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A symmetry of Brans-Dicke gravity in (electro)vacuo or in the presence of conformally invariant matter
is presented and used as a solution-generating technique starting from a known solution as a seed. This
novel technique is applied to generate, as examples, new spatially homogeneous and isotropic cosmologies,
a 3-parameter family of spherical time-dependent spacetimes conformal to a Campanelli-Lousto geometry,
and a family of cylindrically symmetric geometries.
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I. INTRODUCTION

There is plenty of motivation for studying theories of
gravity alternative to general relativity (GR), both theo-
retically and experimentally. Attempts to quantize GR
invariably introduce modifications to it in the form of
extra dynamical fields or higher order field equations, and
these corrections are not necessarily Planck-scale sup-
pressed. The prototype of the alternative to GR is scalar-
tensor gravity. Its simplest incarnation is Brans-Dicke
theory [1], which was generalized to richer forms of
scalar-tensor gravity [2]. In the 1980s, waning interest in
this class of theories by the gravity community was
renewed by the realization that the simplest string theory,
bosonic string theory, reduces to @ = —1 Brans-Dicke
gravity in the low-energy limit [3].

More urgent motivation comes from cosmology. The
1998 discovery that the expansion of the Universe is
accelerated can be explained by the standard A cold dark
matter cosmological model based on GR only at the price
of introducing a completely ad hoc dark energy accounting
for approximately 70% of the energy content of the
Universe [4]. A possible way to avoid introducing dark
energy is by modifying gravity. Many theories of modified
gravity have been studied and intense experimental and
theoretical efforts aiming at testing gravity are underway or
under planning (see the reviews [5]). Probably the most
popular class of modified gravity theories motivated by
cosmology is f(R) gravity ([6], see [7] for reviews). f(R)
gravity turns out to be a Brans-Dicke theory in dis-
guise, corresponding to the special value @ =0 of the
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Brans-Dicke coupling and to a special potential for the
scalar degree of freedom [7]. Apart from f(R) gravity,
Brans-Dicke theory is the toy model of choice to explore
deviations from GR involving scalar degrees of freedom in
many areas, including cosmology, black holes, gravita-
tional waves, no-hair theorems and ways to evade them,
stealth fields, and apparent horizons. Older research which
led to the introduction of the original Brans-Dicke theory
involves Mach’s principle [1] and Dirac’s idea that the
constants of nature may actually be dynamical fields [8],
which is partially realized in the feature of Brans-Dicke
gravity that the effective gravitational coupling strength
becomes, roughly speaking, the inverse of the Brans-Dicke
scalar field ¢ [1]. There has been renewed interest in
varying “constants” of physics in recent years (see [9] for a
popular exposition). Extra motivation related to the quan-
tization of gravity is provided by the finding that gener-
alized Brans-Dicke solutions describe asymptotically
Lifshitz black holes [10].

Analytical solutions of scalar-tensor gravity can provide
insight into aspects of these directions of research, but they
are not as numerous as the better known solutions of GR
[11]. It is valuable, therefore, to find general solution-
generating techniques in scalar-tensor gravity. Here we
focus on a symmetry group of Brans-Dicke gravity
[enriched by the possibility of an arbitrary potential
V(¢) for the Brans-Dicke scalar field] in the presence of
conformally invariant matter [12], which is really a
restricted conformal invariance of the theory and is rem-
iniscent of the broader conformal invariance of string
theories [13]. We explore the use of this symmetry as a
novel technique to generate new solutions of Brans-Dicke
gravity using known solutions as seeds. As examples of
application of this technique, we find three different kinds
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of analytical solutions: in the cosmological context, then
spherically symmetric and time-dependent solutions, and
finally cylindrically symmetric geometries. We use units in
which the speed of light in vacuo and Newton’s constant
are unity and we follow the notation of Ref. [14].

II. A SYMMETRY OF BRANS-DICKE THEORY

In this section we generalize the symmetry of Brans-
Dicke theory with V(¢) = 0 found in [12] to the case in
which the Brans-Dicke scalar field ¢ is endowed with a
potential and conformally invariant matter is present. For
ease of exposition, we begin with the vacuum theory and,
in the last subsection, we include conformally invariant
matter.

