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Sherbrooke, Québec J1M 1Z7, Canada

(Received 15 December 2017; published 5 March 2018)

A symmetry of Brans-Dicke gravity in (electro)vacuo or in the presence of conformally invariant matter
is presented and used as a solution-generating technique starting from a known solution as a seed. This
novel technique is applied to generate, as examples, new spatially homogeneous and isotropic cosmologies,
a 3-parameter family of spherical time-dependent spacetimes conformal to a Campanelli-Lousto geometry,
and a family of cylindrically symmetric geometries.
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I. INTRODUCTION

There is plenty of motivation for studying theories of
gravity alternative to general relativity (GR), both theo-
retically and experimentally. Attempts to quantize GR
invariably introduce modifications to it in the form of
extra dynamical fields or higher order field equations, and
these corrections are not necessarily Planck-scale sup-
pressed. The prototype of the alternative to GR is scalar-
tensor gravity. Its simplest incarnation is Brans-Dicke
theory [1], which was generalized to richer forms of
scalar-tensor gravity [2]. In the 1980s, waning interest in
this class of theories by the gravity community was
renewed by the realization that the simplest string theory,
bosonic string theory, reduces to ω ¼ −1 Brans-Dicke
gravity in the low-energy limit [3].
More urgent motivation comes from cosmology. The

1998 discovery that the expansion of the Universe is
accelerated can be explained by the standard Λ cold dark
matter cosmological model based on GR only at the price
of introducing a completely ad hoc dark energy accounting
for approximately 70% of the energy content of the
Universe [4]. A possible way to avoid introducing dark
energy is by modifying gravity. Many theories of modified
gravity have been studied and intense experimental and
theoretical efforts aiming at testing gravity are underway or
under planning (see the reviews [5]). Probably the most
popular class of modified gravity theories motivated by
cosmology is fðRÞ gravity ([6], see [7] for reviews). fðRÞ
gravity turns out to be a Brans-Dicke theory in dis-
guise, corresponding to the special value ω ¼ 0 of the

Brans-Dicke coupling and to a special potential for the
scalar degree of freedom [7]. Apart from fðRÞ gravity,
Brans-Dicke theory is the toy model of choice to explore
deviations from GR involving scalar degrees of freedom in
many areas, including cosmology, black holes, gravita-
tional waves, no-hair theorems and ways to evade them,
stealth fields, and apparent horizons. Older research which
led to the introduction of the original Brans-Dicke theory
involves Mach’s principle [1] and Dirac’s idea that the
constants of nature may actually be dynamical fields [8],
which is partially realized in the feature of Brans-Dicke
gravity that the effective gravitational coupling strength
becomes, roughly speaking, the inverse of the Brans-Dicke
scalar field ϕ [1]. There has been renewed interest in
varying “constants” of physics in recent years (see [9] for a
popular exposition). Extra motivation related to the quan-
tization of gravity is provided by the finding that gener-
alized Brans-Dicke solutions describe asymptotically
Lifshitz black holes [10].
Analytical solutions of scalar-tensor gravity can provide

insight into aspects of these directions of research, but they
are not as numerous as the better known solutions of GR
[11]. It is valuable, therefore, to find general solution-
generating techniques in scalar-tensor gravity. Here we
focus on a symmetry group of Brans-Dicke gravity
[enriched by the possibility of an arbitrary potential
VðϕÞ for the Brans-Dicke scalar field] in the presence of
conformally invariant matter [12], which is really a
restricted conformal invariance of the theory and is rem-
iniscent of the broader conformal invariance of string
theories [13]. We explore the use of this symmetry as a
novel technique to generate new solutions of Brans-Dicke
gravity using known solutions as seeds. As examples of
application of this technique, we find three different kinds
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of analytical solutions: in the cosmological context, then
spherically symmetric and time-dependent solutions, and
finally cylindrically symmetric geometries. We use units in
which the speed of light in vacuo and Newton’s constant
are unity and we follow the notation of Ref. [14].

II. A SYMMETRY OF BRANS-DICKE THEORY

In this section we generalize the symmetry of Brans-
Dicke theory with VðϕÞ ¼ 0 found in [12] to the case in
which the Brans-Dicke scalar field ϕ is endowed with a
potential and conformally invariant matter is present. For
ease of exposition, we begin with the vacuum theory and,
in the last subsection, we include conformally invariant
matter.

A. Vacuum Brans-Dicke theory with any potential

The action is

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕR −

ω

ϕ
gab∇aϕ∇bϕ − VðϕÞ

�
: ð2:1Þ

This action is invariant in form under the operation
ðgab;ϕÞ → ðg̃ab; ϕ̃Þ, where

g̃ab ¼ Ω2gab ¼ ϕ2αgab; ð2:2Þ

ϕ̃ ¼ ϕ1−2α; ð2:3Þ

for α ≠ 1/2, that is, a conformal transformation of the
metric with conformal factor Ω ¼ ϕα and a nonlinear
redefinition of the scalar field. Since it is ϕ > 0 to
guarantee the positivity of the gravitational coupling, the
conformal transformation is well defined (except at space-
time points where ϕ diverges, which are to be regarded as
physical singularities). A tilde denotes geometric quantities
constructed with the conformally rescaled metric g̃ab. By
using the well-known transformation properties [14–17]

g̃ab ¼ Ω−2gab; ð2:4Þ

ffiffiffiffiffiffi
−g̃

p
¼ Ω4 ffiffiffiffiffiffi

−g
p

; ð2:5Þ

R̃ ¼ Ω−2
�
R −

6□Ω
Ω

�
; ð2:6Þ

and Eq. (2.3), one obtains

R ¼ ϕ2αR̃ −
6αð1 − αÞ
ð1 − 2αÞ2 ϕ

6α−2g̃ab∇̃aϕ̃∇̃bϕ̃

þ 6α

1 − 2α
ϕ4α−1□̃ ϕ̃ : ð2:7Þ

The term proportional to □̃ ϕ̃ which appears in the action
(as a contribution coming from

