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Although large-scale perturbations beyond a finite-volume survey region are not direct observables,
these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale
structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a
large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space
power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-
scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a
response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact
of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via
the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher
matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the
statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on
the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether
the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a

larger wave number in the nonlinear regime can be included.
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I. INTRODUCTION

A number of wide-area and deep galaxy surveys are
ongoing and planned, aimed at revealing the nature of
primordial perturbations, the physics in the early universe,
the curvature of the universe, the origin of cosmic accel-
eration as well as weighing neutrino mass via a measurement
of large-scale structure probes such as weak gravitational
lensing, baryon acoustic oscillations (BAO), galaxy cluster-
ing and redshift-space distortions (e.g., [1-3]). In particular,
when combined with a high-precision measurement of
cosmic microwave background (CMB) anisotropies, large-
scale structure probes allow one to study the time evolution
of perturbations over cosmic time, which is sensitive to
the aforementioned physics and cosmological parameters
(e.g. [4D.

The linear perturbation theory can accurately describe
the time evolution of large-scale perturbations in structure
formation, based on the standard A and cold dark matter
dominated cosmology with Gaussian adiabatic initial
conditions (hereafter ACDM) [5], which successfully
reproduces the high-precision measurements of CMB
anisotropies, yielding stringent constraints on the cosmo-
logical parameters [6]. The linear theory, however, breaks
down in the late-time universe, which is relevant for galaxy
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surveys, because the nonlinear structure formation induces
a mode coupling between different Fourier modes of the
perturbations owing to the nature of nonlinear, long-range
gravity ([7,8] for a thorough review). As a result, the power
spectrum of large-scale structure probes, measured from a
galaxy survey, no longer carries the full information unlike
CMB anisotropies, and the statistical properties display a
substantial non-Gaussianity that is described by higher-
order correlation functions [9]. A better understanding of
the nonlinear structure formation is thus required in order to
attain the full potential of wide-area galaxy surveys.
Even though a wide-area galaxy survey is to cover a huge
cosmological volume, there is an unavoidable uncertainty
in the statistical analysis of large-scale structure probes
arising due to finiteness of the survey volume as well as the
nonlinear mode coupling, as studied in Refs. [10-33]. A
finite-volume survey realization is generally embedded into
large-scale perturbations that are not directly observable—
which we hereafter call “super-survey modes” [10,26].
Although the super-survey modes have small amplitudes
and are well in the linear regime for a wide-area galaxy
survey, it causes a non-negligible effect on small-scale
perturbations due to the nonlinear mode coupling, com-
pared with the statistical accuracies in measurements of the
small-scale perturbations. Hence, it is necessary to include
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the effects in the cosmological analysis (e.g. [34]) in
order not to have any biased estimation in cosmological
parameters as well as not to have too optimistic cosmo-
logical constraints.

The physical effects of super-survey modes on struc-
ture formation at equal time arise from the second-
derivative tensor of the large-scale gravitational field
due to the equivalence principle [16,31]. The tensor is
decomposed into two modes: the trace part or large-scale
density contrast and the traceless tensor which we here-
after call the large-scale tide. While the effect of large-
scale density contrast is well studied in previous studies
(e.g. [10]), the effect of large-scale tide has not been fully
studied, except for some studies [19,27,30-32,35]. In our
previous study [31], we showed that a large-scale tide
causes an anisotropic clustering in the redshift-space
power spectrum. The effect mimics the redshift-space
distortion effect [36,37] arising from the peculiar veloc-
ities of large-scale structure tracers as well as the Alcock-
Paczynski (AP) distortion [38—40] arising from the use of
an incorrect cosmological model in the clustering analy-
sis. Yet we studied only the partial effect, the effect of the
large-scale tide on the real-space clustering; in other
words, we did not include the effect of large-scale tide
on redshift-space distortion as well as a modulation in the
mapping between real- and redshift-space distributions of
galaxies.

Hence, the purpose of this paper is to study the effects
of large-scale tide on the redshift-space power spectrum,
based on the perturbation theory [7]. To do this, we derive
response functions of the redshift-space power spectrum to
super-survey modes, which describe how the super-survey
modes in a given survey realization affect the redshift-space
power spectrum as a function of wave vector k and the
line-of-sight direction, say 1, relative to the large-scale tide.
We then discuss the impact of the tide on estimation of
cosmological distances and the redshift-space distortion
parameter via a measurement of the redshift-space power
spectrum for a hypothetical large-volume galaxy survey,
using the Fisher matrix formalism.

The rest of this paper is organized as follows. In Sec. II,
we define the super-survey modes and introduce its iso-
tropic component and anisotropic components. In Sec. III,
we derive the response function of the redshift-space
power spectrum to super-survey modes by considering
the squeezed-limit bispectrum that is a cross-correlation
of the super-survey modes with the redshift-space power
spectrum estimator. In Sec. IV, we study the impact of the
super-survey modes on cosmological parameter estimation
from a measurement of the redshift-space power spectrum,
including the AP test, based on the Fisher information
matrix analysis. Section V is devoted to the discussion.
In the Appendix, we give expressions for the multipole
expansion of the redshift-space power spectrum in the
presence of the super-survey modes.

II. PRELIMINARIES

The redshift-space density field of galaxies observed in a
finite-volume survey region can be expressed, using the
survey window function W(x), following the formulation
in Ref. [10]:

Sw(x) = W(x)o,(x), (1)

where &,(x) is the observed density field, §,(x) is the
underlying true density field in redshift space, and the
survey window is defined in that W(x) = 1 if x is inside
the survey geometry, and otherwise W(x) = 0. Throughout
this paper we assume that a survey window is given in the
background comoving coordinate. The survey volume is
defined in terms of the survey window as

VW:/d3XW(x). (2)

In the following we assume a well-behaved survey window
for simplicity; we do not consider effects of masks that
might cause additional mode-coupling between high-k
modes in the observed power spectrum. The Fourier
transform of the density field is

3
5y (k) = / (;17q)3v~v<q>ss<k —q. )

where quantities with tilde symbol such as &, (k) are their
Fourier transforms. The survey window W(k) is non-
vanishing for k < 1/L, while W(k) ~0 for k> 1/L,
where L is a typical scale of the survey volume. The
above equation explicitly shows that the Fourier transform
of the observed field has a contribution from long-
wavelength modes beyond a survey window, i.e. super-
survey modes, via a convolution with the survey window.