A. Vacuum Brans-Dicke theory with any potential

The action is

Sup = [ x| 0R =500 - V)| @)

This action is invariant in form under the operation
(abs @) = (Jap> P), Where

Gab = ngab = ¢2agabv (22)

¢ = (2.3)
for a # 1/2, that is, a conformal transformation of the
metric with conformal factor Q = ¢* and a nonlinear
redefinition of the scalar field. Since it is ¢ >0 to
guarantee the positivity of the gravitational coupling, the
conformal transformation is well defined (except at space-
time points where ¢ diverges, which are to be regarded as
physical singularities). A tilde denotes geometric quantities
constructed with the conformally rescaled metric §,;,. By
using the well-known transformation properties [14—17]

gab — Q_Zg“b, (24)

V=i =94, (25)
o 601Q
R:QZ(R—Q) (2.6)

and Eq. (2.3), one obtains

6a(1 —a)
(1 =2a)?

¢4a—1 |j 47) .

R = ¢*R - P25V (Vb

n 6a
1-2a

(2.7)

The term proportional to [J ¢ which appears in the action
(as a contribution coming from ,/—g¢R) because of the last
term in the right-hand side of Eq. (2.7) can be written as

6 -~ 6 —_ ~
o V0d =2 0,(V=i70.8).  (28)

which is integrated to produce a boundary term giving zero
contribution when the action is varied. This term is ignored
in the following. The Brans-Dicke action (2.1), therefore,
becomes

suw = [ IR o )
9 %vaivbé - IV}, 29)

By redefining the Brans-Dicke coupling and scalar field
potential as

_o+6a(l —a)

o(w,a) = 1—2a? (2.10)

V@) = V). @.1)

the Brans-Dicke action is rewritten as [12]
Sup = [ a3/ IR-550,3%-V(@)|. (212

i.e., it is invariant in form under the transformation (2.2),
(2.3), provided that the changes (2.10), (2.11) are made. In
addition, the transformations of the type (2.2), (2.3) form a
1-parameter Abelian group [12].
As a special case, we note that a power-law potential
V($) = Voo (2.13)

(where V; and n are constants) is invariant in form, i.e., the
symmetry produces another power-law potential

V(d) = Vod" (2.14)
with the new power
n—4a
i = ) 2.15
"1 24 ( )
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An even more special case is n = 2, for which also the
power in the potential is left invariant, V(¢) = m*¢*/2 =
V(¢) and i = n =2 when V(¢) = m>¢*/2.

B. Electrovacuum Brans-Dicke theory

When an electromagnetic field is present as a form of
matter, the action is

Spp = / d4x\/—_g [ﬁbR - ggahvaﬁf)vb(f’ - V(¢)—FabFab )
(2.16)

where F? is the Maxwell tensor. Since the latter has
conformal weight s = 0 [14], F,, = F,, and

J=GFF = \/—GFF,,, (2.17)
so that also /=gL,, for this form of matter remains
invariant under the transformation (2.2), (2.3).

C. Conformally invariant matter

It is tempting to ask whether Brans-Dicke theory is left
invariant by the transformation (2.2), (2.3) in the presence
of any other form of matter, for example conformally
invariant matter. This property would be especially impor-
tant for applications, e.g., in cosmology or in stars when a
radiation fluid is present. The action principle for fluids is
notoriously nontrivial [18-20], therefore in this case it is
more convenient to analyze directly the transformation of
the field equations. The variation of the Brans-Dicke action
(2.1) with the addition of a matter action produces the field
equations

1 87
Ry ZgabR " Tw+—3 7 <V ¢vh¢—*gab9‘dv ¢vd¢>
1 %4
¢(V oV = 9gap ) — ¢gabv (2.18)

Op = {S”T ¢——2V} (2.19)

2w+3| ¢ de

where T, is the matter stress-energy tensor and 7 is its
trace. A rather long but straightforward calculation gives
the transformation properties of Eqgs. (2.18) and (2.19)
under the operation (2.2), (2.3). The scalar field equa-
tion (2.19) becomes

1 8
20+ 3 |1 - 2a

O¢ =

caa o dV o
¢1—42(1T + ¢% - 2V N (2.20)

where @ and V(¢) are given by Egs. (2.10) and (2.11).
Therefore, Eq. (2.19) is invariant in form under the

transformation (2.2), (2.3) only for conformally invariant
matter with 7 = 0.