ffiffiffiffiffiffi−gp
ϕR) because of the last

term in the right-hand side of Eq. (2.7) can be written as

6α

1 − 2α

ffiffiffiffiffiffi
−g̃

p
□̃ ϕ̃ ¼ 6α

1 − 2α
∂μ

� ffiffiffiffiffiffi
−g̃

p
g̃μν∂νϕ̃

�
; ð2:8Þ

which is integrated to produce a boundary term giving zero
contribution when the action is varied. This term is ignored
in the following. The Brans-Dicke action (2.1), therefore,
becomes

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p 	
ϕ˜R̃−

�
ω

ð1 − 2αÞ2 þ
6αð1 − αÞ
ð1 − 2αÞ2

�
×
g̃ab

ϕ̃
∇̃aϕ̃∇̃bϕ̃ − ϕ̃

−4α
1−2αVðϕÞ



: ð2:9Þ

By redefining the Brans-Dicke coupling and scalar field
potential as

ω̃ðω;αÞ ¼ ωþ 6αð1 − αÞ
ð1 − 2αÞ2 ; ð2:10Þ

Ṽðϕ̃Þ ¼ ϕ̃
−4α
1−2αVðϕ̃ 1

1−2αÞ; ð2:11Þ

the Brans-Dicke action is rewritten as [12]

SBD¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
ϕ̃ R̃−

ω̃

ϕ̃
g̃ab∇̃aϕ̃∇̃bϕ̃− Ṽðϕ̃Þ

�
; ð2:12Þ

i.e., it is invariant in form under the transformation (2.2),
(2.3), provided that the changes (2.10), (2.11) are made. In
addition, the transformations of the type (2.2), (2.3) form a
1-parameter Abelian group [12].
As a special case, we note that a power-law potential

VðϕÞ ¼ V0ϕ
n ð2:13Þ

(where V0 and n are constants) is invariant in form, i.e., the
symmetry produces another power-law potential

Ṽðϕ̃Þ ¼ V0ϕ̃
ñ ð2:14Þ

with the new power

ñ ¼ n − 4α

1 − 2α
: ð2:15Þ
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An even more special case is n ¼ 2, for which also the
power in the potential is left invariant, Ṽðϕ̃Þ ¼ m2ϕ̃2/2 ¼
VðϕÞ and ñ ¼ n ¼ 2 when VðϕÞ ¼ m2ϕ2/2.

B. Electrovacuum Brans-Dicke theory

When an electromagnetic field is present as a form of
matter, the action is

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕR−

ω

ϕ
gab∇aϕ∇bϕ−VðϕÞ−FabFab

�
;

ð2:16Þ
where Fab is the Maxwell tensor. Since the latter has
conformal weight s ¼ 0 [14], F̃ab ¼ Fab and

ffiffiffiffiffiffi
−g

p
FabFab ¼

ffiffiffiffiffiffi
−g̃

p gFabFab; ð2:17Þ

so that also
ffiffiffiffiffiffi−gp

LðmÞ for this form of matter remains
invariant under the transformation (2.2), (2.3).

C. Conformally invariant matter

It is tempting to ask whether Brans-Dicke theory is left
invariant by the transformation (2.2), (2.3) in the presence
of any other form of matter, for example conformally
invariant matter. This property would be especially impor-
tant for applications, e.g., in cosmology or in stars when a
radiation fluid is present. The action principle for fluids is
notoriously nontrivial [18–20], therefore in this case it is
more convenient to analyze directly the transformation of
the field equations. The variation of the Brans-Dicke action
(2.1) with the addition of a matter action produces the field
equations

Rab−
1

2
gabR¼ 8π

ϕ
Tabþ

ω

ϕ2

�
∇aϕ∇bϕ−

1

2
gabgcd∇cϕ∇dϕ

�
þ 1

ϕ
ð∇a∇bϕ−gab□ϕÞ− V

2ϕ
gab; ð2:18Þ

□ϕ ¼ 1

2ωþ 3

�
8πT
ϕ

þ ϕ
dV
dϕ

− 2V

�
; ð2:19Þ

where Tab is the matter stress-energy tensor and T is its
trace. A rather long but straightforward calculation gives
the transformation properties of Eqs. (2.18) and (2.19)
under the operation (2.2), (2.3). The scalar field equa-
tion (2.19) becomes

□̃ ϕ̃ ¼ 1

2ω̃þ 3

�
8π

1 − 2α
ϕ̃

−4α
1−2αT þ ϕ̃

dṼ

dϕ̃
− 2Ṽ

�
; ð2:20Þ

where ω̃ and Ṽðϕ̃Þ are given by Eqs. (2.10) and (2.11).
Therefore, Eq. (2.19) is invariant in form under the

transformation (2.2), (2.3) only for conformally invariant
matter with T ¼ 0.
Under the same transformation, the other field equa-