Redshift-space distortion (RSD) effect due to peculiar
velocities of galaxies causes a modulation in the observed
clustering pattern of galaxies along the line-of-sight direc-
tion. Thus the RSD effect violates statistical isotropy of the
galaxy distribution. For this reason the monopole power
spectrum, measured by the azimuthal-angle average of
power spectrum over d€, cannot carry the full informa-
tion. Instead a standard approach to quantify the redshift-
space clustering of galaxies is using the power spectrum,
given as a function of the three-dimensional wave vector k.
An estimator of the power spectrum for a given survey
window is defined as

N 1 Pk’ - -
Ps(k) =7 —5&W(k)5sW(_k)’ (4)
Vw Jxek Vi

where the integration is done over a volume element around
the mode k (a target wave vector for the power spectrum
measurement), and V. is the volume: V = fk,ek &Kk’ Ifa
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bin width around the bin k is given by Ak, V) ~ (Ak)>.
This definition does not include an angle average of dQy,
unlike a definition of the monopole power spectrum.
Hence, at this point, the redshift-space power spectrum
Py(k) is given as a function of the three-dimensional
vector, k. A standard method usually further assumes the
statistical isotropy in the two-dimensional plane (angular
direction) perpendicular to the line-of-sight direction, and
then uses the power spectrum given as a function of two-
dimensional vector (kj,k, ), where k| is the line-of-sight
direction component of k, k; is the vector in the two-
dimensional plane perpendicular to the line-of-sight direc-
tion, and k; = |k, |. Here we do not introduce the angle
average over dgy  in the perpendicular plane, where @ is
defined via k| = k| (cos ¢y, sin ¢y ), and keep the general
definition of Iss(k) because the large-scale tide generally
causes anisotropic distortions in the redshift-space cluster-
ing pattern of galaxies in all three-dimensional directions
(also see Ref. [41], for the similar discussion).

Given the definition of the redshift-space power
spectrum,

(6,(k)5, (k") = (22)°Py(k)op (k + k). (5)
where §3,(k) is the Dirac delta function, the ensemble
average of the estimator [Eq. (4)] is found to be an unbiased
estimator of the underlying power spectrum for modes
with k> 1/L:

1 d3k’
——/ / s W@PP. (k- a)
Vw Jxex

3/ 3
SV X 1 / (‘;ﬂ‘; (@)

&k’
~5 LT e
VW kek’
(6)

VW kek' Vi
Here we used P,(k — q) ~ P,(k) over the integration rage
of d*q which the window function supports and assumed
that P, (k) is not a rapidly varying function within the
k-bin. In addition, we used the general identity for the
window function [10]:

= P,(k).

Vi = /d3xW(x)”

_/ [H ;123:)“ ~((la)] 228 (q ). (7)

a=1

where q; , =qi + ¢+ - +q,.

Similarly to Takada and Hu [10] and Akitsu ez al. [31],
we study effects of super-survey modes on the redshift-
space power spectrum. The super-survey modes we focus

on are the large-scale density contrast and the large-scale
tide, defined in terms of the linear matter density fluc-
tuation field as

1 -
o= [ W5 x)

3
! éTqPSmLm)W(—q),

T Vw
TijEM/&xW(x) [‘I’.ij(x)—éjVZq)( )
3 5& ~ y
1 / (;1,3 (WI §>5mL(q)W(—q), (8)

where §; = q;/q, §;4' = 1, 8f; is the Kronecker delta, and
®(x) is the gravitational potential field. Here we assumed
that a survey volume is sufficiently large, and therefore the
matter density field contributing the super-survey modes
are in the linear regime, denoted as &, (x). Under this
setting, |8y, |7;;| << 1. These super-survey modes are not
direct observables and vary with survey realizations. For a
particular survey realization, &y, 7;; have particular constant
values. The expectation values of the ensemble averages,
i.e. the averages over different, possible survey realizations
for a fixed volume, are computed if the linear matter
power spectrum at long wavelengths for super-survey
modes, PL(k), is given for a given cosmological model:
(6) = (7;;) = 0, and the variances are

3
=0 =g [ el
3
i) =i [ s (0= 395 ) PH@IW @

1 d3q A 1 o 1
(@it} = V_%V/ (27)? (‘Ii‘Ij —§5{§> (CIICIm —55{;)
) ©)

where PE(q) is the linear matter power spectrum.

In this paper we consider an isotropic window for
simplicity; W(q) = W(g). In this case the variances of
large-scale tide are simplified as

(6p7ij) = 0,
= (1)) = (520 = () = 257
- o [ SL P @R = e (10
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III. RESPONSES OF REDSHIFT-SPACE POWER
SPECTRUM TO SUPER-SURVEY MODES

A. Redshift-space distortion effects

In a redshift galaxy survey, the radial position of each
galaxy needs to be inferred from its observed redshift. Here
the observed redshift can be modified by a peculiar velocity
of galaxy through the Doppler effect, causing an apparent
displacement of the inferred galaxy position from the true
position:

D24, (11)

where s is the inferred position of galaxy in redshift
space, X is the true position in real space, v is the radial
component of peculiar velocity, H(z) is the comoving
Hubble rate, and f is the unit vector of the line-of-sight
direction. With this coordinate transformation, the density
field in redshift space can be expressed as

pu(s) = /d3xp(x>5§) (s Cx- ;‘{E’Z‘; ﬁ), (12)

where p,(s) or p(x) denotes the redshift- or real-space
density field of galaxies, respectively. In the following
quantities with subscript “s” denote their redshift-space
quantities. Fourier-transforming Eq. (12), [ dse’®*, yields

53 (k) + 8,(k) = / Ex[1 -+ 8(x)]e XD (13)

This transformation is exact even if multiple galaxies are
mapped to the same position in redshift space, which can
happen, e.g. in a nonlinear high-density region. Such multi-
streaming regions are beyond the scope of this paper, and
we ignore the effects in this paper for simplicity. In this
setting we can rewrite Eq. (13) as

Ss(k):/d3 [l—l—é(x) ’gs’

Xj
d S
~ / dBx [5(){) - 'H} ) 81:1” ﬁ] e—lk~x—l(k-n)%’ (14)

where we kept the peculiar velocity up to the linear order
in an expansion of the Jacobian, |Js;/0x;|, assuming
loy/H| < 1.