Under the same transformation, the other field equa-
tion (2.18) becomes

1 - 8ﬂ

R, — =GR =
5 Jav

The stress-energy tensor T',;, of matter, which by now we
know is required to be conformally invariant if the
operation (2.2), (2.3) is imposed to be a symmetry of
the theory, transforms according to T, = Q2T [14,21].
Then the first term in the right-hand side of Eq. (2.21)
becomes 877 ,,/¢h and the form of this equation is the same
of Eq. (2.18) before the transformation. We conclude that
Egs. (2.2) and (2.3) describe a symmetry of Brans-Dicke
theory in the presence of an arbitrary (regular) scalar field
potential and of conformally invariant matter. Examples
include the Maxwell field in four spacetime dimensions
already mentioned in Sec. II B and a radiation fluid with
equation of state P = p/3.

The Brans-Dicke field ¢ couples to the trace of the energy-
momentum tensor of ordinary matter [cf. Eq. (2.19)] and only
conformally invariant matter is covariantly conserved after a
conformal transformation g,;, = J,, = Q>g,,. In fact, as is
well known in scalar-tensor gravity, the covariant conserva-
tion equation V*T,, = 0 becomes [1,17,21]

VT, =-TV,InQ, (2.22)
and only T =0 (which occurs if and only if 7 = 0)
guarantees covariant conservation after the conformal
rescaling.

III. APPLICATION TO BRANS-DICKE
COSMOLOGY

We now apply the new solution-generating technique to
spatially homogeneous and isotropic Brans-Dicke cosmol-
ogy (see [17,21] for reviews). In general, this symmetry is
not a Noether symmetry [22] nor a Hojman symmetry [23].
There are indications that the symmetry does not survive
Wheeler-DeWitt quantization in minisuperspace (at least in
the spatially flat case) because quantum effects cause an
anomalous symmetry breaking similar to that occurring in
condensed matter systems [24]. This fact is, however,
immaterial in the present work, which is confined to
classical gravity. First we use power-law, and then expo-
nential solutions as seeds. In both cases the line element is
the Friedmann-Lemaitre-Robertson-Walker (FLRW) one in
comoving coordinates
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dr?

1 — kr?

ds* = —di* + 52(1)< + r2dQ%2)>, (3.1)

where the curvature index k is normalized to 0, £1 and
dQ%Z) = d6” + sin? Odg? is the line element on the unit
2-sphere.

Before proceeding we note that, in the case w = —1
corresponding to the bosonic string theory [3], the well-
known duality of pre-big-bang cosmology [25]

S — S=1/8, b — P =Sp, (3.2)
is not reproduced by, and is unrelated to, the symmetry
(2.2), (2.3) that we study in our work.

A. Power-law solutions

We first consider vacuum Brans-Dicke theory with
V =0 and we look for power-law solutions of the form

S(t) = Sot?, (3.3)

$(1) = dot?, (3.4)
where Sy > 0, ¢y > 0, p, and g are constants. Most of the
known exact solutions of Brans-Dicke cosmology are of
this form [17], which includes the Brans-Dicke dust
solution [1], the O’Hanlon and Tupper family [26], and
the Nariai family [27]. Here we consider vacuum solutions.

After the conformal transformation (2.2) with parameter
a, the line element reads

dr?

1 — kr?

d3? = —2aagp 4 S(z)t2<1’+“q)< + erQé)), (3.5)

where an irrelevant multiplicative constant has been
dropped. We now introduce the new time coordinate
defined by dz = t*dt for q # 0, or

t = (ag + 1)arigan, (3.6)

with the choice of a common origin for ¢ and 7z and
a # —1/q, 1/2. The line element (3.5) is then written using
this comoving time as

dr?
1 —kr?

2(p+aq)

ds? = —dr® + S(Z)TW(

+ erQ%2)>, (3.7)

while the new Brans-Dicke field (2.3) is

q(1-2q)

~ (1-2a)
$(z) = (ag + 1) gl2eg'at,

(3.8)

One can write

S‘(T) = SOTp’ &(T) = &01—2}’ (39)
where

. _ptaq

= , 3.10

A (3.10)
_ q(1=2a)

=1 = A1

a ag+1 (3.11)
~ g(1-2a)

Bo = (ag + 1) gl (3.12)

As a special situation, we discuss the O’Hanlon and Tupper
family of spatially flat solutions of vacuum Brans-Dicke
cosmology given, for k = 0, by [26]

1 20+ 3
_ 144/ (313
e 3w+4<“’+ 3 ) (3.13)

1 F 302w+ 3)

= 3.14
P 3wt+4 (3.14)

whose exponents satisfy the relation
3g. +py =1 (3.15)

Equations (3.10) and (3.11) give

1—5aq
3g+p = 3.16
Itp=" 1 (3.16)

which is, in general, different from unity, hence the new
solution generated here is not of the O’Hanlon and
Tupper form.