tion (2.18) becomes

R̃ab −
1

2
g̃abR̃ ¼ 8π

ϕ̃
1

1−2α
Tab

þ ω̃

ϕ̃2

�
∇̃aϕ̃∇̃bϕ̃ −

1

2
g̃abg̃cd∇̃cϕ̃∇̃dϕ̃

�
þ 1

ϕ̃
ð∇̃a∇̃bϕ̃ − g̃ab□̃ ϕ̃Þ − Ṽ

2ϕ̃
g̃ab: ð2:21Þ

The stress-energy tensor Tab of matter, which by now we
know is required to be conformally invariant if the
operation (2.2), (2.3) is imposed to be a symmetry of
the theory, transforms according to T̃ab ¼ Ω−2Tab [14,21].
Then the first term in the right-hand side of Eq. (2.21)
becomes 8πT̃ab/ϕ̃ and the form of this equation is the same
of Eq. (2.18) before the transformation. We conclude that
Eqs. (2.2) and (2.3) describe a symmetry of Brans-Dicke
theory in the presence of an arbitrary (regular) scalar field
potential and of conformally invariant matter. Examples
include the Maxwell field in four spacetime dimensions
already mentioned in Sec. II B and a radiation fluid with
equation of state P ¼ ρ/3.
TheBrans-Dicke fieldϕ couples to the trace of the energy-

momentum tensor of ordinarymatter [cf. Eq. (2.19)] andonly
conformally invariant matter is covariantly conserved after a
conformal transformation gab → g̃ab ¼ Ω2gab. In fact, as is
well known in scalar-tensor gravity, the covariant conserva-
tion equation ∇bTab ¼ 0 becomes [1,17,21]

∇̃bT̃ab ¼ −T̃∇a lnΩ; ð2:22Þ

and only T ¼ 0 (which occurs if and only if T̃ ¼ 0)
guarantees covariant conservation after the conformal
rescaling.

III. APPLICATION TO BRANS-DICKE
COSMOLOGY

We now apply the new solution-generating technique to
spatially homogeneous and isotropic Brans-Dicke cosmol-
ogy (see [17,21] for reviews). In general, this symmetry is
not a Noether symmetry [22] nor a Hojman symmetry [23].
There are indications that the symmetry does not survive
Wheeler-DeWitt quantization in minisuperspace (at least in
the spatially flat case) because quantum effects cause an
anomalous symmetry breaking similar to that occurring in
condensed matter systems [24]. This fact is, however,
immaterial in the present work, which is confined to
classical gravity. First we use power-law, and then expo-
nential solutions as seeds. In both cases the line element is
the Friedmann-Lemaître-Robertson-Walker (FLRW) one in
comoving coordinates
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ds2 ¼ −dt2 þ S2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

ð2Þ

�
; ð3:1Þ

where the curvature index k is normalized to 0;�1 and
dΩ2

ð2Þ ¼ dθ2 þ sin2 θdφ2 is the line element on the unit

2-sphere.
Before proceeding we note that, in the case ω ¼ −1

corresponding to the bosonic string theory [3], the well-
known duality of pre-big-bang cosmology [25]

S → S̄ ¼ 1/S; ϕ → ϕ̄ ¼ S6ϕ; ð3:2Þ

is not reproduced by, and is unrelated to, the symmetry
(2.2), (2.3) that we study in our work.

A. Power-law solutions

We first consider vacuum Brans-Dicke theory with
V ≡ 0 and we look for power-law solutions of the form

SðtÞ ¼ S0tp; ð3:3Þ

ϕðtÞ ¼ ϕ0tq; ð3:4Þ

where S0 > 0, ϕ0 > 0, p, and q are constants. Most of the
known exact solutions of Brans-Dicke cosmology are of
this form [17], which includes the Brans-Dicke dust
solution [1], the O’Hanlon and Tupper family [26], and
the Nariai family [27]. Here we consider vacuum solutions.
After the conformal transformation (2.2) with parameter

α, the line element reads

ds̃2 ¼ −t2αqdt2 þ S20t
2ðpþαqÞ

�
dr2

1 − kr2
þ r2dΩ2

ð2Þ

�
; ð3:5Þ

where an irrelevant multiplicative constant has been
dropped. We now introduce the new time coordinate τ
defined by dτ ¼ tαqdt for q ≠ 0, or

t ¼ ðαqþ 1Þ 1
αqþ1τ

1
αqþ1; ð3:6Þ

with the choice of a common origin for t and τ and
α ≠ −1/q, 1/2. The line element (3.5) is then written using
this comoving time as

ds̃2 ¼ −dτ2 þ S20τ
2ðpþαqÞ
αqþ1

�
dr2

1 − kr2
þ r2dΩ2

ð2Þ

�
; ð3:7Þ

while the new Brans-Dicke field (2.3) is

ϕ̃ðτÞ ¼ ðαqþ 1Þqð1−2αÞαqþ1 ϕ1−2α
0 τ

qð1−2αÞ
αqþ1 : ð3:8Þ

One can write

S̃ðτÞ ¼ S0τp̃; ϕ̃ðτÞ ¼ ϕ̃0τ
q̃; ð3:9Þ

where

p̃ ¼ pþ αq
αqþ 1

; ð3:10Þ

q̃ ¼ qð1 − 2αÞ
αqþ 1

; ð3:11Þ

ϕ̃0 ¼ ðαqþ 1Þqð1−2αÞαqþ1 ϕ1−2α
0 : ð3:12Þ

As a special situation, we discuss the O’Hanlon and Tupper
family of spatially flat solutions of vacuum Brans-Dicke
cosmology given, for k ¼ 0, by [26]

q� ¼ 1

3ωþ 4

�
ωþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

3

r �
; ð3:13Þ

p� ¼ 1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2ωþ 3Þp

3ωþ 4
; ð3:14Þ

whose exponents satisfy the relation

3q� þ p� ¼ 1: ð3:15Þ

Equations (3.10) and (3.11) give

3q̃þ p̃ ¼ 1 − 5αq
αqþ 1

; ð3:16Þ

which is, in general, different from unity, hence the new
solution generated here is not of the O’Hanlon and
Tupper form.