Using the perturbation theory of structure formation [7],
we can express the redshift-space density field Ss(k) in
terms of the linear matter density field &, (k) as

} o-ikex—i(ki)sk

5,(k; 1) =

/[Hdm} Ky KB (K 1) -

XémL(ki’I)(zﬂPé%(klmi - k) (15)

where we have introduced the notation, kj, ; =k;+
k, +---+k;, and Z;(ky,...,k;) is the mode-coupling
kernel between different Fourier modes with ki, ..., k;.
We throughout this paper employ a distant observer
approximation for simplicity. In the following discussion
we use the density fields up to the second-order, which are
given as

- d’k, d’k
= Z,(k)3 (K) + / L K2 k)

(2r)3 (27)3
X O (K1, 1)0ms. (Ko, 1) (27)*63 (k1 — k). (16)
Using the standard Eulerian perturbation theory [42-44],
where an irrotational, pressureless single-fluid matter field
is assumed, the kernels are given as

Z(K)=b+fu?,
Zy(ky. ko) =bFs (k. Ky) + Gy (k1 Ky)
Juk |
+5 K —(b+fu3)+ k) (b+fﬂ%) . (17)

where k = k; + k,, y is the cosine angle between the wave
vector k and the line-of-sight direction, y =1 - k = ky/k
(kj is the component along the line-of-sight direction),
f=dInD/dIna, D is the linear growth rate, and b is the
linear bias parameter of galaxies. The pioneer work for the
RSD effect is given in Ref. [36], and see Refs. [45-48] for
the extension to the higher-order terms. Throughout this
paper we assume the linear galaxy bias to model how the
real-space distribution of galaxies is related to that of
matter. Although the effect of the large-scale tide could
cause an additional biasing effect on the tracers [8,49-51],
the effect on the power spectrum is of the order of
O((8mz.)?), compared with the O(8,,;) effect in b, so we
ignore the effect for simplicity. The kernels F,(k, k,) and
G,(ky,k,) are the second-order kernels for the density
and velocity perturbations, given by Eqgs. (45) and (46)
in Ref. [7]:

5 1/1 1 2(k, - k,)?
F2<k1,k2>=—+—(—+—)<k1-k2>+——,
7 2\ K2 T
3 1/1 1 4(k, - k,)?
Gz(k],kz):_ _(—+ )(k k2)+_7.
7 2\ K 7 K3

(18)
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B. Derivation of the responses of redshift-space
power spectrum to super-survey modes

We now consider how super-survey modes affect the
redshift-space power spectrum observed in a finite-volume
survey. Following the discussion in Refs. [10,31], in the
presence of super-survey modes (6, 7;;) for a given survey
realization, the “observed” redshift-space power spectrum
is formally expressed, up to the first order of super-survey
modes, as

oP,(K)
96,

oP, ()
aT” Tij'

t

Py (K; 6y, 7;;) = Py(k) + o + (19)

Here we omitted the dependence of Py (k) on the line-of-
sight direction, fi, for notational simplicity and we explic-
itly denote that the observed spectrum Py (K;dy,7;)
depends on the super-survey modes of a given survey
realization, and P, (k) is the power spectrum without
the super-survey modes. The functions OP,(k)/d8, and
P,(k)/0z;; are so-called “response” functions describing

a response of the redshift-space power spectrum to the
super-survey modes via mode couplings in the nonlinear
structure formation. We again stress that the super-survey
|

:1/ d3k// d3ql d%q2 S(k/
Vi Jrwek Vi

&k’

(Pyw (k)b (a))

ql)Sx(_k/ - qZ)Sm

modes, 6, and 7;;, are “constant” numbers for a particular
survey realization. Hence, the above equation assumes
that a shift in the redshift-space power spectrum due to all
long-modes with wavelengths longer than a size of survey
volume is described by the product of the response function
and &, or 7;;. Furthermore, the response function is given as
a function of sub-survey modes, even down to an arbitrary
large k in the deeply nonlinear regime, if it is not non-
vanishing. That is, we assume that, as long as the super-
survey modes are in the linear regime (a survey volume is
sufficiently large) and if the response function is obtained,
the effects on all the small-scale modes are described by
the above equation. Thus Eq. (19) rests on a nontrivial
assumption, but is quite useful if Eq. (19) holds a good
approximation, which is indeed the case for &, as shown by
many works (e.g. [22]).