B. Exponential solutions with linear potential

Instead of power-law solutions, we now use exponential
solutions of vacuum Brans-Dicke theory with a linear
potential V(¢) = A¢, which amounts to introducing a
cosmological constant in this theory. The spatially flat
family of solutions

2A
S.(t) = Spexp i(w+1)\/(2w+3)(3w~|—4)t , (3.17)
2A
¢ (1) = o exp i\/(2w+3)(3a)+4)t . (3.18)
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with Sy, ¢y constants, are well-known attractors in phase
space [28-30]. By performing the conformal transforma-
tion (2.2) one obtains

A
di? = ¢2ads2 _ _eiz"‘\/ a3 Ga ) (42

+ Skexp |£2(w + 1+ a) 2A t
0 (2w +3)Bw +4)
(P + PdQY). (3.19)
The comoving time in the tilded world is
OV T
T=—————+ const. (3.20)
da. ] —20
(2w+3)(3w+4)

One must make sure that ¢ and 7 have the same direction.
By choosing the positive sign this property follows trivially
and 7 = 0 corresponds to ¢t — —oo. If the negative sign is
taken, one can choose the integration constant so that

721\/(2w+3)(3w+4)<1_e_a <>—<>'> (3.21)

a 2A

Consider first the solution with positive sign, which is
rewritten as

d3* = —d7* + $(z)(dr* + r7dQp,),  (3.22)
where
S(z) = Sor" ™ = 8,2?, (3.23)
b(r) = ¢! = gor = = o, (3.24)
where
- 2A e
So=S , 3.25
0 Ola\/(2w+3)(3w+4) (3.25)
1-2a
~ 2A “
= pi~ , 3.26
o= o (a\/(Zw +3)Bw + 4)) (3.26)
and
4-5
3G+ p = W (3.27)

(which, in general, is not equal to 1). The scalar field
potential is now, according to Eq. (2.11), of the power-law
form

—4a ~ 1-4a

V(§) = ¢ging = A=

(3.28)

Using Eq. (2.10), the scale factor is written in terms of the
new Brans-Dicke coupling @ as

S(T) — SOTI'(IQ"[(I)(I—20)+1—3(1]. (329)

In this case, the symmetry (2.2), (2.3) transforms an
exponential solution into a power-law one corresponding
to a different power-law potential.

By choosing the negative sign in Eq. (3.20), we have
instead the line element (3.23) with

2A =
S(z) =S, (l - a\/(Za) ey 4)T> (3.30)

but 7 is now given by Eq. (3.21) and

7 1-2a —a 2A T %
(@) = oo <1 \/(20)+3)(3a)+4) ) ’

The scalar field potential is again (3.28).

(3.31)

IV. A NEW FAMILY OF SPHERICAL,
TIME-DEPENDENT SOLUTIONS

In this section we use the symmetry transformation to
generate a new time-dependent solution of Brans-Dicke
theory from a static one used as a seed.

A spherically symmetric and time-dependent solution of
Jordan frame vacuum Brans-Dicke theory, which is con-
formal to the Fonarev spacetime] [32,33], was found
recently in [34]. The line element and Brans-Dicke field are

ds? = —A(r)Viad e M ) g

L - { A(r) iy B
l-—L—(2d+—L—
+A(r) v +\/m)r261'9%2)]’ (4.1)

1

4dat B e
P(.7) = oeVPrTA(r) VEeSIE  (42)

where
A(r)=1 _27m7 (4.3)
V(g) = Vo, p=2(1-d\/|2w + 3|), (4.4)

'"The Fonarev solution of GR, in turn, is conformal to the
Fisher-Buchdahl-Janis-Newman-Winicour-Wyman scalar field
solution of the Einstein equations [31].
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and where m > 0, a, d are parameters of the family of
solutions, while @ # —3/2 and ¢, > 0 is another constant
related to initial conditions.