B. Exponential solutions with linear potential

Instead of power-law solutions, we now use exponential
solutions of vacuum Brans-Dicke theory with a linear
potential VðϕÞ ¼ Λϕ, which amounts to introducing a
cosmological constant in this theory. The spatially flat
family of solutions

S�ðtÞ ¼ S0 exp

"
�ðωþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s
t

#
; ð3:17Þ

ϕ�ðtÞ ¼ ϕ0 exp

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s
t

#
; ð3:18Þ
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with S0, ϕ0 constants, are well-known attractors in phase
space [28–30]. By performing the conformal transforma-
tion (2.2) one obtains

ds̃2 ¼ ϕ2αds2 ¼ −e�2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Λ
ð2ωþ3Þð3ωþ4Þ

p
tdt2

þ S20 exp

"
�2ðωþ 1þ αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s
t

#
· ðdr2 þ r2dΩ2

ð2ÞÞ: ð3:19Þ

The comoving time in the tilded world is

τ ¼ e�α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Λ
ð2ωþ3Þð3ωþ4Þ

p
t

�α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Λ
ð2ωþ3Þð3ωþ4Þ

q þ const: ð3:20Þ

One must make sure that t and τ have the same direction.
By choosing the positive sign this property follows trivially
and τ ¼ 0 corresponds to t → −∞. If the negative sign is
taken, one can choose the integration constant so that

τ ¼ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ωþ 3Þð3ωþ 4Þ

2Λ

r �
1 − e−α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ3Þð3ωþ4Þ
p

t
�
: ð3:21Þ

Consider first the solution with positive sign, which is
rewritten as

ds̃2 ¼ −dτ2 þ S̃2ðτÞðdr2 þ r2dΩ2
ð2ÞÞ; ð3:22Þ

where

S̃ðτÞ ¼ S̃0τ
ωþ1þα

α ≡ S̃0τp̃; ð3:23Þ

ϕ̃ðτÞ ¼ ϕ1−2α ¼ ϕ̃0τ
1−2α
α ≡ ϕ̃0τ

q̃; ð3:24Þ

where

S̃0 ¼ S0

"
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s #ωþ1þα
α

; ð3:25Þ

ϕ̃0 ¼ ϕ1−2α
0

 
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s !1−2α
α

; ð3:26Þ

and

3q̃þ p̃ ¼ ωþ 4 − 5α

α
ð3:27Þ

(which, in general, is not equal to 1). The scalar field
potential is now, according to Eq. (2.11), of the power-law
form

Ṽðϕ̃Þ ¼ ϕ̃
−4α
1−2αΛϕ ¼ Λϕ̃1−4α

1−2α: ð3:28Þ

Using Eq. (2.10), the scale factor is written in terms of the
new Brans-Dicke coupling ω̃ as

S̃ðτÞ ¼ S̃0τ
1−2α
α ½ω̃ð1−2αÞþ1−3α�: ð3:29Þ

In this case, the symmetry (2.2), (2.3) transforms an
exponential solution into a power-law one corresponding
to a different power-law potential.
By choosing the negative sign in Eq. (3.20), we have

instead the line element (3.23) with

SðτÞ ¼ S0

 
1 − α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s
τ

!ωþ1þα
α

ð3:30Þ

but τ is now given by Eq. (3.21) and

ϕ̃ðτÞ ¼ ϕ1−2α
0

 
1 − α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ

ð2ωþ 3Þð3ωþ 4Þ

s
τ

!1−2α
α

: ð3:31Þ

The scalar field potential is again (3.28).

IV. A NEW FAMILY OF SPHERICAL,
TIME-DEPENDENT SOLUTIONS

In this section we use the symmetry transformation to
generate a new time-dependent solution of Brans-Dicke
theory from a static one used as a seed.
A spherically symmetric and time-dependent solution of

Jordan frame vacuum Brans-Dicke theory, which is con-
formal to the Fonarev spacetime1 [32,33], was found
recently in [34]. The line element and Brans-Dicke field are

ds2 ¼ −AðrÞ
1ffiffiffiffiffiffiffi

1þ4d2
p ð2d− 1ffiffiffiffiffiffiffiffi

j2ωþ3j
p Þ

e
4datð2d− 1ffiffiffiffiffiffiffiffi

j2ωþ3j
p Þ

dt2

þ e
2atð1− 2dffiffiffiffiffiffiffiffi

j2ωþ3j
p Þ

�
AðrÞ

−1ffiffiffiffiffiffiffi
1þ4d2

p ð2dþ 1ffiffiffiffiffiffiffiffi
j2ωþ3j

p Þ
dr2

þAðrÞ1−
1ffiffiffiffiffiffiffi

1þ4d2
p ð2dþ 1ffiffiffiffiffiffiffiffi

j2ωþ3j
p Þ

r2dΩ2
ð2Þ

�
; ð4:1Þ

ϕðt; rÞ ¼ ϕ0e
4datffiffiffiffiffiffiffiffi
j2ωþ3j

p
AðrÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ3jð1þ4d2Þ

p
; ð4:2Þ

where

AðrÞ ¼ 1 −
2m
r

; ð4:3Þ

VðϕÞ ¼ V0ϕ
β; β ¼ 2ð1 − d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j

p
Þ; ð4:4Þ

1The Fonarev solution of GR, in turn, is conformal to the
Fisher-Buchdahl-Janis-Newman-Winicour-Wyman scalar field
solution of the Einstein equations [31].
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and where m > 0, a, d are parameters of the family of
solutions, while ω ≠ −3/2 and ϕ0 > 0 is another constant
related to initial conditions.
We use a special case of this family as the seed to

generate a new family of solutions of vacuum Brans-Dicke
gravity. Assuming a ≠ 0, the time dependence of the
geometry (4.1) is eliminated if the parameter d is simulta-
neously equal to ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2ωþ 3jp Þ−1 and to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij2ωþ 3jp
/2,