Now we derive the response function using the pertur-
bation theory. The simplest way to do this is considering a
squeezed-limit bispectrum that arises from correlations
between two short modes and one long mode (correspond-
ing to super-survey modes) [52]. More specifically, let us
consider a correlation of P (k) [Eq. (4)] with the large-
scale matter density field, &,,, (q) (q is the long mode):

L(Q)>W(Q1)W(Q2)

1 d3q1 d3q2 / ’ 353 i i
=V o Ve By (K' —d1. ~k' ~ 42, 9)(22)°0p (412 ~@)W(a)W(q2).  (20)
(S

where we have defined the bispectrum between the red-
shift-space density field and the real-space density field:

<Ss(kl)5s(k2)gmL (q)>
EBssm(k17k2’q)(2ﬂ)35%}(kl +k2+q) (21)

For the case that k> ¢, q,, g, the bispectrum in the
above equation arises from so-called squeezed triangles
where two sides are nearly equal and in opposite direction.
To see this, we can make the variable changes k — q; <> k
and q; + q, < q under the delta function condition
qi2 +q =0 and the approximation that k <« ¢g. The
bispectrum we are interested in reads

lin(l)Bssm(k’ -k - q, q) (22)
q—)

In this limit, the triangle configuration describes how the
redshift-space power spectrum P (k) is modulated by the
super-survey mode &, . (q). For convenience of the follow-
ing discussion, with the help of Eq. (19) we assume that the
squeezed bispectrum can be described by the response of
P(k) to the super-survey modes as

[
limBssm(k’ -k - q, q)
q—0

= [22 (ag, —%) af;—(k)] PHg).  (23)

From Eq. (23), we can derive the response function
OP;(k)/05, from the angle average of the squeezed
bispectrum over d*q as

OP, (k) dQ
S\ pL li —94B. (k,-k — 24
o Pr@ =lim [ S4Bk —k—a.q). (24)

With this derivation, the response to the large-scale tide,
OP(k)/0z;; can be found from

oP,(K)

51(
« coefficients in (q,q i >
T; j

3
x Pt(q)inlimB,n(k, —k —q,q).  (25)
q—)

Using the perturbation theory ansatz for §;(k) [Eq. (16)]
and assuming that the large-scale mode &, (q) is in the
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linear regime, the leading-order contribution of the squeezed bispectrum can be expressed in terms of the mode-coupling

kernels as

Bssm(k’ -k - q, q) = 2Zl (k + q>Z2(k +q,

—q)P*(k +4q|)P*(q) +2Z, (k) Z,(k, q)P* (k) P*(q). (26)

Inserting Eq. (17) into Eq. (26) and using the relations [Eqs. (24) and (25)], we can find that the response functions for the

redshift-space power spectrum are

0P (k) 47 1dlInPE(k) b 26 u? dIn PL(k
= | = ——— | P?PE(k | = +2b ) == (2+b)———2|bfPE(k
96, {21 3 dink B+ 3T+ 3 (2+0) dlk bf
1 1 dIn PE(k) 1 u>dln ( )
— (31 4+70b) — = (1 +2b) ————=| f2u*PL (k — (4> -1) - SutPL(k 27
# a0 =320 SO e 4 [ - 1 - D e, @)
and
0P (k) 8~~ .. dlnPL(k) 24 . 4 A a dIn PL(k)
L = | kik; — kik;————|b*PL(k b + —u’kik; — u(uk;k; + bh;;) ———>|bfP*(k
aTU |:7 1 ] ] dlnk ( )+ nln]+ 7” vy /’t( M 1 j+ lj) dhlk f ( )
16 - . . dIn P (k) dln P* (k)
i +4 k4 2bh. ) ——2| £2,,3pL dyuh.. — A0 — NV SBAPL(k
|y + b = s+ 200) 5 O 2o+ [ty =) | P,
(28)
|
where In the following we focus on the response function for z;;,
and we do not consider the response for 6. From Eq. (28) we
hij = fc(i hy = % ( ]ACi h;+ ]ACJ' 7). (29) can find several types of anisotropies in the redshift- -space

These are full expressions of the responses of redshift-
space power spectrum to the large-scale perturbations.
Compared with the results in Ref. [31], there are additional
effects of the super-survey modes on the redshift-space
power spectrum, that is, there are terms including the
couplings between the large-scale tide 7;; and the line-of-
sight direction fi as expected. The response function for 6,
0P (k)/08,, agrees with Eq. (65) in Ref. [53] if we set
b =1 in the above equation. The response functions,
OP(k)/08, and OP(k)/07;;, show several effects caused
by the super-survey modes. First, the large-scale perturba-
tions could speed up or slow down the growth of short
modes: for example, if the large-scale tide along a particular
direction is positive, say z;; > 0, the expansion of a local
volume along the direction is slower than that of the global
universe, so the growth of short modes with k along the
direction can be enhanced. Second, the super-survey modes
cause a dilation of the comoving wavelengths. Because the
large-scale perturbations can be realized as a modification
of the local expansion, the comoving wavelengths which an
observer infer are modulated by the super-survey modes,
which imprints a modulation in the power spectrum.
Thirdly, the super-survey modes alter the peculiar velocities
through the effects on the gravitational force, so alter the
redshift-space distortion effects along the line-of-sight
direction. Thus the large-scale tide causes modifications
in the clustering pattern along all the three directions.

power spectrum: the standard RSD effect u?> = k ki S
(Kaiser factor), and the effects due to z;; that have depend—

ences of z; k,k s Ti k, fj, and 7;;n;n;, respectlvely. First, let
us remind of the phys1cal origin of the Kaiser factor. It comes
from O;v;7;71; [see Bq. (14)]. This means that the Kaiser
anisotropy reflects the projection of the velocity shear
(9(ivj), in Fourier space lAcl-lch) onto the line-of-sight
direction. In other words, since the velocity shear corre-
sponds to the tidal field, the Kaiser factor can be interpreted
as the projection of the short-mode tidal field onto the line-
of-sight direction. The terms proportional to ;; kik ; represent
a coupling between the large-scale tide 7;; and the small-
scale tide, where the latter has directional dependences given
by o« (kik; — 36F). The terms of 7;;7;71; are like the Kaiser
factor, that is, the projection of the large-scale tide z;; onto
the line-of-sight direction. Note that the terms proportional
to h;; always appear with p = k - fi, because of the parity
1nvanance of the power spectrum, i.e. P, (k) = P,(—k).
Then, rilec,-ﬁjy = T,-lecl-lAc,fzjﬁl is a consequence of the pro-
Jection of the coupling between the large-scale tide 7;; and

the small-scale velocity o IAci onto the line-of-sight direction.