We use a special case of this family as the seed to
generate a new family of solutions of vacuum Brans-Dicke
gravity. Assuming a # 0, the time dependence of the
geometry (4.1) is eliminated if the parameter d is simulta-

neously equal to (21/]2w 4+ 3])™" and to /|2 + 3|/2,

which is achieved if w = —1 or if @ = —2. In these cases,
however, the scalar field (4.2) remains time dependent,
while =1 and the scalar field potential reduces to the
linear V(¢) = V¢, which is equivalent to introducing a
cosmological constant in the Brans-Dicke action. Since
¢ > 0, this potential is effectively bounded from below. A
scalar field which does not share the symmetries of the
spacetime metric is currently of considerable interest
because it is used in Brans-Dicke, Galileon, and
Horndeski gravity as an ingredient to circumvent ([35],
see also [36]) well-known no-hair theorems for black holes
[37-39].
Our starting point is

ds? = —di® + A(r)™V2dr? + A(r)'=V22dQ2,, (4.5)

Plt,r) = poe™A(r) V2. (4.6)
This geometry is recognized as a special case of the
Campanelli-Lousto geometry of Brans-Dicke theory. The
general Campanelli-Lousto solution has the form [40]

dsZ; = —A(r)btd? + A(r)~®~'dr? + A(r)‘“Ordeé),

(4.7)

ap—b
$er(r) = ¢0A(’”)%’ (4.8)
where ay and b, are two parameters, only one of which
is independent, and are related to the Brans-Dicke
coupling by

—2(a3 + b} — agby + ay + by)
(ag — bp)? .

The line element (4.5) and scalar field (4.6) are reproduced
if (ag, by) = (\/5— 1,—1), while Eq. (4.9) gives back
w=—-1 (but not the value w = -2 because the
Campanelli-Lousto solution holds for @ > —3/2). Brans-
Dicke gravity with this value of the Brans-Dicke coupling
corresponds to the low-energy limit of bosonic string
theory [3], so it is plausible that the spacetime (4.5),
(4.6) has some stringy analogue. Although it was originally
presented as describing a black hole spacetime, it was
attributed a zero temperature, and there are studies of the

w(ag, by) = (4.9)

thermodynamics of such ‘“cold black holes” [41], the
Campanelli-Lousto solutions can only describe wormholes
or naked singularities but not black holes [42]. When the
parameter a, is positive, and therefore for the value ay =
V2 -1 corresponding to (4.5), (4.6), the Campanelli-
Lousto geometry describes a wormhole with the throat
located at the apparent horizon radius [42]

ry = (2+ay)m= (V24 1)m, (4.10)
which corresponds to the value
Ry =(2+a)" " ay""m
Va+l -
=(V2+ 1) (V215 m @)

of the areal radius R(r) = rA(r)~%"2. By applying the
symmetry transformation (2.2) and (2.3), we obtain the new
solution of vacuum Brans-Dicke theory with scalar field
potential

~ 1-4a

V(p) = Vo (4.12)
and Brans-Dicke coupling
6a(l —a)—1
D= 4.13
YT T (1= 2a) (4.13)
given by
452 = _e4aatA(r)a\/§dt2 T e4aat[A(r)—\/§(1—a)dr2
+A(r)1-V2(1-a) rdQ?, |, (4.14)
Pt 1) = G2 2A()F, Gy = pi2 (4.15)

(Incidentally, applying the symmetry transformation
to the general Campanelli-Lousto spacetime (4.7), (4.8)
does not produce another Campanelli-Lousto solution.)
Equations (4.14) and (4.15) describe a 3-parameter family
of solutions parametrized by (m,a,a). If a = 0 the time
dependence disappears and this solution reduces again to a
Campanelli-Lousto  geometry with new parameters
(ag. by) = (V2(1 —a) — 1,a/2 = 1). Equation (4.9) then
gives @ = (—=6a® + 6a — 1)(1 —2a)~2 which, of course,
matches Eq. (2.10) for @ = —1.
If a # 0, the new time coordinate

eZ(mt

T =

= 4.1
2aa ( 6)

transforms the spacetime (7. ¢) into
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d5? = —A(r)™2d7® + (2aar)?[A(r)~V2(1-9) 4y2

+A(r) V210 2402 |, (4.17)

1-2a 1-2¢

P(r.r) = p.TTA(r) =,

b, = [(2aa) ege] 2
(4.18)

By taking the limit m — 0, this geometry reduces to the
spatially flat FRLW universe

dE%l) = —d7® + (2aar)?(dr* + rde(zz)) (4.19)

with comoving time 7, linear scale factor S(z) = 2aar, and
scalar field

1-2a

boy(z.r) = g (4.20)