which is achieved if ω ¼ −1 or if ω ¼ −2. In these cases,
however, the scalar field (4.2) remains time dependent,
while β ¼ 1 and the scalar field potential reduces to the
linear VðϕÞ ¼ V0ϕ, which is equivalent to introducing a
cosmological constant in the Brans-Dicke action. Since
ϕ > 0, this potential is effectively bounded from below. A
scalar field which does not share the symmetries of the
spacetime metric is currently of considerable interest
because it is used in Brans-Dicke, Galileon, and
Horndeski gravity as an ingredient to circumvent ([35],
see also [36]) well-known no-hair theorems for black holes
[37–39].
Our starting point is

ds2 ¼ −dt2 þ AðrÞ−
ffiffi
2

p
dr2 þ AðrÞ1−

ffiffi
2

p
r2dΩ2

ð2Þ; ð4:5Þ

ϕðt; rÞ ¼ ϕ0e2atAðrÞ1/
ffiffi
2

p
: ð4:6Þ

This geometry is recognized as a special case of the
Campanelli-Lousto geometry of Brans-Dicke theory. The
general Campanelli-Lousto solution has the form [40]

ds2CL ¼ −AðrÞb0þ1dt2 þ AðrÞ−a0−1dr2 þ AðrÞ−a0r2dΩ2
ð2Þ;

ð4:7Þ

ϕCLðrÞ ¼ ϕ0AðrÞ
a0−b0

2 ; ð4:8Þ

where a0 and b0 are two parameters, only one of which
is independent, and are related to the Brans-Dicke
coupling by

ωða0; b0Þ ¼
−2ða20 þ b20 − a0b0 þ a0 þ b0Þ

ða0 − b0Þ2
: ð4:9Þ

The line element (4.5) and scalar field (4.6) are reproduced
if ða0; b0Þ ¼ ð ffiffiffi

2
p

− 1;−1Þ, while Eq. (4.9) gives back
ω ¼ −1 (but not the value ω ¼ −2 because the
Campanelli-Lousto solution holds for ω > −3/2). Brans-
Dicke gravity with this value of the Brans-Dicke coupling
corresponds to the low-energy limit of bosonic string
theory [3], so it is plausible that the spacetime (4.5),
(4.6) has some stringy analogue. Although it was originally
presented as describing a black hole spacetime, it was
attributed a zero temperature, and there are studies of the

thermodynamics of such “cold black holes” [41], the
Campanelli-Lousto solutions can only describe wormholes
or naked singularities but not black holes [42]. When the
parameter a0 is positive, and therefore for the value a0 ¼ffiffiffi
2

p
− 1 corresponding to (4.5), (4.6), the Campanelli-

Lousto geometry describes a wormhole with the throat
located at the apparent horizon radius [42]

rH ¼ ð2þ a0Þm ¼ ð
ffiffiffi
2

p
þ 1Þm; ð4:10Þ

which corresponds to the value

RH ¼ ð2þ a0Þ
a0þ2

2 a−a0/20 m

¼ ð
ffiffiffi
2

p
þ 1Þ

ffiffi
2

p þ1
2 ð

ffiffiffi
2

p
− 1Þ1−

ffiffi
2

p
2 m ð4:11Þ

of the areal radius RðrÞ ¼ rAðrÞ−a0/2. By applying the
symmetry transformation (2.2) and (2.3), we obtain the new
solution of vacuum Brans-Dicke theory with scalar field
potential

Ṽðϕ̃Þ ¼ V0ϕ̃
1−4α
1−2α ð4:12Þ

and Brans-Dicke coupling

ω̃ ¼ 6αð1 − αÞ − 1

ð1 − 2αÞ2 ð4:13Þ

given by

ds̃2 ¼ −e4αatAðrÞα
ffiffi
2

p
dt2 þ e4αat½AðrÞ−

ffiffi
2

p ð1−αÞdr2

þAðrÞ1−
ffiffi
2

p ð1−αÞr2dΩ2
ð2Þ�; ð4:14Þ

ϕ̃ðt; rÞ ¼ ϕ̃0e2að1−2αÞtAðrÞ
1−2αffiffi

2
p
; ϕ̃0 ¼ ϕ1−2α

0 : ð4:15Þ

(Incidentally, applying the symmetry transformation
to the general Campanelli-Lousto spacetime (4.7), (4.8)
does not produce another Campanelli-Lousto solution.)
Equations (4.14) and (4.15) describe a 3-parameter family
of solutions parametrized by ðm; a; αÞ. If a ¼ 0 the time
dependence disappears and this solution reduces again to a
Campanelli-Lousto geometry with new parameters
ða0; b0Þ ¼ ð ffiffiffi

2
p ð1 − αÞ − 1;α

ffiffiffi
2

p
− 1Þ. Equation (4.9) then

gives ω̃ ¼ ð−6α2 þ 6α − 1Þð1 − 2αÞ−2 which, of course,
matches Eq. (2.10) for ω ¼ −1.
If a ≠ 0, the new time coordinate