C. The large-scale mode effects on the two-dimensional
redshift-space power spectrum: PSZD(kH k)

The main purpose of this paper is to estimate the impact
of super-survey modes on the RSD measurements as well
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as Alcock-Paczynski (AP) test [38] through a measure-
ments of the redshift-space power spectrum. To do this,
we employ the standard approach used in an analysis of the
redshift-space power spectrum. Since the RSD effect is
only along the line-of-sight direction and does not affect
the clustering pattern in the two-dimensional plane
perpendicular to the line-of-sight direction, a usual way
to measure the redshift-space power spectrum is making the
angle average given as

|

2z d
ain PsW(k;Tij>7

2 (30)

P?v?/(kn’kbﬁj) E%

where we have set the line-of-sight direction as z-axis,
n; = 5{§ and used the decomposition of wavevector, k =
(ki cos @y .k singy k) with the conditions (k, k) =

k( - ”2’ ﬂ)
By inserting Eqgs. (19) and (28) into Eq. (30) we can find

8 dPL (k)] 3u® - 1
PRk, kjszyy) = (b4 fu)*PH(k) + [5 BRPE(K) - b? dT(k)] s
12 dP" (k
I Hb T - 1)}PL(1<) —w{b+ (3¢’ = 1)} dlnﬂ o33
i 3u? — 1Y dP-(k
i [{417 +?(3ﬂ2 - 1)}PL(k) - <2b += 2 ) dln(k)] 33

+ fut [(‘W - 1)PE(k) —p

where we have used the following identities under the
presence of the line-of-sight direction

TN el I DU
A 27;' klkj = ) 5” + 5 ninj,
2ﬂd¢k n
L k; = pi;, 32
|7 k= (32)

with the traceless condition of 7;;, i.e. r,»jég = 0. Equa-
tion (31) is one of the main results of this paper. The
equation shows that the large-scale tide causes an addi-
tional anisotropic clustering in the two-dimensional
redshift-space power spectrum in addition to the Kaiser
distortion. The amount of the distortion depends on the
line-of-sight component of the tide, 733, in a given survey
realization. The tide causes anisotropic distortions up to the
order of yﬁ, while the standard Kaiser RSD effect causes
distortions up to u*. Thus the large-scale tide in a given
survey realization causes a bias in the redshift-space power
spectrum. There are two ways to take into account the
effect. One way is to include the effect as an additional
noise in the error covariance matrix of the power spectrum
as studied in Ref. [31]. Alternative approach, which we take
in this paper, is to treat the effect as a signal rather than
noise. We can model this effect by treating the bias as a
purely systematic additive shift in the redshift-space power
spectrum, where an amount of the bias is given by the
power spectrum response multiplied by a free parameter
733. Then we can use the measured power spectrum to infer
the 733 value in the survey realization. We will study how
a large-volume galaxy redshift survey can constrain the

2 dPL (k):| 33 (31)

dInk

large-scale tide and also how it could cause a degradation
in cosmological parameters.

IV. THE IMPACT OF LARGE-SCALE TIDAL
EFFECT ON REDSHIFT-SPACE
POWER SPECTRUM

A. Fisher information matrix

In this section, following Refs. [39,40], we study how the
large-scale tide affects the BAO and RSD measurements in
the redshift-space power spectrum [2], based on the Fisher
information matrix formalism.

The two-point correlation function of galaxies is mea-
sured as a function of the separation lengths between paired
galaxies. To measure this separation, the position of each
galaxy needs to be inferred from the measured redshift and
angular position. Then the separation lengths perpendicular
and parallel to the line-of-sight direction from the measured
quantities are given as r; o A and r| < Az, with A0
and Az being the differences between the angular positions
and the redshifts of the paired galaxies. To convert the
observables (A0, Az) to the quantities (r, rH), one has to
assume a reference cosmological model. Considering this
transformation, the wave numbers are given as

Dy(2)
DA,ref(Z)

Href<z)

ki, K et = W

kJ_,ref = k||’ (33)

where D4(z) is the angular diameter distance and H(z) is
the Hubble expansion rate. The quantities with subscript
“ref” mean the quantities for an assumed “reference”
cosmological model, and the quantities without the
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subscript mean the underlying true values. Since the
reference cosmological model we assume generally differs
from the underlying true cosmology, an apparent geomet-
rical distortion is caused in the two-dimensional pattern
of galaxy clustering. In principle, this distortion could be
measured using only the isotropy of clustering statistics, the
so-called Alcock-Paczynski (AP) test [38], but a more
robust measurement of both D,(z) and H(z) can be
obtained by searching for the “common” BAO scales in
the pattern of galaxy clustering, as the standard ruler, in
combination with the CMB constraints [39,40].

We will use the currently standard ACDM model as a
guidance for the parameter dependence of our constraints and
as an effective realistic description of the galaxy clustering.
To be more quantitative, we assume that the redshift-space
galaxy power spectrum measured from a hypothetical survey
realization is given in the linear regime as

D%,refH

PZD obs .
DAHref

sW ref (kH,ref’ kJ_,ref; 733) =

PR (k. ki 5733) + Py,
(34)

where P25°™ is the “observed” or “estimated” power
spectrum from a given survey realization, P20 on the
right-hand side is the true, underlying true power spectrum
[Eq. (31)], measured if an observer employs the true
cosmological model, and P, is a parameter (constant
number) to model a possible contamination of a residual
shot noise to the power spectrum measurement.