(this is not an O’Hanlon and Tupper universe). The same
line element and Brans-Dicke scalar are obtained asymp-
totically for r > 2m. Therefore, the new solution is
interpreted as a spherical inhomogeneity in a spatially flat
FLRW universe, with the scalar ¢ behaving asymptotically
as a perfect fluid with equation of state P = —p/3. It is not
trivial to establish the nature of the central inhomogeneity.
Since the Campanelli-Lousto geometry with parameter
ayp > 0, to which the new solution is conformal, can
describe only a wormhole [42], one would naively expect
that its conformal cousin describes the same type of
solutions. While this is indeed the case for spherical
geometries resulting from the conformal transformation
of a wormhole or a naked singularity with static conformal
factor [43], a time-dependent conformal factor may change
this picture. As an example, a time-dependent conformal
transformation of the static Fisher solution (which contains
a naked singularity [31]) produces the Husain-Martinez-
Nuiiez solution of the Einstein equations in which a central
singularity is covered by a black hole apparent horizon for
part of the history of this spacetime (according to the
comoving time of the FLRW background) [44]. A detailed
study of the physical interpretation of the solution (4.17)
and (4.18) will be reported elsewhere.

V. GENERATING NEW AXIALLY
SYMMETRIC SOLUTIONS

The solution-generating technique can be applied to
cylindrically symmetric spacetimes. Since the Brans-Dicke
action remains invariant when an electromagnetic field is
added to it, we present a new solution generated by using a
cylindrically symmetric electrovacuum Brans-Dicke space-
time as a seed [45]. The latter contains only an azimuthal
magnetic field B and the line element takes the form

ds® = (1 + 2rP)?[r2=D (=ds* + dr?)

2d

+W%r2("_d)d€2} + dez (51)

in cylindrical coordinates (7, r, @, z), where
p=2d—-k+1, (5.2)
g(@) = d(d—k+ 1) +2 (k=12 +k(k=1). (53)

The scalar and the magnetic field are
¢(r) = dor' ™, (5.4)
Véocpr’™!

Br:BZ:O, Bg(r):j:m, (55)

respectively. ¢ is a positive constant, while the constant ¢
is related to the coupling of the electromagnetic field to the
current [45]. If ¢ =0, (5.1)—(5.5) becomes the electro-
vacuum solution of [46] with the Levi-Civita geometry.
When ¢ = 0, the constant W, introduces a conical singu-
larity (if W% # 1), while the constant d is related with the
energy density of the electromagnetic source. For d = 0,
the line element (5.1) describes a cosmic string in Brans-
Dicke-Maxwell theory in which the z axis carries a current
[47]. k is a free parameter and, for k = 1, this spacetime
reduces to an Einstein-Maxwell solution [11,48]. If c =0
and k =1 simultaneously, this geometry reduces to the
Levi-Civita solution of the vacuum Einstein equations [49].
Equations (5.1)—(5.5) describe a family of solutions char-
acterized by the four parameters (w, k, d, ¢), where @ is a
parameter of the theory.

After performing the conformal transformation (2.2), the
line element (5.1) is

ds? = (1 + ?rP)?{pPla=dteal=Rl(—gr 4 dr?)
p2ld+a(1-k)]

w2 2[k—d+a(1—k)]d02

dz2,  (5.6)

where ¢ is simply given by (5.3). In the conformally
transformed frame, one can also express this equation in
terms of new Brans-Dicke parameter @ and of § = q(®).
Then Eq. (5.6) becomes

d32 = (1+ C2rp)2{r2[?1+a(a—1)(k—1)2(2(b+3)—d+a(1—k)]
(=dP + dr?) + WPk g2
2ld+a(1-k)]

2
—l——(l ) dz?, (5.7)
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and the new scalar field reads

= Por 20 with o=y (58)
We have a new family of solutions characterized by the five
parameters (@, a, k, ¢, d) (where @ is a parameter of the
theory).

A conical singularity is present in both geometries (5.1)
and (5.6), but we can eliminate it in the case ¢ = 0.
Choosing k—d =1 and W} =1 in Eq. (5.1) reduces

the line element to

ds* = (1 + czrl’)z{r"z(“’“)(—dt2 +dr?) + r’dée*}
r2r

+ (1+ c?rP)?

dz2, (5.9)

while the scalar field is ¢(r) = ¢por? and p =d =k — 1.
In the limit ¢ — 0, the conical singularity disappears.