τ ¼ e2αat

2αa
ð4:16Þ

transforms the spacetime ðg̃ab; ϕ̃Þ into
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ds̃2 ¼ −AðrÞα
ffiffi
2

p
dτ2 þ ð2αaτÞ2½AðrÞ−

ffiffi
2

p ð1−αÞdr2

þAðrÞ1−
ffiffi
2

p ð1−αÞr2dΩ2
ð2Þ�; ð4:17Þ

ϕ̃ðτ; rÞ ¼ ϕ�τ
1−2α
α AðrÞ1−2αffiffi2p

; ϕ̃� ¼ ½ð2αaÞ1/αϕ0�1−2α:
ð4:18Þ

By taking the limit m → 0, this geometry reduces to the
spatially flat FRLW universe

ds̃2ð1Þ ¼ −dτ2 þ ð2αaτÞ2ðdr2 þ r2dΩ2
ð2ÞÞ ð4:19Þ

with comoving time τ, linear scale factor SðτÞ ¼ 2αaτ, and
scalar field

ϕ̃ð1Þðτ; rÞ ¼ ϕ�τ
1−2α
α ð4:20Þ

(this is not an O’Hanlon and Tupper universe). The same
line element and Brans-Dicke scalar are obtained asymp-
totically for r ≫ 2m. Therefore, the new solution is
interpreted as a spherical inhomogeneity in a spatially flat
FLRW universe, with the scalar ϕ behaving asymptotically
as a perfect fluid with equation of state P ¼ −ρ/3. It is not
trivial to establish the nature of the central inhomogeneity.
Since the Campanelli-Lousto geometry with parameter
a0 > 0, to which the new solution is conformal, can
describe only a wormhole [42], one would naively expect
that its conformal cousin describes the same type of
solutions. While this is indeed the case for spherical
geometries resulting from the conformal transformation
of a wormhole or a naked singularity with static conformal
factor [43], a time-dependent conformal factor may change
this picture. As an example, a time-dependent conformal
transformation of the static Fisher solution (which contains
a naked singularity [31]) produces the Husain-Martinez-
Nuñez solution of the Einstein equations in which a central
singularity is covered by a black hole apparent horizon for
part of the history of this spacetime (according to the
comoving time of the FLRW background) [44]. A detailed
study of the physical interpretation of the solution (4.17)
and (4.18) will be reported elsewhere.

V. GENERATING NEW AXIALLY
SYMMETRIC SOLUTIONS

The solution-generating technique can be applied to
cylindrically symmetric spacetimes. Since the Brans-Dicke
action remains invariant when an electromagnetic field is
added to it, we present a new solution generated by using a
cylindrically symmetric electrovacuum Brans-Dicke space-
time as a seed [45]. The latter contains only an azimuthal
magnetic field B and the line element takes the form

ds2 ¼ ð1þ c2rpÞ2½r2ðq−dÞð−dt2 þ dr2Þ

þW2
0r

2ðk−dÞdθ2� þ r2d

ð1þ c2rpÞ2 dz
2 ð5:1Þ

in cylindrical coordinates ðt; r; θ; zÞ, where

p ¼ 2d − kþ 1; ð5:2Þ

qðωÞ ¼ dðd − kþ 1Þ þ ω

2
ðk − 1Þ2 þ kðk − 1Þ: ð5:3Þ

The scalar and the magnetic field are

ϕðrÞ ¼ ϕ0r1−k; ð5:4Þ

Br ¼ Bz ¼ 0; BθðrÞ ¼ �
ffiffiffiffiffi
ϕ0

p
cprp−1

ð1þ c2rpÞ2 ; ð5:5Þ

respectively. ϕ0 is a positive constant, while the constant c
is related to the coupling of the electromagnetic field to the
current [45]. If c ¼ 0, (5.1)–(5.5) becomes the electro-
vacuum solution of [46] with the Levi-Civita geometry.
When c ¼ 0, the constant W0 introduces a conical singu-
larity (if W2

0 ≠ 1), while the constant d is related with the
energy density of the electromagnetic source. For d ¼ 0,
the line element (5.1) describes a cosmic string in Brans-
Dicke-Maxwell theory in which the z axis carries a current
[47]. k is a free parameter and, for k ¼ 1, this spacetime
reduces to an Einstein-Maxwell solution [11,48]. If c ¼ 0
and k ¼ 1 simultaneously, this geometry reduces to the
Levi-Civita solution of the vacuum Einstein equations [49].
Equations (5.1)–(5.5) describe a family of solutions char-
acterized by the four parameters ðω; k; d; cÞ, where ω is a
parameter of the theory.
After performing the conformal transformation (2.2), the

line element (5.1) is

ds̃2 ¼ ð1þ c2rpÞ2fr2½q−dþαð1−kÞ�ð−dt2 þ dr2Þ

þW2
0r

2½k−dþαð1−kÞ�dθ2g þ r2½dþαð1−kÞ�

ð1þ c2rpÞ2 dz
2; ð5:6Þ

where q is simply given by (5.3). In the conformally
transformed frame, one can also express this equation in
terms of new Brans-Dicke parameter ω̃ and of q̃≡ qðω̃Þ.
Then Eq. (5.6) becomes

ds̃2 ¼ ð1þ c2rpÞ2fr2½q̃þαðα−1Þðk−1Þ2ð2ω̃þ3Þ−dþαð1−kÞ�

· ð−dt2 þ dr2Þ þW2
0r

2½k−dþαð1−kÞ�dθ2g

þ r2½dþαð1−kÞ�

ð1þ c2rpÞ2 dz
2; ð5:7Þ
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and the new scalar field reads

ϕ̃ ¼ ϕ̃0rð1−2αÞð1−kÞ with ϕ̃0 ¼ ϕ1−2α
0 : ð5:8Þ

We have a new family of solutions characterized by the five
parameters ðω̃; α; k; c; dÞ (where ω̃ is a parameter of the
theory).
A conical singularity is present in both geometries (5.1)

and (5.6), but we can eliminate it in the case c ¼ 0.
Choosing k − d ¼ 1 and W2

0 ¼ 1 in Eq. (5.1) reduces
the line element to

ds2 ¼ ð1þ c2rpÞ2frp2ðωþ2Þð−dt2 þ dr2Þ þ r2dθ2g

þ r2p

ð1þ c2rpÞ2 dz
2; ð5:9Þ

while the scalar field is ϕðrÞ ¼ ϕ0r−p and p ¼ d ¼ k − 1.
In the limit c → 0, the conical singularity disappears.
For the new solution (5.6), we suggest that W2