To make the parameter forecast, we employ the method
developed in Refs. [2,3,54]. Assuming that the redshift-
space power spectrum is measured from a hypothetical
survey volume the Fisher information matrix of model
parameters can be computed as

e _ / / 2nk2dk81n Pl (ks i3 23)
mm 8170

O PG (k,ﬂ; Zi)

x exp [-k*Z2

Ve (ks 2;)

— (53 - 23], (35)

where 61)35&/’,?2? /Op, is the partial derivative of the galaxy
power spectrum [Eq. (34)] with respect to the a-th parameter
around the reference cosmological model. The effective
survey volume V4 and the Lagrangian displacement fields
2 and X to model the smearing effect are given as

iy (z) P20 (ksz;) 12
ny(z;) Papy (kopszi) + 1

Veff(ksﬂ;zi) = Vsurvey(zi)’ (36)

ZJ_ (Z) = CrecD(Z)ZO’ (37)

Z|| (Z) = CreCD<Z)(1 +fg>20 (38)

Here Vyyey(2;) is the comoving volume of the redshift
slice centered at z;, X, is the present-day Lagrangian
displacement field, given as X, = 114! Mpc for 63 = 0.8
[55], and the parameter ¢, is a parameter to model the
reconstruction method of the BAO peaks (see below).
In Eq. (35), we take the exponential factor of the smearing
effect outside of the derivatives of P7)%%. This is
equivalent to marginalizing over uncertainties in % and
2. We include the parameter for the large-scale tide for
the survey volume, i.e. 733 in addition to the cosmological
parameters, the distances in each redshift slice, and other
nuisance parameters:

Pa = {133va0vAsv nsvaQOth’ QbohszA(Zi)’
H(z;),by(2:), B(2:), Psn(zi) }» (39)

where A, n, and a, are parameters of the primordial
power spectrum; A, is the amplitude of the primordial
curvature perturbation, and n, and @, are the spectral tilt
and the running spectral index. The set of cosmological
parameters determines the shape of the linear power spec-
trum. For the k-integration, we set k;, = 10™* #/Mpc and
kmax =0.5 h/Mpc, but the exponential factor in Eq. (35)
suppresses the information from the nonlinear scales. The
Fisher parameter forecasts depend on the reference cosmo-
logical model for which we assumed the model consistent
with the WMAP 7-year data [56]. In this paper, we consider
a single redshift slice, and then consider 12 parameters in
total in the Fisher analysis.

Furthermore, we assume the BAO reconstruction method
in Ref. [55]. Because the large-scale peculiar velocity field
of galaxies in large-scale structure can be inferred from the
measured galaxy distribution, the inferred velocity field
allows for pulling back each galaxy to its position at
an earlier epoch and then reconstructing the galaxy dis-
tribution more in the linear regime. As a result, one can
correct to some extent the smearing effect in Eq. (35) and
sharpen the BAO peaks in the galaxy power spectrum.
Padmanabhan et al. [57] implemented this method to the
real data, SDSS DR7 LRG catalog, and showed that
the reconstruction method can improve the distance error
by a factor of 2. The improvement was equivalent to
reducing the nonlinear smoothing scale from 8.1 to
Y =44 h~! Mpc, about a factor of 2 reduce in the
displacement field. In the Fisher matrix calculation, we
used ¢, = 0.5 as a default choice [57].

In the following forecast, we assume the BAO experi-
ment combined with the CMB constraints expected from
the Planck satellite:

F = FCMB + Fgalaxy’ (40)
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where Fcyp is the Fisher matrix for the CMB measure-
ments. We employ the method in Ref. [2] to compute the
CMB Fisher matrix, where we assumed the standard
ACDM model for the physics prior to recombination that
determines the sound horizon scale or the BAO scale.

B. Results

As a working example, we consider a hypothetical
survey that is characterized by the central redshift
z = 0.5, the comoving volume V = 1 (Gpc/h)?, the mean
number density of galaxies 7, = 10~ (h/Mpc)? and linear
bias parameter b = 2, respectively. For simplicity we
consider a single redshift slice. In reality, when a galaxy
redshift survey probes galaxies over a wide range of
redshifts, one can use the clustering analysis in multiple
redshift slices and then combine their cosmological
information.

In Fig. 1 we show the marginalized 68% C.L. error
contours in each of two-dimensional sub-space that include
either two of the large-scale tidal parameter, 733, the
distance parameters, D, or H, or the RSD parameter f,

where the contours include marginalization over other
parameters. Note that 733 has little degeneracy with other
parameters. More quantitatively, the cross-correlation

coefficients defined as ¢;; = (F~');;/\/(F~");(F~");; with

i = 733, after the CMB Fisher matrix is added, is almost
unity for either one of these three parameters is taken for j,
while the cross-coefficients are smaller for other parame-
ters, less than (0(0.2). The contours in each panel of Fig. 1
show how an uncertainty in 733 causes a degeneracy with
estimation of other parameter. Since the large-scale tide
causes apparent anisotropies in the observed clustering of
galaxies as the radial AP anisotropy and the RSD effect do,
allowing 733 to freely vary in the parameter estimation
causes significant degeneracies with  and H. The degen-
eracy between 733 and D, arises from the trace-less nature
of 7;;; changing 733 leads to a change in 7;; + 7 (= —733)
and therefore causes an apparent distortion in the k-
direction, which mimics the cosmological distortion due to
a change in Dy,.

However, if adding the prior on 733 assuming the
ACDM model, i.e. 733 = 0 for the expectation value and

125 T T T N
— without 733 prior
= —  with 733 prior
- 1.00 - -
o
T
0.75 + —
| | |
I I I I I I
1.05 -+ —
<
Q 1.00 |- - -
0.95 |- - -
| | | | | |
I I I I I I I I I
1.05 -+ —
& 1.00 =+ .
0.95 -+ —
] ] ] ] ] ] ] ] ]
0.75 1.00 1.25 0.9 1.0 1.1 0.95 1.00 1.05
B H(z=0.5) Dy
FIG. 1. 68% C.L. error ellipse for the parameters, 733, D4, H and f, including marginalization over other parameters in the Fisher

analysis (see Sec. IV A for details). The inner black contour in each panel shows the result when o, = 1.04 x 1073 is employed as the
733 prior, which is taken from the rms value expected for the ACDM model and the assumed galaxy survey that is characterized by

V =1 (Gpc/h)?, iy = 1072 (h/Mpc)? and b = 2.