For the new solution (5.6), we suggest that W% =1 and
k—d+ a(l —k) =1, then the metric becomes

ds? = (14 c2rP)2[rP@ ) (=di? + dr?) + r2d6?]
AL 5.10
———dz, A
T amyp® (5.10)
where now ¢ =gor 0 and py= (k—1)(1 =2a).
Of course, Eq. (5.9) is obtained as the a — 0 limit
of Eq. (5.10).

Let us discuss now the limit to GR. For both the seed
spacetime and the new spacetime, the limit k — 1 (which
implies py — 0) reproduces GR and, if we choose W% #1
and we rescale the coordinates according to

t—>1=(1+cH1, (5.11)
ror=(1+cHr, (5.12)
_ Z
we obtain the cosmic string geometry
s? = —di* + dr* + dz* + W5i?de*  (5.14)

with zero magnetic field. Rescaling the coordinates is de
facto equivalent to setting ¢ = 0, but it is not necessary to
do this explicitly: the magnetic field is automatically killed
by making the scalar field constant in the GR limit of the
new solution (but not in the seed solution). The string
(5.14) has linear energy density y along the 7 axis, where

= 14u. If W% < 1, there is a deficit angle and y > 0:

the length of a circumference of radius 7 circling the 7 axis
is 277 +/1 — 4u. If instead W% > 1, there is an excess angle
corresponding to y < 0 [50,51].

VL f(R) GRAVITY

f(R) theories of gravity are described by the action

/d4x\/_f( )+Smatter) (61)

where f(R) is a nonlinear function of the Ricci scalar
and S("e'¢’) is the matter action. The action describing
the gravitational sector is equivalent to that of a subclass
of scalar-tensor gravity [7]. In fact, it can be shown
that the gravitational action in (6.1) is equivalent to
that of a Brans-Dicke theory with Brans-Dicke field
¢ = f'(R), Brans-Dicke coupling @ = 0, and scalar field
potential

Vig) = (6.2)

PR = f(R)|r=r(g
where R is to be understood as a function of the
scalar degree of freedom ¢ = f'(R). It is then natural
to ask whether the I1-parameter symmetry group of
transformations (2.2), (2.3) of Brans-Dicke theory
generates symmetries of f(R) gravity, f(R) — f(R).
Answering this question turns out to be complicated.
First of all, in order to keep the equivalence
between f(R) gravity and Brans-Dicke theory, it
must be

13

p=1L. (6.3)
»=0, (6.4)
V(@) = pR-F(R). (6.5)

Equation (6.4) fixes the parameter a of the transformation
to be @ = 1 and, at best, a single symmetry transformation
of the f(R) theory exists and not an entire 1-parameter
group. Assuming a = 1, Eq. (6.3) gives ¢ = ¢~ It is
more complicated to enforce Eq. (6.5). Using Eq. (6.3), the
latter becomes

(6.6)

it must be

¢ (R—¢f(R)) =pR~[(R) (6.7)
if the function f(R) is going to be generated by the
operation (2.2), (2.3) with a=1. By remembering

the transformation property of the Ricci scalar under the
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conformal transformation g, = G, = g, correspond-

ingtoa=1
- 1 6L1¢
R=—|R-———),
# (%)

[14—17] and using the field equation (2.19) in vacuo or
electrovacuo (T = 0), one obtains

. 6 2f(R)
R_@w+$WMW{ﬂm R}

If this equation could be inverted to express R = R(R)
explicitly, the result could then be substituted into
Eq. (6.8), producing a nonlinear ordinary differential
equation for the function f(R) satisfied by all f(R)
theories generated by the Brans-Dicke symmetry.
Moreover, one could then write down explicitly the form
of the function j‘(f?) In practice, these steps cannot be
performed. The root of the problem lies in the fact that the
potential (6.2) of the scalar ¢ of f(R) gravity is not explicit
[because one cannot invert explicitly the relation ¢ =
f'(R) in order to obtain R = R(¢)]. Thus, in general, the
question of whether the Brans-Dicke symmetry (2.2), (2.3)
generates a symmetry of f(R) gravity cannot be answered.
However, we can propose a special solution to this
problem.