0 ¼ 1 and
k − dþ αð1 − kÞ ¼ 1, then the metric becomes

ds̃2 ¼ ð1þ c2rp0Þ2½rp2
0
ðω̃þ2Þð−dt2 þ dr2Þ þ r2dθ2�

þ r2p0

ð1þ c2rp0Þ2 dz
2; ð5:10Þ

where now ϕ̃ ¼ ϕ̃0r−p0 and p0 ¼ ðk − 1Þð1 − 2αÞ.
Of course, Eq. (5.9) is obtained as the α → 0 limit
of Eq. (5.10).
Let us discuss now the limit to GR. For both the seed

spacetime and the new spacetime, the limit k → 1 (which
implies p0 → 0) reproduces GR and, if we choose W2

0 ≠ 1

and we rescale the coordinates according to

t → t̄ ¼ ð1þ c2Þt; ð5:11Þ

r → r̄ ¼ ð1þ c2Þr; ð5:12Þ

z → z̄ ¼ z
1þ c2

; ð5:13Þ

we obtain the cosmic string geometry

ds2 ¼ −dt̄2 þ dr̄2 þ dz̄2 þW2
0r̄

2dθ2 ð5:14Þ

with zero magnetic field. Rescaling the coordinates is de
facto equivalent to setting c ¼ 0, but it is not necessary to
do this explicitly: the magnetic field is automatically killed
by making the scalar field constant in the GR limit of the
new solution (but not in the seed solution). The string
(5.14) has linear energy density μ along the z̄ axis, where
W2

0 ¼ 1–4μ. If W2
0 < 1, there is a deficit angle and μ > 0:

the length of a circumference of radius r̄ circling the z̄ axis
is 2πr̄

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ

p
. If instead W2

0 > 1, there is an excess angle
corresponding to μ < 0 [50,51].

VI. f ðRÞ GRAVITY

fðRÞ theories of gravity are described by the action

SfðRÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ þ SðmatterÞ; ð6:1Þ

where fðRÞ is a nonlinear function of the Ricci scalar
and SðmatterÞ is the matter action. The action describing
the gravitational sector is equivalent to that of a subclass
of scalar-tensor gravity [7]. In fact, it can be shown
that the gravitational action in (6.1) is equivalent to
that of a Brans-Dicke theory with Brans-Dicke field
ϕ ¼ f0ðRÞ, Brans-Dicke coupling ω ¼ 0, and scalar field
potential

VðϕÞ ¼ ϕR − fðRÞjR¼RðϕÞ; ð6:2Þ

where R is to be understood as a function of the
scalar degree of freedom ϕ ¼ f0ðRÞ. It is then natural
to ask whether the 1-parameter symmetry group of
transformations (2.2), (2.3) of Brans-Dicke theory
generates symmetries of fðRÞ gravity, fðRÞ → f̃ðR̃Þ.
Answering this question turns out to be complicated.
First of all, in order to keep the equivalence
between f̃ðR̃Þ gravity and Brans-Dicke theory, it
must be

ϕ̃ ¼ df̃

dR̃
; ð6:3Þ

ω̃ ¼ 0; ð6:4Þ

Ṽðϕ̃Þ ¼ ϕ̃ R̃−f̃ðR̃Þ: ð6:5Þ

Equation (6.4) fixes the parameter α of the transformation
to be α ¼ 1 and, at best, a single symmetry transformation
of the fðRÞ theory exists and not an entire 1-parameter
group. Assuming α ¼ 1, Eq. (6.3) gives ϕ̃ ¼ ϕ−1. It is
more complicated to enforce Eq. (6.5). Using Eq. (6.3), the
latter becomes

Ṽðϕ̃Þ ¼ ϕ̃ R̃−f̃ðR̃Þ; ð6:6Þ

it must be

ϕ̃3ðR̃ − ϕ̃fðRÞÞ ¼ ϕ̃ R̃−f̃ðR̃Þ ð6:7Þ

if the function f̃ðR̃Þ is going to be generated by the
operation (2.2), (2.3) with α ¼ 1. By remembering
the transformation property of the Ricci scalar under the
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conformal transformation gab → g̃ab ¼ ϕ2gab correspond-
ing to α ¼ 1

R̃ ¼ 1

ϕ2

�
R −

6□ϕ

ϕ

�
; ð6:8Þ

[14–17] and using the field equation (2.19) in vacuo or
electrovacuo (T ¼ 0), one obtains

R̃ ¼ 6

ð2ωþ 3Þ½f0ðRÞ�2
�
2fðRÞ
f0ðRÞ − R

�
: ð6:9Þ

If this equation could be inverted to express R ¼ RðR̃Þ
explicitly, the result could then be substituted into
Eq. (6.8), producing a nonlinear ordinary differential
equation for the function f̃ðR̃Þ satisfied by all f̃ðR̃Þ
theories generated by the Brans-Dicke symmetry.
Moreover, one could then write down explicitly the form
of the function f̃ðR̃Þ. In practice, these steps cannot be
performed. The root of the problem lies in the fact that the
potential (6.2) of the scalar ϕ of fðRÞ gravity is not explicit
[because one cannot invert explicitly the relation ϕ ¼
f0ðRÞ in order to obtain R ¼ RðϕÞ]. Thus, in general, the
question of whether the Brans-Dicke symmetry (2.2), (2.3)
generates a symmetry of fðRÞ gravity cannot be answered.
However, we can propose a special solution to this
problem.
A solution is found for the special choice fðRÞ ¼ Rn of

the function fðRÞ, which has been the subject of an
extensive literature [52,53]. In this case we have