063527-9



KAZUYUKI AKITSU and MASAHIRO TAKADA

PHYS. REV. D 97, 063527 (2018)

1.001] 1.001} 1.001}

£ 1.000} 31.000 & 1.000}

0.999} 0.999} 0.999}
0.950 0.975 1.000 1.025 1.050 099 1.00 1.0l 0.99 1.00 1.01
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Fisher ellipse for 733 and H

Fisher ellipse for 733 and D4

FIG. 2. A zoom-in version of Fig. 1, around the fiducial model for the Fisher analysis.

6., = 1.04 x 1072 for the rms value for V =1 (Gpc/h)?,
it lifts the degeneracies, recovering a high-precision meas-
urement for each cosmological parameter. Figure 2 shows
a zoomed-in version of the contours around the central
value (the input model in the Fisher analysis), and shows
that the prior of 733 efficiently breaks the parameter
degeneracies. In particular, even if an actual value of 733
in a given survey realization is off from zero by more than a
few o, it does not seem to cause a significant bias in the
parameters. It should be noted that the range of margin-
alized error of 733 in Figs. 1 and 2 is sufficiently smaller
than unity, for a hypothetical measurement of the redshift-
space power spectrum for a volume of 1 (Gpc/h)?. Thus
our assumption that the super-survey modes are in the
linear regime is safely satisfied.

Nevertheless it is interesting to ask whether a measure-
ment of redshift-shift power spectrum of galaxies can be

used to constrain the large-scale tide, 733, rather than
employing the prior, if one can include the information
up to the larger k& beyond the weakly nonlinear regime.
To address this possibility, we need to know the response
of the redshift-space power spectrum to the tide,
OP,(k)/0zs3, in the nonlinear regime where the perturba-
tion theory breaks down. To estimate the response function
in the nonlinear regime requires to, e.g. use a separate
universe simulation where the large-scale tidal effect is
included in the background expansion, similarly to the
method used for estimating the response for the mean
density modulation, 9P /06, in Refs. [22,23,58,59]. This
is beyond the scope of this paper, so here we simply assume
that the response function derived using the perturbation
theory holds in the nonlinear regime. This would be
conservative, because the response is likely to be amplified
in the nonlinear regime as shown in Ref. [22]. Furthermore,

101 : .
—— no prior
— Dy fixed
100 .
— Hfixed
— [ fixed
-1 .
10 — Dy, H, Bfixed
f, - - oy, for ACDM
10-2
10-3
104 . . . A | .
10-2 10-1 100
kmax

FIG. 3. The marginalized error on the estimation of 733, \/(F~!),,, as a function of the maximum wavenumber k,,,, up to which the
redshift-space power spectrum information is included in the Fisher analysis (see text for the details). The different solid curves show the
results when any prior on other parameters (D4, H and f) are not employed or when some or all the parameters are fixed to their values
for the ACDM model. The horizontal dashed curve is the rms value, o, expected for the ACDM model and the survey volume. Note
that we did not impose any prior on other parameters [Eq. (39)], although the CMB information is added.
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to include the effect of the large-scale tide up to the
nonlinear regime, we set £ = 0 for the BAO smearing
factor in the Fisher analysis. In practice, the smearing factor
also depends on nonlinear structure formation, and there-
fore would depend on 733. This is a simplified assumption,
but we believe that the following result gives a rough
estimation of the genuine effect. Figure 3 shows how an
accuracy of the 733 estimation is improved when including
the redshift-space power spectrum information up to a
given maximum wave number k.. Without any prior, 733
is estimated to about 1% accuracy for a survey volume of
V =1 (Gpc/h)?. When fixing other parameters to their
values for ACDM model, the accuracy of 733 is dramati-
cally improved. In particular, when all the distortion
parameters, D,, H and f, are fixed, the 733 parameter
could be determined to an accuracy better than the rms for
ACDM model, if the redshift-space power spectrum infor-
mation is included up to k. = 0.25 A/Mpc. This result
implies that the anisotropic clustering information in such a
nonlinear regime could be used to infer the large-scale tide
for a given survey realization.

V. DISCUSSION

In this paper, using the standard perturbation theory, we
derived the response functions of the redshift-space power
spectrum to super-survey modes, both the isotropic com-
ponent, 0P (k)/08,, and the anisotropic components,
OP(k)/0r;;. Since a given survey realization is generally
embedded in the presence of super-survey modes, d;, and
7;;, that are not direct observables in a finite-volume survey,
it is important to take into account the response functions
which describe how the super-survey modes cause a
modulation in the redshift-space power spectrum measured
in the survey volume, compared with the ensemble average
expectation for an infinite volume. There are two effects.
First, the presence of the super-survey modes changes the
growth of small-scale fluctuations via the nonlinear mode
coupling. Secondly, it causes a dilation effect, the modu-
lation of a short distance scale due to the change of the local
expansion factor in the finite volume region. In particular
we showed that the large-scale tide, 7;;, cause an apparent
anisotropic clustering in the redshift-space power spectrum,
where the effect has directional dependence determined by
an alignment of the large-scale tide, the directions of small-
scale modes, and the line-of-sight direction. This effect
mimics an anisotropic clustering due to the redshift-space
distortion effect of the small-scale peculiar velocities of
galaxies as well as the apparent cosmological distortion
caused by the use of an incorrect cosmological model in the
clustering analysis.