A solution is found for the special choice f(R) = R" of
the function f(R), which has been the subject of an
extensive literature [52,53]. In this case we have

(6.8)

(6.9)

5 Rl—n
¢ =nR"", V(p)=(mn—-1)R", ¢= pt (6.10)
and Eq. (6.7) becomes
_df . . n—1_, s
In vacuo or electrovacuo we have
Bo__ 1 (2 _g (6.12)
¢ 2043\ ¢
and
-~ (Qon+9n-12) .,
R = R, 6.13
n*(2w + 3) (6.13)
which leads to
3 3-2n
_ [ R0 E3) gl (6.14)
20n 4+ 9n — 12

Equation (6.7) can then be written as the first order ordinary
differential equation for f(R)

R%—}(N) — uR¥= =0, (6.15)
where
Q2o +3) 135 n-1
m= [an +9n — 12} ( n* > (6.16)
A solution is
f(R) = aR", (6.17)
_ 3n-4
2n -3
= . 1
= (20 (6.19)

General theoretical constraints on any f(R) gravity
theory [7] are f' > 0, which guarantees that the grav-
iton carries positive kinetic energy, and f” > 0, which
guarantees local stability [54]. For f(R) = R", these
constraints imply n > 1, and here we discard the value
n =1 corresponding to GR, in which case ¢ = const.
and the symmetry (2.2), (2.3) degenerates. Applying
these constraints to the theory described by f(R) [but
not necessarily to the “seed” theory f(R) = R"] implies
> 1, which is compatible with the experimental
constraint

im1=(=1.1+12)x107 (6.20)

coming from Solar System experiments [52].

For the special value n = 2 of the exponent, and with
vanishing Brans-Dicke parameter w, Eq. (6.18) implies
that 7i =2 as well, while y =a =1 and f(R) = R>.
Therefore, the theory f(R) = R? is invariant under the
transformation considered. Apart from the trivial case
n = 1 corresponding to GR, this is the only value of n
for which 72 = n. While this particular f(R) model is
inconsistent with weak gravity experiments, it consti-
tutes a good approximation of the Starobinsky infla-
tionary model of the early universe f(R) = R + aR?
[55] in strong curvature regimes.

Other possible solutions of Eq. (6.7) will be searched for
in future work.

VII. CONCLUSIONS

The symmetry group of a physical theory discloses some
of its fundamental features. We have reported a symmetry
of Brans-Dicke theory in vacuo, electrovacuo, and in the
presence of conformally invariant matter, which includes a
radiation fluid important in the radiation era of cosmology
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and in star models. This symmetry consists of a restricted
conformal invariance of the theory under very specific
conformal transformations accompanied by nonlinear rede-
finitions of the Brans-Dicke scalar, and it is not to be
confused with the usual conformal transformation from the
Jordan to the Einstein frame of scalar-tensor gravity and
string theories. The symmetry was reported long ago [12]
and was used to investigate anomalies [56] in the limit of
Brans-Dicke gravity to GR ([12], see [57] for further
developments). Here the symmetry of [12] is generalized
to include the case in which the Brans-Dicke scalar ¢ is
endowed with an arbitrary potential V(¢) and conformally
invariant matter is possibly present.

We propose a novel use of this symmetry as a solution-
generating technique, starting from a known solution of the
theory used as a seed. As examples, we have reported new
solutions of FLRW Brans-Dicke cosmology in the presence
of a cosmological constant, a new 3-parameter family of
spherical, time-dependent vacuum solutions (which are rare
in the literature, contrary to static spherical solutions which
are much easier to find), and a new family of cylindrically
symmetric static electrovacuum solutions. The new spheri-
cal family, which is achieved using an @ = —1 solution as a
seed and probably has stringy analogues, looks rather
intriguing and its physical interpretation will be studied
in more detail in the future. The new symmetry offers some
scope for extending studies of point-like Lagrangians with
cyclic variables in FLRW cosmology and in the realm of
static spherical solutions, which have been investigated
extensively in the literature in relation with Noether

symmetries in scalar-tensor gravities (see [22] for a
summary).

As pointed out long ago by Dicke [58], two conformal
frames related by a conformal transformation are physically
equivalent if the fundamental units of length, time, and
mass (and all derived units) scale with appropriate powers
of the conformal factor Q of the transformation. In practice,
it is not trivial to implement this requirement [42,59]. This
consideration is usually debated for the conformal trans-
formation going from the Jordan to the Einstein conformal
frame, which is excluded by our symmetry operation (2.2),
(2.3), but Dicke’s argument is more general and, therefore,
a conformal transformation accompanied by the appropri-
ate rescaling of units would not generate physically new
solutions according to Dicke’s argument. However, in this
work we have not implemented Dicke’s rescaling of units
but we have used instead the transformation (2.2), (2.3) as a
mathematical map. Therefore, the solutions obtained are
indeed new solutions of the theory.
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