it here. It is only by proceeding to the
subsequent order and finding the Ψð3Þ

CPM source that a faster convergence can be achieved.
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