To assess a possible impact of 7;; on parameter estima-
tion from a measurement of the redshift-space power
spectrum in a given survey realization, we used the
Fisher information matrix formalism. To do this, we treated

the effect of 7;; as a “signal” rather than an additional source
of statistical errors in the redshift-space power spectrum
measurement, because it causes a modulation in the mea-
sured power spectrum as do cosmological parameters around
the true model: P (k;z;;) = Py(k)+ 7;;0Ps(k)/07;;,
where the tensor 7;; takes particular values in a given survey
realization. Thus as long as an accurate model of the
response function is given as a function of cosmological
models, it would be straightforward to include the effect in
parameter estimation. In this paper, we considered the two-
dimensional redshift-space power spectrum, P2P (k 1.k 3T33)
as an observable, which is obtained from the azimuthal angle
average of the redshift-space power spectrum estimator in
the two-dimensional plane perpendicular to the line-of-sight
direction under the distant observer approximation. In this
case, the effects of the large-scale tide are modeled by a
single quantity, 733, the line-of-sight component of the tide.
We showed that, if allowing 735 to freely vary, it causes a
significant degradation in the parameters, D, H and /3, due
to almost perfect degeneracies between 733 and the param-
eters in the power spectrum. If one adopts a prior on 733
assuming the rms expected for a ACDM model, it efficiently
lifts the parameter degeneracies and restores an accuracy of
the cosmological parameters that are expected for a galaxy
survey without the super-survey mode. Thus the impact of
the large-scale tide on the redshift-space power spectrum is
not as large as the impact of the large-scale density contrast,
Oy, On a real-space power spectrum such as the weak lensing
power spectrum [10,22], as long as the large-scale tide obeys
the ACDM expectation. The reason for this less-significant
impact is partly because the statistical uncertainty in a
measurement of the quadrupole power spectrum, which is
the lowest-order observable to extract the redshift-space
distortion, is dominated by the statistical uncertainty in the
monopole power spectrum measurement [31].

We have also addressed whether a measurement of
redshift-space power spectrum can be used to constrain
733 in the survey realization, rather than treating 733 as a
nuisance parameter. Because the presence of 733 causes a
mode-coupling with all the small-scale fluctuations, we
showed that 733 can be well constrained at an accuracy
better than the rms for a ACDM model, if we can use the
redshift-space power spectrum information up to small
scales, k. = 0.25 h/Mpc and if the cosmological param-
eters including D 4, H and f3 are sufficiently well constrained,
e.g. by other cosmological probes. This is an interesting
possibility, because the method gives an access to such a
large-scale tide from a measurement of the small-scale
fluctuations, and the large-scale tide would contain the
information on physics in the early universe, e.g. statistical
anisotropies arising from the inflation physics [60] or a large-
scale anisotropy due to the super-curvature fluctuation [61].

However, there are several limitations in the results
shown in this paper. First, we used the perturbation theory
prediction for the response function of redshift-space power
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spectrum in the Fisher analysis, which breaks down in the
deeply nonlinear regime. In order to realize the genuine
functional form of the response function in the nonlinear
regime, we need to use N-body simulations of large-scale
structure formation and then study a coupling of the large-
scale tidal modes with small-scale Fourier modes. For
doing this, a “separate universe simulation” method would
be powerful, where the large-scale modes are absorbed into
the background expansion. It was shown that this method
works very well to model the response function to the large-
scale density contrast, OP(k)/d8y, [22,23,29,58,59,62]. To
extend this method, one can adopt an anisotropic expansion
background to model the effect of the anisotropic super-
survey mode, 7;;, and then run an N-body simulation onto
the modified background (e.g., see Ref. [30] for the related
discussion). If this separate universe simulation for z;; is
developed, one can study various effects of z;; on nonlinear
structures; the nonlocal bias of halos [50, 51], the correla-
tion between 7;; and shapes of halos [63-65], and so on.

This would be very interesting, and is our future work.
Another limitation of this paper is we used the redshift-
space power spectrum, Pg(ky, k), which is given as a
function of two wave number variables such as k; and k.
Since the principle axes directions of 7;; have nothing
with the line-of-sight direction, the effect of 7;; generally
violates statistical isotropy in the two- dlmensmnal plane
perpendicular to the line-of-sight direction. Hence, in order
to fully extract the three-dimensional information on
the tensor 7;;, one needs to use the redshift-space power
spectrum given as a function of the three-dimensional
vector, P (Kk), without employing the angle average in the
perpendicular plane as usually done in the standard method.
Alternatively one can use a more general expansion of the
redshift-space power spectrum, e.g. the bipolar spherical
harmonics (BipoSH) decomposition [41,66]. It would be
|

2 1 94
=0 __ 2 - — 2 2
pr=0 = {b +3bf+5f}P(k)+6,,H21b

2 4 2 2 4
- {§b2 +2b2f+—bf+—b2f+—f2 +—fb2

52 62
+ibf+2b2f+—

interesting to study how the full information on z;; can be

extracted by using the BipSH decomposition.
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APPENDIX: MULTIPOLE POWER SPECTRUM
IN THE REDSHIFT-SPACE POWER SPECTRUM

Here, we show the multipole expansion of 2D power
spectrum in redshift space. The multipole power spectrum
are defined as

PL(k; 8. 733) = (26 + 1 / P?v%k 05, T33) L (1),
(A1)

where L,(u) is the Legendre polynomial. Making the use
of Egs. (27) and (31), the multipole power spectra in
redshift space can be calculated as

2 i 2 _3
P3P+ P PR

i} i)

2 8 4 2 .\ OP(k
+T33H b2f+—bf+%f2+ bf2+ f3}P(k)—{Bbf+§b2f+£f2+gbf2+§f3} ah(lk)]
(A2)
=2 _ f f 2 2 i ) % 2 3
P! _[ bf + f]P(k)—I—éh[{ bf+105bf+ bf tof s f} (k)
4 16 OP(k) 6, 17
{4— —bf+ﬁ f2+ﬁf2+ f3} 5 k]+ 3%[{35’724'% f+%f2+— bf*+ 35 f3} (k)
4 OP(k)
{ bf+ b2f+ f2 bf2+af3}m] (A3)
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Pt = %sz(k) +8, H—fz 2 +£f3}P(k) - {—f2 32 +£f3} 3P(k)]
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3003 1001 3003 Olnk

Pi=0 =4, -EJHP(/C) —£f3 8P(k)} + 1733 Hﬁ]& +ﬁf3}P(k) - { o £+ > f3} aP(k)} (AS)
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and the higher-multipole spectra with £ > 8 vanish.
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