ϕ¼ nRn−1; VðϕÞ ¼ ðn− 1ÞRn; ϕ̃¼R1−n

n
; ð6:10Þ

and Eq. (6.7) becomes

R̃
df̃

dR̃
− f̃ðR̃Þ ¼ n − 1

n4
R4−3n: ð6:11Þ

In vacuo or electrovacuo we have

□ϕ

ϕ
¼ 1

2ωþ 3

�
2f
ϕ

− R

�
ð6:12Þ

and

R̃ ¼ ð2ωnþ 9n − 12Þ
n3ð2ωþ 3Þ R3−2n; ð6:13Þ

which leads to

R ¼
�

n3ð2ωþ 3Þ
2ωnþ 9n − 12

R̃

� 1
3−2n

: ð6:14Þ

Equation (6.7) can then be written as the first order ordinary
differential equation for f̃ðR̃Þ

R̃
df̃

dR̃
− f̃ðR̃Þ − μR̃

3n−4
2n−3 ¼ 0; ð6:15Þ

where

μ ¼
�

n3ð2ωþ 3Þ
2ωnþ 9n − 12

�3n−4
2n−3
�
n − 1

n4

�
: ð6:16Þ

A solution is

f̃ðR̃Þ ¼ αR̃ñ; ð6:17Þ

ñ ¼ 3n − 4

2n − 3
; ð6:18Þ

α ¼
�
2n − 3

n − 1

�
μ: ð6:19Þ

General theoretical constraints on any fðRÞ gravity
theory [7] are f0 > 0, which guarantees that the grav-
iton carries positive kinetic energy, and f00 ≥ 0, which
guarantees local stability [54]. For fðRÞ ¼ Rn, these
constraints imply n ≥ 1, and here we discard the value
n ¼ 1 corresponding to GR, in which case ϕ ¼ const:
and the symmetry (2.2), (2.3) degenerates. Applying
these constraints to the theory described by f̃ðR̃Þ [but
not necessarily to the “seed” theory fðRÞ ¼ Rn] implies
ñ > 1, which is compatible with the experimental
constraint

ñ − 1 ¼ ð−1.1� 1.2Þ × 10−5 ð6:20Þ

coming from Solar System experiments [52].
For the special value n ¼ 2 of the exponent, and with

vanishing Brans-Dicke parameter ω, Eq. (6.18) implies
that ñ ¼ 2 as well, while μ ¼ α ¼ 1 and f̃ðR̃Þ ¼ R̃2.
Therefore, the theory fðRÞ ¼ R2 is invariant under the
transformation considered. Apart from the trivial case
n ¼ 1 corresponding to GR, this is the only value of n
for which ñ ¼ n. While this particular fðRÞ model is
inconsistent with weak gravity experiments, it consti-
tutes a good approximation of the Starobinsky infla-
tionary model of the early universe fðRÞ ¼ Rþ αR2

[55] in strong curvature regimes.
Other possible solutions of Eq. (6.7) will be searched for

in future work.

VII. CONCLUSIONS

The symmetry group of a physical theory discloses some
of its fundamental features. We have reported a symmetry
of Brans-Dicke theory in vacuo, electrovacuo, and in the
presence of conformally invariant matter, which includes a
radiation fluid important in the radiation era of cosmology
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and in star models. This symmetry consists of a restricted
conformal invariance of the theory under very specific
conformal transformations accompanied by nonlinear rede-
finitions of the Brans-Dicke scalar, and it is not to be
confused with the usual conformal transformation from the
Jordan to the Einstein frame of scalar-tensor gravity and
string theories. The symmetry was reported long ago [12]
and was used to investigate anomalies [56] in the limit of
Brans-Dicke gravity to GR ([12], see [57] for further
developments). Here the symmetry of [12] is generalized
to include the case in which the Brans-Dicke scalar ϕ is
endowed with an arbitrary potential VðϕÞ and conformally
invariant matter is possibly present.
We propose a novel use of this symmetry as a solution-

generating technique, starting from a known solution of the
theory used as a seed. As examples, we have reported new
solutions of FLRWBrans-Dicke cosmology in the presence
of a cosmological constant, a new 3-parameter family of
spherical, time-dependent vacuum solutions (which are rare
in the literature, contrary to static spherical solutions which
are much easier to find), and a new family of cylindrically
symmetric static electrovacuum solutions. The new spheri-
cal family, which is achieved using an ω ¼ −1 solution as a
seed and probably has stringy analogues, looks rather
intriguing and its physical interpretation will be studied
in more detail in the future. The new symmetry offers some
scope for extending studies of point-like Lagrangians with
cyclic variables in FLRW cosmology and in the realm of
static spherical solutions, which have been investigated
extensively in the literature in relation with Noether

symmetries in scalar-tensor gravities (see [22] for a
summary).
As pointed out long ago by Dicke [58], two conformal

frames related by a conformal transformation are physically
equivalent if the fundamental units of length, time, and
mass (and all derived units) scale with appropriate powers
of the conformal factorΩ of the transformation. In practice,
it is not trivial to implement this requirement [42,59]. This
consideration is usually debated for the conformal trans-
formation going from the Jordan to the Einstein conformal
frame, which is excluded by our symmetry operation (2.2),
(2.3), but Dicke’s argument is more general and, therefore,
a conformal transformation accompanied by the appropri-
ate rescaling of units would not generate physically new
solutions according to Dicke’s argument. However, in this
work we have not implemented Dicke’s rescaling of units
but we have used instead the transformation (2.2), (2.3) as a
mathematical map. Therefore, the solutions obtained are
indeed new solutions of the theory.
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